Общество с ограниченной ответственностью Научно-производственная фирма «Экоцентр МТЭА»

	α	\cap	Γ	П	٨	\mathbf{C}	\cap	D	٨	T	r /	`	
ı		()	Ι.	л	Α		()	n	Α		ı١	J	

Обоснование планируемой хозяйственной деятельности АО «Находкинский МТП» во внутренних морских водах и в территориальном море РФ

ОБОСНОВЫВАЮЩАЯ ДОКУМЕНТАЦИЯ

Раздел 1. Оценка воздействия на окружающую среду Часть 2. Приложения

Книга 6. Продолжение

OBOC2.6

Том 1.2.6

Президент

Взам. инв. №

Подп. и дата

Инв. № подл.

Главный инженер проекта

26.07.2023 Ю.В. Шмелева

26.07.2023 Л.В. Бычковская

2023

	Оглавление					
	Приложение 8.6.3	источников) г	ов загрязняющих веществ (с учетом площадке Морской терминал про	омплоща,	дка Осно	
	Приложение 8.6.4	Расчет выброс источников) г	ов загрязняющих веществ (с учетом площадке Морской терминал простафьева	м перспек омплоща,	тивных цка Грузо	вой
+						
DSaM.MHB.JNZ						
19						
подп. и дата						
	зм. Кол.уч. Лист № док		OBOC2			
YI				1 -		
	враб. Меньших	26.07.23	Раздел 1. Оценка воздействия на	Стадия ОД	Лист 1	Листо 179

Ī

ПРИЛОЖЕНИЕ 8.6.3 РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ (С УЧЕТОМ ПЕРСПЕКТИВНЫХ ИСТОЧНИКОВ) ПО ПЛОЩАДКЕ МОРСКОЙ ТЕРМИНАЛ ПРОМПЛОЩАДКА ОСНОВНОЙ РАЙОН

ИЗАВ №6101. склад щебня

Источником выделения загрязняющих веществ является:

- ссыпание щебня;
- сдувание пыли с верхнего слоя штабеля щебня.

Всего выбросов по источнику:

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, тлод
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,0071747	0,0010476

Максимально-разовый выброс принят с учетом ветра:

Скорость ветра, м/с	Выброс, г/сек					
0,5	0,00125					
2	0,00131					
4	0,00204					
6	0,00359					
8	0,00649					
8.4	0,00717					

ИВ перегрузка щебня

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 1-й стороны ($K_4 = 0,1$). Высота падения материала при пересыпке составляет 2,0 м (B = 0,7). Залповый сброс при разгрузке автосамосвала осуществляется при сбросе материала весом до 10 т ($K_9 = 0.2$). Расчетные скорости ветра, м/с: 0.5 ($K_3 = 0.2$). 1); 2 (\mathbf{K}_3 = 1); 4 (\mathbf{K}_3 = 1,2); 6 (\mathbf{K}_3 = 1,4); 8 (\mathbf{K}_3 = 1,7); 8,4 (\mathbf{K}_3 = 1,7). Средняя годовая скорость ветра 3,8 м/с (\mathbf{K}_3 = 1,2).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год	
код	наименование	выброс, г/с		
2908	Пыль неорганическая, содержащая 70-20% двуокиси	0,0021156	0,0000806	
	кремния			

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Материал	Параметры	Одноврем енность
'	Количество перерабатываемого материала: Gu = 8 т/час; Groд = 120 т/год. Весовая доля пылевой фракции в материале: K_1 = 0,04. Доля пыли, переходящая в аэрозоль: K_2 = 0,02. Влажность до 10% (K_5 = 0,1). Размер куска 50-10 мм (K_7 = 0,5).	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{FP} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_4 \cdot 10^6 / 3600, \ e/c$$
(1.1.1)

где K_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 K_2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств $K_8 = 1$;

 K_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_{4} - суммарное количество перерабатываемого материала в час, *m/час*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{eod}, m/eod$$

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

윋

<u>Щебень</u> $\mathbf{\textit{M}}_{2908}^{0.5 \text{ M/c}} = 0.04 \cdot 0.02 \cdot 1 \cdot 0.1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 0.2 \cdot 0.7 \cdot 8 \cdot 10^6 / 3600 = 0.0012444 \ \textit{e/c};$ $M_{2908}^{2 \text{ M/c}} = 0.04 \cdot 0.02 \cdot 1 \cdot 0.1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 0.2 \cdot 0.7 \cdot 8 \cdot 10^{6} / 3600 = 0.0012444 \text{ e/c};$

 $M_{2908}^{4 \text{ m/c}} = 0.04 \cdot 0.02 \cdot 1.2 \cdot 0.1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 0.2 \cdot 0.7 \cdot 8 \cdot 10^{6} / 3600 = 0.0014933 \text{ e/c}$

 $\mathbf{M}_{2908}^{6 \text{ M/C}} = 0.04 \cdot 0.02 \cdot 1.4 \cdot 0.1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 0.2 \cdot 0.7 \cdot 8 \cdot 10^6 / 3600 = 0.0017422 \text{ e/c};$

 $M_{2908}^{8 \text{ M/c}} = 0.04 \cdot 0.02 \cdot 1.7 \cdot 0.1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 0.2 \cdot 0.7 \cdot 8 \cdot 10^{6} / 3600 = 0.0021156 \text{ a/c};$

 $M_{2908}^{8.4 \text{ m/c}} = 0.04 \cdot 0.02 \cdot 1.7 \cdot 0.1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 0.2 \cdot 0.7 \cdot 8 \cdot 10^6 / 3600 = 0.0021156 \text{ s/c};$

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

OBOC2.	h

(1.1.2)

ИВ Хранение щебня

Расчет выделения пыли при хранении пылящих материалов выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне); «Временные методические указания по расчету выбросов загрязняющих веществ (пыли) в атмосферу при складировании и перегрузке сыпучих материалов на предприятиях речного флота. Белгород, 1992 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р, позиция №102).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 111

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год	
код	наименование	выброс, г/с		
2908	Пыль неорганическая, содержащая 70-20% двуокиси	0,0050591	0,000967	
	кремния			

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.1):

 $\mathbf{M}_{XP} = \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{pa6} + \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot 0,11 \cdot \mathbf{q} \cdot (\mathbf{F}_{nn} - \mathbf{F}_{pa6}) \cdot (1 - \mathbf{\eta}), a/c$

где К₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

 ${\it K}_{\rm 6}$ - коэффициент, учитывающий профиль поверхности складируемого материала;

К₇ - коэффициент, учитывающий крупность материала;

 F_{pa6} - площадь в плане, на которой систематически производятся погрузочно-разгрузочные работы, M^2

 F_{nn} - поверхность пыления в плане, M^2 ;

q - максимальная удельная сдуваемость пыли, $e/(M^2 \cdot c)$;

 η - степень снижения выбросов при применении систем пылеподавления.

Значение коэффициента K_6 определяется по формуле (1.1.2):

$$\mathbf{K}_{6} = \mathbf{F}_{\text{MAKC}} / \mathbf{F}_{\text{ПЛ}} \tag{1.1.2}$$

где $F_{\text{макс}}$ - фактическая площадь поверхности складируемого материала при максимальном заполнении склада, M^2 .

Значение максимальной удельной сдуваемости пылящего материала определяется по формуле (1.1.3):

$$q = 10^{-3} \cdot a \cdot U^0, a/(M^2 \cdot c)$$
 (1.1.3)

где а и b – эмпирические коэффициенты, зависящие от типа перегружаемого материала;

*U*⁰ - скорость ветра, *м*/*c*.

Валовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.4):

$$\Pi_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{nn} \cdot (1 - \eta) \cdot (\mathbf{T} - \mathbf{T}_{\partial} - \mathbf{T}_{c}) \text{ m/sod}$$
(1.1.4)

где Т - общее время хранения материала за рассматриваемый период, в сутках;

 $T_∂$ - число дней с дождем;

 $extbf{\textit{T}}_c$ - число дней с устойчивым снежным покровом.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчетные параметры и их значения приведены в таблице 1.1.2.

Таблица 1.1.2 - Расчетные параметры и их значения

Расчетные параметры	Значения
Перегружаемый материал: Щебень	a = 0,0135
Эмпирические коэффициенты, зависящие от типа перегружаемого материала	b = 2,987
Местные условия – склады, хранилища, открытые с 1-й стороны	$K_4 = 0,1$
Влажность материала до 10%	$K_5 = 0,1$
Профиль поверхности складируемого материала	$K_6 = 130 / 100 = 1,3$
Крупность материала – куски размером 50-10 мм	$K_7 = 0.5$
Расчетные скорости ветра, м/с	U' = 0,5; 2; 4; 6; 8; 8,4
Среднегодовая скорость ветра, м/с	U = 3,8
Площадь поверхности погрузочно-разгрузочных работы в плане, м ²	$F_{pa6} = 100$
Площадь поверхности пыления в плане, м ²	$F_{nn} = 100$
Площадь фактической поверхности пыления, м²	$F_{\text{макс}} = 130$
Общее время хранения материала за рассматриваемый период, в сутках	T = 366
Число дней с дождем	$T_{\partial} = 71$
Число дней с устойчивым снежным покровом	$T_c = 80$

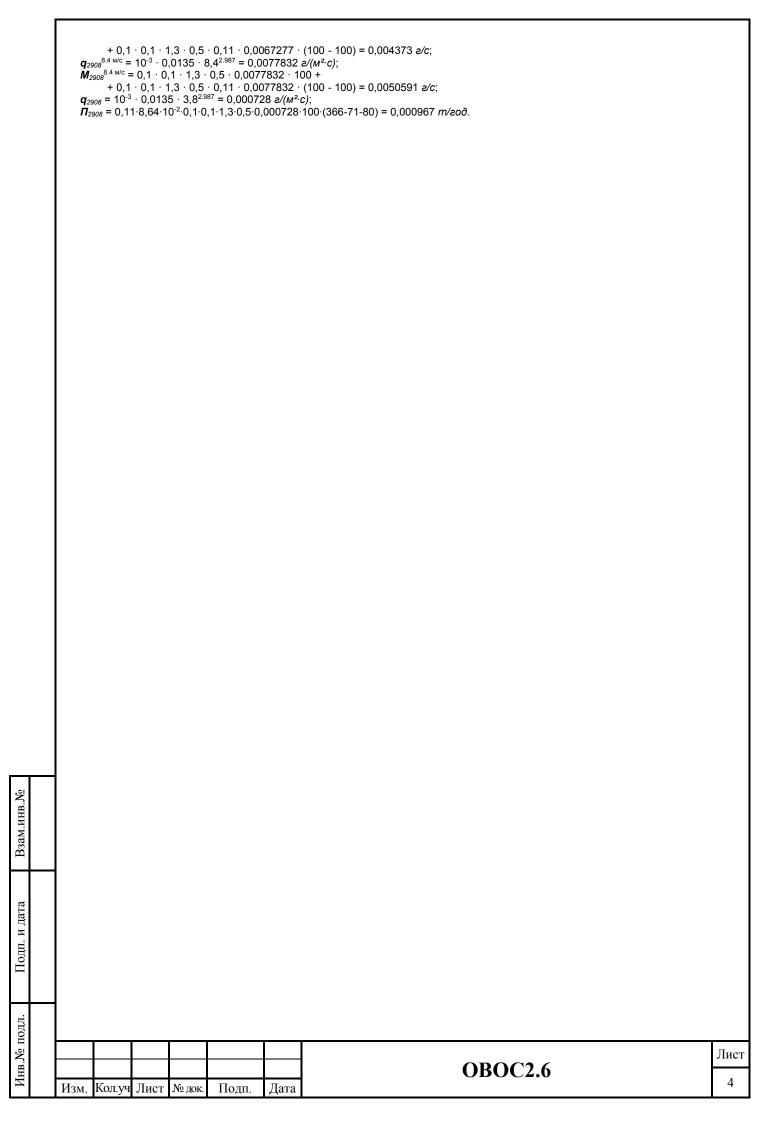
Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Взам.инв.

윋

<u>Щебень</u> $q_{2908}^{0.5 \text{ м/c}} = 10^{-3} \cdot 0,0135 \cdot 0,5^{2.987} = 0,0000017 \ e/(m^2 \cdot c);$

 $+ 0.1 \cdot 0.1 \cdot 1.3 \cdot 0.5 \cdot 0.11 \cdot 0.0000017 \cdot (100 - 100) = 0.0000011 \ e/c;$ $q_{2908}^{2 \text{ m/c}} = 10^{-3} \cdot 0.0135 \cdot 2^{2.987} = 0.000107 \ e/(m^2 \cdot c);$


 $M_{2908}^{2 \text{ M/c}} = 0.1 \cdot 0.1 \cdot 1.3 \cdot 0.5 \cdot 0.000107 \cdot 100 +$

 $+ 0.1 \cdot 0.1 \cdot 1.3 \cdot 0.5 \cdot 0.11 \cdot 0.000107 \cdot (100 - 100) = 0.0000696 \ e/c;$

 $\mathbf{q}_{2908}^{4 \text{ M/c}} = 10^{-3} \cdot 0.0135 \cdot 4^{2.987} = 0.0008486 \text{ e/(}M^2 \cdot \text{c});$

 $M_{2908}^{4 \text{ M/C}} = 0.1 \cdot 0.1 \cdot 1.3 \cdot 0.5 \cdot 0.0008486 \cdot 100 + 0.1 \cdot 0.1 \cdot 1.3 \cdot 0.5 \cdot 0.11 \cdot 0.0008486 \cdot (100 - 100) = 0.0005516 \text{ a/c};$

M ₂	$^{6 \text{ M/C}} = ^{6 $	10 ⁻³ · 0,0 0,1 · 0,1 · 0,1 · 1 10 ⁻³ · 0,0	0135 · 6² 1 · 1,3 · (1,3 · 0,5 0135 · 8²	$2.987 = 0.002$ $0.5 \cdot 0.0028$	8489 <i>e/(n</i> 489 · 100 028489 · 7277 <i>e/(n</i>) + (100 - 100) = 0,0018518	
						ODOC2 (Лист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	3
115141.	1001.9	VIIICI	т. док.	тюди.	дага		

ИЗАВ №6111. склады угля (УТ-1 причалы 10-13)

Источниками выделения загрязняющих веществ являются:

- хранение угля на причалах 10-13;
- хранение кокса каменноугольного на причалах 10-13;
- хранение железнорудного концентрата на причале 10, 12, 13; хранение ильменитовой руды на причалах 10, 13;
- хранение медного штейна на причалах 10, 13;
- хранение окалины (шлака) на причалах 10-13;

В расчете выбросов учтена неодновременность перегрузочных работ с разными грузами. Максимально-разовый выброс принят максимальный по каждому грузу

Валовый выброс суммирован с учетом всех видов грузов

Всего по источнику выбросов:

	Загрязняющее вещество	Максимально	Faranaŭ pulifinan elean							
код	наименование	разовый выброс, г/с	Годовой выброс, т/год							
	При перегрузке каменного угл	я								
3749	Пыль каменного угля	0,07173	0,936170							
	При перегрузке кокса									
3749	Пыль каменного угля	0,02343	0,305826							
	При перегрузке железнорудного конц	центрата								
123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	1,266800	1,217000							
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,646800	0,621400							
	При перегрузке ильменитовой р	уды								
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,267900	0,257400							
123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,306200	0,294100							
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,191400	0,183800							
	При перегрузке медного штейн	на								
146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,016374	0,004862							
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,024560	0,007293							
	При перегрузке окалины (шлак	(a)								
101	диАлюминий триоксид/в пересчете на алюминий/ (5,51%)	0,101900	0,050200							
123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид) (58,24%)	1,076900	0,530300							
2909	Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства - из-вестняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,670300	0,330100							

Расчет по каждому грузу выполнен на максимальную загруженность склада, поэтому в расчете рассеивания учтена неодновременность движения грузов, и по каждому веществу принят максимально-разовый выброс:

	Загрязняющее вещество	Максимально	Годовой выброс, т/год
код	наименование	разовый выброс, г/с	тодовой выорос, ттод
101	диАлюминий триоксид/в пересчете на алюминий/ (5,51%)	0,101900	0,050200
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,267900	0,257400
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе- зо/(Железо сесквиоксид) (58,24%)	1,266800	2,041400
146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,016374	0,004862
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,646800	0,812493
2909	Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства - из-вестняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,670300	0,330100
3749	Пыль каменного угля	0,071729	1,241996

Максимально-разовый выброс с учетом ветра принят:

MHB.No

Скорост	ъ ветра, м/с	0,5	2	4	6	8	8,4
Количес	ство ЗВ, г/с						
101	диАлюминий триоксид/в пересчете на алюминий/ (5,51%)	0,00000139	0,000342	0,00536	0,0268	0,0839	0,1019
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,0000586	0,00368	0,0292	0,0981	0,2316	0,2679
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе-зо/(Железо сесквиоксид) (58,24%)	0,000277	0,0174	0,1381	0,4637	1,095	1,2668
146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,0000212	0,0005569	0,002851	0,0074108	0,0145956	0,0163736
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,000141	0,00889	0,0705	0,2367	0,5591	0,6468
2909	Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства - из-вестняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,00000917	0,00225	0,0352	0,1762	0,5522	0,6703
3749	Пыль каменного угля	0,04219	0,04219	0,05063	0,05907	0,07173	0,07173

	ИВ склады угля (УТ-1 причалы 10-13) Источником выделения пыли является унос пыли с верхнего слоя штабеля при статическом хранении.							
							ODOCA (Лист
И	Ізм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами:

ООтраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,0717	0,936

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельное количество сдуваемых твердых частиц с поверхности штабеля угля, $q_{c\bar{c}}$ [кг/кв.м*с]	0,000001
Площадь основания штабеля угля, S_w [кв.м]	29099
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, ₩ ₈ [м/с]	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, $w_{\rm e}$ [м/с]	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	1
Коэффициент, учитывающий профиль поверхности складируемого материала, K_6	1,45
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0
Коэффициент измельчения горной массы, <i>р</i>	0,1
Количество дней с устойчивым снежным покровом, T_{cn}	80
Количество дней с осадками в виде дождя, T_{∂}	71

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$\begin{aligned} \mathbf{M}_{c\partial} = & \mathbf{86}, \mathbf{4} \cdot \mathbf{q}_{c\partial} \cdot \mathbf{S}_{w} \cdot \mathbf{K}_{1} \cdot \mathbf{K}_{2} \cdot \mathbf{K}_{4} \cdot \mathbf{K}_{6} \cdot \rho \cdot (365 - (T_{cn} + T_{\partial})) \cdot (1 - \eta), \ m/cod \ [1] \\ & \mathbf{G}_{c\partial} = \mathbf{q}_{c\partial} \cdot \mathbf{S}_{w} \cdot \mathbf{K}_{1} \cdot \mathbf{K}_{2} \cdot \mathbf{K}_{4} \cdot \mathbf{K}_{6} \cdot \rho \cdot (1 - \eta) \cdot 1000, \ c/c \end{aligned}$$

где

MHB.No

 q_{cd} – удельное количество сдуваемых твердых частиц с поверхности штабеля угля, кг/кв.м*с;

 S_{w} – площадь основания штабеля угля, кв.м;

К₁ – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 K_6 – коэффициент, учитывающий профиль поверхности складируемого материала;

р - коэффициент измельчения горной массы;

 T_{cn} - количество дней с устойчивым снежным покровом;

 T_{o} - количество дней с осадками в виде дождя;

 $oldsymbol{\eta}$ - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При статическом хранении угля:

 M_{3749} = 0,936 m/200 G_{3749} = 0,0717 2/c

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

, , , , , , , , , , , , , , , , , , , ,		•	•			•	•
Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,0422	0,0422	0,0506	0,0591	0,0717	0,0717

ИВ склады кокса (УТ-1 причалы 10-13)

Источником выделения пыли является унос пыли с верхнего слоя штабеля при статическом хранении.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами:

ООтраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - **Характеристика выделений загрязняющих веществ в атмосферу**

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,0234	0,306

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - **Исходные данные для расчета**

Удельное количество сдуваемых твердых частиц с поверхности штабеля угля, q_{cd} [кг/кв.м*c]	0,000001
Площадь основания штабеля угля, S_{ω} [кв.м]	9506
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, w_s [м/с]	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, <i>w</i> ₅ [м/с]	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), К₄	1
Коэффициент, учитывающий профиль поверхности складируемого материала, \mathcal{K}_{6}	1,45
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0

4	Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4 Коэффициент, учитывающий профиль поверхности складируемого материала, K_6 Эффективность пылеподавления (таб 6.5), η [долл.ед]				1 1,45 0				
									Лист
Из	зм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6		6

 $m{q}_{c artheta}$ – удельное количество сдуваемых твердых частиц с поверхности штабеля угля, кг/кв.м*с;

 $S_{\it w}$ – площадь основания штабеля угля, кв.м;

 \emph{K}_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 \emph{K}_{2} – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 K_6 – коэффициент, учитывающий профиль поверхности складируемого материала;

р - коэффициент измельчения горной массы;

 T_{cn} - количество дней с устойчивым снежным покровом;

 T_{∂} - количество дней с осадками в виде дождя;

 $oldsymbol{\eta}$ - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При статическом хранении кокса:

0.306 т/год **G** 3749= 0,0234

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,0138	0,0138	0,0165	0,0193	0,0234	0,0234

ИВ склад железнорудного концентрата (УТ-1 причал 10)

Расчет выделения пыли при хранении пылящих материалов выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне); «Временные методические указания по расчету выбросов загрязняющих веществ (пыли) в атмосферу при складировании и перегрузке сыпучих материалов на предприятиях речного флота. Белгород, 1992 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р, позиция №102).

Железорудный концентрат имеет следующий состав:

Название	Процентный состав
Железо общее	66%
Оксид железа	0,2%
Неорганические соединения	33,8%

Суммарные выбросы железа нормируются по оксидам железа, неорганические соединения – по пыль неорганической.

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год	
код	наименование	выброс, г/с	тодовой выорос, глод	
Всего пыли	и 100%, из них:	1,9135272	1,838402	
	диЖелезо триоксид, (железа оксид)/в пересчете на	1,2668	1,2170	
	железо/(Железо сесквиоксид)			
2908	Пыль неорганическая, содержащая 70-20% двуокиси	0,6468	0,6214	
	кремния			

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.1):

 $\mathbf{\textit{M}}_{XP} = \mathbf{\textit{K}}_4 \cdot \mathbf{\textit{K}}_5 \cdot \mathbf{\textit{K}}_6 \cdot \mathbf{\textit{K}}_7 \cdot \mathbf{\textit{q}} \cdot \mathbf{\textit{F}}_{\textit{pa6}} + \mathbf{\textit{K}}_4 \cdot \mathbf{\textit{K}}_5 \cdot \mathbf{\textit{K}}_6 \cdot \mathbf{\textit{K}}_7 \cdot 0,11 \cdot \mathbf{\textit{q}} \cdot (\mathbf{\textit{F}}_{\textit{nn}} - \mathbf{\textit{F}}_{\textit{pa6}}) \cdot (1 - \mathbf{\textit{\eta}}), \, \textit{a/c}$ (1.1.1)где K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

 ${\it K}_{\it 5}$ - коэффициент, учитывающий влажность материала;

 $\emph{\textbf{K}}_{6}$ - коэффициент, учитывающий профиль поверхности складируемого материала;

 ${m K}_7$ - коэффициент, учитывающий крупность материала;

 $\emph{\emph{F}}_{
ho a \delta}$ - площадь в плане, на которой систематически производятся погрузочно-разгрузочные работы, $\emph{\emph{M}}^{2}$,

*F*_{пл} - поверхность пыления в плане, M^2 ;

 ${m q}$ - максимальная удельная сдуваемость пыли, ${\it e}/({\it m}^2\cdot {\it c})$;

 $\dot{m{\eta}}$ - степень снижения выбросов при применении систем пылеподавления.

Значение коэффициента K_6 определяется по формуле (1.1.2):

$$K_6 = F_{\text{макс}} / F_{\text{пл}}$$
 (1.1.2)
го материала при максимальном заполнении склада M^2

где $F_{\text{макс}}$ - фактическая площадь поверхности складируемого материала при максимальном заполнении склада, M^2 . Значение максимальной удельной сдуваемости пылящего материала определяется по формуле (1.1.3):

$$q = 10^{-3} \cdot a \cdot U^{\circ}, \ e/(M^2 \cdot c)$$
 (1.1.3)

где а и b – эмпирические коэффициенты, зависящие от типа перегружаемого материала;

U^o - скорость ветра, *м/с*.

Валовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.4): $\boldsymbol{\Pi}_{XP} = 0,11\cdot 8,64\cdot 10^{-2} \cdot \boldsymbol{K}_4 \cdot \boldsymbol{K}_5 \cdot \boldsymbol{K}_6 \cdot \boldsymbol{K}_7 \cdot \boldsymbol{q} \cdot \boldsymbol{F}_{nn} \cdot (1-\boldsymbol{\eta}) \cdot (\boldsymbol{T}-\boldsymbol{T}_0-\boldsymbol{T}_c) \text{ m/zod}$

$$\mathbf{\Pi}_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{nn} \cdot (1 - \mathbf{\eta}) \cdot (\mathbf{T} - \mathbf{T}_6 - \mathbf{T}_c) \text{ m/sod}$$

$$(1.1.4)$$

где Т - общее время хранения материала за рассматриваемый период, в сутках;

T∂ - число дней с дождем;

윋

 T_c - число дней с устойчивым снежным покровом.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Таблица 1.1.2 - Расчетные параметры и их значения

Расчетные параметры	Значения
Перегружаемый материал: железорудный концентрат	a = 0,0135
Удельные показатели приняты по аналогу - щебень	b = 2,987
Эмпирические коэффициенты, зависящие от типа перегружаемого материала	
Местные условия – склады, хранилища, открытые с 4-х сторон	$K_4 = 1$
Влажность материала до 9%	$K_5 = 0.2$
Профиль поверхности складируемого материала	$K_6 = 12358 / 9506 = 1,30002$
Крупность материала – куски размером 50-10 мм	$K_7 = 0.5$
Расчетные скорости ветра, м/с	U' = 0,5; 2; 4; 6; 8; 8,4
Среднегодовая скорость ветра, м/с	U = 3,8
Площадь поверхности погрузочно-разгрузочных работы в плане, м ²	$F_{pa6} = 950$
Площадь поверхности пыления в плане, м ²	$F_{nn} = 9506$
Площадь фактической поверхности пыления, м ²	$F_{\text{MAKC}} = 12358$
Общее время хранения материала за рассматриваемый период, в сутках	T = 366
Число дней с дождем	$T_{\partial} = 71$
Число дней с устойчивым снежным покровом	T _c = 80

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

```
Железнорудный концентрат
                           c = 10^{-3} \cdot 0.0135 \cdot 0.5^{2.987} = 0.0000017 \ e/(m^2 \cdot c);
 \mathbf{M}_{\text{пыли}}^{0.5 \text{ м/c}} = 1 \cdot 0.2 \cdot 1,30002 \cdot 0.5 \cdot 0,0000017 \cdot 950 +
                  +1 \cdot 0.2 \cdot 1.30002 \cdot 0.5 \cdot 0.11 \cdot 0.0000017 \cdot (9506 - 950) = 0.0004186 \ e/c;
 q_{\text{пыли}^2}^{\text{м/c}} = 10^{-3} \cdot 0.0135 \cdot 2^{2.987} = 0.000107 \text{ s/(M²·c)};
M_{\text{пыли}}^{2 \text{ M/c}} = 1 \cdot 0.2 \cdot 1.30002 \cdot 0.5 \cdot 0.000107 \cdot 950 +
                  + 1 \cdot 0.2 \cdot 1.30002 \cdot 0.5 \cdot 0.11 \cdot 0.000107 \cdot (9506 - 950) = 0.0263141 \ e/c;
 q_{\text{пыли}}^{4 \text{ м/c}} = 10^{-3} \cdot 0.0135 \cdot 4^{2.987} = 0.0008486 \text{ e/(}M^2\text{·C);}
M_{\text{пыли}}^{4 \text{ M/C}} = 1 \cdot 0.2 \cdot 1.30002 \cdot 0.5 \cdot 0.0008486 \cdot 950 +
                 + 1 \cdot 0.2 \cdot 1.30002 \cdot 0.5 \cdot 0.11 \cdot 0.0008486 \cdot (9506 - 950) = 0.2086246 \ a/c;
 q_{\text{пыли}}^{6 \text{ м/c}} = 10^{-3} \cdot 0.0135 \cdot 6^{2.987} = 0.0028489 \text{ s/(}M^2 \cdot \text{c});
\mathbf{M}_{\text{пыли}}^{6 \text{ м/c}} = 1 \cdot 0.2 \cdot 1.30002 \cdot 0.5 \cdot 0.0028489 \cdot 950 +
               ^{8} + 1 · 0,2 · 1,30002 · 0,5 · 0,11 · 0,0028489 · (9506 - 950) = 0,7004066 e/c; ^{8} ^{MC} = 10 · 3 · 0,0135 · 8<sup>2.987</sup> = 0,0067277 e/(M^2c);
M_{nbinu}^{8 \text{ M/c}} = 1 \cdot 0.2 \cdot 1.30002 \cdot 0.5 \cdot 0.0067277 \cdot 950 +
+ 1 · 0,2 · 1,30002 · 0,5 · 0,11 · 0,0067277 · (9506 - 950) = 1,6540256 e/c; q_{nb,l7}u^{8.4 \text{ m/c}} = 10^{-3} \cdot 0,0135 \cdot 8,4^{2.987} = 0,0077832 <math>e/(M^2 \cdot c);
M_{\text{пыли}}^{8.4 \text{ м/c}} = 1 \cdot 0.2 \cdot 1.30002 \cdot 0.5 \cdot 0.0077832 \cdot 950 + 0.0077832 \cdot 0.007782 \cdot 0.0077782 \cdot 0.007782 \cdot 0.0077782 \cdot 0.007782 \cdot 0.007782 \cdot 0.007782 \cdot 0.007782 \cdot 0.007782 \cdot 0.
                 + 1 · 0,2 · 1,30002 · 0,5 · 0,11 · 0,0077832 · (9506 - 950) = 1,9135272 a/c;
\mathbf{q}_{nbinu} = 10^3 \cdot 0.0135 \cdot 3.8^{2.987} = 0.000728 \ ext{e}/(m^2 c);
\mathbf{n}_{nbinu} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot 1 \cdot 0.2 \cdot 1.30002 \cdot 0.5 \cdot 0.000728 \cdot 9506 \cdot (366-71-80) = 1.838402 \ m/eod.
Содержание в выбросах оксидов железа составит 66,2 % от общего выброса:
M^{0.5 \text{ m/c}} = 0,0004186 * 0,662 = 0,000277 \text{ e/c};
\mathbf{M}^{2 \text{ M/c}} = 0.0263141 * 0.662 = 0.0174 \text{ e/c};
M^{4 \text{ M/C}} = 0.2086246 * 0.662 = 0.1381 \text{ e/c};
M^{6 \text{ M/C}} = 0.7004066 * 0.662 = 0.4637 \text{ e/c};
M^{8 \text{ M/C}} = 1,6540256 * 0,662 = 1,0950 \text{ e/c};
M^{8.4 \text{ m/c}} = 1,9135272 * 0,662 = 1,2668 \text{ e/c};
\Pi = 1,838402 * 0,662 = 1,2170 m/sod.
 Остальные вещества нормируются как пыль неорганическая:
M^{0.5 \text{ m/c}} = 0.0004186 * 0.338 = 0.000141 \text{ e/c};
M^{2 \text{ M/c}} = 0.0263141 * 0.338 = 0.00889 \text{ e/c};
M^{4 \text{ m/c}} = 0.2086246 * 0.338 = 0.0705 \text{ e/c};

M^{6 \text{ m/c}} = 0.7004066 * 0.338 = 0.2367 \text{ e/c};
M^{8 \text{ M/C}} = 1,6540256 * 0,338 = 0,5591 \text{ a/c};
M^{8.4 \text{ m/c}} = 1,9135272 * 0,338 = 0,6468 \text{ e/c};
\Pi = 1,838402 * 0,338 = 0,6214 m/eod.
```

ИВ склад руды (причал №10)

Взам.инв.

윋

Расчет выделения пыли при хранении пылящих материалов выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне); «Временные методические указания по расчету выбросов загрязняющих веществ (пыли) в атмосферу при складировании и перегрузке сыпучих материалов на предприятиях речного флота. Белгород, 1992 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р, позиция №102).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице

<u> Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу</u>

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, тлод
Всего пыли	ı 100%, из них:	0,7654109	0,735361
0118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,2679	0,2574
0123	диЖелезо триоксид, (железа оксид)/в пересчете на	0,3062	0,2941
	железо/(Железо сесквиоксид)		

		желе		230 СЕСКВИ	оксид)			
						OBOC2.6	_	Лист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	ОВОС2.0		8

		Загрязняюще	е вещество	Максимально разовый	Годовой выброс, т/год		
код		на	именование			выброс, г/с	годовой выорос, тлод
2908	Пыль	неорганическая,	содержащая	70-20%	двуокиси	0,1914	0,1838
	кремні	ИЯ					

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.1):

 $\mathbf{M}_{XP} = \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{pa6} + \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot 0,11 \cdot \mathbf{q} \cdot (\mathbf{F}_{nn} - \mathbf{F}_{pa6}) \cdot (1 - \eta), \ a/c$ (1111)

где K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

К₆ - коэффициент, учитывающий профиль поверхности складируемого материала;

К₇ - коэффициент, учитывающий крупность материала;

 F_{pab} - площадь в плане, на которой систематически производятся погрузочно-разгрузочные работы, M^2 ,

F $_{nn}$ - поверхность пыления в плане, M^2 ;

q - максимальная удельная сдуваемость пыли, $c/(M^2 \cdot c)$;

 η - степень снижения выбросов при применении систем пылеподавления.

Значение коэффициента K_6 определяется по формуле (1.1.2):

$$\mathbf{K}_6 = \mathbf{F}_{\text{MAKC}} / \mathbf{F}_{\text{DD}} \tag{1.1.2}$$

где $F_{\text{макс}}$ - фактическая площадь поверхности складируемого материала при максимальном заполнении склада, M^2 .

Значение максимальной удельной сдуваемости пылящего материала определяется по формуле (1.1.3):

 $q = 10^{-3} \cdot a \cdot U^0, e/(M^2 \cdot c)$

где a и b – эмпирические коэффициенты, зависящие от типа перегружаемого материала;

U^o - скорость ветра, *м/с*.

Валовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.4):

$$\mathbf{\Pi}_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{nn} \cdot (1 - \mathbf{\eta}) \cdot (\mathbf{T} - \mathbf{T}_0 - \mathbf{T}_c) \, m/\text{200}$$

$$\tag{1.1.4}$$

где Т - общее время хранения материала за рассматриваемый период, в сутках;

 $T_∂$ - число дней с дождем;

 T_c - число дней с устойчивым снежным покровом.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчетные параметры и их значения приведены в таблице 1.1.2.

Таблица 1.1.2 - Расчетные параметры и их значения

Расчетные параметры	Значения
Перегружаемый материал: Руда	a = 0,0135
Коэффициенты сдуваемости приняты для щебня	b = 2,987
Эмпирические коэффициенты, зависящие от типа перегружаемого материала	
Местные условия – склады, хранилища, открытые с 4-х сторон	$K_4 = 1$
Влажность материала до 9%	$K_5 = 0.2$
Профиль поверхности складируемого материала	$K_6 = 12358 / 9506 = 1,30002$
Крупность материала – куски размером 500-100 мм	$K_7 = 0.2$
Расчетные скорости ветра, м/с	U' = 0,5; 2; 4; 6; 8; 8,4
Среднегодовая скорость ветра, м/с	U = 3,8
Площадь поверхности погрузочно-разгрузочных работы в плане, м ²	$F_{pa6} = 950$
Площадь поверхности пыления в плане, м ²	F _{nn} = 9506
Площадь фактической поверхности пыления, м ²	$F_{\text{Makc}} = 12358$
Общее время хранения материала за рассматриваемый период, в сутках	T = 366
Число дней с дождем	$T_{\partial} = 71$
Число дней с устойчивым снежным покровом	T _c = 80

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Взам.инв.

윋

```
\overline{\boldsymbol{q}_{\text{ПЫЛИ}}^{0.5 \text{ M/C}}} = 10^{-3} \cdot 0.0135 \cdot 0.5^{2.987} = 0.0000017 \text{ e/(M}^2 \cdot \text{c});
```

 $M_{nbinu}^{2 \text{ m/c}} = 1 \cdot 0.2 \cdot 1.30002 \cdot 0.2 \cdot 0.000107 \cdot 950 +$

+ 1 · 0,2 · 1,30002 · 0,2 · 0,11 · 0,000107 · (9506 - 950) = 0,0105257 e/c;
$$q_{nbnu}^{4 \text{ M/c}} = 10^{-3} \cdot 0,0135 \cdot 4^{2.987} = 0,0008486 \text{ e/(}M^{2}\text{ c}\text{)};$$

 $\dot{\mathbf{M}}_{nbinu}^{4 \text{ M/C}} = 1 \cdot 0.2 \cdot 1.30002 \cdot 0.2 \cdot 0.0008486 \cdot 950 + 0.0008486 \cdot 0.000846 \cdot 0.0008486 \cdot 0.0008486 \cdot 0.00086 \cdot 0.0$

 $+1 \cdot 0.2 \cdot 1.30002 \cdot 0.2 \cdot 0.11 \cdot 0.0008486 \cdot (9506 - 950) = 0.0834499 \ e/c;$

 $q_{\text{пыли}}^{6 \text{ м/c}} = 10^{-3} \cdot 0.0135 \cdot 6^{2.987} = 0.0028489 \text{ e/(}m^2\text{·c});$

 $\mathbf{M}_{n_b,n_u}^{6 \text{ M/c}} = 1 \cdot 0.2 \cdot 1.30002 \cdot 0.2 \cdot 0.0028489 \cdot 950 +$ $+1 \cdot 0.2 \cdot 1.30002 \cdot 0.2 \cdot 0.11 \cdot 0.0028489 \cdot (9506 - 950) = 0.2801626 \ e/c;$

 $q_{n \omega n u}^{8 \text{ M/C}} = 10^{-3} \cdot 0.0135 \cdot 8^{2.987} = 0.0067277 \text{ a/(M}^2 \cdot \text{c)};$

 $M_{nbinu}^{8 \text{ m/c}} = 1 \cdot 0.2 \cdot 1.30002 \cdot 0.2 \cdot 0.0067277 \cdot 950 +$

+ 1 · 0,2 · 1,30002 · 0,2 · 0,11 · 0,0067277 · (9506 - 950) = 0,6616102 e/c; $\mathbf{q}_{n_{bin}u}^{8.4 \text{ M/C}} = 10^{-3} \cdot 0,0135 \cdot 8,4^{2.987} = 0,0077832 <math>e/(M^2 \cdot c)$;

 $\mathbf{M}_{\text{пыли}}^{8.4 \text{ m/c}} = 1 \cdot 0.2 \cdot 1.30002 \cdot 0.2 \cdot 0.0077832 \cdot 950 +$

 $m_{\text{пыли}}$ = 1 ° 0,2 ° 1,30002 ° 0,2 ° 0,10077832 ° 9500 ° + 1 ° 0,2 ° 1,30002 ° 0,2 ° 0,11 ° 0,0077832 ° (9506 - 950) = 0,7654109 a/c; $q_{\text{пыли}}$ = 10 ° 3 ° 0,0135 ° 3,8 ° 987 = 0,000728 $a/(m^2c)$; $n_{\text{пыли}}$ = 0,11 · 8,64 · 10 ° 2 · 1 · 0,2 · 1,30002 · 0,2 · 0,000728 · 9506 · (366-71-80) = 0,735361 m/a0a/c0.

Ильменит (титанистый железняк) — минерал общей химической формулы FeO·TiO2 или FeTiO3. В ильменитовых концентратах содержится 35% диоксида титана и 40% железа. Таким образом, 35% от общего выброса нормируется как диоксид титана, 40% как оксид железа, остальные соединения приняты по пыли неорганической.

Выбросы диоксида титана:

 $M^{0.5 \text{ M/c}} = 0.0001675 * 0.35 = 0.0000586 \text{ e/c};$ $M^{2 \text{ M/C}} = 0.0105257 * 0.35 = 0.00368 \text{ e/c};$

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

\mathbf{OD}	\cap	α	
W	()	C2.	D.

(1.1.3)

```
M^{4 \text{ M/C}} = 0.0834499 * 0.35 = 0.0292 \text{ e/c};
M^{6 \text{ M/C}} = 0.2801626 * 0.35 = 0.0981 \text{ e/c};
M^{8 \text{ m/c}} = 0,6616102 * 0,35 = 0,2316 \text{ e/c};
M^{8.4 \text{ M/C}} = 0.7654109 * 0.35 = 0.2679 \text{ e/c}
\Pi = 0.735361 * 0.35 = 0.2574  m/zod.
Выбросы оксида железа:
\mathbf{M}^{0.5 \text{ m/c}} = 0.0001675 * 0.4 = 0.0000670 \text{ s/c};
\mathbf{M}^{2 \text{ m/c}} = 0.0105257 * 0.4 = 0.00421 \text{ s/c};
M^{4 \text{ M/C}} = 0.0834499 * 0.4 = 0.0334 \text{ e/c};
M^{6 \text{ M/c}} = 0.2801626 * 0.4 = 0.1121 \text{ e/c};

M^{8 \text{ M/c}} = 0.6616102 * 0.4 = 0.2646 \text{ e/c};
M^{8.4 \text{ M/C}} = 0.7654109 * 0.4 = 0.3062  e/c;
\Pi = 0.735361 * 0.4 = 0.2941  m/zod.
Выбросы пыли неорганической:
M^{0.5 \text{ M/c}} = 0,0001675 * 0,25 = 0,0000419 \text{ e/c};

M^{2 \text{ M/c}} = 0,0105257 * 0,25 = 0,00263 \text{ e/c};
M^{4 \text{ M/C}} = 0.0834499 * 0.25 = 0.0209 \text{ e/c};
M^{6 \text{ M/c}} = 0.2801626 * 0.25 = 0.0700 \text{ e/c};

M^{6 \text{ M/c}} = 0.6616102 * 0.25 = 0.1654 \text{ e/c};
M^{8.4 \text{ M/C}} = 0.7654109 * 0.25 = 0.1914 \text{ e/c}
\Pi = 0,735361 * 0,25 = 0,1838 m/sod.
```

ИВ склад медного штейна (УТ-1 причалы №№10, 13)

Расчет выделения пыли при хранении пылящих материалов выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне); «Временные методические указания по расчету выбросов загрязняющих веществ (пыли) в атмосферу при складировании и перегрузке сыпучих материалов на предприятиях речного флота. Белгород, 1992 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р, позиция №102).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
Всего пыли	1 100%, из них:	0,0409339	0,0121554
0146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,016374	0,004862
	Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и другие)	0.024560	0,007293

Технология пылеподавления: Гранулирование пылящего материала. Штейн — промежуточный продукт при получении некоторых цветных металлов (Cu, Ni, Pb и другие) из их сульфидных руд, представляет собой сплав, что по сути связывает поверхность штейна, поэтому при перегрузке принято снижение выбросов 90% как при перегрузке гранулированного материала.

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{\mathsf{XP}} = \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{\mathsf{pa6}} + \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot 0.11 \cdot \mathbf{q} \cdot (\mathbf{F}_{\mathsf{nn}} - \mathbf{F}_{\mathsf{pa6}}) \cdot (1 - \eta), \ \mathsf{a/c}$$

$$\tag{1.1.1}$$

где К₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования:

 ${\it K}_{\it 5}$ - коэффициент, учитывающий влажность материала;

 ${\it K}_6$ - коэффициент, учитывающий профиль поверхности складируемого материала;

К₇ - коэффициент, учитывающий крупность материала;

 F_{pa6} - площадь в плане, на которой систематически производятся погрузочно-разгрузочные работы, M^2 .

 F_{nn} - поверхность пыления в плане, M^2 ;

q - максимальная удельная сдуваемость пыли, $c/(m^2 \cdot c)$;

 η - степень снижения выбросов при применении систем пылеподавления.

Значение коэффициента K_6 определяется по формуле (1.1.2):

$$\mathbf{K}_6 = \mathbf{F}_{\text{MAKC}} / \mathbf{F}_{\text{ПЛ}} \tag{1.1.2}$$

где $F_{\text{макс}}$ - фактическая площадь поверхности складируемого материала при максимальном заполнении склада, M^2 . Значение максимальной удельной сдуваемости пылящего материала определяется по формуле (1.1.3):

$$q = 10^{-3} \cdot a \cdot U^0, \, a/(M^2 \cdot c)$$
 (1.1.3)

где a и b – эмпирические коэффициенты, зависящие от типа перегружаемого материала;

U^o - скорость ветра, *м/с*.

Валовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.4): $\Pi_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot K_4 \cdot K_5 \cdot K_6 \cdot K_7 \cdot q \cdot F_{nn} \cdot (1 - \eta) \cdot (T - T_0 - T_c)$ m/200

$$\Pi_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot \mathbf{K}_{4} \cdot \mathbf{K}_{5} \cdot \mathbf{K}_{6} \cdot \mathbf{K}_{7} \cdot \mathbf{q} \cdot \mathbf{F}_{nn} \cdot (1 - \eta) \cdot (\mathbf{T} - \mathbf{T}_{\delta} - \mathbf{T}_{c}) \, \text{m/eod}$$
(1.1.4)

где Т - общее время хранения материала за рассматриваемый период, в сутках;

T∂ - число дней с дождем;

윋

 T_c - число дней с устойчивым снежным покровом.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчетные параметры и их значения приведены в таблице 1.1.2.

Таблица 1 1 2 - Расчетные параметры и их значения

Значения
a = 0,0237
b = 2,356

				,	толщие с	т типа перегружаемого материала	
						ODOC2 (Лист
Изм	і. Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	10

Взам.к	
Подп. и дата	
Инв.№ подл.	

1НВ.№

Расчетные параметры	Значения
Местные условия – склады, хранилища, открытые с 4-х сторон	$K_4 = 1$
Влажность материала свыше 10 до 20%	$K_5 = 0.01$
Профиль поверхности складируемого материала	K_6 = 21614 / 16626 = 1,300012
Крупность материала – куски размером 50-10 мм	$K_7 = 0.5$
Расчетные скорости ветра, м/с	U' = 0,5; 2; 4; 6; 8; 8,4
Среднегодовая скорость ветра, м/с	U = 3,8
Площадь поверхности погрузочно-разгрузочных работы в плане, м ²	$F_{pa6} = 1600$
Площадь поверхности пыления в плане, м ²	F _{nn} = 16626
Площадь фактической поверхности пыления, м ²	F _{макс} = 21614
Общее время хранения материала за рассматриваемый период, в сутках	T = 366
Число дней с дождем	$T_{\partial} = 71$
Число дней с устойчивым снежным покровом	$T_c = 80$

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

```
Медный штейн
                                                        \frac{M}{M/c} = 10^{-3} \cdot 0,0237 \cdot 0,5^{2.356} = 0,0000046 \ a/(m^2 c);
 q_{n \omega n u^2} = 10^{-3} \cdot 0.0012 \cdot 0.5 \cdot 0.11 \cdot 0.00000046 \cdot (16626 - 1600) \cdot (1-0.9) = 0.0000531 \text{ e/c};
q_{n \omega n u^2} = 10^{-3} \cdot 0.0237 \cdot 2^{2.356} = 0.0001213 \text{ e/(M}^2 \text{ c/c});
   M_{nbjnu}^{2 \text{ M/c}} = 1 \cdot 0.01 \cdot 1.300012 \cdot 0.5 \cdot 0.0001213 \cdot 1600 + 0.0001213 \cdot 1.0001213 \cdot 1.000121 \cdot 1.0001213 \cdot 1.000121 \cdot 1.000121
                                             + 1 \cdot 0.01 \cdot 1.300012 \cdot 0.5 \cdot 0.11 \cdot 0.0001213 \cdot (16626 - 1600) \cdot (1-0.9) = 0.0013922 \ a/c;
   q_{\text{пыли}^4 \text{ M/C}} = 10^{-3} \cdot 0.0237 \cdot 4^{2.356} = 0.0006212 \text{ e/(M}^2 \cdot \text{c)};
   \mathbf{M}_{n \bowtie n u}^{4 \text{ m/c}} = 1 \cdot 0.01 \cdot 1.300012 \cdot 0.5 \cdot 0.0006212 \cdot 1600 + 0.0006212 \cdot 1.0006212 \cdot 1.0006210 \cdot 1.0006212 \cdot 1.0006212 \cdot 1.0006212 \cdot 1.0006212 \cdot 1.0006212 \cdot 
                                              + 1 \cdot 0.01 \cdot 1.300012 \cdot 0.5 \cdot 0.11 \cdot 0.0006212 \cdot (16626 - 1600) \cdot (1-0.9) = 0.0071274 \ a/c;
   q_{\text{пыли}}^{6 \text{ м/c}} = 10^{-3} \cdot 0,0237 \cdot 6^{2.356} = 0,0016146 \text{ e/(M}^2 \cdot c);
   \mathbf{M}_{n_{\text{DIJNU}}}^{6 \text{ M/C}} = 1 \cdot 0.01 \cdot 1.300012 \cdot 0.5 \cdot 0.0016146 \cdot 1600 + 0.0016146 \cdot 1.00016146 \cdot 1.0001616 \cdot 1.00016 \cdot 1.000016 \cdot 1.00000
                                             + 1 \cdot 0.01 \cdot 1.300012 \cdot 0.5 \cdot 0.11 \cdot 0.0016146 \cdot (16626 - 1600) \cdot (1-0.9) = 0.018527 \ a/c;
   q_{\text{пыли}}^{8 \text{ м/c}} = 10^{-3} \cdot 0.0237 \cdot 8^{2.356} = 0.00318 \text{ e/(}M^2 \cdot \text{c});
   \mathbf{M}_{n_{\text{DIJ}}n_{\text{U}}}^{8 \text{ M/C}} = 1 \cdot 0.01 \cdot 1.300012 \cdot 0.5 \cdot 0.00318 \cdot 1600 + 0.00318 \cdot 0.00012 \cdot 0.00018 \cdot
+ 1 · 0,01 · 1,300012 · 0,5 · 0,11 · 0,00318 · (16626 - 1600)·(1-0,9) = 0,0364889 e/c; \mathbf{q}_{nbinu}^{8.4 \text{ M/C}} = 10^{-3} \cdot 0,0237 \cdot 8,4^{2.356} = 0,0035674 <math>e/(m^2 \cdot c);
M_{nbinu} 8.4 Mic = 1 · 0,01 · 1,300012 · 0,5 · 0,0035674 · 1600 + 
+ 1 · 0,01 · 1,300012 · 0,5 · 0,11 · 0,0035674 · (16626 - 1600)·(1-0,9) = 0,0409339 e/c; 
q_{nbinu} = 10<sup>-3</sup> · 0,0237 · 3,8<sup>2.356</sup> = 0,0005505 e/(m^2c);

\Pi_{\text{пыли}} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot 1 \cdot 0.01 \cdot 1.300012 \cdot 0.5 \cdot 0.0005505 \cdot 16626 \cdot (366-71-80) \cdot (1-0.9) = 0.0121554 \text{ m/zod.}

 Содержание в выбросах оксидов меди составит 40 % от общего выброса:
 M^{0.5 \text{ M/c}} = 0.0000531 * 0.4 = 0.0000212 \text{ s/c};
 M^{2 \text{ M/C}} = 0.0013922 * 0.4 = 0.0005569 \text{ e/c};
 M^{4 \text{ M/C}} = 0.0071274 * 0.4 = 0.0028510 \text{ e/c};
 M^{6 \text{ M/C}} = 0.018527 * 0.4 = 0.0074108 \text{ e/c};
 M^{8 \text{ M/C}} = 0.0364889 * 0.4 = 0.0145956 \text{ e/c};
 M^{8.4 \text{ M/C}} = 0.0409339 * 0.4 = 0.0163736 \text{ e/c};
   \Pi = 0,0121554 * 0,4 = 0,0048622 m/eod.
 Остальные вещества нормируются как пыль неорганическая:
M^{0.5\,\text{M/C}} = 0,0000531 * 0,6 = 0,0000319 \ \text{s/c};

M^{2\,\text{M/C}} = 0,0013922 * 0,6 = 0,0008353 \ \text{s/c};

M^{4\,\text{M/C}} = 0,0071274 * 0,6 = 0,0042764 \ \text{s/c};
 \mathbf{M}^{6 \text{ M/c}} = 0.018527 * 0.6 = 0.0111162 \text{ e/c};
 M^{8 \text{ M/c}} = 0.0364889 * 0.6 = 0.0218933  e/c;
 M^{8.4 \text{ M/C}} = 0.0409339 * 0.6 = 0.0245603  a/c;
 \Pi = 0.0121554 * 0.6 = 0.0072932 m/eod.
```

ИВ склад окалины (шлака) (УТ-1 причалы 10-13)

Расчет выделения пыли при хранении пылящих материалов выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне); «Временные методические указания по расчету выбросов загрязняющих веществ (пыли) в атмосферу при складировании и перегрузке сыпучих материалов на предприятиях речного флота. Белгород, 1992 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р, позиция №102).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 111

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

100	Загрязняющее вещество	Максимально разовый выброс, г/с	Годовой выброс, т/год
код	наименование	выорос, т/с	·
Всего пыль	и 100%, из них:	1,849005	0,910493
0101	диАлюминий триоксид/в пересчете на алюминий/ (5,51%)	0,1019	0,0502
0123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид) (58,24%)	1,0769	0,5303
2909	Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,6703	0,3301

Технология пылеподавления: Гранулирование пылящего материала.

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

							Лист
						OBOC2.6	
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата		11

```
\pmb{\eta} - степень снижения выбросов при применении систем пылеподавления.
              Значение коэффициента K_6 определяется по формуле (1.1.2):
                                                                                                                                                                                      K_6 = F_{\text{макс}} / F_{\text{пл}}
                                                                                                                                                                                                                                                                                                                                                                                      (1.1.2)
где {\it F}_{{\it MBKC}} - фактическая площадь поверхности складируемого материала при максимальном заполнении склада, {\it M}^2.
              Значение максимальной удельной сдуваемости пылящего материала определяется по формуле (1.1.3): \mathbf{q} = 10^{-3} \cdot \mathbf{a} \cdot \mathbf{U}^{\text{o}}, \mathbf{z}/(\mathbf{M}^2 \cdot \mathbf{c})
                                                                                                                                                                                                                                                                                                                                                                                      (1.1.3)
где а и b – эмпирические коэффициенты, зависящие от типа перегружаемого материала;
 U<sup>о</sup> - скорость ветра, м/с.
              Валовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.4):
                                                                                              \Pi_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot K_4 \cdot K_5 \cdot K_6 \cdot K_7 \cdot q \cdot F_{nn} \cdot (1 - \eta) \cdot (T - T_0 - T_c) m/eod
                                                                                                                                                                                                                                                                                                                                                                                     (1.1.4)
где Т - общее время хранения материала за рассматриваемый период, в сутках;
 Т<sub>∂</sub> - число дней с дождем;
 T_c - число дней с устойчивым снежным покровом.
              При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля
данного вещества в составе продукта.
              Расчетные параметры и их значения приведены в таблице 1.1.2.
 Таблица 1.1.2 - Расчетные параметры и их значения
                                                                                                                Расчетные параметры
                                                                                                                                                                                                                                                                                                                                          Значения
  Перегружаемый материал: Шлак
                                                                                                                                                                                                                                                                                                        a = 0,0012
                                                                                                                                                                                                                                                                                                       b = 3,97
   Эмпирические коэффициенты, зависящие от типа перегружаемого материала
  Местные условия – склады, хранилища, открытые с 4-х сторон
                                                                                                                                                                                                                                                                                                       K_4 = 1
   Влажность материала до 5%
                                                                                                                                                                                                                                                                                                       K_5 = 0.7
  Профиль поверхности складируемого материала
                                                                                                                                                                                                                                                                                                       K_6 = 37828 / 29099 = 1,299976
  Крупность материала – куски размером 5-3 мм
                                                                                                                                                                                                                                                                                                       K_7 = 0.7
  Расчетные скорости ветра, м/с
                                                                                                                                                                                                                                                                                                       U' = 0,5; 2; 4; 6; 8; 8,4
                                                                                                                                                                                                                                                                                                       U = 3,8
   Среднегодовая скорость ветра, м/с
  Площадь поверхности погрузочно-разгрузочных работы в плане, м²
                                                                                                                                                                                                                                                                                                       F_{pa6} = 200
                                                                                                                                                                                                                                                                                                       F_{nn} = 29099
  Площадь поверхности пыления в плане, м<sup>2</sup>
                                                                                                                                                                                                                                                                                                       F_{\text{MAKC}} = 37828
  Площадь фактической поверхности пыления, м<sup>2</sup>
  Общее время хранения материала за рассматриваемый период, в сутках
                                                                                                                                                                                                                                                                                                       T = 366
  Число <u>дн</u>ей с дождем
                                                                                                                                                                                                                                                                                                       T∂ = 71
  Число дней с устойчивым снежным покровом
                                                                                                                                                                                                                                                                                                       T_c = 80
               Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.
\begin{array}{l} \frac{101100}{Q_{nbl/l}U^{0.5}M/C} = 10^{-3} \cdot 0,0012 \cdot 0,5^{3.97} = 0,0000001 \, \text{s}/(\text{M}^2\text{c}); \\ \textbf{\textit{M}}_{nbl/l}U^{0.5\,M/C} = 1 \cdot 0,7 \cdot 1,299976 \cdot 0,7 \cdot 0,0000001 \cdot 200 + \\ + 1 \cdot 0,7 \cdot 1,299976 \cdot 0,7 \cdot 0,11 \cdot 0,0000001 \cdot (29099 - 200) \cdot (1-0,9) = 0,0000253 \, \text{s/c}; \\ \textbf{\textit{q}}_{nbl/l}U^{2\,M/C} = 10^{-3} \cdot 0,0012 \cdot 2^{3.97} = 0,0000188 \, \text{s}/(\text{M}^2\text{c}); \end{array}
M_{n_{bi}nu^2}{}^{*Mlc} = 1 \cdot 0.7 \cdot 1,299976 \cdot 0.7 \cdot 0,0000188 \cdot 200 + + 1 \cdot 0.7 \cdot 1,299976 \cdot 0.7 \cdot 0,11 \cdot 0,0000188 \cdot (29099 - 200) \cdot (1-0.9) = 0,0062035 e/c;
q_{n_{bi}nu}{}^{*Mlc} = 10^{-3} \cdot 0,0012 \cdot 4^{3.97} = 0,0002947 e/(m^2c);
+1 \cdot 0.7 \cdot 1.299976 \cdot 0.7 \cdot 0.11 \cdot 0.0002947 \cdot (29099 - 200) \cdot (1-0.9) = 0.0972137 \text{ e/c};
\mathbf{q}_{n_{b1}n_{b}}^{6 \text{ M/c}} = 10^{-3} \cdot 0.0012 \cdot 6^{3.97} = 0.0014738 \text{ e/(}M^{2}\text{c}\text{c}\text{)};
\mathbf{M}_{\text{ПЫЛИ}}^{6 \text{ M/c}} = 1 \cdot 0.7 \cdot 1.299976 \cdot 0.7 \cdot 0.0014738 \cdot 200 + 0.0014748 \cdot 200 + 0.001488 \cdot 0.001488 \cdot 200 + 0.0014
 + 1 · 0,7 · 1,299976 · 0,7 · 0,11 · 0,0014738 · (29099 - 200)·(1-0,9) = 0,4861942 e/c; \mathbf{q}_{n \bowtie n u}^{8 \bowtie l c} = 10^{-3} \cdot 0,0012 \cdot 8^{3.97} = 0,0046179 e/(m^2 \cdot c);
 \mathbf{M}_{\text{пыли}}^{8 \text{ M/C}} = 1 \cdot 0.7 \cdot 1.299976 \cdot 0.7 \cdot 0.0046179 \cdot 200 + 0.0046179 \cdot 0.
                +1 \cdot 0.7 \cdot 1.299976 \cdot 0.7 \cdot 0.11 \cdot 0.0046179 \cdot (29099 - 200) \cdot (1-0.9) = 1.5234092 \ a/c;
 q_{\text{пыли}}^{8.4 \text{ м/c}} = 10^{-3} \cdot 0,0012 \cdot 8,4^{3.97} = 0,0056049 \text{ e/(m²-c)};
 + 1 · 0,7 · 1,299976 · 0,7 · 0,11 · 0,0056049 · (29099 - 200)·(1-0,9) = 1,849005 e/c;

q_{nbinu} = 10^{-3} \cdot 0,0012 \cdot 3,8^{3.97} = 0,0002404 e/(m^2 c);

\vec{\Pi}_{\text{пыли}} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot 1.0.7 \cdot 1.299976 \cdot 0.7 \cdot 0.0002404 \cdot 29099 \cdot (366-71-80) \cdot (1-0.9) = 0.910493 \, \text{m/zod}.

Содержание в выбросах оксидов алюминия составит 5,51 % от общего выброса:
M^{0.5\,\text{M/c}} = 0,0000253 * 0,0551 = 0,00000139 \ \text{s/c}; M^{2\,\text{M/c}} = 0,0062035 * 0,0551 = 0,000342 \ \text{s/c}; M^{4\,\text{M/c}} = 0,0972137 * 0,0551 = 0,00536 \ \text{s/c};
M^{6 \text{ M/c}} = 0.4861942 * 0.0551 = 0.0268 \text{ a/c};

M^{8 \text{ M/c}} = 1.5234092 * 0.0551 = 0.0839 \text{ a/c};
M^{8.4 \text{ M/c}} = 1,849005 * 0,0551 = 0,1019 \text{ e/c};
 \Pi = 0,910493 * 0,0551 = 0,0502 m/eod.
Содержание в выбросах оксидов железа составит 58,24 % от общего выброса:
M^{0.5 \text{ M/c}} = 0.0000253 * 0.5824 = 0.00001473 \ e/c;
M^{2 \text{ M/c}} = 0.0062035 * 0.5824 = 0.00361 \ e/c;
                                                                                                                                                                                                                                                                                                                                                                                          Лист
                                                                                                                                                                                                                                   OBOC2.6
                                                                                                                                                                                                                                                                                                                                                                                                12
        Кол.уч Лист № док
                                                                                  Подп
                                                                                                                Дата
```

Максимально разовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.1):

пылеобразования

Взам.инв.

№ подл.

ИHB.

К₅ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала;

 \mathbf{F}_{nn} - поверхность пыления в плане, M^2 ;

 $\emph{\textbf{K}}_{6}$ - коэффициент, учитывающий профиль поверхности складируемого материала;

 $\emph{\emph{F}}_{
ho 8}$ - площадь в плане, на которой систематически производятся погрузочно-разгрузочные работы, $\emph{\emph{M}}^2$,

 $\textbf{\textit{M}}_{XP} = \textbf{\textit{K}}_4 \cdot \textbf{\textit{K}}_5 \cdot \textbf{\textit{K}}_6 \cdot \textbf{\textit{K}}_7 \cdot \textbf{\textit{q}} \cdot \textbf{\textit{F}}_{\textit{pa6}} + \textbf{\textit{K}}_4 \cdot \textbf{\textit{K}}_5 \cdot \textbf{\textit{K}}_6 \cdot \textbf{\textit{K}}_7 \cdot 0,11 \cdot \textbf{\textit{q}} \cdot (\textbf{\textit{F}}_{\textit{nn}} - \textbf{\textit{F}}_{\textit{pa6}}) \cdot (1 - \boldsymbol{\eta}), \textit{\textit{a/c}}$

где K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия

(1.1.1)

 $\emph{M}^{4\,\mathrm{M/c}} = 0.0972137~^*0, 5824 = 0.0566~e/c;$ $\emph{M}^{6\,\mathrm{M/c}} = 0.4861942~^*0, 5824 = 0.2832~e/c;$ $\emph{M}^{8\,\mathrm{M/c}} = 1.5234092~^*0.5824 = 0.8872~e/c;$ $\emph{M}^{8.4\,\mathrm{M/c}} = 1.849005~^*0, 5824 = 1.0769~e/c;$ $\emph{\Pi} = 0.910493~^*0, 5824 = 0.5303~m/eod.$ Остальные вещества нормируются как пыль неорганическая: $M^{0.5 \, \text{M/c}} = 0.0000253 \,^{*} \, 0.3625 = 0.00000917 \,^{*} \, z/c;$ $M^{2 \, \text{M/c}} = 0.0062035 \,^{*} \, 0.3625 = 0.00225 \, z/c;$ $M^{4 \, \text{M/c}} = 0.0972137 \,^{*} \, 0.3625 = 0.0352 \, z/c;$ $M^{6 \, \text{M/c}} = 0.4861942 \,^{*} \, 0.3625 = 0.1762 \, z/c;$ $M^{6 \, \text{M/c}} = 1.5234092 \,^{*} \, 0.3625 = 0.5522 \, z/c;$ $M^{8.4 \, \text{M/c}} = 1.849005 \,^{*} \, 0.3625 = 0.6703 \, z/c;$ $D = 0.910493 \,^{*} \, 0.3625 = 0.3301 \, m/zod$ Π = 0,910493 * 0, 3625= 0,3301 m/eoð. Лист **OBOC2.6** 13 Изм. Кол.уч Лист № док. Подп. Дата

Взам.инв.№

подл.

NHB.№

ИЗАВ №6112. склады угля (УТ-1 причалы 8-9)

Источниками выделения загрязняющих веществ являются:

- хранение угля на причалах 8-9;
- хранение нефтекокса / кокса электродного на причале 8;
- В расчете выбросов учтена неодновременность хранения различных грузов на складах.

Максимально-разовый выброс принят максимальный по каждому грузу

Валовый выброс суммирован с учетом всех видов грузов

Всего по источнику выбросов:

	Загрязняющее вещество	Максимально разовый	Годовой выброс,			
код	наименование	выброс, г/с	т/год			
	При хранении каменного угля					
3749	Пыль каменного угля	0,0460	0,6010			
	При перегрузке нефтекокса / кокса электродного					
328	Углерод (пигмент черный)	0,0361	0,00294			

Расчет по каждому грузу выполнен на максимальную загруженность склада, поэтому в расчете рассеивания учтена

неодновременность движения грузов, и по каждому веществу принят максимально-разовый выброс

	Загрязняющее вещество	Максимально разовый	Годовой выброс,
код	наименование	выброс, г/с	т/год
328	Углерод (пигмент черный)	0,0361	0,00294
3749	Пыль каменного угля	0,0460	0,6010

Максимально-разовый выброс с учетом ветра принят:

Скорост	ь ветра, м/с	0,5	2	4	6	8	8,4
Количес	тво ЗВ, г/с						
328	Углерод (пигмент черный)	0,00000050	0,000121	0,00190	0,00950	0,0298	0,0361
3749	Пыль каменного угля	0,0271	0,0271	0,0325	0,0379	0,0460	0,0460

ИВ склад окалины (шлака) (УТ-1 причалы 10-13)

Источником выделения пыли является унос пыли с верхнего слоя штабеля при статическом хранении.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,0460	0,601

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Tabilita E Tioxodiibio daliibio dibi pao iota	
Удельное количество сдуваемых твердых частиц с поверхности штабеля угля, q_{cd} [кг/кв.м*c]	0,000001
Площадь основания штабеля угля, S_w [кв.м]	18680
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, ₩₅ [м/с]	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, <i>w₅</i> [м/с]	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	1
Коэффициент, учитывающий профиль поверхности складируемого материала, K_{ϵ}	1,45
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0
Коэффициент измельчения горной массы, $ ho$	0,1
Количество дней с устойчивым снежным покровом, T_{cn}	80
Количество дней с осадками в виде дождя, \overline{T}_{∂}	71

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

где

MHB.No

 ${m q}_{cm d}$ – удельное количество сдуваемых твердых частиц с поверхности штабеля угля, кг/кв.м*с;

 \mathbf{S}_{w} – площадь основания штабеля угля, кв.м;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 \emph{K}_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 \emph{K}_{6} – коэффициент, учитывающий профиль поверхности складируемого материала;

р - коэффициент измельчения горной массы;

 $T_{c_{\Pi}}$ - количество дней с устойчивым снежным покровом;

 T_{o} - количество дней с осадками в виде дождя;

 $oldsymbol{\eta}$ - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При статическом хранении угля:

 M_{3749} = 0,601 m/200 G_{3749} = 0,0460 2/c

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Изм. Кол.уч Лист № док. Подп. Дата	L							
Изм. Кол.∨ч Лист № док. Полп. Лата	Ī							
Изм. Кол.уч Лист № док. Полп. Лата	ľ							
	ŀ	Изм.	Кол.уч	Лист	№ док.	Полп.	Лата	

OBOC2.6

Лист

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,0271	0,0271	0,0325	0,0379	0,0460	0,0460

ИВ склад нефтекокса/кокса электродного (УТ-1, причал №8)

Расчет выделения пыли при хранении пылящих материалов выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне); «Временные методические указания по расчету выбросов загрязняющих веществ (пыли) в атмосферу при складировании и перегрузке сыпучих материалов на предприятиях речного флота. Белгород, 1992 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р, позиция №102).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс. т/год
код	наименование	выброс, г/с	Годовой выброс, т/год
328	Углерод (пигмент черный)	0,0361221	0,0029426

Технология пылеподавления: Гранулирование пылящего материала. Кокс подвергается прокаливанию. Прокаливание нефтяного кокса – это процесс нагрева сырого нефтяного кокса до 1250-1350°С. При этом его молекулярная структура принимает более организованную форму с четкой кристаллической решеткой. Благодаря физическим и химическим процессам, происходящим с сырьевым материалом, происходит улучшение потребительских свойств кокса, что по сути связывает поверхность кокса, поэтому при перегрузке принято снижение выбросов 90% как при перегрузке гранулированного материала.

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{XP} = \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{pa6} + \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot 0, 11 \cdot \mathbf{q} \cdot (\mathbf{F}_{nn} - \mathbf{F}_{pa6}) \cdot (1 - \eta), \ a/c$$

$$(1.1.1)$$

где K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

 $\emph{\textbf{K}}_{6}$ - коэффициент, учитывающий профиль поверхности складируемого материала;

 ${\it K}_{7}$ - коэффициент, учитывающий крупность материала;

 F_{pab} - площадь в плане, на которой систематически производятся погрузочно-разгрузочные работы, M^2 ,

 F_{nn} - поверхность пыления в плане, M^2 ;

q - максимальная удельная сдуваемость пыли, $a/(m^2 \cdot c)$;

 η - степень снижения выбросов при применении систем пылеподавления.

Значение коэффициента K_6 определяется по формуле (1.1.2):

$$\mathbf{K}_6 = \mathbf{F}_{\text{Makc}} / \mathbf{F}_{\text{ПЛ}} \tag{1.1.2}$$

где $F_{\text{макс}}$ - фактическая площадь поверхности складируемого материала при максимальном заполнении склада, M^2 .

 $q = 10^{-3} \cdot a \cdot U^{\circ}, c/(M^{2} \cdot c)$ где а и b – эмпирические коэффициенты, зависящие от типа перегружаемого материала;

 U° - скорость ветра, M/c.

Валовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.4): $\boldsymbol{\Pi}_{XP} = 0,11\cdot 8,64\cdot 10^{-2} \cdot \boldsymbol{K}_4 \cdot \boldsymbol{K}_5 \cdot \boldsymbol{K}_6 \cdot \boldsymbol{K}_7 \cdot \boldsymbol{q} \cdot \boldsymbol{F}_{nn} \cdot (1-\boldsymbol{\eta}) \cdot (\boldsymbol{T}-\boldsymbol{T}_0-\boldsymbol{T}_c) \text{ m/aod}$

$$\mathbf{\Pi}_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{nn} \cdot (1 - \boldsymbol{\eta}) \cdot (\mathbf{T} - \mathbf{T}_{\hat{\sigma}} - \mathbf{T}_c) \, \text{m/sod}$$

$$\tag{1.1.4}$$

где Т - общее время хранения материала за рассматриваемый период, в сутках;

 $T_{∂}$ - число дней с дождем;

 T_c - число дней с устойчивым снежным покровом.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчетные параметры и их значения приведены в таблице 1.1.2.

Таблица 1.1.2 - Расчетные параметры и их значения

Расчетные параметры	Значения
Перегружаемый материал: Нефтекокс / кокс электродный	a = 0,0012
Эмпирические коэффициенты, зависящие от типа перегружаемого материала приняты по аналогу	b = 3,97
- шлак	
Местные условия – склады, хранилища, открытые с 4-х сторон	$K_4 = 1$
Влажность материала свыше 10 до 20%	$K_5 = 0.01$
Профиль поверхности складируемого материала	K ₆ = 11981 / 9216 = 1,300022
Крупность материала – куски размером 50-10 мм	$K_7 = 0.5$
Расчетные скорости ветра, м/с	U' = 0,5; 2; 4; 6; 8; 8,4
Среднегодовая скорость ветра, м/с	U = 3,8
Площадь поверхности погрузочно-разгрузочных работы в плане, м ²	$F_{pa6} = 900$
Площадь поверхности пыления в плане, м ²	$F_{nn} = 9216$
Площадь фактической поверхности пыления, м ²	F _{Makc} = 11981
Общее время хранения материала за рассматриваемый период, в сутках	T = 366
Число дней с дождем	$T_{\partial} = 71$
Число дней с устойчивым снежным покровом	$T_c = 80$

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Взам.инв.

AHB.No

 $\frac{\text{Нефтекокс }\setminus \text{кокс электродный}}{q_{0328}^{0.5 \text{ M/c}} = 10^{-3} \cdot 0,0012 \cdot 0,5^{3.97}} = 0,0000001 \ a/(M^2 \cdot c);$

 $\mathbf{M}_{0328}^{0.5 \text{ m/c}} = 1 \cdot 0.01 \cdot 1.300022 \cdot 0.5 \cdot 0.0000001 \cdot 900 +$

 $+ 1 \cdot 0.01 \cdot 1.300022 \cdot 0.5 \cdot 0.11 \cdot 0.0000001 \cdot (9216 - 900) \cdot (1 - 0.9) = 0.0000005$ e/c;

 $q_{0328}^{2 \text{ m/c}} = 10^{-3} \cdot 0,0012 \cdot 2^{3.97} = 0,0000188 \text{ e/(}M^2 \cdot \text{c/)};$

 $+ 1 \cdot 0.01 \cdot 1.300022 \cdot 0.5 \cdot 0.11 \cdot 0.0000188 \cdot (9216 - 900) \cdot (1-0.9) = 0.0001212 \ a/c;$

 ${m q}_{0328}^{4~M/c} = 10^{-3} \cdot 0,0012 \cdot 4^{3.97} = 0,0002947~e/(m^2c);$ ${m M}_{0328}^{4~M/c} = 1 \cdot 0,01 \cdot 1,300022 \cdot 0,5 \cdot 0,0002947 \cdot 900 +$

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

(1.1.3)

```
 + 1 \cdot 0.01 \cdot 1.300022 \cdot 0.5 \cdot 0.11 \cdot 0.0002947 \cdot (9216 - 900) \cdot (1 - 0.9) = 0.0018992 \ e/c; \\ \boldsymbol{q_{0328}}^{6 \ M/c} = 10^{-3} \cdot 0.0012 \cdot 6^{3.97} = 0.0014738 \ e/(m^2 \cdot c); 
                          \mathbf{M}_{0328}^{6 \text{ M/c}} = 1 \cdot 0.01 \cdot 1.300022 \cdot 0.5 \cdot 0.0014738 \cdot 900 +
                           + 1 \cdot 0.011 \cdot 1.300022 \cdot 0.5 \cdot 0.11 \cdot 0.0014738 \cdot (9216 - 900) \cdot (1 - 0.9) = 0.0094983 \ e/c; 
 q_{0328}^{8 \ M/c} = 10^{-3} \cdot 0.0012 \cdot 8^{3.97} = 0.0046179 \ e/(M^2 c); 
                          M_{0328}^{8 \text{ M/C}} = 1 \cdot 0.01 \cdot 1.300022 \cdot 0.5 \cdot 0.0046179 \cdot 900 +
                          m_{0328} = 10.01 \cdot 1,300022 \cdot 0,5 \cdot 0,011 \cdot 0,0046179 \cdot (9216 - 900) \cdot (1-0,9) = 0,0297613 e/c;
q_{0328}^{8.4 \text{ m/c}} = 10^{-3} \cdot 0,0012 \cdot 8,4^{3.97} = 0,0056049 e/(m^2 c);
m_{0328}^{8.4 \text{ m/c}} = 1 \cdot 0,01 \cdot 1,300022 \cdot 0,5 \cdot 0,0056049 \cdot 900 + 0.0012 \cdot 0,0012 \cdot 0,00
                          + 1 \cdot 0.01 \cdot 1.300022 \cdot 0.5 \cdot 0.11 \cdot 0.0056049 \cdot (9216 - 900) \cdot (1-0.9) = 0.0361221 \ e/c;   \mathbf{q}_{0328} = 10^{-3} \cdot 0.0012 \cdot 3.8^{3.97} = 0.0002404 \ e/(m^2 \cdot c);   \mathbf{\Pi}_{0328} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot 1 \cdot 0.01 \cdot 1.300022 \cdot 0.5 \cdot 0.0002404 \cdot 9216 \cdot (366 - 71 - 80) \cdot (1-0.9) = 0.0029426 \ m/eod. 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Лист
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       OBOC2.6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  16
Изм. Кол.уч Лист № док.
                                                                                                                                                                                                                                                                                                                      Дата
                                                                                                                                                                                                                                         Подп.
```

Взам.инв.№

подл.

Инв.№

ИЗАВ №6113. погрузочно-разгрузочные работы на судовом грузовом фронте

Источниками выделения загрязняющих веществ являются:

- перегрузка каменного угля;
- перегрузка кокса;
- перегрузка ильменитовой руды;
- перегрузка железорудного концентрата;
- перегрузка медного штейна;
- перегрузка нефтекокса / кокса электродного;
- перегрузка окалины (шлака);
- перегрузка древесных пеллет.
- В расчете выбросов учтена неодновременность перегрузочных работ с разными грузами.
- Максимально-разовый выброс принят максимальный по каждому грузу
- Валовый выброс суммирован с учетом всех видов грузов

Всего по источнику выбросов:

	2010 HIVING BEIOPOODS.	Mayayaya El ua pagabuji		
иол.	Загрязняющее вещество	Максимально разовый выброс, г/с	Годовой выброс, т/год	
код	наименование			
	При перегрузке каме			
3749	Пыль каменного угля	0,003173	0,026880	
	При перегрузке			
3749	Пыль каменного угля	0,000793	0,000645	
	При перегрузке железоруд	ного концентрата		
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе-зо/(Железо сесквиоксид)	0,035500	0,144100	
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,018100	0,073600	
	При перегрузке ильмен	нитовой руды		
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,599800	0,487700	
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе-зо/(Железо сесквиоксид)	0,685400	0,557400	
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,428400	0,348400	
	При перегрузке древе	сных пеллет		
2936	Пыль древесная	0,028333	0,060000	
	При перегрузке окалі	ины (шлака)		
101	диАлюминий триоксид/в пересчете на алюминий/ (5,51%)	0,100400	0,001610	
123	диЖелезо триоксид, (железа оксид)/в пе-ресчете на железо/(Железо сесквиоксид) (58,24%)	1,061200	0,017040	
2909	Пыль неорганическая, содержащая дву-окись кремния, в %: - менее 20 (доломит, пыль цементного производства - извест-няк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,660500	0,010610	
	При перегрузке нефтекокса /	кокса электродного		
328	Углерод (Сажа)	0,148750	0,0504	
	При перегрузке медн	ного штейна		
146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,000496	0,000084	
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,000744	0,000126	

Расчет по каждому грузу выполнен на максимальную загруженность склада, поэтому в расчете рассеивания учтена неодновременность движения грузов, и по каждому веществу принят максимально-разовый выброс:

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
101	диАлюминий триоксид/в пересчете на алюминий/ (5,51%)	0,100400	0,001610
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,599800	0,487700
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе-зо/(Железо сесквиоксид)	1,061200	0,718540
146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,000496	0,00084
328	Углерод (Сажа)	0,148750	0,0504
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,428400	0,422126
2909	Пыль неорганическая, содержащая дву-окись кремния, в %: - менее 20 (доломит, пыль цементного производства - извест-няк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,660500	0,010610
2936	Пыль древесная	0,028333	0,060000
3749	Пыль каменного угля	0,003173	0,027525

Максимально-разовый выброс с учетом ветра принят:

Скорость ветра, м/с		0,5	2	4	6	8	8,4
Количество ЗВ, г/с							
101	диАлюминий триоксид/в пересчете на алюминий/ (5,51%)	0,0591	0,0591	0,0709	0,0827	0,1004	0,1004
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,3528	0,3528	0,4234	0,4939	0,5998	0,5998

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

MHB.No

насчет выделении заг	я пыли являет оязняющих веі	шеств выполн	нен в соответствии	, , ,	и методическі	ими документ	ами: Отрасле
методика расчета коли	•	-					•
и технологических про					1 2 1	•	•
внесены распоряжение						,	(
Количественные и каче				•	'	феру, привед	ены в таблиц
Таблица 1 - Характери	істика выдел	ений загрязн	іяющих веществ в	атмосферу			
	Загрязня	нощее вещес	ТВО		Максимальн	но разовый	Годовой
код			менование		выбро	c, г/с	выброс, т/го
3749		Пыль к	аменного угля		0,003	3173	0,026880
Принятые условные об	означения, ра	счетные фор	мулы, а также расч	етные параме	тры и их обосн	ование прив	едены ниже.
Исходные данные для	расчета выде	лений загрязн	яющих веществ, пр	оиведены в та	блице 2.		
Таблица 2 - Исходные	данные для	расчета					
Удельное выделение г	ри разгрузке ((перегрузке) м	иатериала, <i>q_n</i> [г/т]				0,32
Количество разгружае	иого (перегрух	каемого) мате	риала, <i>П</i> ₂[т/год]				10000000
Количество разгружае	иого (перегрух	каемого) мате	ериала, <i>П</i> ₄ [т/час]				3000
Влажность материала,	%						>11%
Коэффициент, учитыва	эющий влажно	сть перегруж	аемого материала	(табл. 4.2), <i>К</i> ₁			0,01
Скорость ветра 95% об	беспеченности	1, <i>W</i> _β [M/C]					8,4
Коэффициент, учитыва				юл. 6.4), K ₂			1,7
Максимальная средне	одовая скоро	сть ветра, w_{ε}	[м/c]				3,8
Коэффициент, учитыва	эющий средне	годовую скор	ость ветра (табл. 6.	4), K ₂			1,2
Высота разгрузки мате	риала, [м]						2
Коэффициент, учитывающий высоту пересыпки материала (табл. 6.9), K_3							0,7
Коэффициент, учитыва				х воздействий	(табл. 6.10), <i>К</i>	4	1
Эффективность пылег							0
Количество пыли, выбр	расываемой в	атмосферу, р	ассчитывается по о	формулам (1,	2):		
			$\cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot 1$				
		$G_n = (q_n \cdot \Pi_q)$	$\cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot ($	1-η))/3600, ε/c	[2]		
где		,	,				
q_n – удельное выделен		\ 1 1 7	, , ,				
П ₂ – количество разгру				(1120:			
Π_4 – Makcumanhhoe Kol			TOWARMOTO MATERIA:		ΙΔΤΟΠΙΑΚΙΑ):		
K_1 – коэффициент, учи	•			,	іетодики);		
K_1 — коэффициент, учи K_2 — коэффициент, учи	тывающий ско	рость ветра (таб. 6.4 Методики);	`	,,		
K_1 — коэффициент, учи K_2 — коэффициент, учи K_3 — коэффициент, учи	тывающий ско тывающий вы	рость ветра (соту пересып	таб. 6.4 Методики); ки материала (таб.	` 6.9 Методики)	;	Методики):	
K_1 – коэффициент, учи K_2 – коэффициент, учи K_3 – коэффициент, учи K_4 – коэффициент, учи	тывающий ско тывающий вы тывающий сте	рость ветра (соту пересып епень защище	таб. 6.4 Методики); ки материала (таб. енности узла от вне	` 6.9 Методики) шних воздейс	; гвий (таб. 6.10	Методики);	
K_1 — коэффициент, учи K_2 — коэффициент, учи K_3 — коэффициент, учи K_4 — коэффициент, учи η - эффективность при	тывающий ско тывающий вы тывающий сте меняемых сре	ррость ветра (соту пересып епень защище едств пылепо	таб. 6.4 Методики); ки материала (таб. енности узла от вне давления, дол.ед (т	` 6.9 Методики) шних воздейс аб. 6.5 Метод	; гвий (таб. 6.10 ики).	,,	
K_1 – коэффициент, учи K_2 – коэффициент, учи K_3 – коэффициент, учи K_4 – коэффициент, учи	тывающий ско тывающий вы тывающий сте меняемых сре симально разо	орость ветра (соту пересып епень защище едств пылепо ового выделен	таб. 6.4 Методики); ки материала (таб. енности узла от вне давления, дол.ед (т	` 6.9 Методики) шних воздейс аб. 6.5 Метод	; гвий (таб. 6.10 ики).	,,	
K_1 — коэффициент, учи K_2 — коэффициент, учи K_3 — коэффициент, учи K_4 — коэффициент, учи η - эффективность при Расчет годового и маке	тывающий ско тывающий вы тывающий сте меняемых сре симально разо	орость ветра (соту пересып епень защище едств пылепо ового выделен	таб. 6.4 Методики); ки материала (таб. енности узла от вне давления, дол.ед (т	` 6.9 Методики) шних воздейс аб. 6.5 Метод	; гвий (таб. 6.10 ики).	,,	
K_1 — коэффициент, учи K_2 — коэффициент, учи K_3 — коэффициент, учи K_4 — коэффициент, учи η - эффективность при Расчет годового и макк При разгрузочных (пер M_{3749} = G_{3749} =	тывающий ско тывающий вы тывающий сте меняемых сре симально разо <u>егрузочных) р</u> 0,026880 0,003173	орость ветра (соту пересып епень защище едств пылепо, ового выделен <u>аботах:</u> m/год г/с	таб. 6.4 Методики); ки материала (таб. енности узла от вне давления, дол.ед (т ния загрязняющих в	6.9 Методики) шних воздейс аб. 6.5 Метод еществ в атмо	; гвий (таб. 6.10 ики). осферу привед	ен ниже.	
K_1 — коэффициент, учи K_2 — коэффициент, учи K_3 — коэффициент, учи K_4 — коэффициент, учи η — эффективность при Расчет годового и макк При разгрузочных (пер M_{3749} = G_{3749} = Согласно Методическо	тывающий ско тывающий вы тывающий сте меняемых сре симально разо <u>егрузочных) р</u> 0,026880 0,003173 му пособию п	орость ветра (соту пересып епень защище едств пылепо, вого выделен <u>аботах:</u> <i>m/год</i> о расчету, но	таб. 6.4 Методики); ки материала (таб. енности узла от вне давления, дол.ед (т ния загрязняющих в омированию и конт	6.9 Методики) шних воздейс аб. 6.5 Методі еществ в атмо	; гвий (таб. 6.10 ики). осферу привед в загрязняющи	цен ниже.	
K_1 — коэффициент, учи K_2 — коэффициент, учи K_3 — коэффициент, учи K_4 — коэффициент, учи η - эффективность при Расчет годового и маки При разгрузочных (пер M_{3749} = G_{3749} = Согласно Методическо воздух, АО «НИИ Атмо	тывающий скотывающий вы тывающий стеменяемых сременяемых сресимально разо сегрузочных) р 0,026880 0,003173 ому пособию посфера, 2012,	орость ветра (соту пересып епень защище едств пылепо, вого выделен аботах: m/eod a/c о расчету, но при использо	таб. 6.4 Методики); ки материала (таб. внности узла от вне давления, дол.ед (т ния загрязняющих в омированию и контр вании расчетных ф	6.9 Методики) шних воздейс аб. 6.5 Метод еществ в атми орло выбросо ормул, содерж	; гвий (таб. 6.10 ики). осферу привед в загрязняющи кащих коэффи	ен ниже. их веществ в а циент, учитыв	вающих местн
K_1 — коэффициент, учи K_2 — коэффициент, учи K_3 — коэффициент, учи K_4 — коэффициент, учи η — эффективность при Расчет годового и маки При разгрузочных (пер M_{3749} = G_{3749} = Согласно Методическо воздух, АО «НИИ Атмо условия (скорость ветр	тывающий скотывающий вы тывающий стеменяемых сременяемых сресимально разо сегрузочных) р 0,026880 0,003173 ому пособию посфера, 2012,	орость ветра (соту пересып епень защище едств пылепо, вого выделен аботах: m/eod e/c о расчету, но при использо максимальны	таб. 6.4 Методики); ки материала (таб. внности узла от вне цавления, дол.ед (т ния загрязняющих в омированию и контр вании расчетных ф к разовых выбросов	6.9 Методики) шних воздейс аб. 6.5 Метод еществ в атморолю выбросо врмул, содерж в определяются	; гвий (таб. 6.10 ики). осферу привед в загрязняющи кащих коэффи я при разных с	ен ниже. их веществ в а циент, учитыв скоростях вет	вающих местн
K_1 — коэффициент, учи K_2 — коэффициент, учи K_3 — коэффициент, учи K_4 — коэффициент, учи η - эффективность при Расчет годового и макк При разгрузочных (пер M_{3749} = G_{3749} = Согласно Методическо воздух, АО «НИИ Атмо условия (скорость ветра	тывающий скотывающий вытывающий стеменяемых сременяемых сременяемых сременяемых сременяемых обегрузочных) родовами пособию пособию пособию пософера, 2012, ра), значения мисс	рость ветра (соту пересып епень защище едств пылепо, вого выделен аботах:	таб. 6.4 Методики); ки материала (таб. енности узла от вне давления, дол.ед (т ния загрязняющих в омированию и контр вании расчетных ф к разовых выбросов	6.9 Методики) шних воздейс аб. 6.5 Метод еществ в атморолю выбросо ормул, содерж определяются	; гвий (таб. 6.10 ики). осферу привед в загрязняющи кащих коэффи я при разных с	ден ниже. их веществ в а циент, учитыв скоростях вет 8	вающих местн ра: 8,4
K_1 — коэффициент, учи K_2 — коэффициент, учи K_3 — коэффициент, учи K_4 — коэффициент, учи η — эффективность при Расчет годового и макк При разгрузочных (пер M_{3749} = G_{3749} = Согласно Методическо воздух, АО «НИИ Атмо условия (скорость ветр	тывающий скотывающий вытывающий стеменяемых сременяемых сременяемых сременяемых сременяемых обегрузочных) родовами пособию пособию пособию пософера, 2012, ра), значения мисс	орость ветра (соту пересып епень защище едств пылепо, вого выделен аботах: m/eod e/c о расчету, но при использо максимальны	таб. 6.4 Методики); ки материала (таб. внности узла от вне цавления, дол.ед (т ния загрязняющих в омированию и контр вании расчетных ф к разовых выбросов	6.9 Методики) шних воздейс аб. 6.5 Метод еществ в атморолю выбросо врмул, содерж в определяются	; гвий (таб. 6.10 ики). осферу привед в загрязняющи кащих коэффи я при разных с	ен ниже. их веществ в а циент, учитыв скоростях вет	вающих местн ра:

ИВ Работы по перегрузке кокса каменноугольного на судовом фронте Источником выделения пыли является перемещение масс кокса (разгрузка и погрузка, ссыпание, перегрузка).

внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

Дата

Подп

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

OBOC2.6

0,6243

0,000292

0,0875

0,252

0,3886

0,01666667

0,001867

0,6243

0,000292

0,0875

0,252

0,3886

0,01666667

0,001867

0,7491

0,00035

0,105

0,3024

0,4663

0,02

0,002240

0,874

0,000408

0,1225

0,3528

0,544

0,02333333

0,002613

1,0612

0,000496

0,14875

0,4284

0.6605

0,02833333

0,003173

1,0612

0,000496

0,14875

0,4284

0,6605

0,02833333

0,003173

диЖелезо триоксид, (железа

оксид)/в пересчете на желе-

медь/(Медь окись; тенорит)

70-20% двуокиси кремния

Пыль неорганическая, содержащая

Пыль неорганическая, содержащая дву-окись кремния, в %: - менее 20 (доломит, пыль цементного

производства - извест-няк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и

зо/(Железо сесквиоксид) Медь оксид/в пересчете на

Углерод (Сажа)

другие)

Пыль древесная

Пыль каменного угля

123

146

328

2908

2909

2936

3749

Взам.инв..

подл.

NHB.№

Кол.уч Лист № док

Лист 18

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,000793	0,000645

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

0,32
240000
750
>11%
0,01
8,4
1,7
3,8
1,2
2
0,7
1
0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_n = \mathbf{q}_n \cdot \Pi_2 \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot 10^{-6} \cdot (1-\eta), \ m/\text{eod} \ [1]$$
 $G_n = (\mathbf{q}_n \cdot \Pi_4 \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot (1-\eta))/3600, \ e/c \ [2]$

где

 q_n – удельное выделение при разгрузке (перегрузке) материала, a/m;

 Π_e – количество разгружаемого (перегружаемого) материала, *m/год*;

 Π_{v} – максимальное количество перегружаемого материала за час, m/vас;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 K_3 – коэффициент, учитывающий высоту пересыпки материала (таб. 6.9 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

<u>При разгрузочных (перегрузочных) работах:</u> **М**₃₇₄₉= 0,000645 *m/год*

G₃₇₄₉= 0,00045 *Illie*00 **G**₃₇₄₉= 0,000793 *e/c*

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,000467	0,000466667	0,000560	0,000653	0,000793	0,000793

ИВ Работы по перегрузке медного штейна на судовом фронте

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 4-х сторон (K_4 = 1). Высота падения материала при пересыпке составляет 2,0 м (B = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует (K_9 = 1). Расчетные скорости ветра, м/с: 0,5 (K_9 = 1); 2 (K_9 = 1); 4 (K_9 = 1,2); 6 (K_9 = 1,4); 8 (K_9 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_9 = 1,2).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

Загрязняющее вещество		Пылеподавление, %	Максимально разовый выброс, г/с		Годовой выброс, т/год	
код	наименование	70	до	после	до	после
Всего п	ыли 100%, из них:	90	0,0123958	0,0012396	0,0021	0,00021
0146	Медь оксид/в пересчете на медь/(Медь	Технология		0,000496		0,0000840
	окись; тенорит)	пылеподавления:				
2908	Пыль неорганическая, содержащая	Гранулирование		0,000744		0,0001260
	двуокись кремния, в %: - 70-20 (шамот,	пылящего				
	цемент, пыль цементного производства -	материала.				
	глина, глинистый сланец, доменный шлак,	Штейн —				
	песок, клинкер, зола кремнезем и другие)	промежуточный				
		продукт при				
		получении				
		некоторых				
		цветных				
		металлов (Cu, Ni,				
		Pb и другие) из их				
		сульфидных руд,				
		представляет				
		собой сплав, что				
		по сути				
		связывает				
		поверхность				
		штейна, поэтому				
		при перегрузке				

Изм. Кол.уч Лист № док. Подп. Да	га

AHB.No

Инв.№ подл. Подп. и дата

Взам.инв.

Подп

Кол.уч Лист № док

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

OBOC2.6

Лист

	Загрязняющее вещество	Пылеподавление, %	_	но разовый ос, г/с	Годовой вы	ыброс, т/год
код	наименование	/0	до	после	до	после
328	Углерод (Сажа)	90	1.4875	0.14875	0,504	0.0504

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Материал	Параметры	Одноврем енность
Коэффициенты сдуваемости приняты для графита	Количество перерабатываемого материала: $G_4 = 750$ т/час; $G_{10000} = 70000$ т/год. Весовая доля пылевой фракции в материале: $\mathbf{K}_1 = 0.03$. Доля пыли, переходящая в аэрозоль: $\mathbf{K}_2 = 0.04$. Влажность свыше 10 до 20% ($\mathbf{K}_5 = 0.01$). Размер куска $50-10$ мм ($\mathbf{K}_7 = 0.5$). Технология пылеподавления: Гранулирование пылящего материала.	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_9 \cdot 10^6 / 3600, \, e/c$$
 (1.1.1)

где \mathbf{K}_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 K_2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

 ${\it K}_{\it 5}$ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств K_8 = 1;

 $extbf{K}_9$ - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_4 - суммарное количество перерабатываемого материала в час, *тичас*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{eod}, m/eod$$

$$\tag{1.1.2}$$

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Нефтекокс / кокс электродный

```
\begin{array}{l} \frac{\text{Note Green Note Green Polarism}}{\text{M}_{328}^{0.5\text{M/c}}} = 0.03 \cdot 0.04 \cdot 1 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 * (1-0.9) = 0.0875 \ \emph{e/c};\\ \text{M}_{328}^{2\ \textit{M/c}} = 0.03 \cdot 0.04 \cdot 1 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 * (1-0.9) = 0.0875 \ \emph{e/c};\\ \text{M}_{328}^{4\ \textit{M/c}} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 * (1-0.9) = 0.105 \ \emph{e/c};\\ \text{M}_{328}^{6\ \textit{M/c}} = 0.03 \cdot 0.04 \cdot 1.4 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 * (1-0.9) = 0.1225 \ \emph{e/c};\\ \text{M}_{328}^{8\ \textit{M/c}} = 0.03 \cdot 0.04 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 * (1-0.9) = 0.14875 \ \emph{e/c};\\ \text{M}_{328}^{8\ \textit{M/c}} = 0.03 \cdot 0.04 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 * (1-0.9) = 0.14875 \ \emph{e/c};\\ \text{M}_{328}^{8\ \textit{M/c}} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 * (1-0.9) = 0.14875 \ \emph{e/c};\\ \text{M}_{328}^{8\ \textit{M/c}} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 100000 = 0.504 \ \emph{m/eod}. \end{array}
```

ИВ Работы по перегрузке шлака на судовом фронте

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия — склады, хранилища, открытые с 4-х сторон (K_4 = 1). Высота падения материала при пересыпке составляет 2,0 м (B = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует (K_9 = 1). Расчетные скорости ветра, м/с: 0,5 (K_3 = 1); 2 (K_3 = 1); 4 (K_3 = 1,2); 6 (K_3 = 1,4); 8 (K_3 = 1,7); 8,4 (K_3 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_3 = 1,2).

. Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Пылеподавление, %		но разовый ос, г/с	Годовой выброс, т/год	
код	наименование	70	до	после	до	после
Всего пь	ыли 100%, из них:	90	18,221875	1,8221875	3,087	0,3087
0101	диАлюминий триоксид/в пересчете на алюминий/ (5,51%)			0,1004		0,00161
0123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид) (58,24%)			1,0612		0,01704
2909	Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)			0,6605		0,01061

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Материал	Параметры	Одноврем енность
	Количество перерабатываемого материала: Gч = 750 т/час; Gгод = 50000 т/год. Весовая доля пылевой фракции в материале: \mathbf{K}_1 = 0,05. Доля пыли, переходящая в аэрозоль: \mathbf{K}_2 = 0,02. Влажность до 5% (\mathbf{K}_5 = 0,7). Размер куска 5-3 мм (\mathbf{K}_7 = 0,7). Технология пылеподавления: Гранулирование пылящего материала.	

ı						
	Изм	Копуч	Пист	№ пок	Подп.	Лата
J	rism.	1001. y 1	лист	л⊻ док.	тюди.	дата

윋

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

(1.1.1)

(1.1.2)

Взам.инв.

윋

 $M^{0.5 \text{ M/c}} = 10,71875 * 0,5824 * 0,1 = 0,6243 \text{ e/c};$

 $M^{2 \text{ M/c}} = 10,71875 * 0,5824 * 0,1 = 0,6243 e/c;$ $M^{4 \text{ M/C}} = 12,8625 * 0,5824 * 0,1 = 0,7491 \text{ r/c};$

 $M^{6 \text{ M/c}} = 15,00625 * 0,5824 * 0,1 = 0,8740 e/c;$ $M^{8 \text{ M/C}} = 18,221875 * 0,5824 * 0,1 = 1,0612 \text{ e/c}$

 $M^{8.4 \text{ m/c}} = 18,221875 * 0,5824* 0,1 = 1,0612 /c;$ Π = 3,087 * 0, 5824 * 0,1 = 0,01704 m/zod.

Остальные вещества нормируются как пыль неорганическая:

 $M^{0.5 \text{ M/c}} = 10.71875 * 0.3625 * 0.1 = 0.3886 \text{ e/c}$ $\mathbf{M}^{2 \text{ m/c}} = 10,71875 * 0,3625 * 0,1 = 0,3886 \text{ e/c};$ $M^{4 \text{ M/C}} = 12,8625 * 0,3625 * 0,1 = 0,4663 \text{ e/c};$ $M^{6 \text{ M/c}} = 15,00625 * 0,3625 * 0,1 = 0,5440 \text{ e/c};$ $M^{8 \text{ M/C}} = 18,221875 * 0,3625 * 0,1 = 0,6605 \text{ e/c};$ $M^{8.4 \text{ M/C}} = 18,221875 * 0,3625 * 0,1 = 0,6605 \text{ e/c};$ $\Pi = 3,087 * 0,3625 * 0,1 = 0,01061$ m/eod.

ИВ Работы по перегрузке пеллет на судовом фронте

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 4-х сторон (K_4 = 1). Высота падения материала при пересыпке составляет 1,0 м (B = 0,5). Залповый сброс при разгрузке автосамосвала отсутствует ($K_9 = 1$). Расчетные скорости ветра, м/с: 0,5 ($K_3 = 1$); 2 ($K_3 = 1$); 4 ($K_3 = 1,2$); 6 ($K_3 = 1,4$); 8 ($K_3 = 1,4$); 9 ($(K_3 = 1,7)$. Средняя годовая скорость ветра 3,8 м/с $(K_3 = 1,2)$.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Пылеподавление,	Максималь выбро	но разовый эс, г/с	Годовой вы	іброс, т/год	
код	наименование	/0	до	после	до	после	
2936	Пыль древесная	90	0,2833333	0,0283333	0,6	0,06	
Maya-wa							

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1 1 2 - Исходные данные для расчета

domina 1.1.2 Mozodnote duminote dim pae le la							
Материал	Параметры	Одноврем					
Материал	Параметры	енность					
Пеллеты	Количество перерабатываемого материала: Gч = 60 т/час; Gгод = 50000	+					
Удельные показатели приняты по аналогу	т/год. Весовая доля пылевой фракции в материале: K_1 = 0,04. Доля пыли,						
- Опилки древесные	переходящая в аэрозоль: K_2 = 0,01. Влажность до 10% (K_5 = 0,1). Размер						

У				риняты по	аналог	количество перерабатываемого материала. $G4 = 60$ гичас, $G10J = 50000$ ут/год. Весовая доля пылевой фракции в материале: $\mathbf{K}_1 = 0.04$. Доля пыли,	
<u> </u>	Опилки	древес	ные			переходящая в аэрозоль: K_2 = 0,01. Влажность до 10% (K_5 = 0,1). Размер	
							Лис
						OBOC2.6	JIHC
Иом	Кол.уч	Пиот	Мо пои	Подп.	Дата	ODOC2.0	22
rism.	1001. y 1	лист	л⊻ док.	ттодп.	дата		

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

 $M_{PP} = K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot K_5 \cdot K_7 \cdot K_8 \cdot K_9 \cdot B \cdot G_4 \cdot 10^6 / 3600, e/c$

(1.1.1)

(1.1.2)

где K_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 K_2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

 ${\it K}_{\it 5}$ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств $K_8 = 1$;

 \emph{K}_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_{y} - суммарное количество перерабатываемого материала в час, *m/час*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{eo\partial}, m/eo\partial$$

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

```
<u>Пеллеты</u> \mathbf{\textit{M}}_{2936}^{0.5 \text{ M/C}} = 0.04 \cdot 0.01 \cdot 1 \cdot 1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.5 \cdot 60 \cdot 10^6 / 3600 * (1-0.9) = 0.01666667 e/c;
M_{2936}^{2 \text{ M/c}} = 0.04 \cdot 0.01 \cdot 1 \cdot 1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.5 \cdot 60 \cdot 10^{6} / 3600 * (1-0.9) = 0.01666667 \text{ s/c};
M_{2936}^{4 \text{ M/c}} = 0.04 \cdot 0.01 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.5 \cdot 60 \cdot 10^{6} / 3600 \cdot (1-0.9) = 0.02 \text{ s/c};
M_{2936}^{6 \text{ M/c}} = 0.04 \cdot 0.01 \cdot 1.4 \cdot 1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.5 \cdot 60 \cdot 10^{6} / 3600 \cdot (1-0.9) = 0.02333333 \text{ s/c};
M_{2936}^{6 \text{ M/c}} = 0.04 \cdot 0.01 \cdot 1.7 \cdot 1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.5 \cdot 60 \cdot 10^{6} / 3600 \cdot (1-0.9) = 0.028333333 \text{ s/c};
M_{2936}^{8.4 \text{ M/c}} = 0.04 \cdot 0.01 \cdot 1.7 \cdot 1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.5 \cdot 60 \cdot 10^6 / 3600 \times (1-0.9) = 0.028333333 \text{ e/c};
\Pi_{2936} = 0.04 \cdot 0.01 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.5 \cdot 50000 * (1-0.9) = 0.06 m/sod.
```

ИВ Работы по перегрузке ильменитовой руды на судовом фронте

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 4-х сторон (K_4 = 1). Высота падения материала при пересыпке составляет 2,0 м (B = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует ($K_9 = 1$). Расчетные скорости ветра, м/с: 0,5 ($K_3 = 1$); 2 ($K_3 = 1$); 4 ($K_3 = 1,2$); 6 ($K_3 = 1,4$); 8 ($K_3 = 1,7$); 8,4 $(K_3 = 1,7)$. Средняя годовая скорость ветра 3,8 м/с $(K_3 = 1,2)$.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
0118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,5998	0,4877
	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,6854	0,5574
	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,4284	0,3484

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Annual transfer of the feet from					
Материал	Параметры	Одноврем енность			
Коэффициенты сдуваемости приняты для щебня	Количество перерабатываемого материала: $G_4 = 750$ т/час; $G_{10} = 240000$ т/год. Весовая доля пылевой фракции в материале: $K_1 = 0.04$. Доля пыли, переходящая в аэрозоль: $K_2 = 0.02$. Влажность до 9% ($K_5 = 0.2$). Размер куска 500-100 мм ($K_7 = 0.2$). Грейфер 3830 грузоподъемностью 16 т ($K_8 = 0.216$).				

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{IP} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_4 \cdot 10^6 / 3600, \, a/c$$
 (1.1.1)

где K_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 K_2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

*K*₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств $K_8 = 1$;

 K_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_{4} - суммарное количество перерабатываемого материала в час, *m/час*.

при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2). престипутих материалов, рассчитывается по формуле (1.					(1.1.2)			
							ODOCA (Лист
]	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	23

Взам.инв.

윋

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

```
Ильменитовая руда
```

```
\begin{array}{l} \overline{\textit{M}}_{\textit{hibitu}} \stackrel{0.5 \text{ MiC}}{=} = 0.04 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 = 1,008 \text{ s/c}; \\ \overline{\textit{M}}_{\textit{hibitu}} \stackrel{2 \text{ MiC}}{=} = 0.04 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 = 1,008 \text{ s/c}; \\ \overline{\textit{M}}_{\textit{hibitu}} \stackrel{4 \text{ MiC}}{=} = 0.04 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 = 1,2096 \text{ s/c}; \\ \overline{\textit{M}}_{\textit{hibitu}} \stackrel{6 \text{ MiC}}{=} = 0.04 \cdot 0.02 \cdot 1.4 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 = 1,4112 \text{ s/c}; \\ \overline{\textit{M}}_{\textit{hibitu}} \stackrel{8 \text{ MiC}}{=} = 0.04 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 = 1,7136 \text{ s/c}; \\ \overline{\textit{M}}_{\textit{hibitu}} \stackrel{8 \text{ MiC}}{=} = 0.04 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 = 1,7136 \text{ s/c}; \\ \overline{\textit{M}}_{\textit{hibitu}} \stackrel{8 \text{ MiC}}{=} = 0.04 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 240000 = 1,393459 \text{ m/sod}. \end{array}
```

Ильменит (титанистый железняк) — минерал общей химической формулы $FeO \cdot TiO2$ или $FeTiO_3$. В ильменитовых концентратах содержится 35% диоксида титана и 40% железа. Таким образом, 35% от общего выброса нормируется как диоксид титана, 40% как оксид железа, остальные соединения приняты по пыли неорганической.

```
Выбросы диоксида титана: \mathit{M}^{0.5\,\mathrm{M/C}}=1,008^{*}\,0,35=0,3528\,\mathit{a/c}; \mathit{M}^{2\,\mathrm{M/C}}=1,008^{*}\,0,35=0,3528\,\mathit{a/c}; \mathit{M}^{4\,\mathrm{M/C}}=1,2096^{*}\,0,35=0,4234\,\mathit{a/c}; \mathit{M}^{6\,\mathrm{M/C}}=1,4112^{*}\,0,35=0,4939\,\mathit{a/c}; \mathit{M}^{6\,\mathrm{M/C}}=1,7136^{*}\,0,35=0,5998\,\mathit{a/c}; \mathit{M}^{6\,\mathrm{M/C}}=1,7136^{*}\,0,35=0,5998\,\mathit{a/c}; \mathit{M}^{6,4\,\mathrm{M/C}}=1,7136^{*}\,0,35=0,5998\,\mathit{a/c}; \mathit{M}^{6,4\,\mathrm{M/C}}=1,393459^{*}\,0,35=0,4877\,\mathit{m/aod}.
```

Выбросы оксида железа:

```
M^{0.5 \text{ M/c}} = 1,008 * 0,4 = 0,4032 \text{ a/c};
M^{2 \text{ M/c}} = 1,008 * 0,4 = 0,4032 \text{ a/c};
M^{4 \text{ M/c}} = 1,2096 * 0,4 = 0,4838 \text{ a/c};
M^{6 \text{ M/c}} = 1,4112 * 0,4 = 0,5645 \text{ a/c};
M^{6 \text{ M/c}} = 1,7136 * 0,4 = 0,6854 \text{ a/c};
M^{8.4 \text{ M/c}} = 1,7136 * 0,4 = 0,6854 \text{ a/c};
M^{6.4 \text{ M/c}} = 1,7136 * 0,4 = 0,6854 \text{ a/c};
M^{6.4 \text{ M/c}} = 1,393459 * 0,4 = 0,5574 \text{ m/aod}.
```

```
Выбросы пыли неорганической: M^{0.5 \text{ м/c}} = 1,008 * 0,25 = 0,2520 \text{ a/c}; M^{2 \text{ м/c}} = 1,008 * 0,25 = 0,2520 \text{ a/c}; M^{4 \text{ м/c}} = 1,2096 * 0,25 = 0,3024 \text{ a/c}; M^{6 \text{ M/c}} = 1,4112 * 0,25 = 0,3528 \text{ a/c}; M^{6 \text{ M/c}} = 1,7136 * 0,25 = 0,4284 \text{ a/c}; M^{8 \text{ M/c}} = 1,7136 * 0,25 = 0,4284 \text{ a/c}; M^{8.4 \text{ M/c}} = 1,7136 * 0,25 = 0,4284 \text{ a/c}; \Pi = 1,393459 * 0,25 = 0,3484 \text{ m/aod}.
```

ИВ Работы по перегрузке железнорудного концентрата на судовом фронте

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Железорудный концентрат имеет следующий состав:

Н	азвание	Процентный состав		
Железо общее		66%		
Оксид железа		0,2%		
Неорганические соединения		33.8%		

Суммарные выбросы железа нормируются по оксидам железа, неорганические соединения – по пыль неорганической.

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия — склады, хранилища, открытые с 4-х сторон (K_4 = 1). Высота падения материала при пересыпке составляет 2,0 м (B = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует (K_9 = 1). Расчетные скорости ветра, м/с: 0,5 (K_9 = 1); 2 (K_9 = 1); 4 (K_9 = 1,2); 6 (K_9 = 1,4); 8 (K_9 = 1,7); 8,4 (K_9 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_9 = 1,2).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
	диЖелезо триоксид, (железа оксид)/в пересчете на	0,0355	0,1441
	железо/(Железо сесквиоксид)		
2908	Пыль неорганическая, содержащая 70-20% двуокиси	0,0181	0,0736
	кремния		

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Взам.инв.

윋

Материал	Параметры	Одноврем
Материал	Параметры	енность
Концентрат	Количество перерабатываемого материала: Gч = 750 т/час; Gгод = 1200000	+
Удельные показатели приняты по аналогу	т/год. Весовая доля пылевой фракции в материале: K_1 = 0,01. Доля пыли,	
- гравий	переходящая в аэрозоль: K_2 = 0,001. Влажность до 9% (K_5 = 0,2). Размер	
	куска 50-10 мм (K_7 = 0,5). Грейфер г/п 16 т 3830 (K_8 = 0,216).	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

 $\mathbf{M}_{\Gamma P} = \mathbf{K}_{1} \cdot \mathbf{K}_{2} \cdot \mathbf{K}_{3} \cdot \mathbf{K}_{4} \cdot \mathbf{K}_{5} \cdot \mathbf{K}_{7} \cdot \mathbf{K}_{8} \cdot \mathbf{K}_{9} \cdot \mathbf{B} \cdot \mathbf{G}_{4} \cdot 10^{6} / 3600, \, e/c$ (1.1.1)

где ${\pmb K}_1$ - весовая доля пылевой фракции (0 до 200 мкм) в материале;

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

\mathbf{O}	P	\cap	C2.	6
\ /	.,	\ /		. ()

Лист

```
{\it K}_2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);
К₃ - коэффициент, учитывающий местные метеоусловия;
K₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;
К₅ - коэффициент, учитывающий влажность материала;
К<sub>7</sub> - коэффициент, учитывающий крупность материала;
К<sub>в</sub> - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов
перегрузочных устройств K_8 = 1;
\emph{K}_{9} - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;
В - коэффициент, учитывающий высоту пересыпки;
G_{v} - суммарное количество перерабатываемого материала в час, m/час.
        Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):
                                                                     \Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{eod}, m/eod
                                                                                                                                                                                                                   (1.1.2)
где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.
        При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля
данного вещества в составе продукта.
        Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.
Железорудный концентрат \mathbf{\textit{M}}_{\textit{пыпи}}^{0.5 \text{ м/c}} = 0.01 \cdot 0.001 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 = 0.0315 \textit{s/c}; \mathbf{\textit{M}}_{\textit{пыпи}}^{2 \text{ м/c}} = 0.01 \cdot 0.001 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 = 0.0315 \textit{s/c};
M_{\text{пыли}}^{4 \text{ M/C}} = 0.01 \cdot 0.001 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{3} / 3600 = 0.0318 \ \text{e/c};
M_{\text{пыли}}^{4 \text{ M/C}} = 0.01 \cdot 0.001 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 = 0.0378 \ \text{e/c};
M_{\text{пыли}}^{6 \text{ M/C}} = 0.01 \cdot 0.001 \cdot 1.4 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 = 0.0441 \ \text{e/c};
M_{\text{пыли}}^{8 \text{ M/C}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 = 0.05355 \ \text{e/c};
\mathbf{M}_{\text{Повли }}^{8.4 \text{ M/C}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 = 0.05355 \text{ e/c};

\mathbf{\Pi}_{\text{Пыли}} = 0.01 \cdot 0.001 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 1200000 = 0.217728 \text{ m/sod.}

Содержание в выбросах оксидов железа составит 66,2 % от общего выброса:
M^{0.5 \text{ M/c}} = 0.0315 * 0.662 = 0.0209 \text{ s/c};
M^{2 \text{ M/c}} = 0.0315 * 0.662 = 0.0209 \text{ s/c};
\mathbf{M}^{4 \text{ m/c}} = 0.0378 * 0.662 = 0.0250 \text{ e/c};
M^{6 \text{ M/C}} = 0.0441 * 0.662 = 0.0292 \text{ s/c};
M^{8 \text{ M/c}} = 0.05355 * 0.662 = 0.0355 \text{ e/c};
M^{8.4 \text{ m/c}} = 0.05355 * 0.662 = 0.0355 \text{ e/c};
\Pi = 0,217728 * 0,662 = 0,1441 m/eod.
Остальные вещества нормируются как пыль неорганическая:
M^{0.5 \text{ m/c}} = 0.0315 * 0.338 = 0.0106 \text{ s/c};

M^{2 \text{ m/c}} = 0.0315 * 0.338 = 0.0106 \text{ s/c};
M^{4 \text{ M/c}} = 0.0378 * 0.338 = 0.0128 \text{ a/c};
\mathbf{M}^{6 \text{ m/c}} = 0.0441 * 0.338 = 0.01492/c;
M^{8 \text{ M/c}} = 0.05355 * 0.338 = 0.0181 \text{ r/c};
M8.4 \text{ m/c} = 0.05355 \times 0.338 = 0.0181 \text{ r/c};
\Pi = 0.217728 * 0.338 = 0.0736 \text{т/год}.
                                                                                                                                                                                                                      Лист
                                                                                                                                OBOC2.6
```

25

Взам.инв.

№ подл.

ИHB.

Кол.уч Лист № док

Подп

Дата

ИЗАВ №6114. погрузочно-разгрузочные работы на железнодорожном грузовом фронте

Источниками выделения загрязняющих веществ являются:

- перегрузка угля на ж/д грузовом фронте;
- перегрузка кокса на ж/д грузовом фронте;
- работа мобильных сортировочных устройств и ленточных транспортеров;
- зачистка вагонов;
- перегрузка железорудного концентрата на ж/д грузовом фронте;
- перегрузка медного штейна на ж/д грузовом фронте;
- перегрузка ильменитовой руды на ж/д грузовом фронте;
- перегрузка нефтекокса / кокса электродного на ж/д грузовом фронте;
- перегрузка окалины (шлака) на ж/д грузовом фронте;
- работа воздуходувок.

В расчете выбросов учтена неодновременность перегрузочных работ с разными грузами.

Максимально-разовый выброс принят максимальный по каждому грузу

Валовый выброс суммирован с учетом всех видов грузов

Всего по источнику выбросов:

	Загрязняющее вещество	Максимально разовый	Годовой выброс,				
код	наименование	выброс, г/с	т/год				
При перегрузке каменного угля							
3749	Пыль каменного угля	0,04821	0,676172				
	При перегрузке кокса						
3749	Пыль каменного угля	0,014521	0,202601				
При перегрузке железорудного концентрата							
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе-зо/(Железо сесквиоксид)	0,076600	0,144000				
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,039100	0,073600				
При перегрузке медного штейна							
146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,001071	0,000084				
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,001607	0,000126				
	При перегрузке ильменитовой рудь	sl .					
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	1,295500	0,487700				
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе-зо/(Железо сесквиоксид)	1,480600	0,557400				
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,925300	0,348400				
При перегрузке нефтекокса / кокса электродного							
328	Углерод (пигмент черный)	0,172550	0,0504				
При перегрузке окалины (шлака)							
101	диАлюминий триоксид/в пересчете на алюминий/ (5,51%)	0,217000	0,001610				
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе-зо/(Железо сесквиоксид)	2,292000	0,017040				
2909	Пыль неорганическая, содержащая дву-окись кремния, в %: - менее 20 (доломит, пыль цементного производства - извест-няк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	1,427000	0,010610				

Расчет по каждому грузу выполнен на максимальную загруженность склада, поэтому в расчете рассеивания учтена

неодновременность движения грузов, и по каждому веществу принят максимально-разовый выброс:

	Загрязняющее вещество	Максимально разовый	Годовой выброс,
код	наименование	выброс, г/с	т/год
101	диАлюминий триоксид/в пересчете на алюминий/ (5,51%)	0,217000	0,001610
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	1,295500	0,487700
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе-зо/(Железо сесквиоксид)	2,292000	0,718440
146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,001071	0,000084
328	Углерод (пигмент черный)	0,172550	0,0504
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,925300	0,422126
2909	Пыль неорганическая, содержащая дву-окись кремния, в %: - менее 20 (доломит, пыль цементного производства - извест-няк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	1,427000	0,010610
3749	Пыль каменного угля	0,04821	0,878773

Максимально-разовый выброс с учетом ветра принят:

Скоро	сть ветра, м/с	0,5	2	4	6	8	8,4
Колич	ество ЗВ, г/с						
101	диАлюминий триоксид/в пересчете на алюминий/ (5,51%)	0,128	0,128	0,153	0,179	0,217	0,217
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,762	0,762	0,9145	1,0669	1,2955	1,2955
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе-зо/(Железо сесквиоксид)	1,348	1,348	1,618	1,888	2,292	2,292
146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,00063	0,00063	0,000756	0,000882	0,00107	0,00107
328	Углерод (пигмент черный)	0,1015	0,1015	0,1218	0,1421	0,17255	0,17255
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,5443	0,5443	0,6532	0,762	0,9253	0,9253
2909	Пыль неорганическая, содержащая дву-окись кремния, в %: - менее 20 (доломит, пыль	0,839	0,839	1,007	1,175	1,427	1,427

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

MHB.No

	HOMOUTHOEO BROWSBORGERS MARROCT HERE MOR	1				T	
	цементного производства - извест-няк, мел,						i
	огарки, сырьевая смесь, пыль вращающихся	1	1	1			1
	печей, боксит и другие)						1
3749	Пыль каменного угля	0,04751	0,04751	0,04771	0,04791	0,04822	0,04822
Rufino	C OT DOUGHT BOSHANOUNDON COCTORIAT.						

	Выброс от	работы воздуходувок соста	вит:
--	-----------	---------------------------	------

	Загрязняющее вещество	Максимально разовый	Formania pulifinana T/FOR
код	наименование	выброс, г/с	Годовой выброс, т/год
301	Азота диоксид (Азот (IV) оксид)	0,0037778	0,0049776
304	Азот (II) оксид (Азота оксид)	0,0006139	0,0008089
330	Сера диоксид (Ангидрид сернистый)	0,0013472	0,0017751
337	Углерод оксид	0,2611111	0,34404
2704	Бензин (нефтяной, малосернистый)	0,0333333	0,04392

ИВ Работы по перегрузке угля на ж/д грузовом фронте

Источником выделения пыли является перемещение масс угля (разгрузка и погрузка, ссыпание, перегрузка).

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,001714	0,026880

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельное выделение при разгрузке (перегрузке) материала, q _n [г/т]	0,32
Количество разгружаемого (перегружаемого) материала, П _е [т/год]	10000000
Количество разгружаемого (перегружаемого) материала, П, [т/час]	1620
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, $w_{\mathfrak{g}}[m/c]$	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, <i>w</i> ₅ [м/с]	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Высота разгрузки материала, [м]	2
Коэффициент, учитывающий высоту пересыпки материала (табл. 6.9), K_3	0,7
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), К₄	1
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_n = q_n \cdot \Pi_a \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot 10^{-6} \cdot (1-\eta), m/\text{200}$$
 [1]
 $G_n = (q_n \cdot \Pi_4 \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot (1-\eta))/3600, \text{e/c}$ [2]

где

MHB.No

 ${m q}_n$ – удельное выделение при разгрузке (перегрузке) материала, ${\it a/m}$;

 Π_{e} – количество разгружаемого (перегружаемого) материала, $m/eo\partial$;

 $\Pi_{\rm v}$ – максимальное количество перегружаемого материала за час, *m/час;*

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 K_3 – коэффициент, учитывающий высоту пересыпки материала (таб. 6.9 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 $\underline{\eta}$ - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При разгрузочных (перегрузочных) работах:

 M_{3749} = 0,026880 m/eod G_{3749} = 0,001714 e/c

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,001008	0,001008	0,001210	0,001411	0,001714	0,001714

ИВ Работы по перегрузке кокса на ж/д грузовом фронте

Источником выделения пыли является перемещение масс кокса (разгрузка и погрузка, ссыпание, перегрузка).

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - **Характеристика выделений загрязняющих веществ в атмосферу**

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,001714	0,000645

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

		- Д					
						ODOC2 (Лист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	

Таблица 2 - Исходные данные для расчета

0,32
240000
1620
>11%
0,01
8,4
1,7
3,8
1,2
2
0,7
1
0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

 $\mathbf{M}_{n} = \mathbf{q}_{n} \cdot \mathbf{\Pi}_{z} \cdot \mathbf{K}_{1} \cdot \mathbf{K}_{2} \cdot \mathbf{K}_{3} \cdot \mathbf{K}_{4} \cdot \mathbf{10}^{-6} \cdot (\mathbf{1-\eta}), \, \text{m/eod} \quad [1]$ $\mathbf{G}_{n} = (\mathbf{q}_{n} \cdot \mathbf{\Pi}_{4} \cdot \mathbf{K}_{1} \cdot \mathbf{K}_{2} \cdot \mathbf{K}_{3} \cdot \mathbf{K}_{4} \cdot (\mathbf{1-\eta}))/3600, \, \text{e/c} \qquad [2]$

где

 q_n – удельное выделение при разгрузке (перегрузке) материала, z/m;

 Π_{ϵ} – количество разгружаемого (перегружаемого) материала, m/ϵ од;

 Π_{v} – максимальное количество перегружаемого материала за час, m/vас;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 K_3 – коэффициент, учитывающий высоту пересыпки материала (таб. 6.9 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При разгрузочных (перегрузочных) работах:

M₃₇₄₉= 0,000645 *m/eo* **G**₃₇₄₉= 0,001714 *e/c*

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,001008	0,001008	0,001210	0,001411	0,001714	0,001714

ИВ Мобильные сортировочные устройства (обработка угля)

Всего от УСМ выделяется:

	Загрязняющее вещество	Максимально разовый выброс,	Годовой
код	наименование	г/с	выброс, т/год
3749	Пыль каменного угля	0,038605	0,415632

Screen Machine 4043

Источником выделения пыли является работа дробильно-сортировочных установок

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1. Таблица 1 - **Характеристика выделений загрязняющих веществ в атмосферу**

	Загрязняющее вещество	Максимально разовый	Годовой выброс,
код	наименование	выброс, г/с	т/год
3749	Пыль каменного угля	0,011605	0,124032

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Наименование оборудования	Screen Machine 4043
Количество одновременно работающих установок	4
Удельное выделение при дроблении материала, q_n [г/т]	2,04
Количество разгружаемого (перегружаемого) материала, П₂ [т/год] (на установках обрабатывается до 38% от всего объема угля)	3800000
Количество разгружаемого (перегружаемого) материала, Π_{4} [т/час] (указана суммарная, производит-ть 1 ед - 320 m/час)	1280
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

 $M_n = \mathbf{q}_n \cdot \Pi_e \cdot K_1 \cdot 10^{-6}, \text{ m/eod}$ [1] $G_n = (\mathbf{q}_n \cdot \Pi_u \cdot K_1)/3600, \text{ e/c}$ [2]

где: q_n – удельное выделение твердых частиц при работе самоходных дробильных установок, г/т породы; Определеяется по таб. 6.11 Методики.

 Π_{ϵ} - количество переработанной породы за год, *m/год*;

윋

 Π_{v} – максимальное количество перегружаемого материала за час, m/vac;

 \emph{K}_1 - коэффициент, учитывающий влажность материала (табл.4.2 Методики).

Согласно «Методического пособия по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух» применяется поправочный коэффициент гравитации для пыли равный 0,4

						ODOCA (Лист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	28

AHB.No

Источником выделения пыли является работа дробильно-сортировочных установок

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
3749	Пыль каменного угля	0,009000	0,097200

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

restricted and restriction of the contract of	
Наименование оборудования	УЗСПК-1400
Количество одновременно работающих установок	2
Удельное выделение при дроблении материала, q_n [г/т]	4,5
Количество разгружаемого (перегружаемого) материала, П₂ [т/год] <i>(на установках обрабатывается до 27% от всего объема угля)</i>	2700000
Количество разгружаемого (перегружаемого) материала, Π_{4} [т/час] (указана суммарная, производит-ть 1 ед - 450 m/час)	900
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

 $M_n = q_n \cdot \Pi_e \cdot K_1 \cdot 10^{-6}, \, \text{m/eod} \, [1]$ $G_n = (q_n \cdot \Pi_u \cdot K_1)/3600$, e/c

где: q_n – удельное выделение твердых частиц при работе самоходных дробильных установок, г/т породы; Определеяется по таб. 6.11 Методики.

 Π_{e} - количество переработанной породы за год, m/eod;

 Π_{4} – максимальное количество перегружаемого материала за час, m/чаc;

 K_1 - коэффициент, учитывающий влажность материала (табл.4.2 Методики).

Согласно «Методического пособия по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух» применяется поправочный коэффициент гравитации для пыли равный 0,4

EDGE FMS65

Источником выделения пыли является работа дробильно-сортировочных установок

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

		- 1- 3	
	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
3749	Пыль каменного угля	0.018000	0 194400

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Наименование оборудования	EDGE FMS65
Количество одновременно работающих установок	3
Удельное выделение при дроблении материала, q_n [г/т]	4,5
Количество разгружаемого (перегружаемого) материала, П₂[т/год] (на установках обрабатывается до 36% от всего объема угля)	3600000
Количество разгружаемого (перегружаемого) материала, П₄ [т/час] (указана суммарная, производит-ть 1 ед - 400 m/час)	1200
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_n = q_n \cdot \Pi_z \cdot K_1 \cdot 10^{-6}, \text{ m/sod}$$
 [1] $G_n = (q_n \cdot \Pi_y \cdot K_1)/3600, \text{ e/c}$ [2]

где: q_n – удельное выделение твердых частиц при работе самоходных дробильных установок, г/т породы;

Определеяется по таб. 6.11 Методики.

 Π_{ϵ} - количество переработанной породы за год, $m/\epsilon o \partial$;

 $\Pi_{\rm v}$ – максимальное количество перегружаемого материала за час, $m/{\rm vac}$;

К₁ - коэффициент, учитывающий влажность материала (табл.4.2 Методики).

Согласно «Методического пособия по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух» применяется поправочный коэффициент гравитации для пыли равный 0,4

ИВ Мобильные сортировочные устройства (обработка кокса)

Источником выделения пыли является работа дробильно-сортировочных установок

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Загрязняющее вещество		Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
3749	Пыль каменного угля	0,009000	0,097200

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

. s. s. m. de =	
Наименование оборудования	УЗСПК-1400
Количество одновременно работающих установок	2
Удельное выделение при дроблении материала, qn [г/т]	4,5
Количество разгружаемого (перегружаемого) материала, П₂ [т/год] (на установках обрабатывается до 27% от всего объема угля)	2700000
Количество разгружаемого (перегружаемого) материала, П _ч [т/час] <i>(указана суммарная, производит-ть 1 ед - 450 т/час)</i>	900
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_n = q_n \cdot \Pi_e \cdot K_1 \cdot 10^{-6}, \text{ m/sod} \quad [1]$$
 $G_n = (q_n \cdot \Pi_q \cdot K_1)/3600, \text{ e/c} \quad [2]$

где: q_n – удельное выделение твердых частиц при работе самоходных дробильных установок, г/т породы;

Определеяется по таб. 6.11 Методики.

 Π_{z} - количество переработанной породы за год, *m/год*;

 Π_{4} – максимальное количество перегружаемого материала за час, m/час;

 K_1 - коэффициент, учитывающий влажность материала (табл.4.2 Методики).

Согласно «Методического пособия по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух» применяется поправочный коэффициент гравитации для пыли равный 0,4

ИВ Работа транспортерных лент (обработка угля)

Всего по конвейерам выделяется:

	· · · · - · · · · · · · · · · · ·		
Загрязняющее вещество		Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,007408	0.233633

Конвейер установки Screen Machine 4043

Источником выделения пыли является унос пыли при транспортировании угля ленточным конвейером.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

Загрязняющее вещество		Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,001844	0,058165

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, q_n [г/кв.м*c]	0,003
Количество конвейеров одного типа, n_j	4
Ширина ленты конвейера, b_i [м];	1,06
Длина ленты конвейера, L_i [м];	14,5
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Количество рабочих часов конвейра в год, T_j [ч/год]	8760
Скорость ветра, w_e [м/с]	8,4
Скорость движения конвейера, w _∂ [м/с]	2
Скорость обдува материала, V₀б [м/с]	2
Коэффициент, учитывающий скорость обдува материала(принимается по ближайшему значению)	1
(таб. 7.19 Методики), K_{ob}	ı
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	1
Эффективность пылеподавления (таб 7.16), η [долл.ед]	0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

где

THB.No

 q_n – удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, г/кв.м*с;

 b_i – ширина ленты ковейера, м;

 I_{j} – длина ленты конвейера, м;

 T_{j} – количество рабочих часов конвейра в год, ч/год;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_{06} – коэффициент, учитывающий скорость обдува материала (таб. 7.19 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 7.16 Методики).

При расчете выбросов от конвейеров, эксплуатирующихся в помещении учитывается коэффициент осаждения 0,4, при этом коэффициент K_{o6} =1, остальные коэффициенты принимаются как указано выше

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При транспортировке ленточным конвейером:

M₃₇₄₉= 0,058165 m/eo∂ **G**₃₇₄₉= 0,001844 e/c

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Конвейер установки УЗСПК-1400

Источником выделения пыли является унос пыли при транспортировании угля ленточным конвейером.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

Загрязняющее вещество		Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,000922	0,029082

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, q_n [г/кв.м*с]	0,003
Количество конвейеров одного типа, n_i	2
Ширина ленты конвейера, b_{l} [м];	1,06
Длина ленты конвейера, L_j [м];	14,5
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Количество рабочих часов конвейра в год, T_j [ч/год]	8760
Скорость ветра, w _e [м/с]	8,4
Скорость движения конвейера, w₀[м/с]	2
Скорость обдува материала, V_{ob} [м/с]	2
Коэффициент, учитывающий скорость обдува материала(принимается по ближайшему значению) (таб. 7.19 Методики), K_{ob}	1
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), К₄	1
Эффективность пылеподавления (таб 7.16), η [долл.ед]	0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_{c\partial} = \sum_{i=0}^{n} 3, 6 \cdot q_n \cdot b_j \cdot I_j \cdot T_j \cdot K_1 \cdot K_{o\delta} \cdot K_4 \cdot (1-\eta) \cdot 10^{-3}, m/20\partial$$
[1]
$$G_{c\partial} = \sum_{i=0}^{n} q_n \cdot b_j \cdot I_j \cdot n_j \cdot K_1 \cdot K_{o\delta} \cdot K_4 \cdot (1-\eta), e/c$$
[2]

где

Взам.инв.№

MHB.No

 q_n – удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, г/кв.м*с;

 b_i – ширина ленты ковейера, м;

 I_i — длина ленты конвейера, м;

 T_i – количество рабочих часов конвейра в год, ч/год;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_{o6} – коэффициент, учитывающий скорость обдува материала (таб. 7.19 Методики);

 $extit{K}_4$ – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

η - эффективность применяемых средств пылеподавления, дол.ед (таб. 7.16 Методики).

При расчете выбросов от конвейеров, эксплуатирующихся в помещении учитывается коэффициент осаждения 0,4, при этом коэффициент К₀∈1, остальные коэффициенты принимаются как указано выше

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При транспортировке ленточным конвейером:

M₃₇₄₉= 0,029082 m/zo∂ **G**₃₇₄₉= 0,000922 z/c

Конвейер установки EDGE FMS65

Источником выделения пыли является унос пыли при транспортировании угля ленточным конвейером.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество		Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,001782	0,056197

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Taomique Trongino Gamero Am pao tota	
Удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, q_n [г/кв.м*с]	0,003
Количество конвейеров одного типа, n_i	3
Ширина ленты конвейера, b_j [м];	1
Длина ленты конвейера, L_i [м];	19,8
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Количество рабочих часов конвейра в год, T_i [ч/год]	8760
Скорость ветра, W_{s} [м/с]	8,4
Скорость движения конвейера, w₀[м/с]	2
Скорость обдува материала, V_{o6} [м/с]	2
Коэффициент, учитывающий скорость обдува материала(принимается по ближайшему значению) (таб.	1
7.19 Методики), K _{об}	ļ
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	1
Эффективность пылеподавления (таб 7.16), η [долл.ед]	0

_						ценности узла от внешних воздействий (табл. 6.10), К₄	1	_
						, η [долл.ед]	0	_
K	Соличест	гво пыл	и, выбра	асываемой	в атмосо	реру, рассчитывается по формулам (1, 2):		
					1			-
							J	Лист
						OBOC2.6	<u> </u>	
						ODOC2.0		31
IZare	Копуч	Лист	№ док.	Подп.	Дата			31

где

 q_n – удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, г/кв.м*с;

 b_{i} – ширина ленты ковейера, м;

 I_{j} – длина ленты конвейера, м;

 T_j – количество рабочих часов конвейра в год, ч/год;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_{o6} – коэффициент, учитывающий скорость обдува материала (таб. 7.19 Методики);

*K*₄ – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

η - эффективность применяемых средств пылеподавления, дол.ед (таб. 7.16 Методики).

При расчете выбросов от конвейеров, эксплуатирующихся в помещении учитывается коэффициент осаждения 0,4, при этом коэффициент K_{o6} =1, остальные коэффициенты принимаются как указано выше

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При транспортировке ленточным конвейером:

 M_{3749} = 0,056197 m/eod G_{3749} = 0,001782 e/c

Конвейер EDGE MTS 140

Источником выделения пыли является унос пыли при транспортировании угля ленточным конвейером.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество				Максимально разовый	Годовой	
код		наиме	нование			выброс, г/с	выброс, т/год
3749		Пыль кам	енного угля			0,001823	0,057491

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

i again da a a a consedicas a Marriago	
Удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, q_n [г/кв.м*с]	0,003
Количество конвейеров одного типа, n _i	2
Ширина ленты конвейера, b_i [м];	1,2
Длина ленты конвейера, L_j [м];	42,2
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Количество рабочих часов конвейра в год, T_j [ч/год]	8760
Скорость ветра, <i>w</i> ₅ [м/с]	8,4
Скорость движения конвейера, w₀[м/с]	2
Скорость обдува материала, V_{ob} [м/с]	2
Коэффициент, учитывающий скорость обдува материала(принимается по ближайшему значению) (таб. 7.19	1
Методики), $K_{o\bar{b}}$	ı
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), К₄	0,6
Эффективность пылеподавления (таб 7.16), η [долл.ед]	0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$\begin{array}{lll} \textit{M}_{c\partial} = & \Sigma 3, 6 \cdot q_n \cdot b_j \cdot l_j \cdot T_j \cdot K_1 \cdot K_{o6} \cdot K_4 \cdot (1-\eta) \cdot 10^{-3}, \, \text{m/sod} & [1] \\ & G_{c\partial} = & \Sigma q_n \cdot b_j \cdot l_j \cdot n_j \cdot K_1 \cdot K_{o6} \cdot K_4 \cdot (1-\eta), \, \text{e/c} & [2] \end{array}$$

где

THB.No

 ${m q}_n$ — удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, г/кв.м*с;

 b_{i} – ширина ленты ковейера, м;

 I_{j} – длина ленты конвейера, м;

 T_i – количество рабочих часов конвейра в год, ч/год;

 \acute{K}_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_{ob} – коэффициент, учитывающий скорость обдува материала (таб. 7.19 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 7.16 Методики).

При расчете выбросов от конвейеров, эксплуатирующихся в помещении учитывается коэффициент осаждения 0,4, при этом коэффициент K_{05} =1, остальные коэффициенты принимаются как указано выше

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При транспортировке ленточным конвейером:

M₃₇₄₉= 0,057491 m/eo∂ **G**₃₇₄₉= 0,001823 e/c

Конвейер EDGE RTS 100

Источником выделения пыли является унос пыли при транспортировании угля ленточным конвейером.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - **Характеристика выделений загрязняющих веществ в атмосферу**

		F 7	
	Загрязняющее вещество	Максимально разовый	Годовой выброс,
код	наименование	выброс, г/с	т/год
3749	Пыль каменного угля	0,001037	0,032697

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	

Таблица 2 - Исходные данные для расчета

Удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, q_n [г/кв.м*c]	0,003
Количество конвейеров одного типа, n_j	2
Ширина ленты конвейера, b_i [м];	1,2
Длина ленты конвейера, L_{I} [м];	24
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), К₁	0,01
Количество рабочих часов конвейра в год, T_i [ч/год]	8760
Скорость ветра, $w_{e}[M/c]$	8,4
Скорость движения конвейера, w_{θ} [м/c]	2
Скорость обдува материала, V_{∞} [м/с]	2
Коэффициент, учитывающий скорость обдува материала(принимается по ближайшему значению) (таб. 7.19 Методики), $K_{\text{об}}$	1
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	0,6
Эффективность пылеподавления (таб 7.16), η [долл.ед]	0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$\begin{aligned} & \textit{M}_{c\partial} = \Sigma \, 3, 6 \cdot q_n \cdot b_j \cdot l_j \cdot \ T_j \cdot \ K_1 \cdot K_{o6} \cdot K_4 \cdot (1 - \eta) \cdot 10^{-3}, \ m/\text{eod} \quad [1] \\ & \textit{G}_{c\partial} = \Sigma \, q_n \cdot b_j \cdot l_j \cdot \ n_j \cdot K_1 \cdot K_{o6} \cdot K_4 \cdot (1 - \eta), \ e/c \end{aligned} \quad [2]$$

 ${m q}_n$ – удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, г/кв.м*с;

 b_i – ширина ленты ковейера, м;

 I_i — длина ленты конвейера, м;

- количество рабочих часов конвейра в год, ч/год;

 $\vec{K_1}$ – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_{ob} – коэффициент, учитывающий скорость обдува материала (таб. 7.19 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

η - эффективность применяемых средств пылеподавления, дол.ед (таб. 7.16 Методики).

При расчете выбросов от конвейеров, эксплуатирующихся в помещении учитывается коэффициент осаждения 0,4, при этом коэффициент К_{об}=1, остальные коэффициенты принимаются как указано выше

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При транспортировке ленточным конвейером:

 $M_{3749} =$ 0.032697 т/год **G** 3749= 0,001037

ИВ Работа транспортерных лент (обработка кокса)

Всего по конвейерам выделяется:

	Загрязняющее вещество	Максимально	Годовой
код	наименование	разовый выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,003321	0,104729

Конвейер установки УЗСПК-1400

Источником выделения пыли является унос пыли при транспортировании угля ленточным конвейером.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой
код	наименование	разовый выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,000461	0,014541

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, q_n [г/кв.м*c]	0,003
Количество конвейеров одного типа, n_j	1
Ширина ленты конвейера, b_{j} [м];	1,06
Длина ленты конвейера, L_j [м];	14,5
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), К₁	0,01
Количество рабочих часов конвейра в год, T_j [ч/год]	8760
Скорость ветра, w _e [м/с]	8,4
Скорость движения конвейера, w₀ [м/с]	2
Скорость обдува материала, V_{ob} [м/с]	2
Коэффициент, учитывающий скорость обдува материала(принимается по ближайшему значению) (таб. 7.19 Методики), <i>К</i> ₀ҕ	1
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	1
Эффективность пылеподавления (таб 7.16), η [долл.ед]	0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):
$$M_{c\partial} = \mathbf{\Sigma} \mathbf{3}, \mathbf{6} \cdot \mathbf{q}_n \cdot \mathbf{b}_j \cdot \mathbf{I}_j \cdot \mathbf{T}_j \cdot \mathbf{K}_1 \cdot \mathbf{K}_{ob} \cdot \mathbf{K}_4 \cdot (\mathbf{1} - \mathbf{\eta}) \cdot \mathbf{10}^3, \, \mathbf{m/zod} \quad [1]$$

$$\mathbf{G}_{c\partial} = \mathbf{\Sigma} \mathbf{q}_n \cdot \mathbf{b}_j \cdot \mathbf{I}_j \cdot \mathbf{n}_j \cdot \mathbf{K}_1 \cdot \mathbf{K}_{ob} \cdot \mathbf{K}_4 \cdot (\mathbf{1} - \mathbf{\eta}), \, \mathbf{z/c} \quad [2]$$

THB.No

 ${m q}_n$ – удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, г/кв.м*с;

 b_i – ширина ленты ковейера, м;

 I_i — длина ленты конвейера, м;

 T_i – количество рабочих часов конвейра в год. ч/год:

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

 \emph{K}_{o6} – коэффициент, учитывающий скорость обдува материала (таб. 7.19 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 7.16 Методики).

При расчете выбросов от конвейеров, эксплуатирующихся в помещении учитывается коэффициент осаждения 0,4, при этом коэффициент K_{o6} =1, остальные коэффициенты принимаются как указано выше

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При транспортировке ленточным конвейером:

M₃₇₄₉= 0,014541 m/20∂ **G**₃₇₄₉= 0,000461 2/c

Конвейер EDGE MTS 140

Источником выделения пыли является унос пыли при транспортировании угля ленточным конвейером.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,001823	0,057491

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, q_n [г/кв.м*с]	0,003
Количество конвейеров одного типа, n_i	2
Ширина ленты конвейера, b_{l} [м];	1,2
Длина ленты конвейера, L_j [м];	42,2
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Количество рабочих часов конвейра в год, T_j [ч/год]	8760
Скорость ветра, w_e [м/с]	8,4
Скорость движения конвейера, w₀[м/с]	2
Скорость обдува материала, V_{ob} [м/с]	2
Коэффициент, учитывающий скорость обдува материала(принимается по ближайшему значению) (таб. 7.19 Методики), K_{ob}	1
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	0,6
Эффективность пылеподавления (таб 7.16), <i>η</i> [долл.ед]	0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$\begin{array}{lll} \textit{M}_{c\partial} = & \Sigma 3, 6 \cdot q_n \cdot b_j \cdot I_j \cdot T_j \cdot K_1 \cdot K_{06} \cdot K_4 \cdot (1-\eta) \cdot 10^{-3}, \, \text{m/sod} & [1] \\ & G_{c\partial} = & \Sigma q_n \cdot b_j \cdot I_j \cdot n_j \cdot K_1 \cdot K_{06} \cdot K_4 \cdot (1-\eta), \, \text{e/c} & [2] \end{array}$$

где

Взам.инв.

윋

 q_n – удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, г/кв.м*с;

 ${\it b_{j}}$ – ширина ленты ковейера, м;

 I_{i} – длина ленты конвейера, м;

 T_i – количество рабочих часов конвейра в год, ч/год;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 \textit{K}_{ob} – коэффициент, учитывающий скорость обдува материала (таб. 7.19 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

п - эффективность применяемых средств пылеподавления, дол.ед (таб. 7.16 Методики).

При расчете выбросов от конвейеров, эксплуатирующихся в помещении учитывается коэффициент осаждения 0,4, при этом коэффициент K_{o6} =1, остальные коэффициенты принимаются как указано выше

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При транспортировке ленточным конвейером:

 M_{3749} = 0,057491 m/200 G_{3749} = 0,001823 e/c

Конвейер EDGE RTS 100

Источником выделения пыли является унос пыли при транспортировании угля ленточным конвейером.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой
код	наименование	разовый выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,001037	0,032697

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - **Исходные данные для расчета**

Удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, q_n [г/кв.м*с]	0,003
Количество конвейеров одного типа, n_i	2
Ширина ленты конвейера, b_{j} [м];	1,2
Длина ленты конвейера, L_j [м];	24
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01

Влажность материала, % Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), <i>К</i> ₁						>11% регружаемого материала (табл. 4.2), <i>К</i> ₁ 0,01	
<u>'</u>	СОЭФФИ	цистт, у	чинывак	ощии влаж	HOCTB HC	остружаемого материата (таот. 4.2), N ₁ 0,01	
							Лис
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	34

	степень защищенности узла от внешних воздейс средств пылеподавления, дол.ед (таб. 7.16 Мето,				
	ров, эксплуатирующихся в помещении учитывает	ся коэффициент осаждения (0,4, при этог		
	эффициенты принимаются как указано выше				
• •	азового выделения загрязняющих веществ в атм	осферу приведен ниже.			
При транспортировке ленточным					
M ₃₇₄₉ = 0,032697 m/so	o				
G ₃₇₄₉ = 0,001037 <i>c/c</i>					
AR Sauverya parauan	VEORI W VOVO				
ИВ Зачистка вагонов (
	яется унос пыли при зачистке вагонов. веществ выполнен в соответствии со следующим	NA NACTORIALIOCICIANIA ROMANA COLUMN	ии: Отрасла		
	веществ выполнен в соответствии со следующих одящих, уловленных и выбрасываемых в атмосф				
	одящих, уловленных и выорасываемых в атмосф юго производства на предприятиях угольной прог				
	ооды России от 28.06.2021 № 22-р , позиция №10		оведения		
	характеристики загрязняющих веществ, выделяю		ны в таблин		
	карактеристики загрязняющих веществ, выделяю целений загрязняющих веществ в атмосферу	щихся в атмосферу, приведен	пы в таолиц		
Загрязняющее вещество					
код наименование	Максимально разовый выброс, г/с	Годовой выброс, т	7год		
3749 Пыль каменного угля	0.00049	0,000027			
,	, расчетные формулы, а также расчетные параме	•	ены ниже		
	іделений загрязняющих веществ, приведены в та		,		
Таблица 2 - Исходные данные д	•• • • • • • • • • • • • • • • • • • • •				
Удельное количество сдуваемых	твердых частиц с поверхности штабеля угля, q_{cd}	кг/кв.м*с]	0,0000		
Площадь вагона, S_w [кв.м]	, , , , , , , , , , , , , , , , , , , ,	-	27		
Количество вагонов в сутки			20		
Количество вагонов, обдуваемых одновременно					
Влажность материала, %					
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), <i>K</i> ₁					
Скорость обдува, $W_{\rm g}$ [м/с]					
Коэффициент, учитывающий скорость обдува (табл. 6.4), K_2					
	лень защищенности узла от внешних воздействий	(табл. 6.10). К₄	1		
Коэффициент, учитывающий профиль поверхности складируемого материала, K_6					
Количество часов работы в год Т					
ROJINACCIBO AGCOB DAGOTBI B TOD T	(таб 6.5), <i>n</i> [долл.ед]		0		
Эффективность пылеподавления	Коэффициент измельчения горной массы, р				
Эффективность пылеподавления			0,1		
Эффективность пылеподавления Коэффициент измельчения горно	й в атмосферу, рассчитывается по формулам (1,	2):			

Коэффициент, учитывающий скорость обдува материала(принимается по ближайшему значению) (таб.

 $M_{c\partial} = \sum 3, 6 \cdot q_n \cdot b_j \cdot I_j \cdot T_j \cdot K_1 \cdot K_{o\delta} \cdot K_4 \cdot (1-\eta) \cdot 10^{-3}, \, \text{m/eod} \quad [1]$ $G_{c\partial} = \sum q_n \cdot b_j \cdot I_j \cdot n_j \cdot K_1 \cdot K_{o\delta} \cdot K_4 \cdot (1-\eta), \, \text{e/c}$

Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), К₄

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

 q_n – удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, г/кв.м*с;

Количество рабочих часов конвейра в год, T_{j} [ч/год]

Эффективность пылеподавления (таб 7.16), η [долл.ед]

Скорость движения конвейера, w_{∂} [м/с]

Скорость обдува материала, V_{o6} [м/с]

b_i – ширина ленты ковейера, м; I_i – длина ленты конвейера, м;

 S_{w} – площадь вагона, кв м;

При зачистке вагонов:

р - коэффициент измельчения горной массы;

Взам.инв.

MHB.No

Скорость ветра, W_e [м/с]

7.19 Методики), K_{об}

8760

8,4

2

1

0.6

ИВ Работы по перегрузке медного штейна на ж/д фронте

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_6 – коэффициент, учитывающий профиль поверхности складируемого материала;

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

M₃₇₄₉=

G 3749=

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

0,00003

0,00049

 K_2 – коэффициент, учитывающий скорость обдува (таб. 6.4 Методики);

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

т/год

						ODOC2 (Лист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	35

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

Загрязняющее вещество		Пылеподавление, %	Максимально разовый выброс, г/с		Годовой выброс, т/год	
код	наименование		до	после	до	после
Всего пь	ыли 100%, из них:	90	0,026775	0,0026775	0,0021	0,00021
0146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)		0,01071	0,001071	0,000840	0,0000840
2908	кремния, в %: - 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,	материала. Штейн — промежуточный продукт при получении некоторых цветных металлов (Си, Ni, Рb и другие) из их сульфидных руд, представляет собой сплав, что по сути связывает поверхность штейна, поэтому при перегрузке принято снижение выбросов 90% как при перегрузке гранулированного материала.	0,016065	0,0016065	0,00126	0,000126

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Материал	Параметры	Одноврем енность
Медный штейн	Количество перерабатываемого материала: Gч = 1620 т/час; Gгод = 50000 т/год.	
	Весовая доля пылевой фракции в материале: $K_1 = 0.01$. Доля пыли, переходящая в аэрозоль: $K_2 = 0.001$. Влажность свыше 10 до 20% ($K_5 = 0.01$). Размер куска 50-10 мм	
, ,	$(K_7 = 0.5)$. Технология пылеподавления: Гранулирование пылящего материала.	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{\Gamma P} = \mathbf{K}_{1} \cdot \mathbf{K}_{2} \cdot \mathbf{K}_{3} \cdot \mathbf{K}_{4} \cdot \mathbf{K}_{5} \cdot \mathbf{K}_{7} \cdot \mathbf{K}_{8} \cdot \mathbf{K}_{9} \cdot \mathbf{B} \cdot \mathbf{G}_{4} \cdot 10^{6} / 3600, \, e/c$$
(1.1.1)

где K_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 K_2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

*K*₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

 K_7 - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств $K_8 = 1$;

 K_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_{y} - суммарное количество перерабатываемого материала в час, *m/час*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{\text{eod}}, \, \text{m/eod}$$

$$\tag{1.1.2}$$

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Взам.инв.

윋

```
M_{nыnu}^{0.5 \text{ M/C}} = 0.01 \cdot 0.001 \cdot 1 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1620 \cdot 10^6 / 3600 = 0.01575 \text{ s/c};

M_{nыnu}^{2 \text{ M/C}} = 0.01 \cdot 0.001 \cdot 1 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1620 \cdot 10^6 / 3600 = 0.01575 \text{ s/c};

             \frac{0.5 \text{ m/c}}{1.5 \text{ m/c}} = 0.01 \cdot 0.001 \cdot 1 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1620 \cdot 10^{6} / 3600 = 0.01575 \text{ s/c}
M_{\text{пыли}}^{4 \text{ M/c}} = 0.01 \cdot 0.001 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1620 \cdot 10^6 / 3600 = 0.0189 \text{ s/c};
M_{\text{ПЫЛИ}}^{6 \text{ M/C}} = 0.01 \cdot 0.001 \cdot 1.4 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1620 \cdot 10^{6} / 3600 = 0.02205 \text{ s/c};
            ^{8 \text{ M/c}} = 0,01 · 0,001 · 1,7 · 1 · 0,01 · 0,5 · 1 · 1 · 0,7 · 1620 · 10<sup>6</sup> / 3600 = 0,026775 z/c;
```

 $M_{\text{пыли}}^{8.4 \text{ м/c}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1620 \cdot 10^6 / 3600 = 0.026775 \text{ s/c};$ $\Pi_{\text{ПЫЛИ}} = 0.01 \cdot 0.001 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 50000 = 0.0021 \text{ m/sod.}$

В соответствии с ГОСТ Р 52998-2008 «Концентрат медный. Технические условия» содержание меди в концентрате до 40%. Содержание в выбросах оксидов меди составит 40 % от общего выброса:

```
M^{0.5 \text{ m/c}} = 0.01575 * 0.4 * (1-0.9) = 0.000630 \text{ a/c};
M^{2 \text{ M/c}} = 0.01575 \times 0.4 \times (1-0.9) = 0.000630 \text{ e/c};
```

 $M^{4 \text{ M/C}} = 0.0189 * 0.4 * (1-0.9) = 0.000756 \text{ a/c};$ $M^{6 \text{ M/C}} = 0.02205 * 0.4 * (1-0.9) = 0.000882 \text{ a/c};$

 $M^{8 \text{ M/C}} = 0.026775 * 0.4 * (1-0.9) = 0.00107 \text{ e/c};$ $M^{8.4 \text{ M/C}} = 0.026775 * 0.4 * (1-0.9) = 0.00107 \text{ e/c};$

 Π = 0,0021 * 0,4 * (1-0,9) = 0,0000840 m/zoð.

Остальные вещества нормируются как пыль неорганическая:

 $M^{0.5 \text{ M/C}} = 0.01575^{*} 0.6^{*} (1-0.9) = 0.000945 \text{ z/c};$ $M^{2 \text{ M/C}} = 0.01575^{*} 0.6^{*} (1-0.9) = 0.000945 \text{ z/c};$ $M^{4 \text{ M/C}} = 0.0189^{*} 0.6^{*} (1-0.9) = 0.000113 \text{ z/c};$

 $M^{6 \text{ M/C}} = 0.02205 * 0.6 * (1-0.9) = 0.00132 \text{ a/c};$ $M^{8 \text{ M/C}} = 0.026775 * 0.6 * (1-0.9) = 0.00161 \text{ a/c};$ $M^{8.4 \text{ M/C}} = 0.026775 * 0.6 * (1-0.9) = 0.00161 \text{ a/c};$

 $\Pi = 0.0021 * 0.6 * (1-0.9) = 0.000126$ m/zod.

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	

O	n	\sim	~	•	
<i>(</i>)	ĸ		,,,	,	6
\ /	.,		\ ,,		1)

ИВ Работы по перегрузке нефтекокса / кокса электродного на ж/д фронте

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 4-х сторон (K_4 = 1). Высота падения материала при пересыпке составляет 2,0 м (B = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует (K_9 = 1). Расчетные скорости ветра, м/с: 0,5 (K_9 = 1); 2 (K_9 = 1); 4 (K_9 = 1,2); 6 (K_9 = 1,4); 8 (K_9 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_9 = 1,2).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

Загрязняющее вещество		Пылеподавление, %	Максимально разовый выброс, г/с		Годовой выброс, т/год	
код	наименование	70	до	после	до	после
328	Углерод (Сажа)	90	1,7255	0,17255	0,504	0,0504

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Материал	Параметры		
Материал			
Нефтекокс /кокс электродный	Количество перерабатываемого материала: Gч = 870 т/час; Gгод = 100000 т/год.	-	
Коэффициенты сдуваемости	Весовая доля пылевой фракции в материале: K_1 = 0,03. Доля пыли, переходящая в		
приняты для графита	аэрозоль: K_2 = 0,04. Влажность свыше 10 до 20% (K_5 = 0,01). Размер куска 50-10 мм		
	$(K_7 = 0.5)$. Технология пылеподавления: Гранулирование пылящего материала.		

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$M_{\Gamma P} = K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot K_5 \cdot K_7 \cdot K_8 \cdot K_9 \cdot B \cdot G_4 \cdot 10^6 / 3600, e/c$$
(1.1.1)

где ${\it K}_1$ - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 ${\it K}_2$ - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств K_8 = 1;

 K_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_{v} - суммарное количество перерабатываемого материала в час, *m/час*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{eod}, m/eod$$

$$\tag{1.1.2}$$

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Нефтекокс / кокс электродный

Взам.инв..

MHB.№

 $\begin{array}{l} {\color{red} {\color{blue} {\color{b} {\color{blue} {\color{b} {\color{blue} {\color$

ИВ Работы по перегрузке окалины (шлака) на ж/д фронте

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия — склады, хранилища, открытые с 4-х сторон (K_4 = 1). Высота падения материала при пересыпке составляет 2,0 м (B = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует (K_9 = 1). Расчетные скорости ветра, м/с: 0,5 (K_9 = 1); 2 (K_9 = 1); 4 (K_9 = 1,2); 6 (K_9 = 1,4); 8 (K_9 = 1,7); 8,4 (K_9 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_9 = 1,2).

 Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

Загрязняющее вещество		Пылеподавление, %	Максимально разовый выброс, г/с		Годовой выброс, т/год	
код	наименование	/0	до	после	до	после
Всего пь	ыли 100%, из них:	90	39,35925	3,935925	3,087	0,3087
0101	диАлюминий триоксид/в пересчете на алюминий/ (5,51%)			0,217		0,00161
0123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид) (58,24%)			2,292		0,01704
2909	Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь,			1,427		0,01061

		(долом	сь крем ит, пыль	иния, в % цементною, огарки,	%: - ме то произв	водства -		,,,=,		
							OBOC	72.6	J	Тист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата		OBOC	2.6		37

ИВ Работы по перегрузке ильменитовой руды на ж/д фронте

России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Кол.уч Лист № док

(K_3 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_3 = 1,2).

Подп

Дата

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия — склады, хранилища, открытые с 4-х сторон (K_4 = 1). Высота падения материала при пересыпке составляет 2,0 м (B = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует (K_9 = 1). Расчетные скорости ветра, м/с: 0,5 (K_3 = 1); 2 (K_3 = 1); 4 (K_3 = 1,2); 6 (K_3 = 1,4); 8 (K_3 = 1,7); 8,4

OBOC2.6

Пылеподавление,

Параметры

Количество перерабатываемого материала: Gч = 1620 т/час; Gгод = 50000 т/год. Весовая доля пылевой

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Загрязняющее вещество

Таблица 1.1<u>.2 - **Исходные данные для расчета**</u>

наименование

вращающихся печей,

код

Материал

Шлак

Взам.инв.

подл

MHB.№

пыль

другие)

Максимально разовый

выброс, г/с

после

Годовой выброс, т/год

после

Одноврем

енность

Лист

38

до

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
0118	Титан диоксид (Титан пероксид; титан (IV) оксид)	1,2955	0,4877
	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	1,4806	0,5574
	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,9253	0,3484

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Материал	Параметры				
Материал					
Руда	Количество перерабатываемого материала: Gч = 1620 т/час; Gгод = 240000 т/год. Весовая	+			
Коэффициенты	доля пылевой фракции в материале: K_1 = 0,04. Доля пыли, переходящая в аэрозоль: K_2 =				
сдуваемости приняты для	0,02. Влажность до 9% (K_5 = 0,2). Размер куска 500-100 мм (K_7 = 0,2). Грейфер 3830				
щебня	грузоподъемностью 16 т (К ₈ = 0,216).				

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

 $M_{\Gamma P} = K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot K_5 \cdot K_7 \cdot K_8 \cdot K_9 \cdot B \cdot G_4 \cdot 10^6 / 3600, a/c$ (1.1.1)

где K_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 K_2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

*K*₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

 ${\it K}_7$ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств K_8 = 1;

 K_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_{4} - суммарное количество перерабатываемого материала в час, *m/час*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\mathbf{\Pi}_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{200}, m/2000$$

$$\tag{1.1.2}$$

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

<u>Ильменит</u>

```
 \begin{array}{l} \hline \textbf{\textit{M}}_{\textit{nisitul}} = 0.04 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 1620 \cdot 10^6 / 3600 = 2,17728 \ \textit{s/c}; \\ \hline \textbf{\textit{M}}_{\textit{nisitul}} = 0.04 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 1620 \cdot 10^6 / 3600 = 2,17728 \ \textit{s/c}; \\ \hline \textbf{\textit{M}}_{\textit{nisitul}} = 0.04 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 1620 \cdot 10^6 / 3600 = 2,612736 \ \textit{s/c}; \\ \hline \textbf{\textit{M}}_{\textit{nisitul}} = 0.04 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 1620 \cdot 10^6 / 3600 = 2,612736 \ \textit{s/c}; \\ \hline \textbf{\textit{M}}_{\textit{nisitul}} = 0.04 \cdot 0.02 \cdot 1.4 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 1620 \cdot 10^6 / 3600 = 3,048192 \ \textit{s/c}; \\ \hline \textbf{\textit{M}}_{\textit{nisitul}} = 0.04 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 1620 \cdot 10^6 / 3600 = 3,701376 \ \textit{s/c}; \\ \hline \textbf{\textit{M}}_{\textit{nisitul}} = 0.04 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 1620 \cdot 10^6 / 3600 = 3,701376 \ \textit{s/c}; \\ \hline \textbf{\textit{\Pi}}_{\textit{nisitul}} = 0.04 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 240000 = 1,393459 \ \textit{m/sod}. \\ \hline \end{aligned}
```

Ильменит (титанистый железняк) — минерал общей химической формулы $FeO \cdot TiO2$ или $FeTiO_3$. В ильменитовых концентратах содержится 35% диоксида титана и 40% железа. Таким образом, 35% от общего выброса нормируется как диоксид титана, 40% как оксид железа, остальные соединения приняты по пыли неорганической.

```
Выбросы диоксида титана:
```

```
M^{0.5 \text{ M/c}} = 2,17728^* \ 0,35 = 0,7620 \ e/c;
M^{2 \text{ M/c}} = 2,17728^* \ 0,35 = 0,7620 \ e/c;
M^{4 \text{ M/c}} = 2,612736 * 0,35 = 0,9145 \ e/c;
M^{6 \text{ M/c}} = 3,048192^* \ 0,35 = 1,0669 \ e/c;
M^{8 \text{ M/c}} = 3,701376 * 0,35 = 1,2955 \ e/c;
M^{8.4 \text{ M/c}} = 3,701376^* \ 0,35 = 1,2955 \ e/c;
\Pi = 1,393459 * 0,35 = 0,4877 \ m/eod.
```

Выбросы оксида железа:

Взам.инв.

윋

```
\emph{M}^{0.5~M/c} = 2,17728*~0,4 = 0,8709~r/c;
\emph{M}^{2~M/c} = 2,17728*~0,4 = 0,8709~z/c;
\emph{M}^{4~M/c} = 2,612736~*0,4 = 1,0451~z/c;
\emph{M}^{6~M/c} = 3,048192*~0,4 = 1,2193~z/c;
\emph{M}^{6~M/c} = 3,701376*~0,4 = 1,4806~z/c;
\emph{M}^{6.4~M/c} = 3,701376*~0,4 = 1,4806~z/c;
\emph{M} = 1,393459*~0,4 = 0,5574~m/zod.
```

Выбросы пыли неорганической:

$M^{0.5 \text{ M/c}} = 2,17728 * 0,25 = 0,5443 \text{ e/c};$
$M^{2 \text{ m/c}} = 2,17728* 0,25 = 0,5443 \text{ e/c};$
$M^{4 \text{ m/c}} = 2,612736 * 0,25 = 0,6532 \text{ e/c};$
$M^{6 \text{ M/c}} = 3,048192 * 0,25 = 0,7620 \text{ s/c};$
$M^{8 \text{ m/c}} = 3,701376 * 0,25 = 0,9253 \text{ e/c};$
$M^{8.4 \text{ m/c}} = 3,701376*0,25 = 0,9253a/c;$
Π = 1,393459 * 0,25 = 0,3484 m/eod .

Иэм	Копуч	Пист	№ пок	Подп.	Дата

Лист

ИВ Работы по перегрузке железорудного концентрата на ж/д фронте

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Железорудный концентрат имеет следующий состав:

Название	Процентный состав	
Железо общее	66%	
Оксид железа	0,2%	
Неорганические соединения	33,8%	

Суммарные выбросы железа нормируются по оксидам железа, неорганические соединения – по пыль неорганической.

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия — склады, хранилища, открытые с 4-х сторон (K_4 = 1). Высота падения материала при пересыпке составляет 2,0 м (B = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует (K_9 = 1). Расчетные скорости ветра, м/с: 0,5 (K_9 = 1); 2 (K_9 = 1); 4 (K_9 = 1,2); 6 (K_9 = 1,4); 8 (K_9 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_9 = 1,2).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,0766	0,144
	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,0391	0,0736

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Материал	Параметры	Одноврем енность
Удельные показатели приняты	Количество перерабатываемого материала: Gu = 1620 т/час; Groд = 1200000 т/год. Весовая доля пылевой фракции в материале: \mathbf{K}_1 = 0,01. Доля пыли, переходящая в аэрозоль: \mathbf{K}_2 = 0,001. Влажность до 9% (\mathbf{K}_5 = 0,2). Размер куска 50-10 мм (\mathbf{K}_7 = 0,5). Грейфер г/п 16 т 3830 (\mathbf{K}_8 = 0,216).	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

 $\mathbf{M}_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_9 \cdot 10^6 / 3600, e/c$

где **К**₁ - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 K_2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

 K_2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (о до то мкм K_3 - коэффициент, учитывающий местные метеоусловия;

K₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств K_8 = 1;

 ${\it K}_{\it 9}$ - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_{4} - суммарное количество перерабатываемого материала в час, *m/час*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{aod}, m/aod$$
 (1.1.2)

где ${\it G}_{\it 2od}$ - суммарное количество перерабатываемого материала в течение года, $\it m/\it 2od$.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

```
Концентрат
```

Взам.инв.

윋

```
 \begin{array}{l} \overline{\textbf{\textit{M}}_{\textit{nb},\textit{IU}}}^{0.5 \, \text{MC}} = 0.01 \cdot 0.001 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 1620 \cdot 10^6 \, / \, 3600 = 0.06804 \, \textit{e/c}; \\ \overline{\textbf{\textit{M}}_{\textit{nb},\textit{IU}}}^{2 \, \text{MC}} = 0.01 \cdot 0.001 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 1620 \cdot 10^6 \, / \, 3600 = 0.06804 \, \textit{e/c}; \\ \overline{\textbf{\textit{M}}_{\textit{nb},\textit{IU}}}^{4 \, \text{MC}} = 0.01 \cdot 0.001 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 1620 \cdot 10^6 \, / \, 3600 = 0.081648 \, \textit{e/c}; \\ \overline{\textbf{\textit{M}}_{\textit{nb},\textit{IU}}}^{6 \, \text{MC}} = 0.01 \cdot 0.001 \cdot 1.4 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 1620 \cdot 10^6 \, / \, 3600 = 0.095256 \, \textit{e/c}; \\ \overline{\textbf{\textit{M}}_{\textit{nb},\textit{IU}}}^{8 \, \text{MC}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 1620 \cdot 10^6 \, / \, 3600 = 0.115668 \, \textit{e/c}; \\ \overline{\textbf{\textit{M}}_{\textit{nb},\textit{IU}}}^{8 \, \text{A} \, \textit{MC}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 1620 \cdot 10^6 \, / \, 3600 = 0.115668 \, \textit{e/c}; \\ \overline{\textbf{\textit{N}}_{\textit{nb},\textit{IU}}}^{8 \, \text{A} \, \textit{MC}} = 0.01 \cdot 0.001 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 1620 \cdot 10^6 \, / \, 3600 = 0.115668 \, \textit{e/c}; \\ \overline{\textbf{\textit{N}}_{\textit{nb},\textit{IU}}} = 0.01 \cdot 0.001 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 1200000 = 0.217728 \, \textit{m/eod}. \\ \end{array}
```

Содержание в выбросах оксидов железа составит 66,2 % от общего выброса:

```
M^{0.5\,\mathrm{M/C}} = 0.06804^*\,0.662 = 0.0450\,\mathrm{a/c};
M^{2\,\mathrm{M/C}} = 0.06804^*\,0.662 = 0.0450\,\mathrm{a/c};
M^{4\,\mathrm{M/C}} = 0.081648^*\,0.662 = 0.0450\,\mathrm{a/c};
M^{6\,\mathrm{M/C}} = 0.081648^*\,0.662 = 0.0541\mathrm{a/c};
M^{6\,\mathrm{M/C}} = 0.095256^*\,0.662 = 0.0631\mathrm{a/c};
M^{6\,\mathrm{M/C}} = 0.115668^*\,0.662 = 0.0766\mathrm{a/c};
M^{6\,\mathrm{M/C}} = 0.115668^*\,0.662 = 0.0766\mathrm{a/c};
M^{6\,\mathrm{M/C}} = 0.117728^*\,0.662 = 0.144\,\mathrm{m/aoo}.
```

Остальные вещества нормируются как пыль неорганическая:

```
M^{0.5 \text{ M/c}} = 0.06804 * 0.338 = 0.0230 \text{ e/c};
M^{2 \text{ M/c}} = 0.06804 * 0.338 = 0.0230 \text{ e/c};
M^{2 \text{ M/c}} = 0.06804 * 0.338 = 0.0230 \text{ e/c};
M^{4 \text{ M/c}} = 0.081648 * 0.338 = 0.0276 \text{ e/c};
M^{6 \text{ M/c}} = 0.095256 * 0.338 = 0.0322 \text{ e/c};
M^{6 \text{ M/c}} = 0.115668 * 0.338 = 0.0391 \text{ e/c};
M^{6.4 \text{ M/c}} = 0.115668 * 0.338 = 0.0391 \text{ e/c};
\Pi = 0.217728 * 0.338 = 0.0736 \text{ m/eod}.
```

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

(1.1.1)

ИВ воздуходувки

Источниками выделений загрязняющих веществ являются двигатели автомобилей, перемещающихся по территории

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами:

Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). Москва, 1998, с дополнениями и изменениями к Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М, 1999 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от . 26.12.2022 № 38-р), позиция №49 в Перечне).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу от автотранспортных средств, приведена в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
301	Азота диоксид (Азот (IV) оксид)	0,0037778	0,0049776
304	Азот (II) оксид (Азота оксид)	0,0006139	0,0008089
330	Сера диоксид (Ангидрид сернистый)	0,0013472	0,0017751
337	Углерод оксид	0,2611111	0,34404
2704	Бензин (нефтяной, малосернистый)	0,0333333	0,04392

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

		Количество авто	мобилей	Однов
Наименование	Тип автотранспортного средства	среднее в течение	максимально	ременн
		суток	е за 1 час	ОСТЬ
воздуходувки	Легковой, объем свыше 3,5л, карбюр., бензин	5	5	+

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Выбросы i-го вещества при движении автомобилей по расчётному внутреннему проезду $M_{\Pi P \ ik}$ рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{\Pi P i} = \sum_{k=1}^{K} \mathbf{m}_{L i k} \cdot \mathbf{L} \cdot \mathbf{N}_{k} \cdot \mathbf{D}_{P} \cdot 10^{-6}, \text{ т/год}$$
 (1.1.1)

 $m{M}_{\Pi P\,i} = \sum_{k=1}^{k} m{m}_{L\,ik} \cdot m{L} \cdot m{N}_k \cdot m{D}_P \cdot 10^{-6}, \text{ т/год}$ где $m{m}_{L\,ik}$ – пробеговый выброс $m{i}$ -го вещества, автомобилем $m{k}$ -й группы при движении со скоростью 10-20 км/час $m{z}/\kappa m$;

L - протяженность расчётного внутреннего проезда, км;

 N_k - среднее количество автомобилей k-й группы, проезжающих по расчётному проезду в течении суток;

 D_P - количество расчётных дней.

Максимально разовый выброс i-го вещества G_i рассчитывается по формуле (1.1.2):

$$\mathbf{G}_{i} = \sum_{k=1}^{K} \mathbf{m}_{k} \cdot \mathbf{L} \cdot \mathbf{N}_{k}^{\prime} / 3600, \, \text{r/c}$$

$$\tag{1.1.2}$$

 $\mathbf{G}_{i} = \sum_{k=1}^{k} \mathbf{m}_{L \, ik} \cdot \mathbf{L} \cdot \mathbf{N'}_{k} / 3600, \, \mathrm{r/c}$ где $\mathbf{N'}_{k}$ – количество автомобилей \mathbf{k} -й группы, проезжающих по расчётному проезду за 1 час, характеризующийся максимальной интенсивностью проезда автомобилей.

Удельные выбросы загрязняющих веществ при пробеге по расчётному проезду приведены в таблице 1.1.3.

Таблица 1.1.3 - Удельные выбросы загрязняющих веществ

Тип	Загрязняющее вещество	Пробег, г/км
Легковой, объем свыше 3,5л, карбюр., бензин	іл, карбюр., бензин Азота диоксид (Азот (IV) оксид)	
	Азот (II) оксид (Азота оксид)	0,0442
	Сера диоксид (Ангидрид сернистый)	0,097
	Углерод оксид	18,8
	Бензин (нефтяной, малосернистый)	2,4

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже. Годовое выделение загрязняющих веществ М. т/год:

воздуходувки

 $M_{301} = 0.272 \cdot 10 \cdot 5 \cdot 366 \cdot 10^{-6} = 0.0049776$: $\mathbf{M}_{304} = 0.0442 \cdot 10 \cdot 5 \cdot 366 \cdot 10^{-6} = 0.0008089;$ $\mathbf{M}_{330} = 0.097 \cdot 10 \cdot 5 \cdot 366 \cdot 10^{-6} = 0.0017751;$ $M_{337} = 18.8 \cdot 10 \cdot 5 \cdot 366 \cdot 10^{-6} = 0.34404;$ $M_{2704} = 2.4 \cdot 10 \cdot 5 \cdot 366 \cdot 10^{-6} = 0.04392.$

Максимально разовое выделение загрязняющих веществ G, г/с:

воздуходувки

 $G_{301} = 0.272 \cdot 10 \cdot 5 / 3600 = 0.0037778;$ $G_{304} = 0.0442 \cdot 10 \cdot 5 / 3600 = 0.0006139;$ $G_{330} = 0.097 \cdot 10 \cdot 5 / 3600 = 0.0013472;$ $G_{337} = 18.8 \cdot 10 \cdot 5 / 3600 = 0.2611111;$ $G_{2704} = 2.4 \cdot 10 \cdot 5 / 3600 = 0.03333333.$

Из результатов расчётов максимально разового выброса для каждого типа автотранспортных средств в итоговые результаты по источнику занесены наибольшие значения, полученные с учетом неодновременности и нестационарности во времени движения автотранспортных средств.

Инв.№ подл.	Подп. и дата	Взам.инв. №

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

	\mathbf{D}	$\mathbf{\Lambda}$	2 2.	
()	ĸ	"	_ <i>T.</i>	h

Источниками выделения загрязняющих веществ является:

- работа автомобильной техники;- работа спецтехники.
- Всего по источнику выбросов:

	Загрязняющее вещество	Максимально разовый выброс,	Годовой выброс, т/год
код	наименование	г/с	годовой выорос, глод
301	Азота диоксид (Азот (IV) оксид)	0,3763965	0,1293883
304	Азот (II) оксид (Азота оксид)	0,0611644	0,0210256
328	Углерод (Сажа)	0,0829142	0,0090805
330	Сера диоксид (Ангидрид сернистый)	0,0490802	0,0229153
337	Углерод оксид	1,4500125	0,2137806
2704	Бензин	0,0625556	0,043918
2732	Керосин	0,1594481	0,033489

ИВ работа автомобильной техники

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу от автотранспортных средств, приведена в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	тодовой выорос, тлод
301	Азота диоксид (Двуокись азота; пероксид азота)	0,0982	0,1293883
304	Азот (II) оксид (Азот монооксид)	0,0159575	0,0210256
328	Углерод (Пигмент черный)	0,0068917	0,0090805
330	Сера диоксид	0,0173917	0,0229153
337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,16225	0,2137806
2732	Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,0254167	0,033489

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

		Количество ав	томобилей	
Наименование	Тип автотранспортного средства	среднее в	максимальное	Одновременность
		течение суток	за 1 час	
Вилочные погрузчики г/п	Грузовой, г/п от 8 до 16 т, дизель	7	7	+
8-16 тонн				
	Грузовой, г/п от 5 до 8 т, дизель	3	3	+
5-8 тонн				
Вилочные погрузчики г/п	Грузовой, г/п до 2 т, дизель	1	1	+
до 2 тонн				
Автомашина г/п до 2 тонн	Грузовой, г/п до 2 т, дизель	5	5	+
Автомашина г/п 2-5 тонн	Грузовой, г/п от 2 до 5 т, дизель	9	9	+
Автомашина г/п до 5-8	Грузовой, г/п от 5 до 8 т, дизель	5	5	+
тонн				
Автомашина г/п до 8-16	Грузовой, г/п от 8 до 16 т, дизель	1	1	+
тонн				
Автомашина г/п более 16	Грузовой, г/п свыше 16 т, дизель	4	4	+
тонн				
Ковшевой минипогрузчик	Грузовой, г/п до 2 т, дизель	7	7	+
г/п до 2 тонн				
Ковшевой погрузчик г/п 5-	Грузовой, г/п от 5 до 8 т, дизель	8	8	+
8 тонн				
Уборочная техника г/п 8	Грузовой, г/п от 5 до 8 т, дизель	1	1	+
тонн				
Мобильная система	Грузовой, г/п от 5 до 8 т, дизель	3	3	+
пылеподавления г/п 5-8				
тонн				
Примети из метерими в	formaniam pagnetin io depayer i a taleke pagnetin i	0 5000000000000000000000000000000000000	6	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Выбросы *i*-го вещества при движении автомобилей по расчётному внутреннему проезду *М_{ПР ik}* рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{\Pi P i} = \sum_{k=1}^{K} \mathbf{m}_{L i k} \cdot \mathbf{L} \cdot \mathbf{N}_{k} \cdot \mathbf{D}_{P} \cdot 10^{-6},$$
т/год (1.1.1)

где m_{Lik} – пробеговый выброс *i*-го вещества, автомобилем k-й группы при движении со скоростью 10-20 км/час $e/\kappa m$;

L - протяженность расчётного внутреннего проезда, *км*;

 N_k - среднее количество автомобилей k-й группы, проезжающих по расчётному проезду в течении суток;

 D_P - количество расчётных дней.

MHB.No

Максимально разовый выброс *i*-го вещества G_i рассчитывается по формуле (1.1.2): $G_i = \sum_{k=1}^{k} m_{L,ik} \cdot L \cdot N'_k / 3600$, г/с

$$\mathbf{G}_{i} = \sum_{k=1}^{K} \mathbf{m}_{k,ik} \cdot \mathbf{L} \cdot \mathbf{N}_{k}^{\prime} / 3600, \, \text{r/c}$$

$$(1.1.2)$$

где N'_k – количество автомобилей k-й группы, проезжающих по расчётному проезду за 1 час, характеризующийся максимальной интенсивностью проезда автомобилей.

Удельные выбросы загрязняющих веществ при пробеге по расчётному проезду приведены в таблице 1.1.3.

Таблица 1.1.3 - Удельные выбросы загрязняющих веществ

Тип	Загрязняющее вещество	Пробег, г/км
Грузовой, г/п от 8 до 16 т, дизель	Азота диоксид (Двуокись азота; пероксид азота)	2,72

_							пероксид азота)	
								Лист
							OBOC2.6	42
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата		42

Тип	Загрязняющее вещество	Пробег, г/кі
	Азот (II) оксид (Азот монооксид)	0,442
	Углерод (Пигмент черный)	0,2
	Сера диоксид	0,475
	Углерода оксид (Углерод окись;	4,9
	углерод моноокись; угарный газ)	
	Керосин (Керосин прямой перегонки;	0,7
	керосин дезодорированный)	
рузовой, г/п от 5 до 8 т, дизель	Азота диоксид (Двуокись азота;	2,4
	пероксид азота)	
	Азот (II) оксид (Азот монооксид)	0,39
	Углерод (Пигмент черный)	0,15
	Сера диоксид	0,4
	Углерода оксид (Углерод окись;	4,1
	углерод моноокись; угарный газ)	,
	Керосин (Керосин прямой перегонки;	0,6
	керосин дезодорированный)	,
рузовой, г/п до 2 т, дизель	Азота диоксид (Двуокись азота;	1.52
11. 11. 11. 11.	пероксид азота)	,-
	Азот (II) оксид (Азот монооксид)	0,247
	Углерод (Пигмент черный)	0.1
	Сера диоксид	0.25
	Углерода оксид (Углерод окись;	1.8
	углерод моноокись; угарный газ)	.,0
	Керосин (Керосин прямой перегонки;	0,4
	керосин дезодорированный)	-, -
рузовой, г/п от 2 до 5 т, дизель	Азота диоксид (Двуокись азота;	1.76
P),	пероксид азота)	.,
	Азот (II) оксид (Азот монооксид)	0,286
	Углерод (Пигмент черный)	0,13
	Сера диоксид	0,34
	Углерода оксид (Углерод окись;	2.9
	углерод моноокись; угарный газ)	_,-
	Керосин (Керосин прямой перегонки;	0,5
	керосин дезодорированный)	-,-
рузовой, г/п свыше 16 т, дизель	Азота диоксид (Двуокись азота;	3,12
P. 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	пероксид азота)	-,
	Азот (II) оксид (Азот монооксид)	0.507
	Углерод (Пигмент черный)	0.3
	Сера диоксид	0,69
	Углерода оксид (Углерод окись;	6
	углерод моноокись; угарный газ)	·
	Керосин (Керосин прямой перегонки;	8,0
	керосин (керосин примой переголки,	0,0

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже. Годовое выделение загрязняющих веществ М, т/год:

```
Вилочные погрузчики г/п 8-16 тонн \pmb{M}_{301} = 2,72 \cdot 3 \cdot 7 \cdot 366 \cdot 10^{-6} = 0,0209059; \pmb{M}_{304} = 0,442 \cdot 3 \cdot 7 \cdot 366 \cdot 10^{-6} = 0,0033972;
```

 $M_{328} = 0.2 \cdot 3 \cdot 7 \cdot 366 \cdot 10^{-6} = 0.0015372;$

 $M_{330} = 0.475 \cdot 3 \cdot 7 \cdot 366 \cdot 10^{-6} = 0.0036509;$

 $M_{337} = 4.9 \cdot 3 \cdot 7 \cdot 366 \cdot 10^{-6} = 0.0376614;$ $M_{2732} = 0.7 \cdot 3 \cdot 7 \cdot 366 \cdot 10^{-6} = 0.0053802.$

Вилочные погрузчики г/п 5-8 тонн M_{301} = 2,4 · 3 · 3 · 366 · 10⁻⁶ = 0,0079056;

 $M_{304} = 0.39 \cdot 3 \cdot 3 \cdot 366 \cdot 10^{-6} = 0.0012847;$

 $M_{328} = 0.15 \cdot 3 \cdot 3 \cdot 366 \cdot 10^{-6} = 0.0004941;$

 $\mathbf{M}_{330} = 0.4 \cdot 3 \cdot 3 \cdot 366 \cdot 10^{-6} = 0.0013176;$ $\mathbf{M}_{337} = 4.1 \cdot 3 \cdot 3 \cdot 366 \cdot 10^{-6} = 0.0135054;$

 $M_{2732} = 0.6 \cdot 3 \cdot 3 \cdot 366 \cdot 10^{-6} = 0.0019764$.

Вилочные погрузчики г/п до 2 тонн M_{301} = 1,52 · 3 · 1 · 366 · 10⁻⁶ = 0,001669; $M_{304} = 0.247 \cdot 3 \cdot 1 \cdot 366 \cdot 10^{-6} = 0.0002712;$

 $M_{328} = 0.1 \cdot 3 \cdot 1 \cdot 366 \cdot 10^{-6} = 0.0001098;$

 $M_{330} = 0.25 \cdot 3 \cdot 1 \cdot 366 \cdot 10^{-6} = 0.0002745$;

 $M_{337} = 1.8 \cdot 3 \cdot 1 \cdot 366 \cdot 10^{-6} = 0.0019764;$

 $\mathbf{M}_{2732} = 0.4 \cdot 3 \cdot 1 \cdot 366 \cdot 10^{-6} = 0.0004392.$

Автомашина г/п до 2 тонн

Взам.инв.№

подл.

Инв.№

 $M_{301} = 1,52 \cdot 3 \cdot 5 \cdot 366 \cdot 10^{-6} = 0,0083448;$ $M_{304} = 0,247 \cdot 3 \cdot 5 \cdot 366 \cdot 10^{-6} = 0,001356;$

 $M_{328} = 0.1 \cdot 3 \cdot 5 \cdot 366 \cdot 10^{-6} = 0.000549;$

 $M_{330} = 0.25 \cdot 3 \cdot 5 \cdot 366 \cdot 10^{-6} = 0.0013725$: $M_{337} = 1.8 \cdot 3 \cdot 5 \cdot 366 \cdot 10^{-6} = 0.009882;$

 $\mathbf{M}_{2732} = 0.4 \cdot 3 \cdot 5 \cdot 366 \cdot 10^{-6} = 0.002196.$

Автомашина г/п 2-5 тонн M_{301} = 1,76 · 3 · 9 · 366 · 10⁻⁶ = 0,0173923;

 $M_{304} = 0.286 \cdot 3 \cdot 9 \cdot 366 \cdot 10^{-6} = 0.0028263;$

ı							
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	

```
M_{304} = 0.39 \cdot 3 \cdot 5 \cdot 366 \cdot 10^{-6} = 0.0021411;
     M_{328} = 0.15 \cdot 3 \cdot 5 \cdot 366 \cdot 10^{-6} = 0.0008235;
     M_{330} = 0.4 \cdot 3 \cdot 5 \cdot 366 \cdot 10^{-6} = 0.002196;
     M_{337} = 4.1 \cdot 3 \cdot 5 \cdot 366 \cdot 10^{-6} = 0.022509;
     M_{2732} = 0.6 \cdot 3 \cdot 5 \cdot 366 \cdot 10^{-6} = 0.003294
     Автомашина г/п до 8-16 тонн
     M_{301} = 2,72 \cdot 3 \cdot 1 \cdot 366 \cdot 10^{-6} = 0,0029866;
     M_{304} = 0.442 \cdot 3 \cdot 1 \cdot 366 \cdot 10^{-6} = 0.0004853;
     M_{328} = 0.2 \cdot 3 \cdot 1 \cdot 366 \cdot 10^{-6} = 0.0002196;
     M_{330} = 0.475 \cdot 3 \cdot 1 \cdot 366 \cdot 10^{-6} = 0.0005216;
     M_{337} = 4.9 \cdot 3 \cdot 1 \cdot 366 \cdot 10^{-6} = 0.0053802;
     M_{2732} = 0.7 \cdot 3 \cdot 1 \cdot 366 \cdot 10^{-6} = 0.0007686.
     Автомашина г/п более 16 тонн
     M_{301} = 3,12 \cdot 3 \cdot 4 \cdot 366 \cdot 10^{-6} = 0,013703;
     M_{304} = 0,507 \cdot 3 \cdot 4 \cdot 366 \cdot 10^{-6} = 0,0022267;
     M_{328} = 0.3 \cdot 3 \cdot 4 \cdot 366 \cdot 10^{-6} = 0.0013176;
     M_{330} = 0.69 \cdot 3 \cdot 4 \cdot 366 \cdot 10^{-6} = 0.0030305;
     M_{337} = 6 \cdot 3 \cdot 4 \cdot 366 \cdot 10^{-6} = 0.026352;
     \mathbf{M}_{2732} = 0.8 \cdot 3 \cdot 4 \cdot 366 \cdot 10^{-6} = 0.0035136.
     Ковшевой минипогрузчик г/п до 2 тонн
     M_{301} = 1,52 \cdot 3 \cdot 7 \cdot 366 \cdot 10^{-6} = 0,0116827;
     M_{304} = 0.247 \cdot 3 \cdot 7 \cdot 366 \cdot 10^{-6} = 0.0018984;
     M_{328} = 0.1 \cdot 3 \cdot 7 \cdot 366 \cdot 10^{-6} = 0.0007686;
     M_{330} = 0.25 \cdot 3 \cdot 7 \cdot 366 \cdot 10^{-6} = 0.0019215;
     M_{337} = 1.8 \cdot 3 \cdot 7 \cdot 366 \cdot 10^{-6} = 0.0138348;
     \mathbf{M}_{2732} = 0.4 \cdot 3 \cdot 7 \cdot 366 \cdot 10^{-6} = 0.0030744
     Ковшевой погрузчик г/п 5-8 тонн
     M_{301} = 2.4 \cdot 3 \cdot 8 \cdot 366 \cdot 10^{-6} = 0.0210816;
     M_{304} = 0.39 \cdot 3 \cdot 8 \cdot 366 \cdot 10^{-6} = 0.0034258;
     M_{328} = 0.15 \cdot 3 \cdot 8 \cdot 366 \cdot 10^{-6} = 0.0013176;
     M_{330} = 0.4 \cdot 3 \cdot 8 \cdot 366 \cdot 10^{-6} = 0.0035136:
     M_{337} = 4.1 \cdot 3 \cdot 8 \cdot 366 \cdot 10^{-6} = 0.0360144;
     \mathbf{M}_{2732} = 0.6 \cdot 3 \cdot 8 \cdot 366 \cdot 10^{-6} = 0.0052704
     Уборочная техника г/п 8 тонн
     M_{301} = 2.4 \cdot 3 \cdot 1 \cdot 366 \cdot 10^{-6} = 0,0026352;
     M_{304} = 0.39 \cdot 3 \cdot 1 \cdot 366 \cdot 10^{-6} = 0.0004282;
     M_{328} = 0.15 \cdot 3 \cdot 1 \cdot 366 \cdot 10^{-6} = 0.0001647;
     \mathbf{M}_{330} = 0.4 \cdot 3 \cdot 1 \cdot 366 \cdot 10^{-6} = 0.0004392;

\mathbf{M}_{337} = 4.1 \cdot 3 \cdot 1 \cdot 366 \cdot 10^{-6} = 0.0045018;
     M_{2732} = 0.6 \cdot 3 \cdot 1 \cdot 366 \cdot 10^{-6} = 0.0006588.
     Мобильная система пылеподавления г/п 5-8 тонн
     M_{301} = 2.4 \cdot 3 \cdot 3 \cdot 366 \cdot 10^{-6} = 0.0079056;
     M_{304} = 0.39 \cdot 3 \cdot 3 \cdot 366 \cdot 10^{-6} = 0.0012847;
     M_{328} = 0.15 \cdot 3 \cdot 3 \cdot 366 \cdot 10^{-6} = 0.0004941;
     M_{330} = 0.4 \cdot 3 \cdot 3 \cdot 366 \cdot 10^{-6} = 0.0013176;
     M_{337} = 4.1 \cdot 3 \cdot 3 \cdot 366 \cdot 10^{-6} = 0.0135054;
     M_{2732} = 0.6 \cdot 3 \cdot 3 \cdot 366 \cdot 10^{-6} = 0.0019764
            Максимально разовое выделение загрязняющих веществ G, a/c:
     Вилочные погрузчики г/п 8-16 тонн
     G_{301} = 2.72 \cdot 3 \cdot 7 / 3600 = 0.0158667
     G_{304} = 0.442 \cdot 3 \cdot 7 / 3600 = 0.0025783;
     G_{328} = 0.2 \cdot 3 \cdot 7 / 3600 = 0.0011667;
     G_{330} = 0,475 \cdot 3 \cdot 7 / 3600 = 0,0027708;
     G_{337} = 4.9 \cdot 3 \cdot 7 / 3600 = 0.0285833;
     G_{2732} = 0.7 \cdot 3 \cdot 7 / 3600 = 0.0040833.
     Вилочные погрузчики г/п 5-8 тонн
     G_{301} = 2.4 \cdot 3 \cdot 3 / 3600 = 0.006;
     G_{304} = 0.39 \cdot 3 \cdot 3 / 3600 = 0.000975;
     G_{328} = 0.15 \cdot 3 \cdot 3 / 3600 = 0.000375;
     G_{330} = 0.4 \cdot 3 \cdot 3 / 3600 = 0.001;
     G_{337} = 4.1 \cdot 3 \cdot 3 / 3600 = 0.01025;
     G_{2732} = 0.6 \cdot 3 \cdot 3 / 3600 = 0.0015.
     Вилочные погрузчики г/п до 2 тонн
     G_{301} = 1,52 \cdot 3 \cdot 1 / 3600 = 0,0012667
     G_{304} = 0.247 \cdot 3 \cdot 1 / 3600 = 0.0002058;
     G_{328} = 0.1 \cdot 3 \cdot 1 / 3600 = 0.0000833;
     G_{330} = 0.25 \cdot 3 \cdot 1 / 3600 = 0.0002083;
     G_{337} = 1.8 \cdot 3 \cdot 1 / 3600 = 0.0015;
     G_{2732} = 0.4 \cdot 3 \cdot 1 / 3600 = 0.0003333.
     Автомашина г/п до 2 тонн
     G_{301} = 1,52 \cdot 3 \cdot 5 / 3600 = 0,0063333;
     G_{304} = 0.247 \cdot 3 \cdot 5 / 3600 = 0.0010292;
     G_{328} = 0.1 \cdot 3 \cdot 5 / 3600 = 0.0004167;
                                                                                                                                                                                                     Лист
                                                                                                                         OBOC2.6
                                                                                                                                                                                                        44
Изм. Кол.уч Лист № док.
                                               Подп
                                                              Дата
```

 $\mathbf{M}_{328} = 0.13 \cdot 3 \cdot 9 \cdot 366 \cdot 10^{-6} = 0.0012847;$ $\mathbf{M}_{330} = 0.34 \cdot 3 \cdot 9 \cdot 366 \cdot 10^{-6} = 0.0033599;$ $\mathbf{M}_{337} = 2.9 \cdot 3 \cdot 9 \cdot 366 \cdot 10^{-6} = 0.0286578;$ $\mathbf{M}_{2732} = 0.5 \cdot 3 \cdot 9 \cdot 366 \cdot 10^{-6} = 0.004941.$

 $M_{301} = 2.4 \cdot 3 \cdot 5 \cdot 366 \cdot 10^{-6} = 0.013176$;

Автомашина г/п до 5-8 тонн

Взам.инв.

№ подл.

Инв.

```
G_{330} = 0.25 \cdot 3 \cdot 5 / 3600 = 0.0010417:
G_{337} = 1.8 \cdot 3 \cdot 5 / 3600 = 0.0075;
G_{2732} = 0.4 \cdot 3 \cdot 5 / 3600 = 0.0016667.
Автомашина г/п 2-5 тонн
G_{301} = 1,76 \cdot 3 \cdot 9 / 36\overline{00} = 0,0132;
G_{304} = 0.286 \cdot 3 \cdot 9 / 3600 = 0.002145;
G_{328} = 0.13 \cdot 3 \cdot 9 / 3600 = 0.000975;
G_{330} = 0.34 \cdot 3 \cdot 9 / 3600 = 0.00255;
G_{337} = 2.9 \cdot 3 \cdot 9 / 3600 = 0.02175;
G_{2732} = 0.5 \cdot 3 \cdot 9 / 3600 = 0.00375.
Автомашина г/п до 5-8 тонн
G_{301} = 2.4 \cdot 3 \cdot 5 / 3600 = 0.01
G_{304} = 0.39 \cdot 3 \cdot 5 / 3600 = 0.001625;
G_{328} = 0.15 \cdot 3 \cdot 5 / 3600 = 0.000625;
G_{330} = 0.4 \cdot 3 \cdot 5 / 3600 = 0.0016667;
G_{337} = 4.1 \cdot 3 \cdot 5 / 3600 = 0.0170833;
G_{2732} = 0.6 \cdot 3 \cdot 5 / 3600 = 0.0025.
Автомашина г/п до 8-16 тонн
G_{301} = 2.72 \cdot 3 \cdot 1 / 3600 = 0.0022667;
G_{304} = 0.442 \cdot 3 \cdot 1 / 3600 = 0.0003683;
G_{328} = 0.2 \cdot 3 \cdot 1 / 3600 = 0.0001667;
G_{330} = 0.475 \cdot 3 \cdot 1 / 3600 = 0.0003958;
G_{337} = 4.9 \cdot 3 \cdot 1 / 3600 = 0.0040833;
G_{2732} = 0.7 \cdot 3 \cdot 1 / 3600 = 0.0005833.
Автомашина г/п более 16 тонн
G_{301} = 3.12 \cdot 3 \cdot 4 / 3600 = 0.0104;
G_{304} = 0.507 \cdot 3 \cdot 4 / 3600 = 0.00169;
G_{328} = 0.3 \cdot 3 \cdot 4 / 3600 = 0.001;
G_{330} = 0.69 \cdot 3 \cdot 4 / 3600 = 0.0023:
G_{337} = 6 \cdot 3 \cdot 4 / 3600 = 0.02;
G_{2732} = 0.8 \cdot 3 \cdot 4 / 3600 = 0.0026667.
Ковшевой минипогрузчик г/п до 2 тонн
G_{301} = 1,52 \cdot 3 \cdot 7 / 3600 = 0,0088667;

G_{304} = 0,247 \cdot 3 \cdot 7 / 3600 = 0,0014408;
G_{328} = 0.1 \cdot 3 \cdot 7 / 3600 = 0.0005833;
G_{330} = 0.25 \cdot 3 \cdot 7 / 3600 = 0.0014583;
G_{337} = 1.8 \cdot 3 \cdot 7 / 3600 = 0.0105;
G_{2732} = 0.4 \cdot 3 \cdot 7 / 3600 = 0.0023333.
Ковшевой погрузчик г/п 5-8 тонн
G_{301} = 2.4 \cdot 3 \cdot 8 / 3600 = 0.016:
G_{304} = 0.39 \cdot 3 \cdot 8 / 3600 = 0.0026;
G_{328} = 0.15 \cdot 3 \cdot 8 / 3600 = 0.001;
G_{330} = 0.4 \cdot 3 \cdot 8 / 3600 = 0.0026667;
G_{337} = 4.1 \cdot 3 \cdot 8 / 3600 = 0.0273333;
G_{2732} = 0.6 \cdot 3 \cdot 8 / 3600 = 0.004.
Уборочная техника г/п 8 тонн
G_{301} = 2.4 \cdot \overline{3 \cdot 1 / 3600} = 0.002
G_{304} = 0.39 \cdot 3 \cdot 1 / 3600 = 0.000325;
G_{328} = 0.15 \cdot 3 \cdot 1 / 3600 = 0.000125;
G_{330} = 0.4 \cdot 3 \cdot 1 / 3600 = 0.0003333;
G_{337} = 4.1 \cdot 3 \cdot 1 / 3600 = 0.0034167;
G_{2732} = 0.6 \cdot 3 \cdot 1 / 3600 = 0.0005.
Мобильная система пылеподавления г/п 5-8 тонн
G_{301} = 2,4 \cdot 3 \cdot 3 / 3600 = 0,006;
G_{304} = 0.39 \cdot 3 \cdot 3 / 3600 = 0.000975;

G_{328} = 0.15 \cdot 3 \cdot 3 / 3600 = 0.000375;
G_{330} = 0.4 \cdot 3 \cdot 3 / 3600 = 0.001;
G_{337} = 4.1 \cdot 3 \cdot 3 / 3600 = 0.01025;
G_{2732} = 0.6 \cdot 3 \cdot 3 / 3600 = 0.0015.
автотранспортных средств.
```

Из результатов расчётов максимально разового выброса для каждого типа автотранспортных средств в итоговые результаты по источнику занесены наибольшие значения, полученные с учетом неодновременности и нестационарности во времени движения

ИВ работа спецтехники

Взам.инв.

윋

Валовые и максимальные выбросы участка №6115, цех №1, площадка №1 Работа спецтехники, тип - 8 - Дорожная техника на неотапливаемой стоянке, предприятие №59, НМТП Портовая, Находка, 2021 г.

Расчет произведен программой «АТП-Эколог», версия 3.10.20 от 20.05.2020 Copyright© 1995-2020 ФИРМА «ИНТЕГРАЛ»

Программа основана на следующих методических документах:

Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). Москва, 1998, с дополнениями и изменениями к Методике проведения инвентаризации выбросов

3aı	грязняю	щих в	еществ	в атмосф	еру а	втотранспортных	предприятий	(расчетным	методом).	M,	1999	(Сведения	внесень	I
													Лис	T
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	<u> </u>		OBOC2.6				45		
														_

распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №49 в Перечне).

- 2. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для авторемонтных предприятий (расчетным методом). Москва, 1998
- (с Дополнением к Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для авторемонтных предприятий (расчетным методом). Москва, 1999) (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №98 в Перечне).
- 3. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом). Москва, 1998 (с Дополнениями к методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом Москва, 1999) (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №99 в Перечне).

Программа зарегистрирована на: ООО "ЦАиК "ЭКОПРОЕКТ" Регистрационный номер: 01-01-5855

Находка, 2021 г.: среднемесячная и средняя минимальная температура воздуха, °С

Характеристики	1	II	III	IV	V	VI	VII	VIII	IX	X	ΧI	XII
Среднемесячная	-10	-6.8	-0.8	5.6	10.4	14.3	18.7	20.7	16.9	9	0.2	-7.4
температура, °С												
Расчетные периоды года	X	X	П	Т	Т	_	T	Т	T	Т	П	X
Средняя минимальная температура, °C	-10	-6.8	-0.8	5.6	10.4	14.3	18.7	20.7	16.9	9	0.2	-7.4
Расчетные периоды года	X	Х	□	Τ	Τ	Т	Т	Т	Т	Т	П	Х

В следующих месяцах значения среднемесячной и средней минимальной температур совпадают: Январь, Февраль, Март, Апрель, Май, Июнь, Июль, Август, Сентябрь, Октябрь, Ноябрь, Декабрь

Характеристики периодов года для расчета валовых выбросов загрязняющих веществ

Период года	Месяцы	Всего дней
Теплый	Апрель; Май; Июнь; Июль; Август; Сентябрь; Октябрь;	214
Переходный	Март; Ноябрь;	61
Холодный	Январь; Февраль; Декабрь;	90
Всего за год	Январь-Декабрь	365

Общее описание участка

Пробег дорожных машин до выезда со стоянки (км)

- от ближайшего к выезду места стоянки: 0.001 - от наиболее удаленного от выезда места стоянки: 1.500

Пробег дорожных машин от въезда на стоянку (км)

- до ближайшего к въезду места стоянки: 0.001 - до наиболее удаленного от въезда места стоянки: 1.500

Характеристики автомобилей/дорожной техники на участке

Марка	Категория	Мощность двигателя	ЭС
УСМ (Screen Machine)	Гусеничная	161-260 КВт (220-354 л.с.)	нет
ЭКСКАВ. KOMATSU PW-60	Колесная	61-100 КВт (83-136 л.с.)	нет
Погрузчик SENNEBOGEN 860M	Гусеничная	более 260 КВт (354 л.с.)	нет
маневровый локомобиль	Колесная	161-260 КВт (220-354 л.с.)	нет

УСМ (Screen Machine): количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	4.00	4
Февраль	4.00	4
Март	4.00	4
Апрель	4.00	4
Май	4.00	4
Июнь	4.00	4
Июль	4.00	4
Август	4.00	4
Сентябрь	4.00	4
Октябрь	4.00	4
Ноябрь	4.00	4
Декабрь	4.00	4

ЭКСКАВ. KOMATSU PW-60: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	1.00	1
Февраль	1.00	1
Март	1.00	1
Апрель	1.00	1
Май	1.00	1
Июнь	1.00	1
Июль	1.00	1
Август	1.00	1
Сентябрь	1.00	1
Октябрь	1.00	1

Изм. Кол.уч	Лист	№ док.	Подп.	Дата	

AHB.No

ОВОС2.6

Ноябрь	1.00	1
Декабрь	1.00	1

Погрузчик SENNEBOGEN 860M: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	5.00	5
Февраль	5.00	5
Март	5.00	5
Апрель	5.00	5
Май	5.00	5
Июнь	5.00	5
Июль	5.00	5
Август	5.00	5
Сентябрь	5.00	5
Октябрь	5.00	5
Ноябрь	5.00	5
Декабрь	5.00	5

маневровый локомобиль : количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	1.00	1
Февраль	1.00	1
Март	1.00	1
Апрель	1.00	1
Май	1.00	1
Июнь	1.00	1
Июль	1.00	1
Август	1.00	1
Сентябрь	1.00	1
Октябрь	1.00	1
Ноябрь	1.00	1
Декабрь	1.00	1

Выбросы участка

	Distribution of the state of th								
Код в-ва	Название вещества	Макс. выброс (г/с)	Валовый выброс (т/год)						
	Оксиды азота (NOx)*	0.3477456	0.637930						
	В том числе:								
0301	*Азота диоксид (Азот (IV) оксид)	0.2781965	0.510344						
0304	*Азот (II) оксид (Азота оксид)	0.0452069	0.082931						
0328	Углерод (Сажа)	0.0760225	0.086010						
0330	Сера диоксид-Ангидрид сернистый	0.0316885	0.052595						
0337	Углерод оксид	1.4500125	1.141688						
0401	Углеводороды**	0.1965870	0.191203						
	В том числе:								
2704	**Бензин (нефтяной, малосернистый)	0.0625556	0.043918						
2732	**Керосин	0.1340314	0.147285						

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13 NO₂ - 0.80

Взам.инв.№

Инв.№ подл.

2. Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Расшифровка выбросов по веществам:

Выбрасываемое вещество - 0337 - Углерод оксид Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	УСМ (Screen Machine)	0.122340
	ЭКСКАВ. KOMATSU PW-60	0.009891
	Погрузчик SENNEBOGEN 860M	0.240861
	маневровый локомобиль	0.024090
	ВСЕГО:	0.397181
Переходный	УСМ (Screen Machine)	0.063031
	ЭКСКАВ. KOMATSU PW-60	0.005666
	Погрузчик SENNEBOGEN 860M	0.122468
	маневровый локомобиль	0.013816
	ВСЕГО:	0.204981
Холодный	УСМ (Screen Machine)	0.165307
	ЭКСКАВ. KOMATSU PW-60	0.015775
	Погрузчик SENNEBOGEN 860M	0.320148

Лист

47

				110	огрузчик	SENNEBOGEN 860M	0.2
						OBOC2.6	
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата		

	маневровый локомобиль	0.038295
	ВСЕГО:	0.539525
Всего за год		1.141688

Максимальный выброс составляет: 1.4500125 г/с. Месяц достижения: Январь.

Здесь и далее:

Расчет валовых выбросов производился по формуле:

 $M_i = \Sigma$ ((M' +M") $\cdot D_{\Phi^K} \cdot 10^{-6}$), где

 ${\tt M'}$ - выброс вещества в сутки при выезде (г);

М" - выброс вещества в сутки при въезде (г);

 $\texttt{M'} = \texttt{M}_{\pi} \cdot \texttt{T}_{\pi} + \texttt{M}_{\pi p} \cdot \texttt{T}_{\pi p} + \texttt{M}_{\text{AB}} \cdot \texttt{T}_{\text{AB1}} + \texttt{M}_{\text{xx}} \cdot \texttt{T}_{\text{xx}} \text{;}$

 $\texttt{M''} \!=\! \texttt{M}_{\texttt{\tiny ДВ . ТЕП.}} \cdot \texttt{T}_{\texttt{\tiny ДВ 2}} \!+\! \texttt{M}_{\texttt{\tiny XX}} \cdot \texttt{T}_{\texttt{\tiny XX}} \text{;}$

 $D_{\varphi\kappa} = D_p \cdot N_{\kappa}$ - суммарное количество дней работы в расчетном периоде.

 N_{κ} - количество ДМ данной группы, ежедневно выходящих на линию;

 $D_{\rm p}$ - количество рабочих дней в расчетном периоде.

Расчет максимально разовых выбросов производился по формуле:

 $G_{i}=\left(M_{\text{T}}\cdot T_{\text{T}}+M_{\text{TP}}\cdot T_{\text{TP}}+M_{\text{ZB}}\cdot T_{\text{ZB}1}+M_{\text{XX}}\cdot T_{\text{XX}}\right)\cdot N'/T_{\text{CP}} \text{ r/c (*),}$

C учетом синхронности работы: $G_{\text{max}} = \Sigma \left(G_{\text{i}} \right)$, где

 $M_{\mbox{\tiny П}}$ - удельный выброс пускового двигателя (г/мин.);

 T_{π} - время работы пускового двигателя (мин.);

 $M_{\text{пр}}$ - удельный выброс при прогреве двигателя (г/мин.);

 $T_{\text{пр}}$ - время прогрева двигателя (мин.);

 $M_{\text{дв}} = M_1$ - пробеговый удельный выброс (г/мин.);

 $M_{\text{дв.теп.}}$ - пробеговый удельный выброс в теплый период (г/км);

 $T_{\text{дв1}} = 60 \cdot L_1 / V_{\text{дв}} = 9.006$ мин. - среднее время движения при выезде со стоянки;

 $T_{\text{лв}2}=60 \cdot L_2/V_{\text{лв}}=9.006$ мин. - среднее время движения при въезде на стоянку;

 ${
m L}_{1}$ = (${
m L}_{16}$ + ${
m L}_{1\pi}$)/2=0.750 км - средний пробег при выезде со стоянки;

 $L_2 = (L_{26} + L_{2\pi}) \, / \, 2 = 0.750$ км – средний пробег при въезде на стоянку; $T_{\rm xx} = 1$ мин. – время работы двигателя на холостом ходу;

 $V_{\text{дв}}$ - средняя скорость движения по территории стоянки (км/ч);

 M_{xx} - удельный выброс техники на холостом ходу (г/мин.);

 ${\tt N'}$ - наибольшее количество техники, выезжающей со стоянки в течение времени ${\tt Tcp}$, характеризующегося максимальной интенсивностью выезда.

(*) В соответствии с методическим пособием по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, СПб, 2012 г.

 $T_{\text{cp}} = 3420$ сек. - среднее время выезда всей техники со стоянки;

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

		_								
Наименование	Mn	Tn	Mnp	Tnp	Мдв	Мдв.теп.	Vдв	Mxx	Схр	Выброс (г/с)
УСМ (Screen	57.000	4.0	12.600	12.0	4.110	3.370	5	6.310	да	
Machine)										
	57.000	4.0	12.600	12.0	4.110	3.370	5	6.310	да	0.4941809
ЭКСКАВ.	25.000	4.0	4.800	12.0	1.570	1.290	10	2.400	нет	
KOMATSU PW-										
60										
	25.000	4.0	4.800	12.0	1.570	1.290	10	2.400	нет	0.0488508
Погрузчик	90.000	4.0	18.800	12.0	6.470	5.300	5	9.920	да	
SENNEBOGEN										
860M										
	90.000	4.0	18.800	12.0	6.470	5.300	5	9.920	да	0.9558316
маневровый	57.000	4.0	12.600	12.0	4.110	3.370	10	6.310	нет	
локомобиль										
	57.000	4.0	12.600	12.0	4.110	3.370	10	6.310	нет	0.1181337

Выбрасываемое вещество - 0401 - Углеводороды Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	УСМ (Screen Machine)	0.024305
	ЭКСКАВ. KOMATSU PW-60	0.001535
	Погрузчик SENNEBOGEN 860M	0.047831
	маневровый локомобиль	0.003879
	ВСЕГО:	0.077550
Переходный	VCM (Screen Machine)	0.010595
	ЭКСКАВ. KOMATSU PW-60	0.000794
	Погрузчик SENNEBOGEN 860M	0.020867
	маневровый локомобиль	0.001997
	ВСЕГО:	0.034252
Холодный	YCM (Screen Machine)	0.024331
	ЭКСКАВ. KOMATSU PW-60	0.002033
	Погрузчик SENNEBOGEN 860M	0.047972
	маневровый локомобиль	0.005065
	ВСЕГО:	0.079401
Всего за год		0.191203

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Взам.инв.

подл

NHB.№

Максимальный выброс составляет: 0.1965870 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименование	Mn	Tn	Mnp	Tnp	Мдв	Мдв.теп.	Vдв	Mxx	Схр	Выброс (г/с)
УСМ (Screen	4.700	4.0	2.050	12.0	1.370	1.140	5	0.790	да	
Machine)										
	4.700	4.0	2.050	12.0	1.370	1.140	5	0.790	да	0.0661149
ЭКСКАВ.	2.100	4.0	0.780	12.0	0.510	0.430	10	0.300	нет	
KOMATSU PW-										
60										
	2.100	4.0	0.780	12.0	0.510	0.430	10	0.300	нет	0.0059522
Погрузчик	7.500	4.0	3.220	12.0	2.150	1.790	5	1.240	да	
SENNEBOGEN										
860M										
	7.500	4.0	3.220	12.0	2.150	1.790	5	1.240	да	0.1304721
маневровый	4.700	4.0	2.050	12.0	1.370	1.140	10	0.790	нет	
локомобиль										
	4.700	4.0	2.050	12.0	1.370	1.140	10	0.790	нет	0.0147249

Выбрасываемое вещество - Оксиды азота (NOx) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)		
Теплый	УСМ (Screen Machine)	0.107957		
	ЭКСКАВ. KOMATSU PW-60	0.005535		
	Погрузчик SENNEBOGEN 860M	0.211841		
	маневровый локомобиль	0.014520		
	ВСЕГО:	0.339852		
Переходный	УСМ (Screen Machine)	0.036243		
	ЭКСКАВ. KOMATSU PW-60	0.002094		
	Погрузчик SENNEBOGEN 860M	0.071059		
	маневровый локомобиль	0.005506		
	ВСЕГО:	0.114903		
Холодный	УСМ (Screen Machine)	0.057599		
	ЭКСКАВ. KOMATSU PW-60	0.003478		
	Погрузчик SENNEBOGEN 860M	0.112942		
	маневровый локомобиль	0.009156		
	ВСЕГО:	0.183175		
Всего за год		0.637930		

Максимальный выброс составляет: 0.3477456 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименование	Mn	Tn	Mnp	Tnp	Мдв	Мдв.теп.	Vдв	Mxx	Схр	Выброс (г/с)
УСМ (Screen	4.500	4.0	1.910	12.0	6.470	6.470	5	1.270	да	
Machine)										
	4.500	4.0	1.910	12.0	6.470	6.470	5	1.270	да	0.1174957
ЭКСКАВ.	1.700	4.0	0.720	12.0	2.470	2.470	10	0.480	нет	
KOMATSU PW-										
60										
	1.700	4.0	0.720	12.0	2.470	2.470	10	0.480	нет	0.0079071
Погрузчик	7.000	4.0	3.000	12.0	10.160	10.160	5	1.990	да	
SENNEBOGEN										
860M										
	7.000	4.0	3.000	12.0	10.160	10.160	5	1.990	да	0.2302499
маневровый	4.500	4.0	1.910	12.0	6.470	6.470	10	1.270	нет	
локомобиль										
	4.500	4.0	1.910	12.0	6.470	6.470	10	1.270	нет	0.0208551

Выбрасываемое вещество - 0328 - Углерод (Сажа) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	УСМ (Screen Machine)	0.011683
	ЭКСКАВ. KOMATSU PW-60	0.000572
	Погрузчик SENNEBOGEN 860M	0.022891
	маневровый локомобиль	0.001533
	ВСЕГО:	0.036679
Переходный	УСМ (Screen Machine)	0.005145
	ЭКСКАВ. KOMATSU PW-60	0.000301
	Погрузчик SENNEBOGEN 860M	0.010034

				D	CLI O.	0.0500	17
	Перехо	дный		У	CM (Scre	een Machine) 0.00514	45
			KOMATSU PW-60 0.00030	01			
			SENNEBOGEN 860M 0.01003	34			
_							
					1	T	_
							Лист
						OBOC2.6	
							49
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата		77

Инв.№ подл.

	маневровый локомобиль	0.000821
	ВСЕГО:	0.016302
Холодный	YCM (Screen Machine)	0.010365
	ЭКСКАВ. KOMATSU PW-60	0.000675
	Погрузчик SENNEBOGEN 860M	0.020127
	маневровый локомобиль	0.001862
	ВСЕГО:	0.033029
Всего за год		0.086010

Максимальный выброс составляет: 0.0760225 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименование	Mn	Tn	Mnp	Tnp	Мдв	Мдв.теп.	Vдв	Mxx	Схр	Выброс (г/с)
УСМ (Screen	0.000	4.0	1.020	12.0	1.080	0.720	5	0.170	да	
Machine)										
	0.000	4.0	1.020	12.0	1.080	0.720	5	0.170	да	0.0258906
ЭКСКАВ.	0.000	4.0	0.360	12.0	0.410	0.270	10	0.060	нет	
KOMATSU PW-										
60										
	0.000	4.0	0.360	12.0	0.410	0.270	10	0.060	нет	0.0018205
Погрузчик	0.000	4.0	1.560	12.0	1.700	1.130	5	0.260	да	
SENNEBOGEN										
860M										
	0.000	4.0	1.560	12.0	1.700	1.130	5	0.260	да	0.0501319
маневровый	0.000	4.0	1.020	12.0	1.080	0.720	10	0.170	нет	
локомобиль										
	0.000	4.0	1.020	12.0	1.080	0.720	10	0.170	нет	0.0050507

Выбрасываемое вещество - 0330 - Сера диоксид-Ангидрид сернистый Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)		
Теплый	УСМ (Screen Machine)	0.008801		
	ЭКСКАВ. KOMATSU PW-60	0.000458		
	Погрузчик SENNEBOGEN 860M	0.016970		
	маневровый локомобиль	0.001217		
	ВСЕГО:	0.027446		
Переходный	УСМ (Screen Machine)	0.002943		
	ЭКСКАВ. KOMATSU PW-60	0.000166		
	Погрузчик SENNEBOGEN 860M	0.005477		
	маневровый локомобиль	0.000440		
	ВСЕГО:	0.009026		
Холодный	УСМ (Screen Machine)	0.005352		
	ЭКСКАВ. KOMATSU PW-60	0.000332		
	Погрузчик SENNEBOGEN 860M	0.009563		
	маневровый локомобиль	0.000876		
	ВСЕГО:	0.016123		
Всего за год		0.052595		

Максимальный выброс составляет: 0.0316885 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименование	Mn	Tn	Mnp	Tnp	Мдв	Мдв.теп.	Vдв	Mxx	Схр	Выброс (г/с)
УСМ (Screen Machine)	0.095	4.0	0.310	12.0	0.630	0.510	5	0.250	да	
	0.095	4.0	0.310	12.0	0.630	0.510	5	0.250	да	0.0117237
ЭКСКАВ. KOMATSU PW- 60	0.042	4.0	0.120	12.0	0.230	0.190	10	0.097	нет	
	0.042	4.0	0.120	12.0	0.230	0.190	10	0.097	нет	0.0008014
Погрузчик SENNEBOGEN 860M	0.150	4.0	0.320	12.0	0.980	0.800	5	0.390	да	
	0.150	4.0	0.320	12.0	0.980	0.800	5	0.390	да	0.0199647
маневровый локомобиль	0.095	4.0	0.310	12.0	0.630	0.510	10	0.250	нет	
	0.095	4.0	0.310	12.0	0.630	0.510	10	0.250	нет	0.0021014

Трансформация оксидов азота Выбрасываемое вещество - 0301 - Азота диоксид (Азот (IV) оксид) Коэффициент трансформации - 0.8 Валовые выбросы

F							ODOGA (Лист
ŀ	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	50

Инв.№ подл.

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	YCM (Screen Machine)	0.086365
	ЭКСКАВ. KOMATSU PW-60	0.004428
	Погрузчик SENNEBOGEN 860M	0.169473
	маневровый локомобиль	0.011616
	ВСЕГО:	0.271882
Переходный	YCM (Screen Machine)	0.028995
	ЭКСКАВ. KOMATSU PW-60	0.001675
	Погрузчик SENNEBOGEN 860M	0.056848
	маневровый локомобиль	0.004405
	ВСЕГО:	0.091922
Холодный	УСМ (Screen Machine)	0.046079
	ЭКСКАВ. KOMATSU PW-60	0.002782
	Погрузчик SENNEBOGEN 860M	0.090353
	маневровый локомобиль	0.007324
	ВСЕГО:	0.146540
Всего за год		0.510344

Максимальный выброс составляет: 0.2781965 г/с. Месяц достижения: Январь.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азота оксид) Коэффициент трансформации - 0.13 Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	YCM (Screen Machine)	0.014034
	ЭКСКАВ. KOMATSU PW-60	0.000720
	Погрузчик SENNEBOGEN 860M	0.027539
	маневровый локомобиль	0.001888
	ВСЕГО:	0.044181
Переходный	YCM (Screen Machine)	0.004712
	ЭКСКАВ. KOMATSU PW-60	0.000272
	Погрузчик SENNEBOGEN 860M	0.009238
	маневровый локомобиль	0.000716
	ВСЕГО:	0.014937
Холодный	YCM (Screen Machine)	0.007488
	ЭКСКАВ. KOMATSU PW-60	0.000452
	Погрузчик SENNEBOGEN 860M	0.014682
	маневровый локомобиль	0.001190
	ВСЕГО:	0.023813
Всего за год		0.082931

Максимальный выброс составляет: 0.0452069 г/с. Месяц достижения: Январь.

Распределение углеводородов Выбрасываемое вещество - 2704 - Бензин (нефтяной, малосернистый) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	YCM (Screen Machine)	0.004023
	ЭКСКАВ. KOMATSU PW-60	0.000449
	Погрузчик SENNEBOGEN 860M	0.008025
	маневровый локомобиль	0.001006
	ВСЕГО:	0.013503
Переходный	УСМ (Screen Machine)	0.002294
-	ЭКСКАВ. KOMATSU PW-60	0.000256
	Погрузчик SENNEBOGEN 860M	0.004575
	маневровый локомобиль	0.000573
	ВСЕГО:	0.007698
Холодный	УСМ (Screen Machine)	0.006768
	ЭКСКАВ. KOMATSU PW-60	0.000756
	Погрузчик SENNEBOGEN 860M	0.013500
	маневровый локомобиль	0.001692
	ВСЕГО:	0.022716
Всего за год		0.043918

Максимальный выброс составляет: 0.0625556 г/с. Месяц достижения: Январь.

Инв.№ подл.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

				•		ine oripeoeneno, oenoonomeo na epeonia manimanonom memrepampano oosoyaa	
						ODOC2 (Лист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	51

Наименование	Mn	Tn	%%	Mnp	Tnp	Мдв	Мдв.теп	Vдв	Mxx	%%	Схр	Выброс (г/с)
			пуск.	_						двиг.	_	
УСМ (Screen	4.700	4.0	100.0	2.050	12.0	1.370	1.140	5	0.790	0.0	да	
Machine)												
	4.700	4.0	100.0	2.050	12.0	1.370	1.140	5	0.790	0.0	да	0.0208889
ЭКСКАВ.	2.100	4.0	100.0	0.780	12.0	0.510	0.430	10	0.300	0.0	нет	
KOMATSU PW-												
60												
	2.100	4.0	100.0	0.780	12.0	0.510	0.430	10	0.300	0.0	нет	0.0023333
Погрузчик	7.500	4.0	100.0	3.220	12.0	2.150	1.790	5	1.240	0.0	да	
SENNEBOGEN												
860M												
	7.500	4.0	100.0	3.220	12.0	2.150	1.790	5	1.240	0.0	да	0.0416667
маневровый	4.700	4.0	100.0	2.050	12.0	1.370	1.140	10	0.790	0.0	нет	
локомобиль												
	4.700	4.0	100.0	2.050	12.0	1.370	1.140	10	0.790	0.0	нет	0.0052222

Выбрасываемое вещество - 2732 - Керосин Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	УСМ (Screen Machine)	0.020282
	ЭКСКАВ. KOMATSU PW-60	0.001086
	Погрузчик SENNEBOGEN 860M	0.039806
	маневровый локомобиль	0.002873
	ВСЕГО:	0.064046
Переходный	УСМ (Screen Machine)	0.008301
	ЭКСКАВ. KOMATSU PW-60	0.000538
	Погрузчик SENNEBOGEN 860M	0.016292
	маневровый локомобиль	0.001423
	ВСЕГО:	0.026554
Холодный	УСМ (Screen Machine)	0.017563
	ЭКСКАВ. KOMATSU PW-60	0.001277
	Погрузчик SENNEBOGEN 860M	0.034472
	маневровый локомобиль	0.003373
	ВСЕГО:	0.056685
Всего за год		0.147285

Максимальный выброс составляет: 0.1340314 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименование	Mn	Tn	%%	Mnp	Tnp	Мдв	Мдв.теп	Vдв	Mxx	%%	Схр	Выброс (г/с)
			пуск.							двиг.		
УСМ (Screen	4.700	4.0	0.0	2.050	12.0	1.370	1.140	5	0.790	100.0	да	
Machine)												
	4.700	4.0	0.0	2.050	12.0	1.370	1.140	5	0.790	100.0	да	0.0452260
ЭКСКАВ.	2.100	4.0	0.0	0.780	12.0	0.510	0.430	10	0.300	100.0	нет	
KOMATSU PW-												
60												
	2.100	4.0	0.0	0.780	12.0	0.510	0.430	10	0.300	100.0	нет	0.0036189
Погрузчик	7.500	4.0	0.0	3.220	12.0	2.150	1.790	5	1.240	100.0	да	
SENNEBOGEN												
860M												
	7.500	4.0	0.0	3.220	12.0	2.150	1.790	5	1.240	100.0	да	0.0888054
маневровый	4.700	4.0	0.0	2.050	12.0	1.370	1.140	10	0.790	100.0	нет	
локомобиль												
	4.700	4.0	0.0	2.050	12.0	1.370	1.140	10	0.790	100.0	нет	0.0095027

Инв.№ подл. Подп. и дата Взам.инв.№

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

OBOC2.6

Лист

Источниками загрязнения атмосферного воздуха являются дыхательные клапаны резервуаров в процессе хранения (малое дыхание) и слива (большое дыхание) жидкостей. Климатическая зона – 2.

Расчет выделений загрязняющих веществ выполнен в соответствии с « Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров (утверждены приказом Госкомэкологии России от 08.04.1998 № 199) (Сведения внесены распоряжением Минприроды России от 14.12.2020 № 35-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р) , позиция №5 в Перечне); Дополнение к «Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров (Новополоцк, 1997)». Санкт-Петербург, 1999 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды от 26.12.2022 № 38-р), позиция №39).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год	
код	наименование	выброс, г/с	Годовой выорос, глод	
333	Дигидросульфид (Сероводород)	0,0001202	0,0000339	
2754	Алканы С12-С19 (Углеводороды предельные С12-С19)	0,0267409	0,0072878	

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Продукт	Количество за год, т/год		Конструкция резервуара	Производите льность	Объем одного	Количеств о	Однов
Продукт	Воз Ввл		колотрукции ревервуара	насоса, м³/час	резервуар а, м ^з	резервуар ов	ОСТЬ
Дизельное топливо. А. температура жидкости близка к температуре воздуха	1,25	1,25	Наземный горизонтальный. Режим эксплуатации - "мерник". Система снижения выбросов - отсутствует		5	1	+
Мазут. В. температура жидкости превышает 30 °С по сравнению с температурой воздуха	133,3	12,1	Наземный горизонтальный. Режим эксплуатации - "мерник". Система снижения выбросов - отсутствует		46,9	1	+
Мазут. В. температура жидкости превышает 30 °С по сравнению с температурой воздуха	186,7	17	Наземный горизонтальный. Режим эксплуатации - "мерник". Система снижения выбросов - отсутствует		12,1	1	+
Мазут. В. температура жидкости превышает 30 °C по сравнению с температурой воздуха	560	50,9	Наземный горизонтальный. Режим эксплуатации - "мерник". Система снижения выбросов - отсутствует		31,5	1	+

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимальные выбросы паров нефтепродуктов рассчитываются по формуле (1.1.1):

$$\mathbf{M} = (\mathbf{C}_1 \cdot \mathbf{K}^{\max}_{p} \cdot \mathbf{V}^{\max}_{q}) / 3600, a/c$$
 (1.1.1)

Годовые выбросы паров нефтепродуктов рассчитываются по формуле (1.1.2):

$$G = (Y_2 \cdot B_{os} + Y_3 \cdot B_{en}) \cdot K^{max}_{p} \cdot 10^{-6} + G_{xp} \cdot K_{Hn} \cdot N, m/200$$

 $m{G} = (m{Y}_2 \cdot m{B}_{o_3} + m{Y}_3 \cdot m{B}_{en}) \cdot m{K}^{max}_{p} \cdot 10^{-6} + m{G}_{xp} \cdot m{K}_{+n} \cdot m{N}, m/zo\partial$ (1.1.2) где $m{Y}_2, m{Y}_3$ — средние удельные выбросы из резервуара соответственно в осенне-зимний и весенне-летний периоды года, z/m, принимаются по Приложению 12;

 B_{os} , B_{en} – количество жидкости, закачиваемое в резервуар соответственно в осенне-зимний и весенне-летний периоды года, m; ${\it K}^{{\rm max}}_{\it p}$ - значение опытного коэффициента, принимаемое по Приложению 8;

 G_{xp} - выбросы паров нефтепродуктов при хранении нефтепродуктов в одном резервуаре, m/200, принимаются по Приложению 13; **К**_{нп} - опытный коэффициент, принимается по Приложению 12;

N - количество резервуаров.

Значение коэффициента $\mathbf{K}^{\mathrm{rop}}_{p}$ для газовой обвязки группы одноцелевых резервуаров определяется в зависимости от одновременности закачки и откачки жидкости из резервуаров по формуле (1.1.4):

$$\mathbf{K}^{\mathsf{TOP}}_{p} = 1, 1 \cdot \mathbf{K}_{p} \cdot (\mathbf{Q}^{\mathsf{3AK}} - \mathbf{Q}^{\mathsf{OTK}}) / \mathbf{Q}^{\mathsf{3AK}}$$

где (Qзак - Qотк) - абсолютная средняя разность объемов закачиваемой и откачиваемой из резервуаров жидкости.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя в формулах учитывается массовая доля данного вещества в составе нефтепродукта.

Расчет максимально разового и годового выделения загрязняющих веществ в атмосферу приведен ниже.

Дизельное топливо

 $M = 3,14 \cdot 1 \cdot 5 / \overline{3600} = 0,0043611 e/c;$

 $\mathbf{G} = (1.9 \cdot 1.25 + 2.6 \cdot 1.25) \cdot 1 \cdot 10^{-6} + 0.22 \cdot 0.0029 \cdot 1 = 0.0006436 \, \text{m/sod}.$

333 Дигидросульфид (Сероводород)

 $M = 0.0043611 \cdot 0.0028 = 0.0000122 \ e/c;$

 $\mathbf{G} = 0.0006436 \cdot 0.0028 = 0.0000018 \text{ m/sod.}$

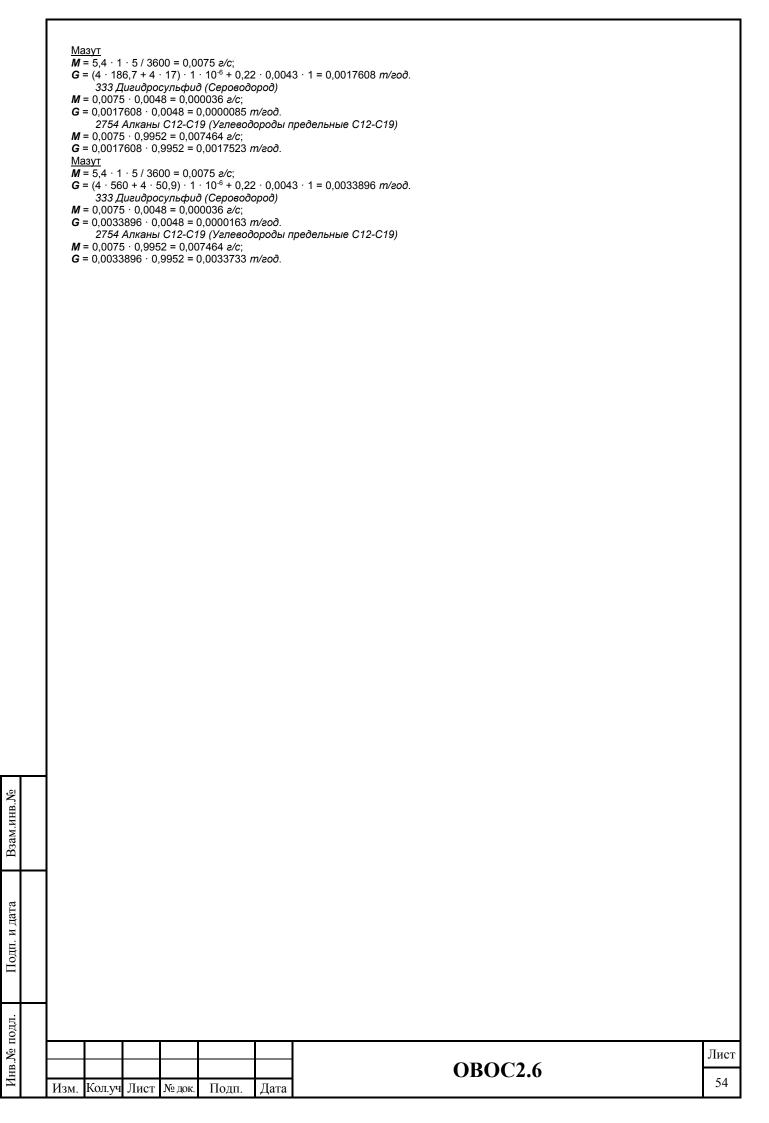
2754 Алканы С12-С19 (Углеводороды предельные С12-С19)

 $M = 0.0043611 \cdot 0.9972 = 0.0043489 \ e/c;$

 $G = 0.0006436 \cdot 0.9972 = 0.0006418 \, \text{m/eod}.$

Мазут

Взам.инв.


윋

 $M = 5.4 \cdot 1 \cdot 5 / 3600 = 0.0075 e/c;$

 $\mathbf{G} = (4 \cdot 133,3 + 4 \cdot 12,1) \cdot 1 \cdot 10^{-6} + 0,22 \cdot 0,0043 \cdot 1 = 0,0015276 \text{ m/sod}.$

333 Дигидросульфид (Сероводород)

G: M:	= 0,0015 2754 = 0,0075	5276 · 0. <i>Алканы</i> 5 · 0,995	,0048 = 0 1 C12-C1 52 = 0,00	00036 г/с; 0,0000073 г 19 (Углевой 07464 г/с; 0,0015203 г	дороды п	редельные С12-С19)	
							Лист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	53
	J			, ,	, ,		

Источниками загрязнения атмосферного воздуха являются дыхательные клапаны резервуаров в процессе хранения (малое дыхание) и слива (большое дыхание) топлива, топливные баки автомобилей в процессе их заправки, места испарения топлива при случайных проливах. Климатическая зона - 2.

Расчет выделений загрязняющих веществ выполнен в соответствии с « Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров (утверждены приказом Госкомэкологии России от 08.04.1998 № 199) (Сведения внесены распоряжением Минприроды России от 14.12.2020 № 35-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р) , позиция №5 в Перечне); Дополнение к «Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров (Новополоцк, 1997)». Санкт-Петербург, 1999 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №39).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год	
код	наименование	выброс, г/с	годовой выорос, глод	
333	Дигидросульфид (Сероводород)	0,000041	0,0002101	
2754	Алканы С12-С19 (Углеводороды предельные С12-С19)	0,014592	0,0748432	

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Нефтепродукт	Объем за год, м³		Конструкция	Закачка (слив) в резервуар		Расход Снижение через ТРК, выброса, %		Однов ременн	
	Qoз	Qвл	резервуара	объем, м ³	время, с	л/20мин.	СЛИВ	заправка	ОСТЬ
Дизельное топливо. Выполняемые операции: закачка (слив) в резервуар, заправка машин, проливы.		688,513	наземный	40	10800	3000	-	-	+

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Годовой выброс нефтепродуктов при сливе в резервуары рассчитывается по формуле (1.1.1):

$$\mathbf{G}_{p} = (\mathbf{C}_{p \text{ os}} \cdot \mathbf{Q}_{\text{os}} + \mathbf{C}_{p \text{ en}} \cdot \mathbf{Q}_{\text{en}}) \cdot (1 - \mathbf{n}_{p} / 100) \cdot 10^{-6}, m/200$$

$$(1.1.1)$$

где C_{pos} - концентрация паров нефтепродуктов в осенне-зимний период при заполнении резервуаров, a/M^3 ,

 Q_{o3} - объем нефтепродуктов, закачиваемых в резервуары за осенне-зимний период, M^3 ,

 $C_{p \, en}$ - концентрация паров нефтепродуктов в весенне-летний период при заполнении резервуаров, e/m^3 ,

 \mathbf{Q}_{en} - объем нефтепродуктов, закачиваемых в резервуары за весенне-летний период, M^3 ,

 n_{p} - снижение выброса при заполнении резервуаров, %.

Годовой выброс нефтепродуктов при закачке в баки машин рассчитывается по формуле (1.1.2):

$$\mathbf{G}_{6} = (\mathbf{C}_{6 \text{ os}} \cdot \mathbf{Q}_{\text{os}} + \mathbf{C}_{6 \text{ en}} \cdot \mathbf{Q}_{\text{en}}) \cdot (1 - \mathbf{n}_{mpk} / 100) \cdot 10^{-6}, m/200$$
(1.1.2)

где ${m C}_{6\,{}_{0}{}_{3}}$ - концентрация паров нефтепродуктов в осенне-зимний период при заправке баков машин, ${\it a/m}^{3}$,

 ${f C}_{6\,{\it BR}}$ - концентрация паров нефтепродуктов в весенне-летний период при заправке баков машин, ${\it a/M}^3$,

п_{трк} - снижение выброса при закачке в баки машин. %.

Годовой выброс при проливах рассчитывается по формуле (1.1.3):

$$\mathbf{G}_{np} = \mathbf{J} \cdot (\mathbf{Q}_{os} + \mathbf{Q}_{en}) \cdot 10^{-6}, \, m/\text{zod}$$
 (1.1.3)

где **J** - удельные выбросы при проливах, %.

Итоговый выброс нефтепродуктов рассчитывается по формуле (1.1.4):

$$\mathbf{G} = \mathbf{G}_p + \mathbf{G}_6 + \mathbf{G}_{np}, \, m/\text{cod} \tag{1.1.4}$$

Разовый выброс нефтепродуктов при сливе в резервуары рассчитывается по формуле (1.1.5):

$$\mathbf{M}_{p} = \mathbf{C}_{max} \cdot \mathbf{V} \cdot (1 - \mathbf{n}_{p} / 100), \, a/c$$
 (1.1.5)

где ${m C}_{max}$ - максимальная концентрация паров нефтепродуктов, ${m z}/{m m}^3$,

V - объем закачки(слива), M^3 ;

t - время слива, с (если меньше 1200, то принимается 1200 с), *с*.

Разовый выброс нефтепродуктов при закачке в баки машин рассчитывается по формуле (1.1.6):

$$\mathbf{M}_6 = \mathbf{C}_6 \cdot \mathbf{V}_6 \cdot (1 - \mathbf{n}_{mp\kappa} / 100) \cdot 10^{-3} / 1200, \, a/c$$
 (1.1.6)

где C_{max} - максимальная концентрация паров нефтепродуктов, z/m^3 ,

 V_6 - максимальный расход нефтепродуктов при заправке машин за 20-ти минутный интервал, $\pi/20$ мин.

Разовый выброс нефтепродуктов при проливах рассчитывается по формуле (1.1.7):

$$\mathbf{M}_{np} = \mathbf{J} \cdot (\mathbf{Q}_{os} + \mathbf{Q}_{en}) / (365 \cdot 24 \cdot 3600), \ e/c$$
 (1.1.7)

Максимальный выброс нефтепродуктов рассчитывается по формуле (1.1.8):

$$M = M_p + M_6 + M_{np}, \ e/c$$
 (1.1.8)

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя в формулах учитывается массовая доля данного вещества в составе нефтепродукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Дизельное топливо

Взам.инв.

MHB.No

 $M_6 = 2.2 \cdot 3000 \cdot (1 - 0 / 100) \cdot 10^{-3} / 1200 = 0.0055 \, e/c$

 $\mathbf{M}_{np} = 50 \cdot (726,867 + 688,513) / (365 \cdot 24 \cdot 3600) = 0.0022441 e/c;$

M = 0.0068889 + 0.0055 + 0.0022441 = 0.014633 e/c;

 $\mathbf{G}_p = (0.96 \cdot 726.867 + 1.32 \cdot 688.513) \cdot (1 - 0 / 100) \cdot 10^{-6} = 0.0016066 \, \text{m/zod};$

 $\mathbf{G}_6 = (1.6 \cdot 726.867 + 2.2 \cdot 688.513) \cdot (1 - 0 / 100) \cdot 10^{-6} = 0.0026777 \, \text{m/zod};$

 $G_{np} = 50 \cdot (726,867 + 688,513) \cdot 10^{-6} = 0,070769 \text{ m/eod};$

G = 0.0016066 + 0.0026777 + 0.070769 = 0.0750533 m/zod.

G :	= 0,0146 = 0,0750 <i>2754</i> = 0,0146	633 · 0,0 1533 · 0, Алканы 633 · 0,9	0028 = 0, ,0028 = 0 , <i>C12-C1</i> 9972 = 0,	д (Серовод 000041 г/с 0,0002101 г 9 (Углевод 014592 г/с 0,0748432 г	; m/год. дороды п ;	редельные С12-С19)		
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	Лист 55	
113		V-1.1-V-1	r Assa	подш	Auru			

ИЗАВ №6186. склады угля (УТ-1 причалы 14-15)

Источниками выделения загрязняющих веществ являются:

- хранение угля на причалах 14-15;
- хранение медного штейна на причалах 14-15;
- хранение окалины (шлака) на причалах 14-15;

В расчете выбросов учтена неодновременность перегрузочных работ с разными грузами.

Максимально-разовый выброс принят максимальный по каждому грузу

Валовый выброс суммирован с учетом всех видов грузов

Всего по источнику выбросов:

	Загрязняющее вещество	Максимально	Годовой выброс,								
код	наименование	разовый выброс, г/с	т/год								
	При перегрузке каменного угля										
3749	Пыль каменного угля	0,02305	0,300872								
	При перегрузке медного штейна										
146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,009210	0,002735								
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,013815	0,004103								
	При перегрузке окалины (шлака)										
101	диАлюминий триоксид/в пересчете на алюминий/ (5,51%)	0,059150	0,016120								
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе-зо/(Железо сесквиоксид) (58,24%)	0,625230	0,170430								
2909	Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства - из-вестняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,389160	0,106080								

Расчет по каждому грузу выполнен на максимальную загруженность склада, поэтому в расчете рассеивания учтена неодновременность движения грузов, и по каждому веществу принят максимально-разовый выброс:

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
101	диАлюминий триоксид/в пересчете на алюминий/ (5,51%)	0,059150	0,016120
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе-зо/(Железо сесквиоксид) (58,24%)	0,625230	0,170430
146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,009210	0,002735
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,013815	0,004103
2909	Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства - из-вестняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,389160	0,106080
3749	Пыль каменного угля	0,02305	0,300872

Максимально-разовый выброс с учетом ветра принят:

Скоро	сть ветра, м/с	0,5	2	4	6	8	8,4
Колич	ество ЗВ, г/с						
101	диАлюминий триоксид/в пересчете на алюминий/ (5,51%)	0,00000081	0,000198	0,00311	0,01555	0,04874	0,05915
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе-зо/(Железо сесквиоксид) (58,24%)	0,00000856	0,002098	0,03287	0,1644	0,51513	0,62523
146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,000012	0,000313	0,0016	0,00417	0,00821	0,00921
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,0000179	0,00047	0,00241	0,00625	0,0123	0,0138
2909	Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства - из-вестняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,00000533	0,001306	0,02046	0,10233	0,32063	0,38916
3749	Пыль каменного угля	0,0136	0,0136	0,0163	0,0190	0,0231	0,0231

ИВ склады угля (УТ-1 причалы 14-15)

Источником выделения пыли является унос пыли с верхнего слоя штабеля при статическом хранении. Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами:

ООтраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,0231	0,301

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

MHB.No

Удельное количество сдуваемых твердых частиц с поверхности штабеля угля, q_{c0} [кг/кв.м*c]	0,000001
Площадь основания штабеля угля, $S_{\omega}[\kappa B.M]$	9352
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, w_g [м/с]	8,4

	E	Влажнос	>11%					
	K	Соэффиц	егружаемого материала (табл. 4.2), <i>K</i> ₁ 0,01					
-1	(Скорость	8,4					
								Лист
F							ODOC2	лист
_							OBOC2.6	5.0
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата		56
		-		•				

Количество ЗВ, г/с						_
	G ₃₇₄₉ =	0,0136	0,0136	0,0163	0,0190	0,0
код Всего пыли 100%, из них:	штейна и при хранен ых источнико и России от 2 и №38 в Пере падировании кением Минп ственная хара ика выделен наимен	(УТ-1, при промышлящих ов в промышл 28.06.2021 № ечне); «Време и и перегрузк рироды Росси актеристика зний загрязнящество нование	материалов вы енности строи 22-р (с измен енные методиче сыпучих ма ии от 28.06.202 вагрязняющих ющих вещест	ыполнен в сос тельных мате ениями, внесе веские указани териалов на 11 № 22-р, поз веществ, выд в в атмосфер Максим	риалов. Новоренными распория по расчету предприятиях иция №102). еляющихся в арушильно разовый ыброс, г/с 0,0230258	етоді оссий яжен выбро речн этмос
0146 Медь оксид/в пер	ресчете на ме	едь/(Медь оки	ісь; тенорит)		0,009210	
2908 Пыль неорганиче - 70-20 (шамот, глина, глинистыі зола кремнезем Технология пылеподав.	цемент, пыл й сланец, дог и другие)	ь цементного менный шлак	лроизводства , песок, клинка	a - ep,	0,013815	
де К ₄ - коэффициент, уч пылеобразования; К ₅ - коэффициент, учитываю К ₆ - коэффициент, учитываю К ₇ - коэффициент, учитываю F _{раб} - площадь в плане, на ко	щий влажнос щий профиль щий крупност	ть материала ь поверхности	і; і складируемог		,	
 F_{nn} - поверхность пыления в пример и максимальная удельная об примения выброс значение коэффициента и максимальной значение максимальной и пример и п	плане, M^2 , дуваемость и сов при приме \mathbf{K}_6 определи адь поверхно и удельной сд	пыли, <i>г/(м²</i> с енении систем яется по форг ости складируч цуваемости пы	изводятся погр с); и пылеподавле муле (1.1.2): К ₆ = F _{мак} емого материа ылящего матер q = 10 ⁻³ · a · 0	рузочно-разгру ения. с / F _{пл} ла при максим иала определ Љ, <i>a</i> /(м²-c)	иальном заполю ияется по форм	нении
 q - максимальная удельная о η - степень снижения выброс Значение коэффициента где F_{макс} - фактическая площа Значение максимальной 	плане, M^2 , сдуваемость гов при приме а K_6 определя адь поверхно будельной сдффициенты, при хранении $\Pi_{XP} = 0,11$	пыли, a/(м² · сенении систем яется по форгости складирую дуваемости пы зависящие от пылящих мат · 8,64 · 10-2 ·	изводятся погр с); и пылеподавле муле (1.1.2): $K_6 = F_{\text{мак}}$ емого материа ылящего материа г типа перегрух гериалов, расси $K_4 \cdot K_5 \cdot K_6 \cdot K_7$	рузочно-разгру ения. c / F_{nn} ла при максим иала определ J^p , $a/(M^2 \cdot c)$ каемого матер нитывается по $c \cdot q \cdot F_{nn} \cdot (1 - c)$	иальном заполи яется по форм оиала;	нении уле (1 4):

Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, w_{e} [м/с]	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	1
Коэффициент, учитывающий профиль поверхности складируемого материала, K_6	1,45
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0
Коэффициент измельчения горной массы, $ ho$	0,1
Количество дней с устойчивым снежным покровом, Тсп	80
Количество дней с осадками в виде дождя, T_{∂}	71
Kananananan na Kanananan Kanananan Kananan na kananan na kananan (4. 2).	

NHB.№

 q_{cd} – удельное количество сдуваемых твердых частиц с поверхности штабеля угля, кг/кв.м*с;

 S_w – площадь основания штабеля угля, кв.м;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 K_6 – коэффициент, учитывающий профиль поверхности складируемого материала;

 $oldsymbol{
ho}$ - коэффициент измельчения горной массы;

 T_{cn} - количество дней с устойчивым снежным покровом;

 T_{o} - количество дней с осадками в виде дождя;

п - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При статическом хранении угля:

M₃₇₄₉= 0,301 т/год **G** 3749= 0,0231 2/c

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

<u> </u>							
Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,0136	0,0136	0,0163	0,0190	0,0231	0,0231

ическое пособие по расчету йск, 2001 (Сведения внесены нием Минприроды России от осов загрязняющих веществ ного флота. Белгород, 1992

сферу, приведена в таблице

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
Всего пылі	и 100%, из них:	0,0230258	0,0068375
0146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,009210	0,002735
2908	Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и другие)	0.013815	0,004103

ый продукт при получении плав, что по сути связывает улированного материала.

ование приведены ниже.

иуле (1.1.1):

$$\mathbf{M}_{XP} = \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{pa6} + \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot 0.11 \cdot \mathbf{q} \cdot (\mathbf{F}_{nn} - \mathbf{F}_{pa6}) \cdot (1 - \eta), \ a/c$$
 (1.1.1)

шних воздействий, условия

$$\mathbf{K}_6 = \mathbf{F}_{\text{Make}} / \mathbf{F}_{\text{nn}} \tag{1.1.2}$$

и склада, *м*².

(1.1.3):

$$\mathbf{q} = 10^{-3} \cdot \mathbf{a} \cdot \mathbf{U}^{0}, \, \mathbf{e}/(\mathbf{M}^{2} \cdot \mathbf{c}) \tag{1.1.3}$$

$$\mathbf{\Pi}_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{nn} \cdot (1 - \mathbf{\eta}) \cdot (\mathbf{T} - \mathbf{T}_{\bar{o}} - \mathbf{T}_c) \text{ m/sod}$$

$$(1.1.4)$$

				Лист	
			OBOC2.6		
Мо пои	Поли	Пото		57	ı

 T_c - число дней с устойчивым снежным покровом.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчетные параметры и их значения приведены в таблице 1.1.2.

Таблица 1.1.2 - Расчетные параметры и их значения

Расчетные параметры	Значения
Перегружаемый материал: Медный штейн	a = 0,0237
Удельные показатели приняты по аналогу – окисленные руды	b = 2,356
Эмпирические коэффициенты, зависящие от типа перегружаемого материала	
Местные условия – склады, хранилища, открытые с 4-х сторон	$K_4 = 1$
Влажность материала свыше 10 до 20%	$K_5 = 0.01$
Профиль поверхности складируемого материала	K ₆ = 12158 / 9352 = 1,300043
Крупность материала – куски размером 50-10 мм	$K_7 = 0.5$
Расчетные скорости ветра, м/с	U' = 0,5; 2; 4; 6; 8; 8,4
Среднегодовая скорость ветра, м/с	U = 3,8
Площадь поверхности погрузочно-разгрузочных работы в плане, м ²	$F_{pa6} = 900$
Площадь поверхности пыления в плане, м ²	$F_{nn} = 9352$
Площадь фактической поверхности пыления, м ²	F _{MAKC} = 12158
Общее время хранения материала за рассматриваемый период, в сутках	T = 366
Число дней с дождем	$T_{\partial} = 71$
Число дней с устойчивым снежным покровом	$T_c = 80$

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

```
Медный штейн
   \overline{\boldsymbol{q}_{\text{ПЫЛИ}}^{0.5 \text{ M/C}} = 10^{-3}} \cdot 0,0237 \cdot 0,5^{2.356} = 0,0000046 \text{ e/(M}^2 \cdot \text{c});
 +1 \cdot 0.01 \cdot 1.300043 \cdot 0.5 \cdot 0.11 \cdot 0.0000046 \cdot (9352 - 900) \cdot (1-0.9) = 0.0000299 e/c;
   q_{\text{пыли}^2}^{\text{м/c}} = 10^{-3} \cdot 0,0237 \cdot 2^{2.356} = 0,0001213 \text{ e/(M}^2 \cdot \text{c});
   \mathbf{M}_{\text{пыли}}^{2 \text{ м/c}} = 1 \cdot 0.01 \cdot 1.300043 \cdot 0.5 \cdot 0.0001213 \cdot 900 +
                                          +1 \cdot 0.01 \cdot 1.300043 \cdot 0.5 \cdot 0.11 \cdot 0.0001213 \cdot (9352 - 900) \cdot (1-0.9) = 0.0007831  e/c;
 q_{\text{пыли}}^{4 \text{ м/c}} = 10^{-3} \cdot 0.0237 \cdot 4^{2.356} = 0.0006212 \text{ e/(m²·c)};
 M_{\Pi b \Pi u}^{4 \text{ M/C}} = 1 \cdot 0.01 \cdot 1.300043 \cdot 0.5 \cdot 0.0006212 \cdot 900 + 0.0006212 
                                          + 1 \cdot 0.01 \cdot 1.300043 \cdot 0.5 \cdot 0.11 \cdot 0.0006212 \cdot (9352 - 900) \cdot (1-0.9) = 0.0040093  e/c;
   \mathbf{q}_{\pi b \pi \mu}^{6 \text{ M/c}} = 10^{-3} \cdot 0.0237 \cdot 6^{2.356} = 0.0016146 \text{ e/(M}^2 \cdot c);
   \mathbf{M}_{n \bowtie n u}^{6 \text{ M/C}} = 1 \cdot 0,01 \cdot 1,300043 \cdot 0,5 \cdot 0,0016146 \cdot 900 + 0.0016146 \cdot 0
                                          + 1 \cdot 0.01 \cdot 1.300043 \cdot 0.5 \cdot 0.11 \cdot 0.0016146 \cdot (9352 - 900) \cdot (1-0.9) = 0.0104217 \ e/c;
 q_{nbinu}^{8 \text{ M/C}} = 10^{-3} \cdot 0.0237 \cdot 8^{2.356} = 0.00318 \text{ e/(}M^2 \cdot \text{c);}
 M_{\Pi b \Pi u}^{8 \text{ m/c}} = 1 \cdot 0.01 \cdot 1.300043 \cdot 0.5 \cdot 0.00318 \cdot 900 + 0.00318 \cdot 0.00
 + 1 · 0,01 · 1,300043 · 0,5 · 0,11 · 0,00318 · (9352 - 900)·(1-0,9) = 0,0205255 \epsilon/c; q_{nbinu}^{8.4 \text{ M/C}} = 10^{-3} \cdot 0,0237 \cdot 8,4^{2.356} = 0,0035674 <math>\epsilon/(M^2 \cdot c);
 \dot{\mathbf{M}}_{\text{ПЫЛ}}^{8.4 \text{ M/C}} = 1 \cdot 0.01 \cdot 1.300043 \cdot 0.5 \cdot 0.0035674 \cdot 900 + 0.0
                                        +1 \cdot 0.01 \cdot 1.300043 \cdot 0.5 \cdot 0.11 \cdot 0.0035674 \cdot (9352 - 900) \cdot (1-0.9) = 0.0230258 \ a/c;
\boldsymbol{q}_{nbinu} = 10^{-3} \cdot 0.0237 \cdot 3.8^{2.356} = 0.0005505 \, e/(m^2 \cdot c);
\boldsymbol{\eta}_{nbinu} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot 10.01 \cdot 1.300043 \cdot 0.5 \cdot 0.0005505 \cdot 9352 \cdot (366 - 71 - 80) \cdot (1 - 0.9) = 0.0068375 \, m/eod.
 Содержание в выбросах оксидов меди составит 40 % от общего выброса:
M^{0.5 \text{ m/c}} = 0.0000299 * 0.4 = 0.0000120 \text{ e/c};

M^{2 \text{ m/c}} = 0.0007831 * 0.4 = 0.000313 \text{ e/c};
 M^{4 \text{ M/C}} = 0.0040093 * 0.4 = 0.00160 \text{ e/c};
 M^{6 \text{ M/c}} = 0.0104217 * 0.4 = 0.00417 \text{ e/c};
 M^{8 \text{ M/C}} = 0.0205255 * 0.4 = 0.00821 \text{ e/c};
 M^{8.4 \text{ M/C}} = 0.0230258 * 0.4 = 0.00921 \text{ e/c};
 \Pi = 0.0068375 * 0.4 = 0.00274  m/sod.
 Остальные вещества нормируются как пыль неорганическая:
 M^{0.5 \text{ M/c}} = 0.0000299 * 0.6 = 0.0000179 \text{ e/c};
 \mathbf{M}^{2 \text{ M/c}} = 0,0007831 * 0,6 = 0,000470 \text{ e/c};
 M^{4 \text{ M/C}} = 0.0040093 * 0.6 = 0.00241 \text{ e/c};
M^{6 \text{ m/c}} = 0,00104217 * 0,6 = 0,00625 \text{ s/c};

M^{8 \text{ m/c}} = 0,0205255 * 0,6 = 0,0123 \text{ s/c};
 M^{8.4 \text{ M/c}} = 0.0230258 * 0.6 = 0.0138 \text{ e/c};
 \Pi = 0,0068375 * 0,6 = 0,00410 m/zod.
```

ИВ склад окалины (шлака) (УТ-1, причал 14-15)

Взам.инв.

윋

Расчет выделения пыли при хранении пылящих материалов выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне); «Временные методические указания по расчету выбросов загрязняющих веществ (пыли) в атмосферу при складировании и перегрузке сыпучих материалов на предприятиях речного флота. Белгород, 1992 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р, позиция №102).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1.1.1.

<u>Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу</u>

	Загрязняющее вещество	Максимально разовый	Головой выброс т/гол	
код	наименование	выброс, г/с	Годовой выброс, т/год	
Всего пыли	и 100%, из них:	1,0735363	0,2926343	

	<u> B</u>	сего пы	пи 100%	о, ИЗ НИХ	:	1,0735363 0,2926343	26343	
							OBOC2.6	Лист
-	Изм.	Кол.уч	Лист	Іист № док. Подп. Дата		Дата	ODOC2.0	58

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорое, птод
0101	диАлюминий триоксид/в пересчете на алюминий/ (5,51%)	0,05915	0,01612
0123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид) (58,24%)	0,62523	0,17043
	Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,38916	0,10608

Технология пылеподавления: Гранулирование пылящего материала.

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.1): $\pmb{M}_{XP} = \pmb{K}_4 \cdot \pmb{K}_5 \cdot \pmb{K}_6 \cdot \pmb{K}_7 \cdot \pmb{q} \cdot \pmb{F}_{\rho a 6} + \pmb{K}_4 \cdot \pmb{K}_5 \cdot \pmb{K}_6 \cdot \pmb{K}_7 \cdot 0,11 \cdot \pmb{q} \cdot (\pmb{F}_{nn} - \pmb{F}_{\rho a 6}) \cdot (1 - \pmb{\eta}), \ a/c$

$$\mathbf{M}_{XP} = \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{pa6} + \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot 0,11 \cdot \mathbf{q} \cdot (\mathbf{F}_{nn} - \mathbf{F}_{pa6}) \cdot (1 - \eta), \ \epsilon/c$$

$$(1.1.1)$$

где K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

 $\emph{\textbf{K}}_{5}$ - коэффициент, учитывающий влажность материала;

 ${\it K}_{\it 6}$ - коэффициент, учитывающий профиль поверхности складируемого материала;

К₇ - коэффициент, учитывающий крупность материала;

 $\emph{\textbf{F}}_{\it pab}$ - площадь в плане, на которой систематически производятся погрузочно-разгрузочные работы, \emph{M}^2 ,

F $_{nn}$ - поверхность пыления в плане, M^2 ;

 ${m q}$ - максимальная удельная сдуваемость пыли, ${\it e}/({\it m}^2\cdot {\it c})$;

 η - степень снижения выбросов при применении систем пылеподавления.

Значение коэффициента K_6 определяется по формуле (1.1.2):

$$\mathbf{K}_{6} = \mathbf{F}_{\text{MAKC}} / \mathbf{F}_{\Pi\Pi} \tag{1.1.2}$$

где $F_{\text{макс}}$ - фактическая площадь поверхности складируемого материала при максимальном заполнении склада, M^2 . Значение максимальной удельной сдуваемости пылящего материала определяется по формуле (1.1.3):

$$q = 10^{-3} \cdot a \cdot U^{\circ}, \, e/(M^2 \cdot c)$$

где а и b – эмпирические коэффициенты, зависящие от типа перегружаемого материала;

U^o - скорость ветра, *м/с*.

$$\Pi_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot K_4 \cdot K_5 \cdot K_6 \cdot K_7 \cdot \mathbf{q} \cdot F_{nn} \cdot (1 - \eta) \cdot (T - T_{\partial} - T_c) \, m/cod$$

где T - общее время хранения материала за рассматриваемый период, в сутках;

 $T_{∂}$ - число дней с дождем;

Взам.инв.

MHB.№

 ${\it T}_{\it c}$ - число дней с устойчивым снежным покровом.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчетные параметры и их значения приведены в таблице 1.1.2.

Таблица 1.1.2 - Расчетные параметры и их значения

Расчетные параметры	Значения
Перегружаемый материал: Шлак	a = 0,0012
Эмпирические коэффициенты, зависящие от типа перегружаемого материала	b = 3,97
Местные условия – склады, хранилища, открытые с 4-х сторон	$K_4 = 1$
Влажность материала до 5%	$K_5 = 0.7$
Профиль поверхности складируемого материала	K_6 = 12158 / 9352 = 1,300043
Крупность материала – куски размером 5-3 мм	$K_7 = 0.7$
Расчетные скорости ветра, м/с	U' = 0,5; 2; 4; 6; 8; 8,4
Среднегодовая скорость ветра, м/с	U = 3,8
Площадь поверхности погрузочно-разгрузочных работы в плане, м ²	$F_{pa6} = 200$
Площадь поверхности пыления в плане, м ²	F _{nn} = 9352
Площадь фактической поверхности пыления, м ²	F _{MAKC} = 12158
Общее время хранения материала за рассматриваемый период, в сутках	T = 366
Число дней с дождем	$T_{\partial} = 71$
Число дней с устойчивым снежным покровом	$T_c = 80$

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

```
\frac{\text{Шлак}}{\boldsymbol{q}_{nbinu}}^{0.5 \text{ M/C}} = 10^{-3} \cdot 0,0012 \cdot 0,5^{3.97} = 0,0000001 \text{ e/(M}^2\text{ c)};
  + 1 · 0,7 · 1,300043 · 0,7 · 0,11 · 0,0000001 · (9352 - 200)·(1-0,9) = 0,0000147 e/c; \mathbf{q}_{n \bowtie n u}^{2 \bowtie l c} = 10^{-3} \cdot 0,0012 \cdot 2^{3.97} = 0,0000188 e/(m^2 \cdot c);
   \begin{array}{l} \mathbf{M}_{\text{Individ}} + 1 \cdot 0.7 \cdot 1.300043 \cdot 0.7 \cdot 0.11 \cdot 0.0000188 \cdot (9352 - 200) \cdot (1 - 0.9) = 0.0036018 \ \textit{a/c}; \\ \mathbf{q}_{\text{Tabinu}}^{4 \text{ M/C}} = 10^{-3} \cdot 0.0012 \cdot 4^{3.97} = 0.0002947 \ \textit{a/(M}^2 \cdot \textit{c}); \\ \mathbf{M}_{\text{Tabinu}}^{4 \text{ M/C}} = 1 \cdot 0.7 \cdot 1.300043 \cdot 0.7 \cdot 0.0002947 \cdot 200 + \\ \end{array} 
 + 1 · 0,7 · 1,300043 · 0,7 · 0,11 · 0,0002947 · (9352 - 200)·(1-0,9) = 0,0564425 e/c; \mathbf{q}_{n \bowtie n u}^{6 \text{ M/c}} = 10^{-3} \cdot 0,0012 \cdot 6^{3.97} = 0,0014738 \text{ e/(M}^2 \cdot c);
  \mathbf{M}_{\text{ПЫЛИ}}^{6 \text{ M/C}} = 1 \cdot 0.7 \cdot 1.300043 \cdot 0.7 \cdot 0.0014738 \cdot 200 + 0.0014738 \cdot 0.0014748 \cdot 0.
 + 1 · 0,7 · 1,300043 · 0,7 · 0,11 · 0,0014738 · (9352 - 200)·(1-0,9) = 0,2822854 e/c; q_{nbinu}^{8 \ M/c} = 10^{-3} \cdot 0,0012 \cdot 8^{3.97} = 0,0046179 \ e/(m^2 \cdot c);
M_{nbinu}^{8 \text{ M/c}} = 1 \cdot 0.7 \cdot 1.300043 \cdot 0.7 \cdot 0.0046179 \cdot 200 + 1 \cdot 0.7 \cdot 1.300043 \cdot 0.7 \cdot 0.11 \cdot 0.0046179 \cdot (9352 - 200) \cdot (1-0.9) = 0.8844946 \text{ s/c};
q_{nbinu}^{8.4 \text{ M/c}} = 10^{-3} \cdot 0.0012 \cdot 8.4^{3.97} = 0.0056049 \text{ s/(M}^2 c);
  + 1 \cdot 0.7 \cdot 1.300043 \cdot 0.7 \cdot 0.11 \cdot 0.0056049 \cdot (9352 - 200) \cdot (1-0.9) = 1.0735363 \ e/c; 
 q_{\text{пыли}} = 10^{-3} \cdot 0.0012 \cdot 3.8^{3.97} = 0.0002404 \ e/(M^2 \cdot c); 

\vec{\Pi}_{nbinu} = 0,11 \cdot 8,64 \cdot 10^{-2} \cdot 1 \cdot 0,7 \cdot 1,300043 \cdot 0,7 \cdot 0,0002404 \cdot 9352 \cdot (366-71-80) \cdot (1-0,9) = 0,2926343 \text{ m/sod.}
```

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

(1.1.3)

(1.1.4)

```
Содержание в выбросах оксидов алюминия составит 5,51 % от общего выброса:
      M^{0.5 \text{ M/C}} = 0.0000147 * 0.0551 = 0.000000810 \text{ s/c};

M^{2 \text{ M/C}} = 0.0036018 * 0.0551 = 0.000198 \text{ s/c};

M^{4 \text{ M/C}} = 0.0564425 * 0.0551 = 0.00311 \text{ s/c};
       M^{6 \text{ m/c}} = 0.2822854 * 0.0551 = 0.01555 \text{ e/c};
       M^{8 \text{ M/C}} = 0.8844946 * 0.0551 = 0.04874 \text{ a/c};
      M^{8.4 \text{ M/c}} = 1,0735363 * 0,0551 = 0,05915 \text{ e/c};
       \Pi = 0,2926343 * 0,0551 = 0,01612 m/eod.
       Содержание в выбросах оксидов железа составит 58,24 % от общего выброса:
      M^{0.5 \text{ M/C}} = 0,0000147 * 0,5824 = 0,00000856 \text{ e/c};

M^{2 \text{ M/C}} = 0,0036018 * 0,5824 = 0,002098 \text{ e/c};
       M^{4 \text{ m/c}} = 0.0564425 * 0.5824 = 0.03287 \text{ e/c};
      M^{6 \text{ M/C}} = 0.2822854 * 0.5824 = 0.16440 \text{ e/c};
      M^{8 \text{ M/C}} = 0.8844946 * 0.5824 = 0.51513 \text{ e/c};

M^{8.4 \text{ M/C}} = 1.0735363 * 0.5824 = 0.62523 \text{ e/c};
       \Pi = 0,2926343 * 0, 5824 = 0,17043 m/zod.
      Остальные вещества нормируются как пыль неорганическая: M^{0.5 \, \text{M/c}} = 0,0000147 \, * 0,3625 = 0,00000533 \, \text{г/c}; M^{2 \, \text{M/c}} = 0,0036018 \, * 0,3625 = 0,001306 \, \text{г/c}; M^{4 \, \text{M/c}} = 0,0564425 \, * 0,3625 = 0,02046 \, \text{г/c}; M^{6 \, \text{M/c}} = 0,2822854 \, * 0,3625 = 0,10233 \, \text{г/c}; M^{6 \, \text{M/c}} = 0,2824046 \, * 0,3625 = 0,23062 \, \text{г/c};
       M^{8 \text{ M/C}} = 0.8844946 * 0.3625 = 0.32063 \text{ e/c};
      M^{8.4 \text{ m/c}} = 1,0735363 * 0,3625 = 0,38916 \text{ e/c};
      \Pi = 0,2926343 * 0, 3625= 0,10608 m/eod.
                                                                                                                                                                                                                                                            Лист
                                                                                                                                                         OBOC2.6
                                                                                                                                                                                                                                                              60
Изм. Кол.уч Лист № док.
                                                           Подп.
                                                                               Дата
```

Взам.инв..

подл.

Инв.№

ИЗАВ №6187. склад угля (контейнерная площадка) ИВ склад угля (контейнерная площадка)

Источником выделения пыли является унос пыли с верхнего слоя штабеля при статическом хранении.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности, Пермь. 2014 г.

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,0133	0,174

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельное количество сдуваемых твердых частиц с поверхности штабеля угля, q₂₀ [кг/кв.м*с]	0,000001
Площадь основания штабеля угля, S_w [кв.м]	5400
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, ₩₅ [м/с]	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, w_e [м/с]	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), К₄	1
Коэффициент, учитывающий профиль поверхности складируемого материала, K_6	1,45
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0
Коэффициент измельчения горной массы, $ ho$	0,1
Количество дней с устойчивым снежным покровом, T_{cn}	80
Количество дней с осадками в виде дождя, T_{∂}	71

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_{c\partial} = 86.4 \cdot q_{c\partial} \cdot S_{\omega} \cdot K_1 \cdot K_2 \cdot K_4 \cdot K_6 \cdot \rho \cdot (365 - (T_{cn} + T_{\partial})) \cdot (1-\eta), \, m/\text{20d} \quad [1]$$

$$G_{c\partial} = q_{c\partial} \cdot S_{\omega} \cdot K_1 \cdot K_2 \cdot K_4 \cdot K_6 \cdot \rho \cdot (1-\eta) \cdot 1000, \, c/c \quad [2]$$

где

 $m{q}_{c artheta}$ – удельное количество сдуваемых твердых частиц с поверхности штабеля угля, кг/кв.м*с;

 S_{w} – площадь основания штабеля угля, кв.м;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 K_6 – коэффициент, учитывающий профиль поверхности складируемого материала;

р - коэффициент измельчения горной массы;

 T_{cn} - количество дней с устойчивым снежным покровом;

 T_{o} - количество дней с осадками в виде дождя;

 $\pmb{\eta}$ - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При статическом хранении угля:

M₃₇₄₉= 0,174 m/eo∂ **G**₃₇₄₉= 0,0133 e/c

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

устовия (спорость вотра), сна тения максимальных рассвых высроссы опродолжения при распых споростях вотра.										
Скорость ветра	м/с	0,5	2	4	6	8	8,4			
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7			
Количество ЗВ. г/с	G ₃₇₄₉ =	0.0078	0.0078	0.0094	0.0110	0.0133	0.0133			

Подп. и дата						
ō					OPOC2 (Лист
Инв.№ подл.			№ док.		OBOC2.6	61

ИЗАВ №6198. угольный склад - площадка в районе причала №7 ИВ угольный склад - площадка в районе причала №7

Источником выделения пыли является унос пыли с верхнего слоя штабеля при статическом хранении. Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)
Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,00431	0,0563

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельное количество сдуваемых твердых частиц с поверхности штабеля угля, <i>q</i> с∂ [кг/кв.м*с]	0,000001
Площадь основания штабеля угля, S_w [кв.м]	1750
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, $w_s[\text{м/c}]$	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, <i>w₅</i> [м/с]	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K ₄	1
Коэффициент, учитывающий профиль поверхности складируемого материала, \mathcal{K}_{6}	1,45
Эффективность пылеподавления (таб 6.5), <i>η</i> [долл.ед]	0
Коэффициент измельчения горной массы, <i>р</i>	0,1
Количество дней с устойчивым снежным покровом, \mathcal{T}_{cn}	80
Количество дней с осадками в виде дождя, T_{∂}	71

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

где

 q_{cd} – удельное количество сдуваемых твердых частиц с поверхности штабеля угля, кг/кв.м*с;

 S_{uu} – площадь основания штабеля угля, кв.м;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 \textit{K}_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 \textit{K}_{6} – коэффициент, учитывающий профиль поверхности складируемого материала;

р - коэффициент измельчения горной массы;

 T_{cn} - количество дней с устойчивым снежным покровом;

 T_{∂} - количество дней с осадками в виде дождя;

 $\pmb{\eta}$ - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При статическом хранении угля:

 M_{3749} = 0,056 m/eod G_{3749} = 0,0043 e/c

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,00254	0,00254	0,00305	0,00355	0,00431	0,00431

Baan									
Подп. и дата									
Инв.№ подл.	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	Лист 62	
					-77	7 1			

ИЗАВ №6199. Перегрузка глинозема ИВ перегрузка глинозема

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

. Глинозем представляет собой распространенную природную форму оксида алюминия Al2O3.

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 4-х сторон (K_4 = 1). Высота падения материала при пересыпке составляет 1,0 м (B = 0,5). Залповый сброс при разгрузке автосамосвала отсутствует (K_9 = 1). Расчетные скорости ветра, м/с: 0,5 (K_9 = 1); 2 (K_9 = 1); 4 (K_9 = 1,2); 6 (K_9 = 1,4); 8 (K_9 = 1,7); 8,4 (K_9 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_9 = 1,2).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

Ī		Загрязняющее вещество	Максимально разовый	FORODOÙ BUÍDOS T/FOR
	код	наименование	выброс, г/с	Годовой выброс, т/год
	0101	диАлюминий триоксид/в пересчете на алюминий/	0,0286875	0,5832

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

	Материал	Параметры	Одноврем енность
Γ.	пинозем.	Количество перерабатываемого материала: Gч = 150 т/час; Gгод = 1200000	+
Э	мпирические коэффициенты, зависящие от	т/год. Весовая доля пылевой фракции в материале: K_1 = 0,01. Доля пыли,	
TI	ипа перегружаемого материала приняты по	переходящая в аэрозоль: K_2 = 0,001. Влажность до 1% (K_5 = 0,9). Размер	
а	налогу – гравий	куска 10-5 мм (K_7 = 0,6). Грейфер г/п 16 т 3830 (K_8 = 0,15).	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{FP} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_4 \cdot 10^6 / 3600, e/c$$

$$(1.1.1)$$

где K_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 K_2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

 ${\it K}_{\it 5}$ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств K_8 = 1;

 K_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_{4} - суммарное количество перерабатываемого материала в час, *тичас*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\mathbf{\Pi}_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{\text{eod}}, m/\text{eod}$$

$$\tag{1.1.2}$$

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

<u>Глинозем</u>

 $\begin{array}{l} \color{red} \underline{\pmb{M}}_{0101}^{0.5\,\,\mathrm{MC}} = 0.01 \cdot 0.001 \cdot 1 \cdot 1 \cdot 0.9 \cdot 0.6 \cdot 0.15 \cdot 1 \cdot 0.5 \cdot 150 \cdot 10^6\,/\,3600 = 0.016875\,\,\emph{z/c}; \\ \color{red} \underline{\pmb{M}}_{0101}^{2\,\,\mathrm{MC}} = 0.01 \cdot 0.001 \cdot 1 \cdot 1 \cdot 0.9 \cdot 0.6 \cdot 0.15 \cdot 1 \cdot 0.5 \cdot 150 \cdot 10^6\,/\,3600 = 0.016875\,\,\emph{z/c}; \\ \color{red} \underline{\pmb{M}}_{0101}^{4\,\,\mathrm{MC}} = 0.01 \cdot 0.001 \cdot 1.2 \cdot 1 \cdot 0.9 \cdot 0.6 \cdot 0.15 \cdot 1 \cdot 0.5 \cdot 150 \cdot 10^6\,/\,3600 = 0.02025\,\,\emph{z/c}; \\ \color{red} \underline{\pmb{M}}_{0101}^{6\,\,\mathrm{MC}} = 0.01 \cdot 0.001 \cdot 1.4 \cdot 1 \cdot 0.9 \cdot 0.6 \cdot 0.15 \cdot 1 \cdot 0.5 \cdot 150 \cdot 10^6\,/\,3600 = 0.023625\,\,\emph{z/c}; \\ \color{red} \underline{\pmb{M}}_{0101}^{6\,\,\mathrm{MC}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.9 \cdot 0.6 \cdot 0.15 \cdot 1 \cdot 0.5 \cdot 150 \cdot 10^6\,/\,3600 = 0.0286875\,\,\emph{z/c}; \\ \color{red} \underline{\pmb{M}}_{0101}^{8\,\,\mathrm{MC}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.9 \cdot 0.6 \cdot 0.15 \cdot 1 \cdot 0.5 \cdot 150 \cdot 10^6\,/\,3600 = 0.0286875\,\,\emph{z/c}; \\ \color{red} \underline{\pmb{M}}_{0101}^{8\,\,\mathrm{M}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.9 \cdot 0.6 \cdot 0.15 \cdot 1 \cdot 0.5 \cdot 150 \cdot 10^6\,/\,3600 = 0.0286875\,\,\emph{z/c}; \\ \color{red} \underline{\pmb{M}}_{0101}^{8\,\,\mathrm{M}} = 0.01 \cdot 0.001 \cdot 1.2 \cdot 1 \cdot 0.9 \cdot 0.6 \cdot 0.15 \cdot 1 \cdot 0.5 \cdot 1200000 = 0.5832\,\,\emph{m/zod}. \end{array}$

овос2.6 Пист Пист	a					
Лист	И					
	е подл.	_			OBOC2.6	Лист

ИЗАВ №6203. Работа стакера ИВ Работа стакера

Источником выделения пыли является перемещение масс угля (разгрузка и погрузка, ссыпание, перегрузка).

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,001587	0,020375

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельное выделение при разгрузке (перегрузке) материала, q_n [г/т]	0,32
Количество разгружаемого (перегружаемого) материала, П₂ [т/год]	7580000
Количество разгружаемого (перегружаемого) материала, П, [т/час]	1500
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, $W_{\mathfrak{g}}[M/c]$	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, w₀ [м/с]	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Высота разгрузки материала, [м]	2
Коэффициент, учитывающий высоту пересыпки материала (табл. 6.9), К₃	0,7
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	1
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_n = q_n \cdot \Pi_e \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot 10^{-6} \cdot (1-\eta), m/\text{200}$$
 [1]
 $G_n = (q_n \cdot \Pi_u \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot (1-\eta))/3600, e/c$ [2]

гле

 q_n – удельное выделение при разгрузке (перегрузке) материала, a/m;

 Π_{e} – количество разгружаемого (перегружаемого) материала, m/eod;

 Π_{v} – максимальное количество перегружаемого материала за час, m/vас;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 K_3 – коэффициент, учитывающий высоту пересыпки материала (таб. 6.9 Методики);

К₄ – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

η - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При разгрузочных (перегрузочных) работах:

M₃₇₄₉= 0,020375 *m/eo∂* **G**₃₇₄₉= 0,001587 *e/c*

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,000933	0,000933	0,001120	0,001307	0,001587	0,001587

Инв.Ле подл.					OBOC2.6	Лист
е подл.		<u> </u>				Пист
Подп. и дата						
В3						

Расчет выделения пыли при хранении пылящих материалов выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне); «Временные методические указания по расчету выбросов загрязняющих веществ (пыли) в атмосферу при складировании и перегрузке сыпучих материалов на предприятиях речного флота. Белгород, 1992 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р, позиция №102).

Железорудный концентрат имеет следующий состав: Название Процентный состав Железо общее 66% 0,2% Оксид железа 33,8% Неорганические соединения

Суммарные выбросы железа нормируются по оксидам железа, неорганические соединения – по пыль неорганической.

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год	
код	наименование	выброс, г/с	годовой выорос, тлод	
0123	диЖелезо триоксид, (железа оксид)/в пересчете на			
	железо/(Железо сесквиоксид)	0,548	0,538	
2908	Пыль неорганическая, содержащая 70-20% двуокиси			
	кремния	0.280	0.275	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.1):

 $\mathbf{M}_{XP} = \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{pa6} + \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot 0,11 \cdot \mathbf{q} \cdot (\mathbf{F}_{nn} - \mathbf{F}_{pa6}) \cdot (1 - \mathbf{\eta}), \ a/c$

где К₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

 K_6 - коэффициент, учитывающий профиль поверхности складируемого материала;

К₇ - коэффициент, учитывающий крупность материала;

 F_{pab} - площадь в плане, на которой систематически производятся погрузочно-разгрузочные работы, M^2 ,

 \mathbf{F}_{nn} - поверхность пыления в плане. M^2

 ${m q}$ - максимальная удельная сдуваемость пыли, ${\it a}/({\it M}^2\cdot {\it c});$

 η - степень снижения выбросов при применении систем пылеподавления.

Значение коэффициента K_6 определяется по формуле (1.1.2):

$$\mathbf{K}_{6} = \mathbf{F}_{\text{MAKC}} / \mathbf{F}_{\text{ПЛ}} \tag{1.1.2}$$

(1.1.3)

(1.1.4)

где $\mathbf{F}_{\text{макс}}$ - фактическая площадь поверхности складируемого материала при максимальном заполнении склада, M^2 .

 $q = 10^{-3} \cdot a \cdot U^{\circ}, e/(M^{2} \cdot c)$ где a и b – эмпирические коэффициенты, зависящие от типа перегружаемого материала;

U^b - скорость ветра, *м/с*.

Валовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.4):

$$\Pi_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{nn} \cdot (1 - \eta) \cdot (\mathbf{T} - \mathbf{T}_{\partial} - \mathbf{T}_c) \, m/cod$$

где Т - общее время хранения материала за рассматриваемый период, в сутках;

 $T_∂$ - число дней с дождем;

 T_c - число дней с устойчивым снежным покровом.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчетные параметры и их значения приведены в таблице 1.1.2.

Таблица 1.1.2 - Расчетные параметры и их значения

Расчетные параметры	Значения
Перегружаемый материал: железорудный концентрат	a = 0,0135
Удельные показатели приняты по аналогу - щебень	b = 2,987
Эмпирические коэффициенты, зависящие от типа перегружаемого материала	
Местные условия – склады, хранилища, открытые с 2-х сторон	$K_4 = 0.2$
Коэффициент укрытости принят исходя из наличия пылеветрозащитного ограждения с	;
севера и скальной стенки с запада	
Влажность материала до 9%	$K_5 = 0.2$
Профиль поверхности складируемого материала	K ₆ = 27300 / 21000 = 1,3
Крупность материала – куски размером 50-10 мм	$K_7 = 0.5$
Расчетные скорости ветра, м/с	U' = 0,5; 2; 4; 6; 8; 8,4
Среднегодовая скорость ветра, м/с	U = 3,8
Площадь поверхности погрузочно-разгрузочных работы в плане, м ²	$F_{pa6} = 2000$
Площадь поверхности пыления в плане, м²	$F_{nn} = 21000$
Площадь фактической поверхности пыления, м ²	$F_{\text{MAKC}} = 27300$
Общее время хранения материала за рассматриваемый период, в сутках	T = 366
Число дней с дождем	$T_{\partial} = 71$
Число дней с устойчивым снежным покровом	$T_c = 80$

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Взам.инв.

윋

Железорудный концентрат

Mn	ыли ^{0.5 м/с} : + 0,2	= 0,2 · 0 : · 0,2 · ·	,2 · 1,3 · 1,3 · 0,5	$0.5^{2.987} = 0.0$ $0.5 \cdot 0.000$ $0.000 \cdot 0.000$ $0.000 \cdot 0.000$	0017 · 20 00017 ·	000 + (21000 - 2000) = 0,0001811 <i>a/c</i> ;	
						ODOCA (Лист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	65

```
M_{\text{ПЫЛ}}^{2 \text{ M/C}} = 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.000107 \cdot 2000 +
+ 0,2 · 0,2 · 1,3 · 0,5 · 0,11 · 0,000107 · (21000 - 2000) = 0,0113817 e/c; q_{nbilu}^{4 \text{ M/C}} = 10^{-3} \cdot 0,0135 \cdot 4^{2.987} = 0,0008486 e/(m^2 \cdot c);
\mathbf{M}_{\text{пыли}}^{4 \text{ м/c}} = 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.0008486 \cdot 2000 +
 + 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.11 \cdot 0.0008486 \cdot (21000 - 2000) = 0.0902368 \ e/c; 
 \mathbf{q}_{nb,17} = 10^{-3} \cdot 0.0135 \cdot 6^{2.987} = 0.0028489 \ e/(M^2 \cdot c); 
\mathbf{M}_{\text{пыли}}^{6 \text{ M/c}} = 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.0028489 \cdot 2000 +
+ 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.11 \cdot 0.0028489 \cdot (21000 - 2000) = 0.3029481 e/c;

\mathbf{q}_{nb,nu}^{B M/C} = 10^{-3} \cdot 0.0135 \cdot 8^{2.987} = 0.0067277 e/(M^2 c);
\mathbf{M}_{\text{пыли}}^{8 \text{ м/c}} = 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.0067277 \cdot 2000 +
+ 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.11 \cdot 0.0067277 \cdot (21000 - 2000) = 0.7154186 \ e/c;

\mathbf{q}_{nb,nu}^{8.4 \text{ M/C}} = 10^{-3} \cdot 0.0135 \cdot 8.4^{2.987} = 0.0077832 \ e/(\text{M}^2 c);
\mathbf{M}_{\text{пыли}}^{8.4 \text{ м/c}} = 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.0077832 \cdot 2000 +
        +0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.11 \cdot 0.0077832 \cdot (21000 - 2000) = 0.8276613 e/c;
q_{nыли} = 10^{-3} \cdot 0.0135 \cdot 3.8^{2.987} = 0.000728 \ e/(M^2 \cdot c);

\Pi_{\text{пыли}} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot 0.2 \cdot 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.000728 \cdot 21000 \cdot (366-71-80) = 0.812241 \text{ m/sod.}

Содержание в выбросах оксидов железа составит 66,2 % от общего выброса:
M^{0.5 \text{ M/c}} = 0.0001811 * 0.662 = 0.000120 \ e/c;
\mathbf{M}^{2 \text{ M/c}} = 0.0113817 \cdot 0.662 = 0.00753 \text{ e/c};
M^{4 \text{ M/C}} = 0.0902368 * 0.662 = 0.0597 \text{ e/c};
M^{6 \text{ M/C}} = 0,3029481 * 0,662 = 0,201 \text{ s/c};

M^{8 \text{ M/C}} = 0,7154186 * 0,662 = 0,474 \text{ s/c};
M^{8.9 \text{ M/c}} = 0.8276613 * 0.662 = 0.548 \text{ e/c};
\Pi = 0,812241 * 0,662 = 0,538 m/sod.
Остальные вещества нормируются как пыль неорганическая:
M^{0.5 \text{ m/c}} = 0.0001811 \times 0.338 = 0.0000612 \text{ a/c};
\mathbf{M}^{2 \text{ M/c}} = 0.0113817 \cdot 0.338 = 0.003847 \text{ e/c};
M^{4 \text{ m/c}} = 0.0902368 * 0.338 = 0.0305 \text{ e/c};
M^{6 \text{ M/c}} = 0.3029481 * 0.338 = 0.102 \text{ s/c};

M^{6 \text{ M/c}} = 0.7154186 * 0.338 = 0.242 \text{ s/c};
M^{8.9 \text{ M/c}} = 0.8276613 * 0.338 = 0.280 \text{ e/c};
\Pi = 0,812241 * 0,338 = 0,275 m/eoð.
```

ОВОС2.6 — Лист ОВОС2.6	Взам.инв								
овос2.6 Лист	И								
[№] Изм. Кол.уч Лист № док. Подп. Дата	Инв.№ подл.	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	Лист 66

Расчет выделения пыли при хранении пылящих материалов выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне); «Временные методические указания по расчету выбросов загрязняющих веществ (пыли) в атмосферу при складировании и перегрузке сыпучих материалов на предприятиях речного флота. Белгород, 1992 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р, позиция №102).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 111

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
0118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,089	0,0892
	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,102	0,102
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,064	0,0637

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{XP} = \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{pa6} + \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot 0,11 \cdot \mathbf{q} \cdot (\mathbf{F}_{nn} - \mathbf{F}_{pa6}) \cdot (1 - \eta), \ a/c$$

$$(1.1.1)$$

где K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

 $\emph{\textbf{K}}_{6}$ - коэффициент, учитывающий профиль поверхности складируемого материала:

К₇ - коэффициент, учитывающий крупность материала;

 F_{pa6} - площадь в плане, на которой систематически производятся погрузочно-разгрузочные работы, M^2 ,

 F_{nn} - поверхность пыления в плане, M^2 ;

q - максимальная удельная сдуваемость пыли, $c/(m^2 \cdot c)$;

η - степень снижения выбросов при применении систем пылеподавления.

 $K_6 = F_{\text{макс}} / F_{\text{пл}}$ где $F_{\text{макс}}$ - фактическая площадь поверхности складируемого материала при максимальном заполнении склада, M^2 .

Значение максимальной удельной сдуваемости пылящего материала определяется по формуле (1.1.3):

пылящего материала определяется по формуле (1.1.5).
$$q = 10^{-3} \cdot a \cdot U^{\circ}$$
, $e/(m^2 \cdot c)$

(1.1.2)

(1.1.3)

Значения

где а и b – эмпирические коэффициенты, зависящие от типа перегружаемого материала;

 U° - скорость ветра, M/c.

Валовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.4):

Расцетные параметры

$$\Pi_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{nn} \cdot (1 - \mathbf{\eta}) \cdot (\mathbf{T} - \mathbf{T}_{\partial} - \mathbf{T}_c) \, \text{m/eod}$$

$$(1.1.4)$$

где Т - общее время хранения материала за рассматриваемый период, в сутках;

 $T_{∂}$ - число дней с дождем;

 T_c - число дней с устойчивым снежным покровом.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчетные параметры и их значения приведены в таблице 1.1.2.

Таблица 1.1.2 - **Расчет<u>ные параметры и их значения</u>**

гасчетные параметры	эпачения
Перегружаемый материал: Руда	a = 0,0135
Коэффициенты сдуваемости приняты для щебня	b = 2,987
Эмпирические коэффициенты, зависящие от типа перегружаемого материала	
Местные условия – склады, хранилища, открытые с 2-х сторон	$K_4 = 0.2$
Коэффициент укрытости принят исходя из наличия пылеветрозащитного ограждения с	
севера и скальной стенки с запада	
Влажность материала до 9%	$K_5 = 0.2$
Профиль поверхности складируемого материала	K ₆ = 21414 / 16472 = 1,300024
Крупность материала – куски размером 500-100 мм	$K_7 = 0.2$
Расчетные скорости ветра, м/с	U' = 0,5; 2; 4; 6; 8; 8,4
Среднегодовая скорость ветра, м/с	U = 3,8
Площадь поверхности погрузочно-разгрузочных работы в плане, м²	$F_{pa6} = 1500$
Площадь поверхности пыления в плане, м ²	$F_{nn} = 16472$
Площадь фактической поверхности пыления, м ²	F _{Makc} = 21414
Общее время хранения материала за рассматриваемый период, в сутках	T = 366
Число дней с дождем	$T_{\partial} = 71$
Число дней с устойчивым снежным покровом	$T_c = 80$
Общее время хранения материала за рассматриваемый период, в сутках Число дней с дождем	T = 366 $T_{\partial} = 71$

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Взам.инв.

윋

 $^{\text{M/c}} = 10^{-3} \cdot 0.0135 \cdot 0.5^{2.987} = 0.0000017 \ e/(m^2 \cdot c);$

 $+0.2 \cdot 0.2 \cdot 1.300024 \cdot 0.2 \cdot 0.11 \cdot 0.0000017 \cdot (16472 - 1500) = 0.0000557 e/c;$

 $q_{n_{bin}}^{2 \text{ M/C}} = 10^{-3} \cdot 0.0135 \cdot 2^{2.987} = 0.000107 \text{ a/(M}^2 \text{ c});$ $M_{bin}^{2 \text{ M/C}} = 0.2 \cdot 0.2 \cdot 1.300024 \cdot 0.2 \cdot 0.000107 \cdot 1500 + 0.000107 \cdot 15000 + 0.000107 \cdot 15000 + 0.000107 \cdot 15000 + 0.000107 \cdot 15000 + 0.0001000 + 0.0001000 + 0.0000$

	$\begin{aligned} & \mathbf{M}_{\text{пыли}} = 0,2 \cdot 0,2 \cdot 1,300024 \cdot 0,2 \cdot 0,100 \cdot 107 \cdot 1300 + \\ & + 0,2 \cdot 0,2 \cdot 1,300024 \cdot 0,2 \cdot 0,11 \cdot 0,000107 \cdot (16472 - 1500) = 0,003503 \ \textit{a/c}; \\ & \mathbf{q}_{\text{пыли}} ^{4 \text{ M/c}} = 10^{-3} \cdot 0,0135 \cdot 4^{2.987} = 0,0008486 \ \textit{a/(M^2 c)}; \\ & \mathbf{M}_{\text{пыли}} ^{4 \text{ M/c}} = 0,2 \cdot 0,2 \cdot 1,300024 \cdot 0,2 \cdot 0,0008486 \cdot 1500 + \\ & + 0,2 \cdot 0,2 \cdot 1,300024 \cdot 0,2 \cdot 0,11 \cdot 0,0008486 \cdot (16472 - 1500) = 0,0277724 \ \textit{a/c}; \end{aligned}$					
Изм. К	Кол.уч Лист	№ док.	Подп.	Дата	OBOC2.6	Лист 67

```
q_{\text{пыли}}^{6 \text{ м/c}} = 10^{-3} \cdot 0,0135 \cdot 6^{2.987} = 0,0028489 \text{ e/(m²·c)};
+0.2 \cdot 0.2 \cdot 1.300024 \cdot 0.2 \cdot 0.11 \cdot 0.0028489 \cdot (16472 - 1500) = 0.0932392 \ e/c;
q_{\text{пыли}}^{8 \text{ м/c}} = 10^{-3} \cdot 0.0135 \cdot 8^{2.987} = 0.0067277 \text{ e/(M}^2 \cdot \text{c});
\mathbf{M}_{n \bowtie n u}^{8 \text{ m/c}} = 0.2 \cdot 0.2 \cdot 1.300024 \cdot 0.2 \cdot 0.0067277 \cdot 1500 + 0.0067277 \cdot 0.006727 \cdot 0.0067277 \cdot 0.006727 \cdot 0.
+ 0,2 · 0,2 · 1,300024 · 0,2 · 0,11 · 0,0067277 · (16472 - 1500) = 0,2201865 e/c; 

q_{nbinu}^{8.4 \text{ m/c}} = 10^{-3} \cdot 0,0135 \cdot 8,4^{2.987} = 0,0077832 e/(m^2 c);
\mathbf{M}_{\text{ПЫЛИ}}^{8.4 \text{ M/C}} = 0.2 \cdot 0.2 \cdot 1.300024 \cdot 0.2 \cdot 0.0077832 \cdot 1500 + 0.0077832 \cdot 0.007782 \cdot 0.007782
+ 0,2 · 0,2 · 1,300024 · 0,2 · 0,11 · 0,0077832 · (16472 - 1500) = 0,2547318 e/c; 

\mathbf{q}_{nbinu} = 10^{-3} \cdot 0,0135 \cdot 3,8^{2.987} = 0,000728 e/(m^2 \cdot c);
\Pi_{\text{пыли}} = 0,11\cdot8,64\cdot10^{-2}\cdot0,2\cdot0,2\cdot1,300024\cdot0,2\cdot0,000728\cdot16472\cdot(366-71-80) = 0,2548473 \text{ m/sod.}
Ильменит (титанистый железняк) — минерал общей химической формулы FeO·TiO2 или FeTiO₃. В ильменитовых концентратах
содержится 35% диоксида титана и 40% железа. Таким образом, 35% от общего выброса нормируется как диоксид титана, 40% как
оксид железа, остальные соединения приняты по пыли неорганической.
Выбросы диоксида титана:
M^{0.5 \text{ m/c}} = 0.0000557 * 0.35 = 0.0000195 \text{ e/c};
M^{2 \text{ M/C}} = 0.003503 * 0.35 = 0.00123 \text{ e/c};
M^{4 \text{ m/c}} = 0.0277724 * 0.35 = 0.00972 \text{ e/c};
M^{6 \text{ M/c}} = 0.0932392 * 0.35 = 0.0326 \text{ e/c};
M^{8 \text{ M/C}} = 0.2201865 * 0.35 = 0.0771 \text{ e/c};
M^{8.4 \text{ m/c}} = 0.2547318 * 0.35 = 0.089 \text{ e/c};
\Pi = 0,2548473 * 0,35 = 0,0892 m/eod.
Выбросы оксида железа:
M^{0.5 \text{ M/c}} = 0,0000557 * 0,4 = 0,0000223 \text{ e/c};
\mathbf{M}^{2 \text{ M/c}} = 0.003503 * 0.4 = 0.00140 \text{ e/c};
M^{4 \text{ m/c}} = 0.0277724 * 0.4 = 0.0111 \text{ e/c};
M^{6 \text{ M/c}} = 0.0932392 * 0.4 = 0.0373 \text{ e/c};
M^{8 \text{ M/C}} = 0.2201865 * 0.4 = 0.0881 \text{ e/c};
M^{8.4 \text{ M/C}} = 0.2547318 * 0.4 = 0.102 \text{ e/c};
\Pi = 0.2548473 * 0.4 = 0.102 m/sod.
Выбросы пыли неорганической:
M^{0.5 \text{ m/c}} = 0,0000557 * 0,25 = 0,0000139 \text{ e/c};
M^{2 \text{ m/c}} = 0.003503 * 0.25 = 0.000876 \text{ e/c};
M^{4 \text{ M/C}} = 0.0277724 * 0.25 = 0.00694 \text{ e/c};
M^{6 \text{ M/c}} = 0.0932392 * 0.25 = 0.0233 \text{ e/c};
M^{8 \text{ M/C}} = 0.2201865 * 0.25 = 0.0550 \text{ e/c};
M^{8.4 \text{ M/C}} = 0.3027533 * 0.25 = 0.064 \text{ e/c};
\Pi = 0,2548473 * 0,25 = 0,0637 m/eod.
```

							Лист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	68
	J			. , ,	, ,		

Взам.инв.

윋

ИЗАВ №6206. пыление от проездов ИВ пыление от проездов

Источником выделения пыли являются пыление в результате уноса пыли при движении транспортных средств на автодорогах Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: раздел 1.6.4 Методического пособия по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух ОАО "НИИ Атмосфера", 2012 г

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1. Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
-	Пыль от проезда а/т	0,00972	0,30661

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Количество работающих автомашин (или техники), л [ед]	67
Суммарная грузоподъемность автомашин (или техники), [тонн]	385
Средняя грузоподъемность 1 ед. транспорта, [тонн]	5,75
Коэффициент, учитывающий среднюю грузоподъемность единицы автотранспорта, С₁ (принимается по ближайшему значению из табл. 1.6.1)	1,0
Средняя скорость транспортирования, [км/ч]	3
Число ходок (туда и обратно) всего транспорта в час, <i>N (принято что каждая ед.а/т делает в час 1 ходку</i>)	67
Средняя протяженность одной ходки, L [км]	3
Коэффициент, учитывающий среднюю скорость передвижения транспорта, C_2 (принимается по ближайшему значению из табл. 1.6.2)	0,6
Покрытие дорог	Асфальт, бетон
Коэффициент, учитывающий состояние дорог, C_3	0,1
Коэффициент, учитывающий профиль поверхности материала в кузове автотранспорта, С₄	0
Средняя площадь кузова, F_{ϱ} [кв.м]	0
Коэффициент, учитывающий скорость обдува материала, C_5	0
Влажность материала, % (принята влажность груза до 9% с учетом непрерывного орошения складов и высыхания верхнего слоя на проездах)	до 9%
Коэффициент, учитывающий влажность поверхностного слоя материала, C_6	0,2
Пылевыделение в атмосферу на 1 км пробега, q_1 [гр/км]	1450
Пылевыделение с единицы фактической поверхности материала в кузове, q_2 [гр/кв.м*сек,]	0
р пылевыделение с единицы фактической поверхности материала в кузове, у ₂ [гр/кв.м сек,]	0
Коэффициент, учитывающий долю пыли, уносимой в атмосферу, C_7	0,01

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

 $M_{n} = (C_1 \cdot C_2 \cdot C_3 \cdot C_6 \cdot N \cdot L \cdot C_7 \cdot q_1 / 3600) + C_4 \cdot C_5 \cdot C_6 \cdot q_2 \cdot F_0 \cdot n$ $G_n = ((C_1 \cdot C_2 \cdot C_3 \cdot C_6 \cdot N \cdot L \cdot C_7 \cdot q_1 / 3600) + C_4 \cdot C_5 \cdot C_6 \cdot q_2 \cdot F_0 \cdot n) \cdot 31,56$

г/с [1] m/год [2]

где

Взам.инв.№

подл.

IHB.No

С₁ − коэффициент, учитывающий среднюю грузоподъемность единицы автотранспорта и принимаемый в соответствии с табл. 1.6.1 Методики;

Определяется как частное от деления суммарной грузоподъемности всех действующих машин на общее число машин

 C_2 – коэффициент, учитывающий среднюю скорость передвижения транспорта и принимаемый в соответствии с табл. 1.6.2 Методики;

С₃ – коэффициент, учитывающий состояние дорог и принимаемый в соответствии с табл. 1.6.6 Методики;

C₄ – коэффициент, учитывающий профиль поверхности материала в кузове автотранспорта. Значение принимается в пределах 1.3.1.6.

 F_0 – средняя площадь кузова [кв.м];

C₅ – коэффициент, учитывающий скорость обдува материала, которая определяется как геометрическая сумма скорости ветра и обратного вектора скорости движения автотранспорта, принимается по табл. 1.6.7 Методики

 C_6 – коэффициент, учитывающий влажность поверхностного слоя материала, принимается по табл. 1.6.3 Методики;

N – число ходок (туда и обратно) всего транспорта в час;

L - средняя протяженность одной ходки, км;

 q_1 – пылевыделение в атмосферу на 1 км пробега, принимается 1450 гр;

 \dot{q}_2 – пылевыделение с единицы фактической поверхности материала в кузове, гр/кв.м*сек. Принимается по табл. 1.6.4 Методики;

п – число работающих автомашин;

С₇ – коэффициент, учитывающий долю пыли, уносимой в атмосферу, принимается 0,01;

Транспортированик груза самосвалами на территории не осуществляется, поэтому пыление рассчитано только от контакта колес с проездами

Количество пыли, выделяемой при контакте колеса с дорожной поверхностью рассчитано исходя из общего грузооборота и производственной программы. Разделение общего выброса пыли по составляющим принято в зависимости от груза в

процентном соотношении к общему грузообороту.

		% от	
Груз	Количество в год (причалы 8-15)	грузооборота	Загрязняющие вещества
Каменный уголь	10000000	59,5%	Пыль каменного угля (3749)
Кокс	240000	1,4%	Пыль каменного угля (3749)
Глинозем	1200000	7,1%	-
	1200000 (500)2000000		Оксид железа (0123)
Железорудный концентрат	1200000 (без хранения, не учитывается)	7,1%	Пыль неорганическая (2908)
Ильменитовая руда	240000	1,4%	Оксид титана (0118) Оксид железа (0123)

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	

OBOC2.6

Лист

			Пыль неорганическая (2908)
Нефтекокс/кокс электродный	50000	0,3%	Углерод (пигмент черный) (0328)
Медный штейн	50000	0,3%	Медь оксид (0146) Пыль неорганическая (2908)
Окалина (шлак)	50000	0,3%	Оксид алюминия (0101) Оксид железа (0123) Пыль неорганическая (2909)
Пек каменноугольный	300000 (тарированный, выбросов нет)	1,8%	-
Клинкер цементный	240000 (тарированный, выбросов нет)	1,4%	-
Окалина (шлак) (импорт)	50000 (тарированный, выбросов нет)	0,3%	-
Пеллеты	50000 (тарированный, выбросов нет)	0,3%	-
Черный металл	2100000 (непылящий груз, выбросов нет)	12,5%	-
Алюминий (металл)	540000 (непылящий груз, выбросов нет)	3,2%	-
Трубы	43000 (непылящий груз, выбросов нет)	0,3%	-
Прочие грузы (шины автомобильные, лес круглый, пиломатериалы, автомобили и спецтехника)	450000 (непылящий груз, выбросов нет)	2,7%	-
Контейнеры (крупнотоннажные), TEU	10000 (непылящий груз, выбросов нет)	0,1%	-
Общий грузоооборот	16813000	100,0%	

Железорудный концентрат в составе содержит 66,2% железа и 33,8% остальных примесей Ильменит (титанистый железняк) — минерал общей химической формулы FeO·TiO2 или FeTiO3 . В ильменитовых концентратах содержится 35% диоксида титана и 40% железа. Таким образом, 35% от общего выброса нормируется как диоксид титана, 40% как оксид железа, остальные соединения приняты по пыли неорганической

Медный штейн содержит медь в концентрате до 40%. Остальное – смесь пород

Окалина (шлак) представляет собой сложную многокомпонентную пыль, из суммарного выброса ЗВ доля оксидов железа (код 0123) составляет 58,24%, доля оксидов алюминия (код 0101) 5,51%, остальное – пыль неорганическая (код 2909)

Всего по источнику выбросов:

	Загрязняющее вещество	Максимально-разовый	
Код	Наименование	выброс, г/сек	Годовой выброс, т/год
	От угл	ІЯ	
3749	Пыль каменного угля	0,00578	0,182
	От кок	са	
3749	Пыль каменного угля	0,000139	0,00438
	От глино	зема	
101	Алюминия оксид	0,000693	0,0219
•	От железорудного	концентрата	
123	Железа оксид	0,000459	0,0145
2908	Пыль неорганическая SiO2 20-70%	0,000234	0,00740
	От нефтекокса/кокс	а электродного	
328	Углерод	0,0000289	0,00091
	От медного	штейна	
146	Медь оксид	0,0000116	0,000365
2908	Пыль неорганическая SiO2 20-70%	0,0000173	0,000547
	От окалины	(шлака)	
101	Алюминия оксид	0,0000159	0,0000502
123	Железа оксид	0,000168	0,000531
2909	Пыль неорганическая SiO2 <20%	0,0000105	0,000331
	От ильменито	вой руды	
118	Титана оксид	0,000485	0,00153
123	Железа оксид	0,0000555	0,00175
2908	Пыль неорганическая SiO2 20-70%	0,0000347	0,00109

Расчет по каждому грузу выполнен на максимальную загруженность складов, поэтому в расчете рассеивания учтена неодновременность движения грузов, и по каждому веществу принят максимально-разовый выброс:

	Загрязняющее вещество	Максимально-разовый	Годовой выброс, т/год
Код	Наименование	выброс, г/сек	годовой выорос, глод
3749	Пыль каменного угля	0,00578	0,1867
101	Алюминия оксид	0,000693	0,0219
118	Титана оксид	0,0000289	0,00091
123	Железа оксид	0,000459	0,0168
146	Медь оксид	0,0000116	0,000365
328	Углерод	0,0000289	0,00091
2908	Пыль неорганическая SiO2 20-70%	0,000234	0,0090
2909	Пыль неорганическая SiO2 <20%	0,0000105	0,000331

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Инв.№ подл.

ИЗАВ №6216. ленточный конвейер КЛ-1 ИВ ленточный конвейер КЛ-1

Источником выделения пыли является унос пыли при транспортировании угля ленточным конвейером. Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р, позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой
код	код наименование		выброс, т/год
3749	Пыль каменного угля	0,025920	0,817413

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

V	0.000
Удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, q_n [г/кв.м*с]	0,003
Количество конвейеров одного типа, n_{j}	1
Ширина ленты конвейера, b_{j} [м];	1,2
Длина ленты конвейера, L_j [м];	1200
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Количество рабочих часов конвейра в год, T_j [ч/год]	8760
Скорость ветра, W_{θ} [м/с]	8,4
Скорость движения конвейера, w₀[м/с]	3,8
Скорость обдува материала, V₀б [м/с]	2,98
Коэффициент, учитывающий скорость обдува материала(принимается по ближайшему значению) (таб. 7.19 Методики), K_{ob}	1
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	0,6
Эффективность пылеподавления (таб 7.16), η [долл.ед]	0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_{c\partial} = \sum 3, 6 \cdot q_n \cdot b_j \cdot I_j \cdot T_j \cdot K_1 \cdot K_{o\delta} \cdot K_4 \cdot (1-\eta) \cdot 10^{-3}, \, \text{m/2od} \quad [1]$$

$$G_{c\partial} = \sum q_n \cdot b_j \cdot I_j \cdot n_j \cdot K_1 \cdot K_{o\delta} \cdot K_4 \cdot (1-\eta), \, \text{e/c}$$

где

 q_n – удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, г/кв.м*с;

b_i – ширина ленты ковейера, м;

 I_{j} – длина ленты конвейера, м;

 T_i – количество рабочих часов конвейра в год, ч/год;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_{o6} – коэффициент, учитывающий скорость обдува материала (таб. 7.19 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 7.16 Методики).

При расчете выбросов от конвейеров, эксплуатирующихся в помещении учитывается коэффициент осаждения 0,4, при этом коэффициент K_{o6} =1, остальные коэффициенты принимаются как указано выше

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При транспортировке ленточным конвейером:

M₃₇₄₉= 0,817 m/eo∂ **G**₃₇₄₉= 0,0259 e/c

Взам.									
Подп. и дата									
Инв.№ подл.							ODO CO	J	Лист
Инв	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6		71

ИЗАВ №6217. ленточный конвейер КЛ-3 ИВ ленточный конвейер КЛ-3

Источником выделения пыли является унос пыли при транспортировании угля ленточным конвейером.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р, позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой
код	наименование	разовый выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,025920	0,817413

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, q_n [г/кв.м*с]	0,003
Количество конвейеров одного типа, n_j	1
Ширина ленты конвейера, b_{j} [м];	1,2
Длина ленты конвейера, L_j [м];	1200
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Количество рабочих часов конвейра в год, T_j [ч/год]	8760
Скорость ветра, $w_{\rm s}$ [м/с]	8,4
Скорость движения конвейера, w₀[м/с]	3,8
Скорость обдува материала, V_{o6} [м/с]	2,98
Коэффициент, учитывающий скорость обдува материала(принимается по ближайшему значению) (таб. 7.19	1
Методики), K_{ob}	·
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), К₄	0,6
Эффективность пылеподавления (таб 7.16), η [долл.ед]	0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_{c\partial} = \sum 3, 6 \cdot q_n \cdot b_j \cdot I_j \cdot T_j \cdot K_1 \cdot K_{o\delta} \cdot K_4 \cdot (1-\eta) \cdot 10^{-3}, \, \text{m/eod} \quad [1]$$

$$G_{c\partial} = \sum q_n \cdot b_j \cdot I_j \cdot n_j \cdot K_1 \cdot K_{o\delta} \cdot K_4 \cdot (1-\eta), \, \text{e/c}$$

где

 q_n – удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, г/кв.м*с;

b_i – ширина ленты ковейера, м;

 I_{j} – длина ленты конвейера, м;

 T_i – количество рабочих часов конвейра в год, ч/год;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_{o6} – коэффициент, учитывающий скорость обдува материала (таб. 7.19 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

η - эффективность применяемых средств пылеподавления, дол.ед (таб. 7.16 Методики).

При расчете выбросов от конвейеров, эксплуатирующихся в помещении учитывается коэффициент осаждения 0,4, при этом коэффициент K_{o6} =1, остальные коэффициенты принимаются как указано выше

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При транспортировке ленточным конвейером:

 M_{3749} = 0,817 m/eod G_{3749} = 0,0259 e/c

Подп. и дата	Инв.№ подл.				
	Подп. и дата				

ИЗАВ №6218. Буксирное сопровождение ИВ Силовые установки буксиров

В процессе эксплуатации стационарных дизельных установок в атмосферу с отработавшими газами выделяются вредные (загрязняющие) вещества.

В качестве исходных данных для расчета максимальных разовых выбросов используются сведения из технической документации дизельной установки об эксплуатационной мощности (если сведения об эксплуатационной мощности не приводятся, - то номинальной мощности), а для расчета валовых выбросов в атмосферу, - результаты учетных сведений о годовом расходе топлива дизельного двигателя.

Расчет выделений загрязняющих веществ выполнен в соответствии с Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок (утверждена Минприроды России 14.02.2001) (Сведения внесены распоряжением Минприроды России от 14.12.2020 № 35-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №4 в Перечне).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год	
код	наименование	выброс, г/с	тодовой выорос, тлод	
301	Азота диоксид (Азот (IV) оксид)	5,4357333	7,44016	
304	Азот (II) оксид (Азота оксид)	0,8833067	1,209026	
328	Углерод (Сажа)	0,2022222	0,2849847	
330	Сера диоксид (Ангидрид сернистый)	2,8311111	3,9858	
337	Углерод оксид	5,3588889	7,3073	
703	Бенз/а/пирен (3,4-Бензпирен)	0,000063	0,000086	
1325	Формальдегид	0,0586444	0,0757302	
2732	Керосин	1,3872444	1,897905	

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Данные	Мощность , кВт	Расход топлива, т/год	Удельный расход, г/кВт·ч	Однов ременн ость
Буксир «Петр». Группа В. Изготовитель ЕС, США, Япония. Мощные, средней	2600	237,25	250	+
быстроходности (Ne = 736-7360 кВт; n = 500-1000 об/мин). До ремонта.				
Азимутальный буксир «Ермак» . Группа В. Изготовитель ЕС, США, Япония. Мощные,	2100	191,625	250	+
средней быстроходности (Ne = 736-7360 кВт; n = 500-1000 об/мин). До ремонта.				
Буксир «Гелий» . Группа В. Изготовитель ЕС, США, Япония. Мощные, средней	2580	235,425	250	+
быстроходности (Ne = 736-7360 кВт; n = 500-1000 об/мин). До ремонта.				

Максимальный выброс i-го вещества стационарной дизельной установкой определяется по формуле (1.1.1):

 M_i = (1 / 3600) · \mathbf{e}_{Mi} · \mathbf{P}_3 , \mathbf{a}/\mathbf{c} (1.1.1) где \mathbf{e}_{Mi} - выброс \mathbf{i} -го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, $\mathbf{a}/\mathbf{k}\mathbf{B}\mathbf{m} \cdot \mathbf{v}$;

 P_{3} - эксплуатационная мощность стационарной дизельной установки, *кВт*;

(1 / 3600) - коэффициент пересчета из часов в секунды.

Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле (1.1.2):

$$\mathbf{W}_{\exists i} = (1 / 1000) \cdot \mathbf{q}_{\exists i} \cdot \mathbf{G}_{\mathsf{T}}, \, m/eo\partial \tag{1.1.2}$$

где **q**_{3i} - выброс *i*-го вредного вещества, приходящегося на 1 кг топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл. *e/ke*:

 ${\bf G}_T$ - расход топлива стационарной дизельной установкой за год, m;

(1 / 1000) - коэффициент пересчета килограмм в тонны.

Расход отработавших газов от стационарной дизельной установки определяется по формуле (1.1.3):

$$G_{OF} = 8.72 \cdot 10^{-6} \cdot \mathbf{b}_{3} \cdot \mathbf{P}_{3}, \, \text{ke/c}$$
 (1.1.3)

где b_3 - удельный расход топлива на эксплуатационном (или номинальном) режиме работы двигателя, $a/kBm \cdot v$.

Объемный расход отработавших газов определяется по формуле (1.1.4):

$$\mathbf{Q}_{O\Gamma} = \mathbf{G}_{O\Gamma} / \mathbf{y}_{O\Gamma}, \, \mathbf{M}^{3} / \mathbf{c} \tag{1.1.4}$$

(1.1.5)

где γ_{OF} - удельный вес отработавших газов, рассчитываемый по формуле (1.1.5):

$$\mathbf{y}_{O\Gamma} = \mathbf{y}_{O\Gamma(npu\ t=0^{\circ}C)} / (1 + \mathbf{T}_{O\Gamma} / 273), \ \kappa e/m^{3}$$

где $\gamma_{O\Gamma(npu\ t=0^{\circ}C)}$ - удельный вес отработавших газов при температуре 0°C, $\gamma_{O\Gamma(npu\ t=0^{\circ}C)}$ = 1,31 ка/м³,

 $T_{\text{O}\Gamma}$ - температура отработавших газов, K.

При организованном выбросе отработавших газов в атмосферу, на удалении от стационарной дизельной установки (высоте) до 5 м, значение их температуры можно принимать равным 450 °C, на удалении от 5 до 10 м - 400 °C.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Буксир «Петр»

Взам.инв.

윋

Азота диоксид (Азот (IV) оксид)

 $M = (1/3600) \cdot 2,688 \cdot 2600 = 1,941333 \ e/c;$

W₃ = (1 / 1000) · 11,2 · 237,25 = 2,6572 m/eod. Aзот (II) оксид (Азота оксид)

 $M = (1/3600) \cdot 0.4368 \cdot 2600 = 0.3154667 e/c;$

 $W_{3} = (1 / 1000) \cdot 1,82 \cdot 237,25 = 0,431795 \text{ m/sod}.$

Углерод (Сажа)

 $M = (1/3600) \cdot 0.1 \cdot 2600 = 0.0722222 e/c;$

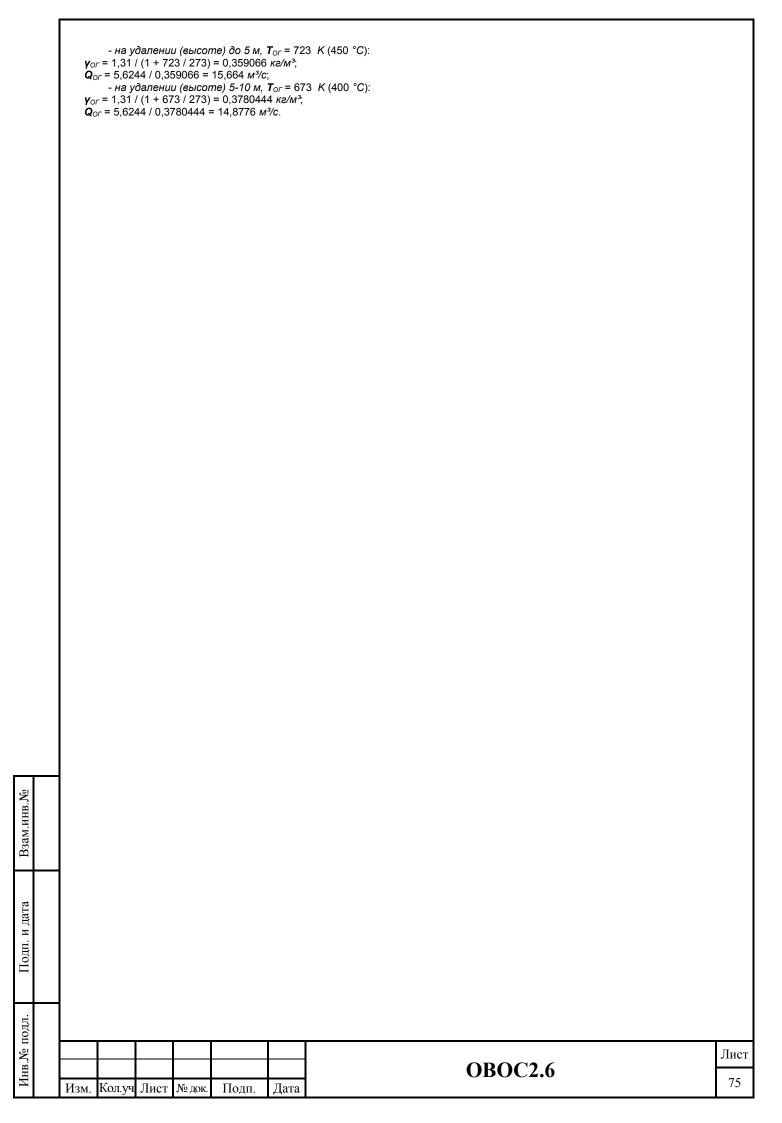
 $W_9 = (1 / 1000) \cdot 0,429 \cdot 237,25 = 0,1017803 \text{ m/sod}.$

Сера диоксид (Ангидрид сернистый)

 $M = (1/3600) \cdot 1.4 \cdot 2600 = 1.0111111 \ e/c;$

 W₃ = (1 / 1000) · 6 · 237,25 = 1,4235 m/eo∂. Уелерод оксид M = (1 / 3600) · 2,65 · 2600 = 1,913889 e/c; W₃ = (1 / 1000) · 11 · 237,25 = 2,60975 m/eo∂. 									
						00000	Лист		
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	73		

```
W_9 = (1/1000) \cdot 0,000013 \cdot 237,25 = 0,0000031 \, \text{m/sod}.
      Формальдегид
M = (1/3600) \cdot 0.029 \cdot 2600 = 0.0209444 \ e/c;
W_{3} = (1 / 1000) \cdot 0,114 \cdot 237,25 = 0,0270465 \, \text{m/sod}.
      Керосин
M = (1/3600) \cdot 0,686 \cdot 2600 = 0,495444 \ a/c;
W_{3} = (1 / 1000) \cdot 2,857 \cdot 237,25 = 0,677823 \text{ m/sod}.
      Расчет объемного расхода отработавших газов приведен ниже.
G_{O\Gamma} = 8.72 \cdot 10^{-6} \cdot 250 \cdot 2600 = 5.668 \text{ ke/c}.
      - на удалении (высоте) до 5 м, Т<sub>ОГ</sub> = 723 K (450 °C):
\gamma_{O\Gamma} = 1.31 / (1 + 723 / 273) = 0.359066 \ \kappa e/M^3;
Q_{OF} = 5,668 / 0,359066 = 15,7854 \text{ m}^3/c;
      - на удалении (высоте) 5-10 м, T_{\text{O}\Gamma} = 673 K (400 °C):
\gamma_{OF} = 1.31 / (1 + 673 / 273) = 0.3780444 \, \kappa e/M^3
Q_{OF} = 5,668 / 0,3780444 = 14,9929 \text{ } \text{m}^3/\text{c}.
Азимутальный буксир «Ермак»
      Азота диоксид (Азот (IV) оксид)
M = (1/3600) \cdot 2,688 \cdot 2100 = 1,568 \text{ e/c};
W_3 = (1 / 1000) \cdot 11,2 \cdot 191,625 = 2,1462 \text{ m/sod}.
      Азот (II) оксид (Азота оксид)
M = (1/3600) \cdot 0,4368 \cdot 2100 = 0,2548 \ e/c;
W_9 = (1 / 1000) \cdot 1,82 \cdot 191,625 = 0,3487575  m/20d.
      Углерод (Сажа)
M = (1/3600) \cdot 0.1 \cdot 2100 = 0.0583333 \ e/c;
W_{3} = (1 / 1000) \cdot 0,429 \cdot 191,625 = 0,0822071 \text{ m/sod.}
      Сера диоксид (Ангидрид сернистый)
M = (1/3600) \cdot 1.4 \cdot 2100 = 0.816667 \ e/c;
W_9 = (1/1000) \cdot 6 \cdot 191,625 = 1,14975 \text{ m/sod.}
      Углерод оксид
\mathbf{M} = (1 / 3600) \cdot 2,65 \cdot 2100 = 1,545833 \ e/c;
\mathbf{W}_{9} = (1 / 1000) \cdot 11 \cdot 191,625 = 2,107875 \ m/eo\partial.
Бенз/а/пирен (3,4-Бензпирен)
М = (1 / 3600) · 0,0000031 · 2100 = 0,0000018 г/с;
W_3 = (1 / 1000) \cdot 0,000013 \cdot 191,625 = 0,0000025  m/zoð.
       Формальдегид
\mathbf{M} = (1/3600) \cdot 0,029 \cdot 2100 = 0,0169167 \, e/c;
W_3 = (1 / 1000) \cdot 0,114 \cdot 191,625 = 0,0218453 \text{ m/sod}.
      Керосин
M = (1/3600) \cdot 0,686 \cdot 2100 = 0,400167 \ e/c;
W_9 = (1/1000) \cdot 2,857 \cdot 191,625 = 0,547473 \text{ m/sod}.
      Расчет объемного расхода отработавших газов приведен ниже.
\mathbf{G}_{O\Gamma} = 8.72 \cdot 10^{-6} \cdot 250 \cdot 2100 = 4,578 \text{ ke/c}.
- на удалении (высоте) до 5 м, T_{\text{O}\Gamma} = 723 K (450 °C): \gamma_{\text{O}\Gamma} = 1,31 / (1 + 723 / 273) = 0,359066 ка/м³,
\mathbf{Q}_{O\Gamma} = 4,578 / 0,359066 = 12,7497 \, \text{m}^3/c;
      - на удалении (высоте) 5-10 м, Т<sub>ОГ</sub> = 673 K (400 °C):
\mathbf{v}_{OF} = 1.31 / (1 + 673 / 273) = 0.3780444 \, \kappa e/m^3
\mathbf{Q}_{OF} = 4,578 / 0,3780444 = 12,1097 \, \text{m}^3/\text{c}.
Буксир «Гелий»
      Азота диоксид (Азот (IV) оксид)
M = (1/3600) \cdot 2,688 \cdot 2580 = 1,9264 \ e/c;
W_9 = (1 / 1000) \cdot 11,2 \cdot 235,425 = 2,63676 \text{ m/sod}.
      Азот (II) оксид (Азота оксид)
M = (1/3600) \cdot 0,4368 \cdot 2580 = 0,31304 \ e/c;
W_{3} = (1 / 1000) \cdot 1,82 \cdot 235,425 = 0,4284735 \, \text{m/sod}.
      Углерод (Сажа)
M = (1/3600) \cdot 0.1 \cdot 2580 = 0.0716667 e/c;
W_9 = (1/1000) \cdot 0,429 \cdot 235,425 = 0,1009973 \text{ m/sod.}
      Сера диоксид (Ангидрид сернистый)
\mathbf{M} = (1 / 3600) \cdot 1.4 \cdot 2580 = 1,003333 \ e/c;
\mathbf{W}_{9} = (1 / 1000) \cdot 6 \cdot 235,425 = 1,41255 \ m/eod.
      Углерод оксид
M = (1/3600) \cdot 2,65 \cdot 2580 = 1,899167 \ e/c;
W_3 = (1 / 1000) \cdot 11 \cdot 235,425 = 2,589675 \text{ m/sod.}
      Бенз/а/пирен (3,4-Бензпирен)
\mathbf{M} = (1 / 3600) \cdot 0,0000031 \cdot 2580 = 0,0000022 \ e/c;
W_{3} = (1 / 1000) \cdot 0,000013 \cdot 235,425 = 0,0000031 \text{ m/sod.}
      Формальдегид
M = (1/3600) \cdot 0,029 \cdot 2580 = 0,0207833 \ e/c;
W_9 = (1/1000) \cdot 0.114 \cdot 235.425 = 0.0268385 \, \text{m/sod}.
      Керосин
\mathbf{M} = (1/3600) \cdot 0,686 \cdot 2580 = 0,491633 \ e/c;
W_{3} = (1 / 1000) \cdot 2,857 \cdot 235,425 = 0,672609 \text{ m/sod}.
      Расчет объемного расхода отработавших газов приведен ниже.
G_{OF} = 8.72 \cdot 10^{-6} \cdot 250 \cdot 2580 = 5.6244 \text{ kg/c}.
                                                                                                                                                                             Лист
                                                                                                        OBOC2.6
   Кол.уч Лист № док.
                                                   Дата
```


Бенз/а/пирен (3,4-Бензпирен)

Взам.инв.

윋

ИHB.

 $M = (1/3600) \cdot 0,0000031 \cdot 2600 = 0,0000022 \ e/c;$

ПРИЛОЖЕНИЕ 8.6.4

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ (С УЧЕТОМ ПЕРСПЕКТИВНЫХ ИСТОЧНИКОВ) ПО ПЛОЩАДКЕ МОРСКОЙ ТЕРМИНАЛ ПРОМПЛОЩАДКА ГРУЗОВОЙ РАЙОН МЫС АСТАФЬЕВА

ИЗАВ №0255. труба дизельного котла фитосанитарной камеры ИВ дизельный котел фитосанитарной камеры

Расчет выделений загрязняющих веществ выполнен в соответствии с « Методика определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час (утверждена Госкомэкологии России 07.07.1999) (Сведения внесены распоряжением Минприроды России от 14.12.2020 № 35-р (с изм., внесенными распоряжением Минприроды России от 05.08.2022 № 21-р), позиция в Перечне №2).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу от котлоагрегата, приведена в таблице 1.1.1.

Таблица 1.1.1 - **Характеристика выделений загрязняющих веществ в атмосферу**

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год	
код	наименование	выброс, г/с	годовой выорос, тлод	
301	Азота диоксид (Азот (IV) оксид)	0,0191716	0,589544	
304	Азот (II) оксид (Азота оксид)	0,0031154	0,0958008	
328	Углерод (Сажа)	0,0050184	0,1544127	
330	Сера диоксид (Ангидрид сернистый)	0,0188552	0,58016	
337	Углерод оксид	0,026629	0,819353	
703	Бенз/а/пирен (3,4-Бензпирен)	1,5335·10 ⁻⁸	0,000005	

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Данные	Параметры	Коэффициенты	Одноврем енность
NAVIEN-135 RPD . Дизельное топливо. Расход: В' = 4,81 г/с, В = 148 т/год. Камерная	Горелка дутьевая напорного типа: $\beta \kappa = 1$. Котел работает в общем случае. Температура горячего воздуха (воздуха для дутья): trв = 30°С. Доля воздуха подаваемого в промежуточную зону факела: $\delta = 0$. Рециркуляции нет. Объем сухих дымовых газов рассчитывается по приближенной формуле. Теплонапряжение топочного объема рассчитывается. Период между чистками: Ko = 48 ч. Паромеханической форсунки нет: R = 1,0.	$\begin{array}{lll} \beta a=1,113; & \beta r=0; \\ \beta \delta=0; & Vt=0,505773 \text{ m}^3; \\ t=8760 \text{ u.}; & Sr'=0,2 \text{ %}; \\ Sr=0,2 \text{ %}; & q3=0,2 \text{ %}; \\ q4=0,08 \text{ %}; & K=0,355 \text{ ;} \\ \alpha"\tau=1,1; & Ar'=0,01 \text{ %}; \\ Ar=0,01 \text{ %}; & q4y\text{H}=0,08 \text{ %}; \\ Gv=0 \text{ r/T}; & \end{array}$	-

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Жидкое топливо, водогрейный котел.

Оксиды азота.

Суммарное количество оксидов азота NO_x в пересчете на NO_2 (в a/c, m/zod), выбрасываемых в атмосферу с дымовыми газами, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{NOx} = \mathbf{B}_{\rho} \cdot \mathbf{Q}^{r}_{i} \cdot \mathbf{K}^{M}_{NO2} \cdot \mathbf{g}_{t} \cdot \mathbf{g}_{\alpha} \cdot (1 - \mathbf{g}_{r}) \cdot (1 - \mathbf{g}_{\delta}) \cdot \mathbf{k}_{r}$$

$$(1.1.1)$$

где \mathbf{B}_p - расчетный расход топлива, \mathbf{z}/\mathbf{c} (\mathbf{m}/\mathbf{zod});

 Q^{r}_{i} - низшая теплота сгорания топлива, $M / m / \kappa z$;

 K^{M}_{NO2} - удельный выброс оксидов азота при сжигании мазута, $z/M \Delta x$;

 \mathcal{B}_t - безразмерный коэффициент, учитывающий температуру воздуха, подаваемого для горения;

- \mathcal{B}_a безразмерный коэффициент, учитывающий влияние избытка воздуха на образование оксидов азота при сжигании мазута;
- \mathcal{B}_r безразмерный коэффициент, учитывающий влияние рециркуляции дымовых газов через горелки на образование оксидов азота;
- ${\it R}_{\it \delta}$ безразмерный коэффициент, учитывающий ступенчатый ввод воздуха в топочную камеру;

 k_{Π} - коэффициент пересчета, $k_{\Pi} = 10^{-3}$.

 B_p определяется по формуле (1.1.2):

$$B_{p} = B \cdot (1 - q_{4} / 100) \tag{1.1.2}$$

где ${\it B}$ - фактический расход топлива на котел, ${\it e/c}$ (${\it m/eod}$);

 $oldsymbol{q}_4$ - потери тепла от механической неполноты сгорания, ~%

Для водогрейных котлов K^{M}_{NO2} считается по формуле (1.1.3):

$$\mathbf{K}^{\mathsf{M}}_{\mathsf{NO2}} = 0.0113 \cdot \sqrt{\mathbf{Q}_{\mathsf{T}}} + 0.1$$
 (1.1.3)

где \mathbf{Q}_T - фактическая тепловая мощность котла по введенному в топку теплу, *МВт*.

 ${m Q}_{T}$ определяется по формуле (1.1.4):

$$\mathbf{Q}_{T} = \mathbf{B}_{D}^{\prime} \cdot \mathbf{Q}_{i}^{\Gamma} \cdot \mathbf{k}_{T} \tag{1.1.4}$$

где B'_p - расчетный расход топлива, a/c;

 ${f Q}^{r}_{i}$ - низшая теплота сгорания топлива, $M \not\square {\it ж}/{\it \kappa a}$;

 k_{Π} - коэффициент пересчета, k_{Π} = 10⁻³.

При подаче газов рециркуляции в смеси с воздухом B_c определяется по формуле (1.1.5):

$$\mathbf{B}_r = 0.17 \cdot \sqrt{\mathbf{r}} \tag{1.1.5}$$

где r - степень рециркуляции дымовых газов, %:

Коэффициент $\mathbf{\textit{B}}_{\bar{o}}$ определяется по формуле (1.1.6):

$$\mathbf{B}_{\delta} = 0.018 \cdot \mathbf{\delta} \tag{1.1.6}$$

где **б** - доля воздуха, подаваемого в промежуточную зону факела (в процентах от общего количества организованного воздуха). Оксиды серы.

Суммарное количество оксидов серы **М**_{SO2}, выбрасываемых в атмосферу с дымовыми газами (*г/с*, *m/год*), вычисляется по формуле (1.1.7):

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

MHB.No

OBOC2.6

Лист

 $M_{SO2} = 0.02 \cdot B \cdot S^{r} \cdot (1 - \eta'_{SO2})$

При отсутствии данных инструментальных замеров оценка суммарного количества выбросов оксида углерода, г/с (m/год),

 $M_{CO} = 10^{-3} \cdot B \cdot C_{CO} \cdot (1 - q_4 / 100)$

 $C_{CO} = q_3 \cdot R \cdot Q^r_i$

Суммарное количество твердых частиц (летучей золы и несгоревшего топлива) **М**_{тв}, поступающих в атмосферу с дымовыми

 $M_{TB} = 0.01 \cdot B \cdot q_4 \cdot Q_i^r / 32,68$

R - коэффициент, учитывающий долю потери тепла вследствие химической неполноты сгорания топлива, обусловленную наличием

где **В** - расход натурального топлива за рассматриваемый период, *г/с (m/год)*;

 ${\it q}_4$ - потери тепла вследствие механической неполноты сгорания топлива, %.

где q_3 - потери тепла вследствие химической неполноты сгорания топлива, %;

S^r - содержание серы в топливе на рабочую массу, %; η'_{SO2} - доля оксидов серы, связываемых летучей золой в котле.

 ${m C}_{{
m CO}}$ - выход оксида углерода при сжигании топлива, ${\it a/ka}$;

Параметр C_{CO} определяется по формуле (1.1.9):

газами котлов (г/с, т/год), вычисляют по формуле (1.1.10):

может быть выполнена по соотношению (1.1.8):

 ${m Q}^{r_{i}}$ - низшая теплота сгорания топлива, $M \not\square {\it ж}/{\it ke}$;

в продуктах неполного сгорания оксида углерода.

Оксиды углерода.

<u>Твердые частицы.</u>

윋

ИHB.

где **В** - расход топлива, *г/с (m/год)*;

(1.1.7)

(1.1.8)

(1.1.9)

(1.1.10)

```
K'_{\partial} = 1.4 \cdot (0.204838 / 0.204838)^2 - 5.3 \cdot 0.204838 / 0.204838 + 4.9 = 1;
\mathbf{K}_{0} = 1,4 \cdot (0,1998577 / 0,204838)^{2} - 5,3 \cdot 0,1998577 / 0,204838 + 4,9 = 1,061613;
K_p = 0 \cdot 0 + 1 = 1;
K_{cm} = 0 / 14,22 + 1 = 1;
C_{CO} = 0.2 \cdot 0.65 \cdot 42.62 = 5.5406 \text{ e/HM}^3
q_v = 199,85774 / 0,505773 = 395,15279 \kappa Bm/m^3
\mathbf{q'}_{V} = 204,8382 / 0,505773 = 405 \kappa Bm/m^{3}
\mathbf{C'_{B\Pi}} = 10^{-6} \cdot 1 \cdot (0,445 \cdot 405 - 28) / e^{3.5 \cdot (1,1-1)} \cdot 1 \cdot 1 \cdot 1 = 0,0002682 \text{ Me/hm}^3;
\mathbf{C_{B\Pi}} = 10^{-6} \cdot 1 \cdot (0,445 \cdot 395,15279 - 28) / e^{3.5 \cdot (1,1-1)} \cdot 1,061613 \cdot 1 \cdot 1 \cdot 1 = 0,0002765 \text{ Me/hm}^3;
V_{CF} = 0.355 \cdot 42.62 = 15.1301 \text{ HM}^3/\text{ke}.
 \mathbf{\textit{M}}_{\text{NOx}_{301}}^{\text{NOx}_{301}} = 4,80615 \cdot 42,62 \cdot 0,1051143 \cdot 1 \cdot 1,113 \cdot (1-0) \cdot (1-0) \cdot 0,001 \cdot 0,8 = 0,0191716 \ \textit{a/c}; 
M^{NOx}_{301} = 147,8816 \cdot 42,62 \cdot 0,1050517 \cdot 1 \cdot 1,113 \cdot (1 - 0) \cdot (1 - 0) \cdot 0,001 \cdot 0,8 = 0,589544  m/eod.
\mathbf{M}^{NOX}_{304} = 4,80615 \cdot 42,62 \cdot 0,1051143 \cdot 1 \cdot 1,113 \cdot (1 - 0) \cdot (1 - 0) \cdot 0,001 \cdot 0,13 = 0,0031154  \mathbf{z/c};
\mathbf{M}^{\text{NOx}}_{304} = 147,8816 \cdot 42,62 \cdot 0,1050517 \cdot 1 \cdot 1,113 \cdot (1 - 0) \cdot (1 - 0) \cdot 0,001 \cdot 0,13 = 0,0958008 \text{ m/eod}.
\mathbf{M}^{KO}_{328} = 0.01 \cdot 4.81 \cdot (0.08 \cdot 42.62 / 32.68) = 0.0050184 \, a/c;
M^{KO}_{328} = 0.01 \cdot 148 \cdot (0.08 \cdot 42.62 / 32.68) = 0.1544127 \text{ m/eod.}

M^{6O2}_{330} = 0.02 \cdot 4.81 \cdot 0.2 \cdot (1 - 0.02) = 0.0188552 \text{ e/c};
\mathbf{M}^{\text{SO2}}_{330} = 0.02 \cdot 148 \cdot 0.2 \cdot (1 - 0.02) = 0.58016 \text{ m/eod.}
\mathbf{M}^{\text{CO}_{337}} = 10^{-3} \cdot 4,81 \cdot 5,5406 \cdot (1 - 0,08 / 100) = 0,026629 \text{ e/c};
\mathbf{M}^{\text{CO}}_{337} = 10^{-3} \cdot 148 \cdot 5,5406 \cdot (1 - 0,08 / 100) = 0,819353 \, \text{m/sod}.
\mathbf{M}^{6\Pi}_{703} = (0,0002682 \cdot 1,1 / 1,4) \cdot 15,1301 \cdot (4,80615 \cdot 3600 \cdot 10^{-6}) \cdot 0,000278 = 1,5335 \cdot 10^{-8} \text{ e/c};
M^{5\Pi}_{703} = (0,0002765 \cdot 1,1 / 1,4) \cdot 15,1301 \cdot 147,8816 \cdot 0,000001 = 0,0000005 m/eod.
                                                            Объем дымовых газов, выбрасываемых из источника:
                                                           V = B * (k_1 + k_2 * Q_p + (a-1) * (k_3 + k_4 * Q_p)) * (273+t) / 273, (M^3/c)
  где: В - секундный расход топлива;
  Qp - низшая теплота сгорания топлива, МДж/кг;
  t - температура дымовых газов, гр. С;
  α - коэффициент избытка воздуха
  k1, k2, k3, k4 – численные коэффициенты:
```

k2 k3 k4 k1 -0,633 0,298 0,372 0,256 мазут/ДТ В, г/сек Qp, МДж/кг t, град С V, м3/сек 0,110 4 810 42,620 1,1 200

источник: Методика определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час... Москва 1999 г. гл. 3 п. 3.1

Взам.инв.№									
Подп. и дата									
Инв.№ подл.	-	Изм	Коп уч	Пист	№ док.	Подп.	Дата	OBOC2.6	Лист 78
		713M.	1001.y 1	лист	ж док.	подп.	дата		

ИЗАВ №6231. пересыпка опилок из бункера ИВ пересыпка опилок из бункера

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия — склады, хранилища, открытые с 4-х сторон (K_4 = 1). Высота падения материала при пересыпке составляет 2,0 м (B = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует (K_9 = 1). Расчетные скорости ветра, м/с: 0,5 (K_9 = 1); 2 (K_9 = 1); 4 (K_9 = 1,2); 6 (K_9 = 1,4); 8 (K_9 = 1,7); 8,4 (K_9 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_9 = 1,2).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	FOROROW BUILDING T/FOR	
код	наименование	выброс, г/с	Годовой выброс, т/год	
2936	Пыль древесная	0,0000198	0,0001008	

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Материал	Параметры	Одноврем енность
.,	Количество перерабатываемого материала: Gu = 0,0025 т/час; Groд = 5 т/год. Весовая доля пылевой фракции в материале: \mathbf{K}_1 = 0,04. Доля пыли, переходящая в аэрозоль: \mathbf{K}_2 = 0,01. Влажность до 10% (\mathbf{K}_5 = 0,1). Размер куска 10-5 мм (\mathbf{K}_7 = 0,6).	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{\Gamma\Gamma} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_4 \cdot 10^6 / 3600, a/c$$
 (1.1.1)

где K_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 K_2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

 ${\it K}_7$ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств K_8 = 1;

 K_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_{y} - суммарное количество перерабатываемого материала в час, *m/час*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{eod}, m/eod$$
(1.1.2)

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Опилки древесные

 $\begin{array}{l} \overline{\textit{M}}_{2936}^{0.5\,\text{M/C}} = 0.04 \cdot 0.01 \cdot 1 \cdot 1 \cdot 0.1 \cdot 0.6 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.0025 \cdot 10^6 \, / \, 3600 = 0.0000117 \, \textit{a/c}; \\ \overline{\textit{M}}_{2936}^{2\,\text{M/C}} = 0.04 \cdot 0.01 \cdot 1 \cdot 1 \cdot 0.1 \cdot 0.6 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.0025 \cdot 10^6 \, / \, 3600 = 0.0000117 \, \textit{a/c}; \\ \overline{\textit{M}}_{2936}^{2\,\text{M/C}} = 0.04 \cdot 0.01 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 0.6 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.0025 \cdot 10^6 \, / \, 3600 = 0.0000117 \, \textit{a/c}; \\ \overline{\textit{M}}_{2936}^{2\,\text{M/C}} = 0.04 \cdot 0.01 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 0.6 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.0025 \cdot 10^6 \, / \, 3600 = 0.0000163 \, \textit{a/c}; \\ \overline{\textit{M}}_{2936}^{2\,\text{M/C}} = 0.04 \cdot 0.01 \cdot 1.4 \cdot 1 \cdot 0.1 \cdot 0.6 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.0025 \cdot 10^6 \, / \, 3600 = 0.0000198 \, \textit{a/c}; \\ \overline{\textit{M}}_{2936}^{2\,\text{M/C}} = 0.04 \cdot 0.01 \cdot 1.7 \cdot 1 \cdot 0.1 \cdot 0.6 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.0025 \cdot 10^6 \, / \, 3600 = 0.0000198 \, \textit{a/c}; \\ \overline{\textit{M}}_{2936}^{2\,\text{M/C}} = 0.04 \cdot 0.01 \cdot 1.7 \cdot 1 \cdot 0.1 \cdot 0.6 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.0025 \cdot 10^6 \, / \, 3600 = 0.0000198 \, \textit{a/c}; \\ \overline{\textit{M}}_{2936}^{2\,\text{M/C}} = 0.04 \cdot 0.01 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 0.6 \cdot 1 \cdot 1 \cdot 0.7 \cdot 5 = 0.0001008 \, \textit{m/cod}. \end{array}$

Инв.№ подл.	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	Лист 79
г. Подп. и дата								
Взам.и								

Источниками загрязнения атмосферного воздуха являются дыхательные клапаны резервуаров в процессе хранения (малое дыхание) и слива (большое дыхание) жидкостей. Климатическая зона – 2.

Расчет выделений загрязняющих веществ выполнен в соответствии с Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров (утверждены приказом Госкомэкологии России от 08.04.1998 № 199) (Сведения внесены распоряжением Минприроды России от 14.12.2020 № 35-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №5 в Перечне); Дополнение к «Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров (Новополоцк,1997)». Санкт-Петербург, 1999 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №39 в Перечне).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Forence pulpos Trop
код	наименование	выброс, г/с	Годовой выброс, т/год
333	Дигидросульфид (Сероводород)	0,0000893	0,0000384
2754	Алканы С12-С19 (Углеводороды предельные С12-С19)	0,0189573	0,0084892

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

таолица т.т.2 - исходпые	данные да	m pao iora					
	Количест т/г			Производите льность	Объем одного	Количеств о	Однов
Продукт	Воз	Ввл	Конструкция резервуара	насоса,	резервуар	резервуар	ременн ость
				м³/час	а, м ^з	OB	
Мазут. В. температура жидкости превышает 30 °С по сравнению с температурой воздуха	228,26	•	Наземный горизонтальный. Режим эксплуатации - "мерник". Система снижения выбросов - отсутствует		25	1	+
Дизельное топливо. А. температура жидкости близка к температуре воздуха	3	3	Наземный горизонтальный. Режим эксплуатации - "мерник". Система снижения выбросов - отсутствует		4	2	+
Мазут. В. температура жидкости превышает 30 °С по сравнению с температурой воздуха	410,87	19,57	Наземный горизонтальный. Режим эксплуатации - "мерник". Система снижения выбросов - отсутствует		45	1	+
Мазут. В. температура жидкости превышает 30 °С по сравнению с температурой воздуха	410,87	19,57	Наземный горизонтальный. Режим эксплуатации - "мерник". Система снижения выбросов - отсутствует		45	1	+

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимальные выбросы паров нефтепродуктов рассчитываются по формуле (1.1.1):

$$\mathbf{M} = (\mathbf{C}_1 \cdot \mathbf{K}^{\max}_{p} \cdot \mathbf{V}^{\max}_{q}) / 3600, \, e/c$$
 (1.1.1)

Годовые выбросы паров нефтепродуктов рассчитываются по формуле (1.1.2):

$$\mathbf{G} = (\mathbf{Y}_2 \cdot \mathbf{B}_{os} + \mathbf{Y}_3 \cdot \mathbf{B}_{en}) \cdot \mathbf{K}^{max}_{p} \cdot 10^{-6} + \mathbf{G}_{xp} \cdot \mathbf{K}_{HR} \cdot \mathbf{N}, m/200$$

(1.1.2)

где Y_2, Y_3 – средние удельные выбросы из резервуара соответственно в осенне-зимний и весенне-летний периоды года, e/m, принимаются по Приложению 12;

В_{аз}, **В**_{вп} – количество жидкости, закачиваемое в резервуар соответственно в осенне-зимний и весенне-летний периоды года, *m*; $^{\times}_{p}$ - значение опытного коэффициента, принимаемое по Приложению 8;

G_{xp} - выбросы паров нефтепродуктов при хранении нефтепродуктов в одном резервуаре, *т*/год, принимаются по Приложению 13; **К**_{нл} - опытный коэффициент, принимается по Приложению 12;

N - количество резервуаров.

Значение коэффициента $m{K}^{\text{гор}}_{p}$ для газовой обвязки группы одноцелевых резервуаров определяется в зависимости от одновременности закачки и откачки жидкости из резервуаров по формуле (1.1.4): (1.1.4)

$$\mathbf{K}^{\text{rop}}_{p} = 1, 1 \cdot \mathbf{K}_{p} \cdot (\mathbf{Q}^{\text{3ak}} - \mathbf{Q}^{\text{OTK}}) / \mathbf{Q}^{\text{3ak}}$$

где (Q^{зак} - Q^{отк}) - абсолютная средняя разность объемов закачиваемой и откачиваемой из резервуаров жидкости.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя в формулах учитывается массовая доля данного вещества в составе нефтепродукта.

Расчет максимально разового и годового выделения загрязняющих веществ в атмосферу приведен ниже.

Взам.инв.

윋

 $M = 5,4 \cdot 1 \cdot 4 / 3600 = 0,006 e/c;$

 $\mathbf{G} = (4 \cdot 228, 26 + 4 \cdot 10, 87) \cdot 1 \cdot 10^{-6} + 0, 22 \cdot 0,0043 \cdot 1 = 0,0019025 \, \text{m/sod}.$

333 Дигидросульфид (Сероводород)

 $M = 0.006 \cdot 0.0048 = 0.0000288 \ e/c$

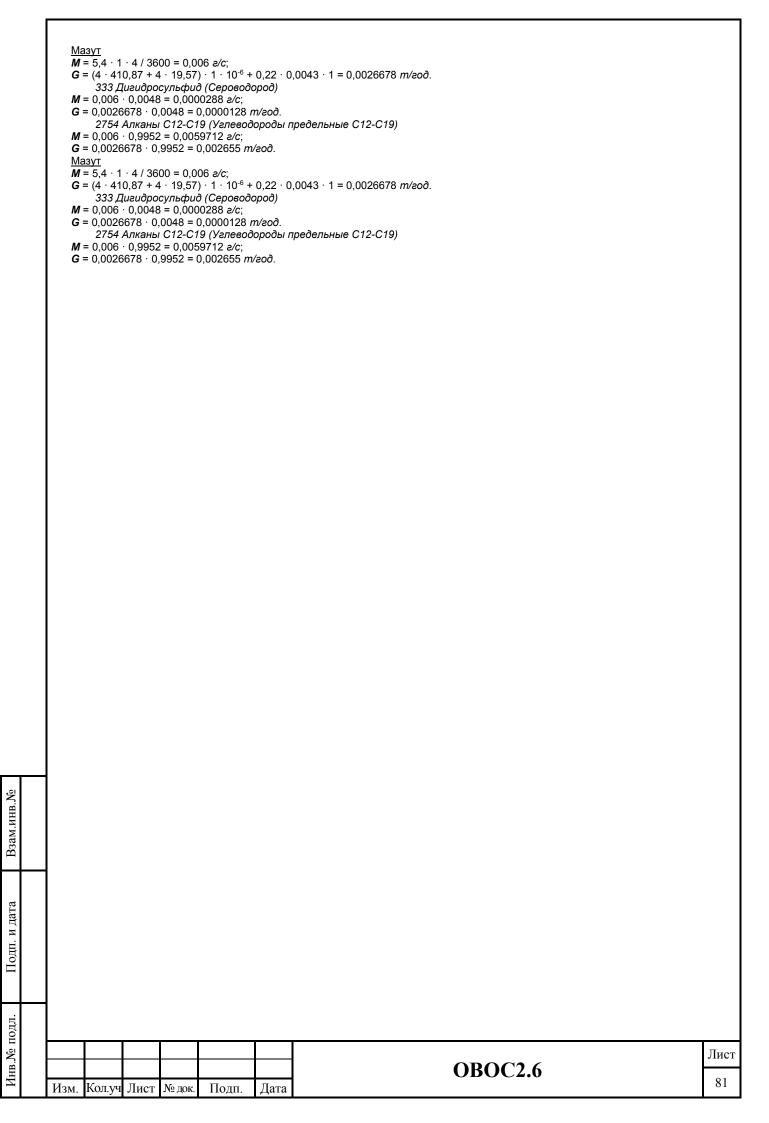
 $G = 0.0019025 \cdot 0.0048 = 0.0000091 \text{ m/sod.}$

2754 Алканы С12-С19 (Углеводороды предельные С12-С19)

 $M = 0.006 \cdot 0.9952 = 0.0059712 \, e/c$

 $G = 0.0019025 \cdot 0.9952 = 0.0018934 \text{ m/sod}.$

Дизельное топливо


 $M = 3.14 \cdot 1 \cdot 1.2 / 3600 = 0.0010467 \ e/c;$

 $\mathbf{G} = (1.9 \cdot 3 + 2.6 \cdot 3) \cdot 1 \cdot 10^{-6} + 0.22 \cdot 0.0029 \cdot 2 = 0.0012895 \, \text{m/sod}.$

333 Дигидросульфид (Сероводород)

 $M = 0.0010467 \cdot 0.0028 = 0.0000029 a/c$

G M	= 0,0012 2754 = 0,0010	2895 · 0 <i>Алканы</i> 0467 · 0	,0028 = 0 1 <i>C12-C1</i> ,9972 = 0	0,0000029 г 0,0000036 г 9 (Углевод 0,0010437 г 0,0012859 г	т/год. Юроды п г/с;	редельные С12-С19)	
						ODOCA (Лист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	80

Источником выделения загрязняющих веществ является:

- сдувание со штабелей на складе;
- штабелирование на складе.

Всего выбросов по источнику:

Загрязняющее	е вещество	Максимально	Годовой	
код	наименование	разовый выброс, г/с	выброс, т/год	
3749	Пыль каменного угля	0,008108	0,078407	

Максимально-разовый выброс с учетом

ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
	G ₃₇₄₉	0,00477	0,00477	0,00572	0,00667	0,00810	0,00810
Количество ЗВ, г/с	=	0	0	3	7	8	8

ИВ Склад кокса (причал №71)

Источником выделения пыли является унос пыли с верхнего слоя штабеля при статическом хранении.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,005694	0,074317

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Taomida 2 Moxodinio daminio din pao leta	
Удельное количество сдуваемых твердых частиц с поверхности штабеля угля, q_{c0} [кг/кв.м*c]	0,000001
Площадь основания штабеля угля, S_{ω} [кв.м]	4620
Влажность материала, %	11,00
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), К1	0,01
Скорость ветра 95% обеспеченности, w_{s} [м/с]	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, w_e [м/с]	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	0,5
Коэффициент, учитывающий профиль поверхности складируемого материала, K_6	1,45
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0
Коэффициент измельчения горной массы, $ ho$	0,1
Количество дней с устойчивым снежным покровом, $T_{c\pi}$	80
Количество дней с осадками в виде дождя, T_{∂}	71

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$\begin{array}{l} \textit{M}_{c\partial} = 86.4 \cdot q_{c\partial} \cdot S_{ui} \cdot \textit{K}_1 \cdot \textit{K}_2 \cdot \textit{K}_4 \cdot \textit{K}_6 \cdot \rho \cdot (365 \cdot (T_{cn} + T_{\partial})) \cdot (1-\eta), \, \textit{m/zod} \quad [1] \\ \textit{G}_{c\partial} = q_{c\partial} \cdot S_{ui} \cdot \textit{K}_1 \cdot \textit{K}_2 \cdot \textit{K}_4 \cdot \textit{K}_6 \cdot \rho \cdot (1-\eta) \cdot 1000, \, \textit{z/c} \end{array}$$

где

Взам.инв.

윋

 ${m q}_{cd}$ – удельное количество сдуваемых твердых частиц с поверхности штабеля угля, кг/кв.м*с;

 S_{w} – площадь основания штабеля угля, кв.м;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 \emph{K}_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 K_6 – коэффициент, учитывающий профиль поверхности складируемого материала;

 $oldsymbol{
ho}$ - коэффициент измельчения горной массы;

 T_{cn} - количество дней с устойчивым снежным покровом;

 T_{o} - количество дней с осадками в виде дождя;

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При статическом хранении угля:

M₃₇₄₉= 0,074317 m/eo∂ **G**₃₇₄₉= 0,005694 e/c

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,003350	0,0033495	0,004019	0,004689	0,005694	0,005694

ив штабелирование, склад кокса (причал №71)

Источником выделения пыли является перемещение масс кокса в пределах склада.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

OBOC2.6	К	оличест	твенные	е и качес	твенные х	арактери	жии от 28.06.2021 № 22-р , позиция №108 в Перечне) истики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице вагрязняющих веществ в атмосферу	1.
								Лист
113м. 1001. у 13 мет 12 док. 110дн. Дата	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	82

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0.00241	0.00409

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельное выделение при разгрузке (перегрузке) материала, q, [г/куб.м], (таб. 6.1-6.3)	2,84
Количество разгружаемого (перегружаемого) материала, Π_{ε} [т/год]	120000
Количество разгружаемого (перегружаемого) материала, П., [т/час]	180
Влажность материала, %	11,00
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Максимальная среднегодовая скорость ветра, <i>w</i> ₅ [м/с]	3,8
Максимальная скорость ветра, w_s [м/с]	8,4
Коэффициент, учитывающий максимальную скорость ветра (табл. 6.4), K_2	1,7
Коэффициент, учитывающий максимальную среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

 $M_n = q_n \cdot \Pi_e \cdot K_1 \cdot K_2 \cdot 10^{-6} \cdot (1-\eta), m/eod$ [1] $G_n = (q_n \cdot \Pi_u \cdot K_1 \cdot K_2 \cdot (1-\eta))/3600, e/c$ [2]

где

 $m{q}_n$ – удельное выделение при работе экскаватора материала, *а/куб.м* (таб. 6.1-6.3 Методики);

 Π_e – количество разгружаемого (перегружаемого) материала, *m/год*;

 Π_{y} – максимальное количество перегружаемого материала за час, m/час;

 \emph{K}_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

К₂ – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При формировании откосов:

 M_{3749} = 0,00409 m/eod G_{3749} = 0,002414 e/c

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,001420	0,00142	0,001704	0,001988	0,00241	0,002414

и под	Подп. и дата						
Ли	П						
OBOC2.6	ĮЛ.						

Источником выделения загрязняющих веществ является:

- сдувание со штабелей на складе;
- штабелирование на складе.

Всего выбросов по источнику:

	Загря	язняющее вещес	ТВО		Максим	иально	Годовой выброс,	
код		наименование				ыброс, г/с	т/год	
3749		Пыль каменного угля				4170	0,027012	
Максимально-разовый выброс с учетом ветра:								
Скорость ветра	м/с	0,5	2	4	6	8	9	

Количество 3В. г/с G3749= 0.002453 0.002453 0.002944 0.003434 0.004170 0.004170	Скорость ветра	м/с	0,5	2	4	6	8	9
	Количество ЗВ, г/с	G ₃₇₄₉ =	0,002453	0,002453	0,002944	0,003434	0,004170	0,004170

ИВ склад кокса (причал №73)

Источником выделения пыли является унос пыли с верхнего слоя штабеля при статическом хранении.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

			<i>3</i>	
ſ		Загрязняющее вещество	Максимально разовый	Годовой
Ī	код	наименование	выброс, г/с	выброс, т/год
ſ	3749	Пыль каменного угля	0,001756	0,022922

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельное количество сдуваемых твердых частиц с поверхности штабеля угля, $q_{c\partial}$ [кг/кв.м*c]	0,000001
Площадь основания штабеля угля, S_{w} [кв.м]	1425
Влажность материала, %	11,00
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, w_s [м/с]	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, <i>w₅</i> [м/с]	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	0,5
Коэффициент, учитывающий профиль поверхности складируемого материала, K_6	1,45
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0
Коэффициент измельчения горной массы, $ ho$	0,1
Количество дней с устойчивым снежным покровом, T_{cn}	80
Количество дней с осадками в виде дождя, Т∂	71

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_{c\partial} = 86, 4 \cdot q_{c\partial} \cdot S_w \cdot K_1 \cdot K_2 \cdot K_4 \cdot K_6 \cdot \rho \cdot (365 - (T_{cn} + T_{\partial})) \cdot (1-\eta), m/200$$
 [1] $G_{c\partial} = q_{c\partial} \cdot S_w \cdot K_1 \cdot K_2 \cdot K_4 \cdot K_6 \cdot \rho \cdot (1-\eta) \cdot 1000, e/c$ [2]

гпд

 ${m q}_{c\partial}$ — удельное количество сдуваемых твердых частиц с поверхности штабеля угля, кг/кв.м*с;

 S_{w} – площадь основания штабеля угля, кв.м;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

*K*₄ – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

*К*₆ − коэффициент, учитывающий профиль поверхности складируемого материала;

 $oldsymbol{
ho}$ - коэффициент измельчения горной массы;

 $T_{c_{II}}$ - количество дней с устойчивым снежным покровом;

 T_{θ} - количество дней с осадками в виде дождя;

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При статическом хранении угля:

M₃₇₄₉= 0,022922 m/ao∂ **G**₃₇₄₉= 0,001756 a/c

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,001033	0,001033	0,001240	0,001446	0,001756	0,001756

ИВ штабелирование, склад кокса (причал №73)

Источником выделения пыли является перемещение масс кокса в пределах склада.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

a r napakropnom	а выдолении сагристинеция воществ в аттесфору
	Загрязняющее вещество

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

MHB.No

ORO	C2.6
UDU	'C∠.U

выброс, г/с	код	наименование	Максимально разовый	Годовой
3749 Пыль каменного угля 0.00241		Пыпь каменного угла		выброс, т/год 0.00409

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельное выделение при разгрузке (перегрузке) материала, q _n [г/куб.м], (таб. 6.1-6.3)	2,84
Количество разгружаемого (перегружаемого) материала, П₂ [т/год]	120000
Количество разгружаемого (перегружаемого) материала, Π_{q} [т/час]	180
Влажность материала, %	11,00
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Максимальная среднегодовая скорость ветра, w_s [м/с]	3,8
Максимальная скорость ветра, $w_{\mathfrak{s}}[m/c]$	8,4
Коэффициент, учитывающий максимальную скорость ветра (табл. 6.4), K_2	1,7
Коэффициент, учитывающий максимальную среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Эффективность пылеподавления (таб 6.5), <i>η</i> [долл.ед]	0

 q_n – удельное выделение при работе экскаватора материала, a/куб.м (таб. 6.1-6.3 Методики); Π_a – количество разгружаемого (перегружаемого) материала, $m/ao\partial$;

 Π_{y} – максимальное количество перегружаемого материала за час, *m/час*;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При формировании откосов:

0,00409 $M_{3749} =$ т/год **G** 3749= 0,002414 s/c

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,001420	0,001420	0,001704	0,001988	0,002414	0,002414

ОВОС2.6	B3a					
овос2.6 Лист	Z					
	Инв.№ подл.				OBOC2.6	Лист 85

ИЗАВ №6258. Склады угля (причалы №73-75)

Источниками выделения загрязняющих веществ являются:

- хранение угля на причалах №73-75;
- хранение медного штейна №73-74.

В расчете выбросов учтена неодновременность перегрузочных работ с разными грузами.

Максимально-разовый выброс принят максимальный по каждому грузу

Валовый выброс суммирован с учетом всех видов грузов

Всего по источнику выбросов:

	Загрязняющее вещество	Максимально	Годовой выброс,				
код	наименование	разовый выброс, г/с	т/год				
	При перегрузке каменного угля						
3749	Пыль каменного угля	0,064793	0,845638				
	При перегрузке медного штейна						
146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,014300	0,004070				
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,021400	0,006100				

Расчет по каждому грузу выполнен на максимальную загруженность склада, поэтому в расчете рассеивания учтена

неодновременность движения грузов, и по каждому веществу принят максимально-разовый выброс:

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,014300	0,004070
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,021400	0,006100
3749	Пыль каменного угля	0,064793	0,845638

Максимально-разовый выброс с учетом ветра принят:

Скоро	сть ветра, м/с	0,5	2	4	6	8	8,4
Количе	ество ЗВ, г/с						
146	медь оксид/в пересчете на медь/(Медь окись; тенорит)		0,000485	0,00248	0,00646	0,0127	0,0143
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,0000278	0,000728	0,00373	0,00968	0,0191	0,0214
3749	Пыль каменного угля	0,03811	0,03811	0,04574	0,05336	0,06479	0,06479

ИВ Склады угля (причалы №73-75)

Источником выделения пыли является унос пыли с верхнего слоя штабеля при статическом хранении.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,064793	0,845638

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельное количество сдуваемых твердых частиц с поверхности штабеля угля, $q_{c\bar{c}}$ [кг/кв.м*c]	0,000001
Площадь основания штабеля угля, S_w [кв.м]	26285
Влажность материала, %	11,00
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, $w_{\mathfrak{g}}[M/c]$	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, ₩₅ [м/с]	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), К₄	1
Коэффициент, учитывающий профиль поверхности складируемого материала, К₅	1,45
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0
Коэффициент измельчения горной массы, <i>р</i>	0,1
Количество дней с устойчивым снежным покровом, T_{cr}	80
Количество дней с осадками в виде дождя, Т∂	71

MHB.No

 $oldsymbol{q}_{c heta}$ – удельное количество сдуваемых твердых частиц с поверхности штабеля угля, кг/кв.м*с;

 S_{w} – площадь основания штабеля угля, кв.м;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 \textit{K}_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 K_6 – коэффициент, учитывающий профиль поверхности складируемого материала;

р - коэффициент измельчения горной массы;

7	_∂ - коли	чество ,	дней с о	садками в	виде дож	м покровом; кдя; ылеподавления, дол.ед (таб. 6.5 Методики).	
							Лист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	86

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При статическом хранении угля:

M₃₇₄₉= 0,845638 m/eo∂ **G**₃₇₄₉= 0,064793 e/c

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,038113	0,038113	0,045736	0,053359	0,064793	0,064793

ИВ Склады медного штейна (причалы №73-74)

Расчет выделения пыли при хранении пылящих материалов выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне); «Временные методические указания по расчету выбросов загрязняющих веществ (пыли) в атмосферу при складировании и перегрузке сыпучих материалов на предприятиях речного флота. Белгород, 1992 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р, позиция №102).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1 1 1

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
Всего пыли	и 100%, из них:	0,0356564	0,0101735
0146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,0143	0,00407
	Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и другие)	•	0,00610

Технология пылеподавления: Гранулирование пылящего материала. Штейн — промежуточный продукт при получении некоторых цветных металлов (Cu, Ni, Pb и другие) из их сульфидных руд, представляет собой сплав, что по сути связывает поверхность штейна, поэтому при перегрузке принято снижение выбросов 90% как при перегрузке гранулированного материала.

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{XP} = \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{pa6} + \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot 0,11 \cdot \mathbf{q} \cdot (\mathbf{F}_{nn} - \mathbf{F}_{pa6}) \cdot (1 - \mathbf{\eta}), \ a/c$$

$$(1.1.1)$$

где K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

 K_6 - коэффициент, учитывающий профиль поверхности складируемого материала;

К₇ - коэффициент, учитывающий крупность материала;

 ${\it F}_{\it pa6}$ - площадь в плане, на которой систематически производятся погрузочно-разгрузочные работы, $\it M^2$,

 \mathbf{F}_{nn} - поверхность пыления в плане, M^2 ,

q - максимальная удельная сдуваемость пыли, $c/(m^2 \cdot c)$;

 η - степень снижения выбросов при применении систем пылеподавления.

Значение коэффициента K_6 определяется по формуле (1.1.2):

$$\mathbf{K}_{6} = \mathbf{F}_{\text{MAKC}} / \mathbf{F}_{\text{ПЛ}} \tag{1.1.2}$$

где $F_{\text{макс}}$ - фактическая площадь поверхности складируемого материала при максимальном заполнении склада, M^2 .

Значение максимальной удельной сдуваемости пылящего материала определяется по формуле (1.1.3):

$$q = 10^{-3} \cdot a \cdot U^{\circ}, \, e/(M^2 \cdot c)$$
 (1.1.3)

где **а** и **b** – эмпирические коэффициенты, зависящие от типа перегружаемого материала;

 U° - скорость ветра, M/c.

скорость ветра, тигс. Валовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.4):

$$\Pi_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot K_4 \cdot K_5 \cdot K_6 \cdot K_7 \cdot \mathbf{q} \cdot F_{nn} \cdot (1 - \eta) \cdot (T - T_0 - T_c) \text{ m/zod}$$
(1.1.4)

где 7 - общее время хранения материала за рассматриваемый период, в сутках;

 T_{∂} - число дней с дождем;

Взам.инв.

윋

 T_c - число дней с устойчивым снежным покровом.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчетные параметры и их значения приведены в таблице 1.1.2.

Таблица 1.1.2 - Расчетные параметры и их значения

Расчетные параметры	Значения
Перегружаемый материал: Медный штейн	a = 0.0237
Удельные показатели приняты по аналогу – окисленные руды	b = 2,356
Эмпирические коэффициенты, зависящие от типа перегружаемого материала	
Местные условия – склады, хранилища, открытые с 4-х сторон	$K_4 = 1$
Влажность материала свыше 10 до 20%	$K_5 = 0.01$
Профиль поверхности складируемого материала	$K_6 = 18090 / 13915 = 1,300036$
Крупность материала – куски размером 50-10 мм	$K_7 = 0.5$
Расчетные скорости ветра, м/с	U' = 0,5; 2; 4; 6; 8; 8,4
Среднегодовая скорость ветра, м/с	U = 3,8
Площадь поверхности погрузочно-разгрузочных работы в плане, м ²	$F_{pa6} = 1400$
Площадь поверхности пыления в плане, м ²	F _{nn} = 13915
Площадь фактической поверхности пыления, м ²	$F_{MAKC} = 18090$
Общее время хранения материала за рассматриваемый период, в сутках	T = 366
Число дней с дождем	$T_{\partial} = 71$
Число дней с устойчивым снежным покровом	$T_c = 80$

Число дней с дождем $T_{\it d}$ = 71											
Число дней с устойчивым снежным покровом $T_c = 80$											
	Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.										
								Лист			
						OBOC2.6		• • • • • • • • • • • • • • • • • • • •			
						OBOC2.0		87			
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата			67			

```
<u>Медный штейн</u> q_{\textit{пыли}}^{0.5\,\textit{м/c}} = 10^{-3} \cdot 0,0237 \cdot 0,5^{2.356} = 0,0000046 \ \textit{e/(M}^2\textit{c});
 \mathbf{M}_{\text{пыли}}^{0.5 \text{ м/c}} = 1 \cdot 0.01 \cdot 1.300036 \cdot 0.5 \cdot 0.0000046 \cdot 1400 +
                                                + 1 · 0,01 · 1,300036 · 0,5 · 0,11 · 0,0000046 · (13915 - 1400)·(1-0,9) = 0,0000463 æ/c;
 \mathbf{q}_{\text{пыли}}^{2 \text{ м/c}} = 10^{-3} \cdot 0.0237 \cdot 2^{2.356} = 0.0001213 \text{ e/(M}^2 \cdot c);
 M_{\text{пыли}}^{2 \text{ м/c}} = 1 \cdot 0.01 \cdot 1.300036 \cdot 0.5 \cdot 0.0001213 \cdot 1400 + 0.0001213 \cdot 0.00012110 \cdot 0.0001110 \cdot 0.0001210 \cdot 0.00012110 \cdot 0.0001210 \cdot 0.0001210 \cdot 0.00012
 + 1 · 0,01 · 1,300036 · 0,5 · 0,11 · 0,0001213 · (13915 - 1400)·(1-0,9) = 0,0012127 e/c; 

\mathbf{q}_{nb,nu}^{4 \text{ M/C}} = 10^{-3} \cdot 0,0237 \cdot 4^{2.356} = 0,0006212 \text{ e/(}m^2\text{ c}\text{);}
 \mathbf{M}_{n_{\text{DIJI}}}^{4 \text{ M/C}} = 1 \cdot 0.01 \cdot 1.300036 \cdot 0.5 \cdot 0.0006212 \cdot 1400 + 0.00060
                                                  +1 \cdot 0.01 \cdot 1.300036 \cdot 0.5 \cdot 0.11 \cdot 0.0006212 \cdot (13915 - 1400) \cdot (1-0.9) = 0.0062085 \ e/c;
   q_{\text{пыли}}^{6 \text{ м/c}} = 10^{-3} \cdot 0.0237 \cdot 6^{2.356} = 0.0016146 \text{ s/(M}^2 \cdot \text{c});
 \mathbf{M}_{\text{пыли}}^{6 \text{ M/c}} = 1 \cdot 0.01 \cdot 1.300036 \cdot 0.5 \cdot 0.0016146 \cdot 1400 + 0.0016146 \cdot 
                                                  + 1 \cdot 0.01 \cdot 1.300036 \cdot 0.5 \cdot 0.11 \cdot 0.0016146 \cdot (13915 - 1400) \cdot (1-0.9) = 0.0161384 \ e/c;
   q_{\text{пыли}^8 \text{ м/c}} = 10^{-3} \cdot 0,0237 \cdot 8^{2.356} = 0,00318 \text{ e/(}M^2 \cdot \text{c});
 M_{nbinu}^{8 \text{ M/c}} = 1 \cdot 0.01 \cdot 1.300036 \cdot 0.5 \cdot 0.00318 \cdot 1400 + 0.00318 \cdot 0.003
                                                  + 1 \cdot 0.01 \cdot 1.300036 \cdot 0.5 \cdot 0.11 \cdot 0.00318 \cdot (13915 - 1400) \cdot (1-0.9) = 0.0317845  e/c;
   \mathbf{q}_{\text{пыли}}^{8.4 \text{ м/c}} = 10^{-3} \cdot 0.0237 \cdot 8.4^{2.356} = 0.0035674 \text{ s/(m²·c)};
 \mathbf{M}_{\text{пыли}}^{8.4 \text{ м/c}} = 1 \cdot 0.01 \cdot 1.300036 \cdot 0.5 \cdot 0.0035674 \cdot 1400 + 1.00036674 \cdot 1.0003674 \cdot 1.00036674 \cdot 1.00036674 \cdot 1.00036674 \cdot 1.00036674 \cdot 1.0003674 \cdot 1.00036674 \cdot 1.00036674 \cdot 1.00036674 \cdot 1.00036674 \cdot 1.0003674 \cdot 1.00036674 \cdot 1.00036674 \cdot 1.00036674 \cdot 1.00036674 \cdot 1.0003674 \cdot 1.0003674 \cdot 1.0003674 \cdot 1.00003674 \cdot 1.0000367

\Pi_{\text{пыли}} = 0,11\cdot8,64\cdot10^{-2}\cdot1\cdot0,01\cdot1,300036\cdot0,5\cdot0,0005505\cdot13915\cdot(366-71-80)\cdot(1-0,9) = 0,0101735 \text{ m/sod.}

 Содержание в выбросах оксидов меди составит 40 % от общего выброса:
\mathbf{M}^{0.5 \text{ m/c}} = 0.0000463^{*} \ 0.4 = 0.0000185 \ \mathbf{z/c};
\mathbf{M}^{2 \text{ m/c}} = 0.0012127 ^{*} \ 0.4 = 0.000485 \ \mathbf{z/c};
 M^{4 \text{ M/C}} = 0,0062085 * 0,4 = 0,00248 \text{ e/c};
M^{6 \text{ M/C}} = 0.0161384 * 0.4 = 0.00646 \text{ e/c};

M^{8 \text{ M/C}} = 0.0317845 * 0.4 = 0.0127 \text{ e/c};
 M^{8.4 \text{ m/c}} = 0.0356564 * 0.4 = 0.0143 \text{ e/c};
 \Pi = 0,0101735 * 0,4 = 0,00407 m/zoð.
 Остальные вещества нормируются как пыль неорганическая:
 M^{0.5 \text{ m/c}} = 0.0000463 * 0.6 = 0.0000278 \text{ e/c};
 M^{2 \text{ M/C}} = 0.0012127 * 0.6 = 0.000728 \text{ e/c};
 M^{4 \text{ M/c}} = 0.0062085 * 0.6 = 0.00373 \text{ e/c};
 \mathbf{M}^{6 \text{ M/c}} = 0.0161384 * 0.6 = 0.00968 \text{ e/c};
 M^{8 \text{ m/c}} = 0.0317845 * 0.6 = 0.0191 \text{ e/c};
 M^{8.4 \text{ m/c}} = 0.0356564 * 0.6 = 0.0214 \text{ e/c};
 \Pi = 0,0101735 * 0,6 = 0,00610 m/zod.
```

Взам.инв.								
Подп. и дата								
Инв.№ подл.	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	Лист
	110		V 1.1.0 1	* 1- M****	подп	Дага		

ИЗАВ №6259. склады ванадиевого шлака (причал №73)

ИВ склады ванадиевого шлака (причал №73)

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год	
код	наименование	выброс, г/с	годовой выорос, глод	
Всего пылі	и – 100%, из них:	0,0008457	0,0003639	
0110	диВанадий пентоксид (пыль) (Ванадиевый ангидрид)	0,000152226	0,000065502	
2907	Пыль неорганическая, содержащая >70% двуокиси кремния	0,000693474	0,000298398	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.1):

 $\mathbf{M}_{XP} = \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{pa6} + \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot 0,11 \cdot \mathbf{q} \cdot (\mathbf{F}_{nn} - \mathbf{F}_{pa6}) \cdot (1 - \mathbf{\eta}), \ a/c$

где K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

К₆ - коэффициент, учитывающий профиль поверхности складируемого материала;

К₇ - коэффициент, учитывающий крупность материала;

 $\emph{F}_{\it pa6}$ - площадь в плане, на которой систематически производятся погрузочно-разгрузочные работы, \emph{m}^2 ,

F $_{nn}$ - поверхность пыления в плане, M^2 ;

q - максимальная удельная сдуваемость пыли, $c/(m^2 \cdot c)$;

 η - степень снижения выбросов при применении систем пылеподавления.

Значение коэффициента K_6 определяется по формуле (1.1.2):

 $\mathbf{K}_6 = \mathbf{F}_{\text{MAKC}} / \mathbf{F}_{\text{III}} \tag{1.1.2}$

где **F**_{макс} - фактическая площадь поверхности складируемого материала при максимальном заполнении склада, *м*². Значение максимальной удельной сдуваемости пылящего материала определяется по формуле (1.1.3):

$$q = 10^{-3} \cdot a \cdot U^{\circ}, c/(M^2 \cdot c)$$
 (1.1.3)

где a и b – эмпирические коэффициенты, зависящие от типа перегружаемого материала;

 U^{b} - скорость ветра, M/c.

Валовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.4):

$$\mathbf{\Pi}_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{nn} \cdot (1 - \mathbf{\eta}) \cdot (\mathbf{T} - \mathbf{T}_c) \text{ m/sod}$$

$$(1.1.4)$$

где Т - общее время хранения материала за рассматриваемый период, в сутках;

 $T_{∂}$ - число дней с дождем;

 T_c - число дней с устойчивым снежным покровом.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчетные параметры и их значения приведены в таблице 1.1.2.

Таблица 1.1.2 - Расчетные параметры и их значения

Расчетные параметры	Значения
Перегружаемый материал: Ванадиевый шлак	a = 0,0012
Эмпирические коэффициенты, зависящие от типа перегружаемого материала	b = 3,97
Местные условия – склады, хранилища, открытые с 2-х сторон	$K_4 = 0.2$
Влажность материала свыше 10 до 20%	$K_5 = 0.01$
Профиль поверхности складируемого материала	$K_6 = 1852 / 1425 = 1,29965$
Крупность материала – куски размером 500-100 мм	$K_7 = 0.2$
Расчетные скорости ветра, м/с	U' = 0,5; 2; 4; 6; 8; 8,4
Среднегодовая скорость ветра, м/с	U = 3,8
Площадь поверхности погрузочно-разгрузочных работы в плане, м ²	F _{pa6} = 150
Площадь поверхности пыления в плане, м ²	F _{nn} = 1425
Площадь фактической поверхности пыления, м²	F _{MAKC} = 1852
Общее время хранения материала за рассматриваемый период, в сутках	T = 366
Число дней с дождем	$T_{\partial} = 71$
Число дней с устойчивым снежным покровом	$T_c = 80$

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Ванадиевый шлак

Взам.инв.

윋

```
 \overline{ \mathbf{q}_{\textit{noinu}}^{0.5 \, \textit{M/c}} = 10^{-3} \cdot 0,0012 \cdot 0,5^{3.97} = 0,0000001 \, \textit{z}/(\textit{M}^2\textit{c}); } \\  \overline{ \mathbf{M}_{\textit{noinu}}^{0.5 \, \textit{M/c}} = 0,2 \cdot 0,01 \cdot 1,29965 \cdot 0,2 \cdot 0,0000001 \cdot 150 + \\  + 0,2 \cdot 0,01 \cdot 1,29965 \cdot 0,2 \cdot 0,11 \cdot 0,0000001 \cdot (1425 - 150) = 1,1554 \cdot 10^{-8} \, \textit{z/c}; } \\  \overline{ \mathbf{q}_{\textit{noinu}}^{2 \, \textit{M/c}} = 10^{-3} \cdot 0,0012 \cdot 2^{3.97} = 0,0000188 \, \textit{z}/(\textit{M}^2\textit{c}); } \\  \overline{ \mathbf{M}_{\textit{noinu}}^{2 \, \textit{M/c}} = 0,2 \cdot 0,01 \cdot 1,29965 \cdot 0,2 \cdot 0,0000188 \cdot (1425 - 150) = 0,0000028 \, \textit{z/c}; } \\  \overline{ \mathbf{q}_{\textit{noinu}}^{4 \, \textit{M/c}} = 10^{-3} \cdot 0,0012 \cdot 4^{3.97} = 0,0002947 \, \textit{z}/(\textit{M}^2\textit{c}); } \\  \overline{ \mathbf{M}_{\textit{noinu}}^{4 \, \textit{M/c}} = 0,2 \cdot 0,01 \cdot 1,29965 \cdot 0,2 \cdot 0,11 \cdot 0,0002947 \cdot (1425 - 150) = 0,0000445 \, \textit{z/c}; } \\  \overline{ \mathbf{q}_{\textit{noinu}}^{6 \, \textit{M/c}} = 0,2 \cdot 0,01 \cdot 1,29965 \cdot 0,2 \cdot 0,11 \cdot 0,0002947 \cdot (1425 - 150) = 0,0000445 \, \textit{z/c}; } \\  \overline{ \mathbf{q}_{\textit{noinu}}^{6 \, \textit{M/c}} = 10^{-3} \cdot 0,0012 \cdot 6^{3.97} = 0,0014738 \, \textit{z}/(\textit{M}^2\textit{c}); } \\  \overline{ \mathbf{M}_{\textit{noinu}}^{6 \, \textit{M/c}} = 0,2 \cdot 0,01 \cdot 1,29965 \cdot 0,2 \cdot 0,0014738 \, \textit{z}/(\textit{M}^2\textit{c}); } \\  \overline{ \mathbf{M}_{\textit{noinu}}^{6 \, \textit{M/c}} = 0,2 \cdot 0,01 \cdot 1,29965 \cdot 0,2 \cdot 0,014738 \, \textit{z}/(\textit{M}^2\textit{c}); } \\ \overline{ \mathbf{M}_{\textit{noinu}}^{8 \, \textit{M/c}} = 0,2 \cdot 0,01 \cdot 1,29965 \cdot 0,2 \cdot 0,11 \cdot 0,0046179 \, \textit{z}/(\textit{M}^2\textit{c}); } \\ \overline{ \mathbf{M}_{\textit{noinu}}^{8 \, \textit{M/c}} = 0,2 \cdot 0,01 \cdot 1,29965 \cdot 0,2 \cdot 0,0046179 \cdot 150 + \\  + 0,2 \cdot 0,01 \cdot 1,29965 \cdot 0,2 \cdot 0,11 \cdot 0,0046179 \cdot (1425 - 150) = 0,0006968 \, \textit{z/c}; } \\ \overline{ \mathbf{q}_{\textit{noinu}}^{8 \, \textit{M/c}} = 10^{-3} \cdot 0,0012 \cdot 8^{3.97} = 0,0046179 \cdot (1425 - 150) = 0,0006968 \, \textit{z/c}; } \\ \overline{ \mathbf{q}_{\textit{noinu}}^{8 \, \textit{M/c}} = 10^{-3} \cdot 0,0012 \cdot 8,4^{3.97} = 0,0056049 \, \textit{z}/(\textit{M}^2\textit{c}); }
```

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Лист

```
+ 0,2 · 0,01 · 1,29965 · 0,2 · 0,11 · 0,0056049 · (1425 - 150) = 0,0008457 æ/c; \mathbf{q}_{nblnll} = 10^{-3} \cdot 0,0012 \cdot 3,8^{3.97} = 0,0002404 æ/(m²·c);

\vec{\Pi}_{n_{binu}} = 0,11 \cdot 8,64 \cdot 10^{-2} \cdot 0,2 \cdot 0,01 \cdot 1,29965 \cdot 0,2 \cdot 0,0002404 \cdot 1425 \cdot (366-71-80) = 0,0003639 \text{ m/eod.}

Согласно ТУ 14-11-178-86 «Шлак ванадиевый. Технические условия» содержание оксида ванадия (V) не менее 18%.
Таким образом, содержание в выбросах оксида ванадия (V) составит: M^{0.5\,\text{M/C}}=1,1554\cdot10^{-8} * 0,18=0,000000002 г/с;
M^{2 \text{ m/c}} = 0,00000008 * 0,18 = 0,00000004 \text{ a/c};

M^{4 \text{ m/c}} = 0,0000445 * 0,18 = 0,00000801 \text{ a/c};
M^{6 \text{ M/C}} = 0,0002224 * 0,18 = 0,00004 \text{ e/c};

M^{8 \text{ M/C}} = 0,0006968 * 0,18 = 0,000125 \text{ e/c};

M^{8 \text{ M/C}} = 0,0008457 * 0,18 = 0,000152226 \text{ e/c};
\Pi = 0,0003639 * 0,18 = 0,000065502 m/eod.
Остальные вещества классифицируются как пыль неорганическая SiO2 >70%, содержание в выбросах составит:
Таким образом, содержание в выбросах оксида ванадия (V) составит:
M^{0.5 \text{ M/c}} = 1,1554 \cdot 10^{-8} * 0,82 = 0,00000000095 \text{ e/c};
M^{2 \text{ m/c}} = 0,0000028 * 0,82 = 0,0000023 \text{ s/c};

M^{4 \text{ m/c}} = 0,0000445 * 0,82 = 0,000036 \text{ s/c};

M^{6 \text{ m/c}} = 0,0002224 * 0,82 = 0,000182 \text{ s/c};
M^{8 \text{ M/c}} = 0,0006968 * 0,82 = 0,000571 \text{ a/c};

M^{6.4 \text{ M/c}} = 0,0008457 * 0,82 = 0,000693474 \text{ a/c};
\Pi = 0,0003639 * 0,82 = 0,000298398 m/zoð.
                                                                                                                                                                                                                  Лист
                                                                                                                              OBOC2.6
    Кол.уч Лист № док.
                                             Подп
                                                              Дата
```

подл.

Инв.№

ИЗАВ №6260. погрузо-разгрузочные работы на железнодорожном грузовом фронте (причалы №73-75)

Источником выделения загрязняющих веществ является:

- перегрузочные работы на железнодорожном грузовом фронте в углем; с коксом; ванадиевым шлаком; с ильменитовой рудой, с железорудным окатышем, глиноземом, медный штейном, нефтекоксом / коксом электродным, окалиной (шлаком);
- работа ДСК и конвейеров;
- работа воздуходувок.

Всего выбросов по источнику:

В расчете выбросов учтена неодновременность перегрузочных работ с разными грузами.

Максимально-разовый выброс принят максимальный по каждому грузу

Валовый выброс суммирован с учетом всех видов грузов

Всего по источнику выбросов:

	Загрязняющее вещество	Максимально	Годовой выброс, т/го
код	наименование	разовый выброс, г/с	тодовой выорос, то
	При перегрузке каменного угля		
3749	Пыль каменного угля	0,007933	0,034363
	При перегрузке кокса		
3749	Пыль каменного угля	0,007933	0,003886
	При перегрузке глинозема		
101	диАлюминий триоксид/в пересчете на алюминий/	0,017850	0,136080
	При перегрузке нефтекокса / кокса элек	тродного	
328	Углерод (пигмент черный)	0,148750	0,025200
	При перегрузке медного штейна	a	
146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,000714	0,000084
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,001070	0,000126
	При перегрузке железорудного конце	нтрата	
123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,032300	0,136800
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,016490	0,069840
	При перегрузке ванадиевого шла	ка	
110	диВанадий пентоксид (пыль) (Ванадиевый ангидрид)	0,000536	0,000544
2907	Пыль неорганическая, содержащая >70% двуокиси крем-ния	0,002440	0,002480
	При перегрузке ильменитовой ру	ды	
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,287880	0,243860
123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,329010	0,278690
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,205630	0,174180
	При перегрузке окалины (шлака	1)	
101	диАлюминий триоксид/в пересчете на алюминий/	0,144600	0,017010
123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	1,528000	0,179800
2909	Пыль неорганическая, содержащая дву-окись кремния, в %: - менее 20 (доломит, пыль цементного производства - извест-няк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,951000	0,111900

Расчет по каждому грузу выполнен на максимальную загруженность склада, поэтому в расчете рассеивания учтена неодновременность движения грузов, и по каждому веществу принят максимально-разовый выброс:

	Загрязняющее вещество	Максимально	Годовой выброс, т/год
код	наименование	разовый выброс, г/с	тодовой выорос, тлод
101	диАлюминий триоксид/в пересчете на алюминий/	0,144600	0,153090
110	диВанадий пентоксид (пыль) (Ванадиевый ангидрид)	0,000536	0,000544
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,287880	0,243860
123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	1,528000	0,595290
146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,000714	0,000084
328	Углерод (пигмент черный)	0,148750	0,025200
2907	Пыль неорганическая, содержащая >70% двуокиси крем-ния	0,002440	0,002480
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,205630	0,244146
2909	Пыль неорганическая, содержащая дву-окись кремния, в %: - менее 20 (доломит, пыль цементного производства - извест-няк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,951000	0,111900
3749	Пыль каменного угля	0.007933	0.037133

Максимально-разовый выброс с учетом ветра принят: Скорость ветра, м/с 0,5 8 8,4 Количество ЗВ, г/с диАлюминий триоксид/в пересчете 101 на алюминий/ 0,085 0,085 0,102 0,1191 0,1446 0,1446 диВанадий пентоксид (пыль) 110 0,000315 0,000315 0,000441 0,0005355 0,000378 0,0005355 (Ванадиевый ангидрид) Титан диоксид (Титан пероксид; 118 0,16934 0,16934 0,20321 0,23708 0,28788 0,28788 титан (IV) оксид) диЖелезо триоксид, (железа 123 оксид)/в пересчете на железо/(Железо сесквиоксид) 0,8989 0,8989 1,259 1,528 1,528 1.079

I						
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

MHB.No

146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,00042	0,00042	0,000504	0,000588	0,000714	0,000714
328	Углерод (пигмент черный)	0,0875	0,0875	0,105	0,1225	0,14875	0,14875
2907	Пыль неорганическая, содержащая >70% двуокиси крем- ния	0,001435	0,001435	0,001722	0,002009	0,0024395	0,0024395
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,12096	0,12096	0,14515	0,16934	0,20563	0,20563
2909	Пыль неорганическая, содержащая дву-окись кремния, в %: - менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,5595	0,5595	0,671	0,783	0,951	0,951
3749	Пыль каменного угля	0.00746	0.00746	0.00760	0.00773	0.00793	0.00793

выоросы от воздуходувок составят:

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
301	Азота диоксид (Азот (IV) оксид)	0,0007556	0,0009955
304	Азот (II) оксид (Азота оксид)	0,0001228	0,0001618
330	Сера диоксид (Ангидрид сернистый)	0,0002694	0,000355
337	Углерод оксид	0,0522222	0,068808
2704	Бензин (нефтяной, малосернистый)	0,0066667	0,008784

ИВ Разгрузка угля на склад (пр №73-75)

Источником выделения пыли является перемещение масс угля (разгрузка и погрузка, ссыпание, перегрузка).

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,001142	0,003871

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельное выделение при разгрузке (перегрузке) материала, q_n [г/т]	0,32
Количество разгружаемого (перегружаемого) материала, $\Pi_{\epsilon}[\tau/год]$	1440000
Количество разгружаемого (перегружаемого) материала, Л, [т/час]	1080
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), К₁	0,01
Скорость ветра 95% обеспеченности, ₩ ₆ [м/с]	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, w_e [м/с]	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Высота разгрузки материала, [м]	2
Коэффициент, учитывающий высоту пересыпки материала (табл. 6.9), K_3	0,7
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	1
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0

Взам.инв.

AHB.No

 ${m q}_n$ – удельное выделение при разгрузке (перегрузке) материала, ${m e}/m$;

 Π_{e} – количество разгружаемого (перегружаемого) материала, *m/год*;

 $\Pi_{\rm v}$ – максимальное количество перегружаемого материала за час, $m/{\rm vac}$;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 \textit{K}_{2} – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

К₃ – коэффициент, учитывающий высоту пересыпки материала (таб. 6.9 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При разгрузочных (перегрузочных) работах: 0,003871 $M_{3749} =$

0.001142 **G** 3749= s/c

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,000672	0,000672	0,000806	0,000941	0,005376	0,001142

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Источником выделения пыли является перемещение масс угля (разгрузка и погрузка, ссыпание, перегрузка).

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,001142	0,000323

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

таолица 2 - исходные данные для расчета	
Удельное выделение при разгрузке (перегрузке) материала, q_n [г/т]	0,32
Количество разгружаемого (перегружаемого) материала, Л₂ [т/год]	120000
Количество разгружаемого (перегружаемого) материала, Π_{i} [т/час]	1080
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, w_e [м/с]	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, $w_{\mathfrak{s}}[M/c]$	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Высота разгрузки материала, [м]	2
Коэффициент, учитывающий высоту пересыпки материала (табл. 6.9), K_3	0,7
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	1
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_n = q_n \cdot \Pi_2 \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot 10^{-6} \cdot (1-\eta), \text{ m/sod}$$
 [1] $G_n = (q_n \cdot \Pi_4 \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot (1-\eta))/3600, \text{ e/c}$ [2]

где

Взам.инв.

윋

 q_n – удельное выделение при разгрузке (перегрузке) материала, z/m;

 Π_z – количество разгружаемого (перегружаемого) материала, m/zod;

 $\Pi_{\rm v}$ – максимальное количество перегружаемого материала за час, $m/{\rm vac}$;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 K_3 – коэффициент, учитывающий высоту пересыпки материала (таб. 6.9 Методики);

*K*₄ – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При разгрузочных (перегрузочных) работах:

 M_{3749} = 0,000323 m/ec G_{3749} = 0,001142 e/c

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,000672	0,000672	0,000806	0,000941	0,0011424	0,001142

ИВ Мобильные сортировочные устройства (уголь) (пр №73-75)

Источником выделения пыли является работа дробильно-сортировочных установок

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
3749	Пыль каменного угля	0,004533	0,029376

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

таолица 2 - исходные данные для расчета	
Наименование оборудования	ДСК
Количество одновременно работающих установок	2
Удельное выделение при дроблении материала, q_n [г/т]	2,04
Количество разгружаемого (перегружаемого) материала, Л₂ [т/год]	1440000
Количество разгружаемого (перегружаемого) материала, П, [т/час]	800
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_n = \mathbf{q}_n \cdot \Pi_z \cdot K_1 \cdot 10^{-6}, m/eod$$
 [1] $G_n = (\mathbf{q}_n \cdot \Pi_u \cdot K_1)/3600, e/c$ [2]

где: q_n – удельное выделение твердых частиц при работе самоходных дробильных установок, г/т породы; Определеяется по таб. 6.11 Методики.

	определ			5.11 Метод			
						ODOCA (Лист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	93

 Π_{4} – максимальное количество перегружаемого материала за час, m/чаc;

 K_1 - коэффициент, учитывающий влажность материала (табл.4.2 Методики).

Согласно «Методического пособия по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух» применяется поправочный коэффициент гравитации для пыли равный 0,4

ИВ Мобильные сортировочные устройства (кокс) (пр №73-75)

Источником выделения пыли является работа дробильно-сортировочных установок

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
3749	Пыль каменного угля	0,004533	0,002448

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Наименование оборудования	дск
Количество одновременно работающих установок	2
Удельное выделение при дроблении материала, q_n [г/т]	2,04
Количество разгружаемого (перегружаемого) материала, Па [т/год]	120000
Количество разгружаемого (перегружаемого) материала, П, [т/час]	800
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_n = q_n \cdot \Pi_e \cdot K_1 \cdot 10^6$$
, m/200 [1] $G_n = (q_n \cdot \Pi_q \cdot K_1)/3600$, z/c [2]

где: q_n – удельное выделение твердых частиц при работе самоходных дробильных установок, г/т породы;

Определеяется по таб. 6.11 Методики.

 Π_{e} - количество переработанной породы за год, *m/год*;

 Π_{y} – максимальное количество перегружаемого материала за час, *m/час;*

 K_1 - коэффициент, учитывающий влажность материала (табл.4.2 Методики).

Согласно «Методического пособия по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух» применяется поправочный коэффициент гравитации для пыли равный 0,4

ИВ Работа транспортерной ленты - 2 шт (пр №73-75)

Источником выделения пыли является унос пыли при транспортировании угля ленточным конвейером.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество			Годовой
код	наименование	- Mak	симально разовый выброс, г/с	выброс, т/год
3749	Пыль каменного угля		0,002160	0,001089

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, q_n [г/кв.м*c]	0,003
Количество конвейеров одного типа, n_j	2
Ширина ленты конвейера, b_i [м];	1,2
Длина ленты конвейера, L_i [м];	30
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Количество рабочих часов конвейра в год, T_j [ч/год]	5040
Скорость ветра, w_s [м/с]	8,4
Скорость движения конвейера, w₀[м/с]	2
Скорость обдува материала, V_{o6} [м/с]	2
Коэффициент, учитывающий скорость обдува материала(принимается по ближайшему значению) (таб. 7.19	1
Методики), K_{ob}	,
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	1
Эффективность пылеподавления (таб 7.16), η [долл.ед]	0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$\begin{array}{lll} \textit{M}_{c\partial} = & \Sigma 3, 6 \cdot q_n \cdot b_j \cdot l_j \cdot T_j \cdot K_1 \cdot K_{06} \cdot K_4 \cdot (1-\eta) \cdot 10^{-3}, \, m/\text{cod} & [1] \\ \textit{G}_{c\partial} = & \Sigma q_n \cdot b_j \cdot l_j \cdot n_j \cdot K_1 \cdot K_{06} \cdot K_4 \cdot (1-\eta), \, e/c & [2] \end{array}$$

где

 q_n – удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, г/кв.м*с;

 b_i – ширина ленты ковейера, м;

 I_i – длина ленты конвейера, м;

 T_{j} – количество рабочих часов конвейра в год, ч/год;

 \emph{K}_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_{o6} – коэффициент, учитывающий скорость обдува материала (таб. 7.19 Методики);

						C
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	
	•	•		•	•	

OBOC2.6

Лист

*К*₄ – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 7.16 Методики).

При расчете выбросов от конвейеров, эксплуатирующихся в помещении учитывается коэффициент осаждения 0,4, при этом коэффициент К₀=1, остальные коэффициенты принимаются как указано выше

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При транспортировке ленточным конвейером:

M₃₇₄₉= 0,001089 m/20∂ **G**₃₇₄₉= 0,002160 2/c

ИВ Зачистка вагонов (пр №73-75)

Источником выделения пыли является унос пыли при зачистке вагонов.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годово	1
код	наименование	разовый выброс, г/с	выброс, та	год
3749	Пыль каменного угля	0,000097	0,00002	7

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - **Исходные данные для расчета**

Удельное количество сдуваемых твердых частиц с поверхности штабеля угля, дҫҫ [кг/кв.м*с]	0,00000	1
Площадь вагона, S_{ω} [кв.м]	27	
Количество вагонов в сутки	60	
Влажность материала, %	>11%	
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01	
Скорость обдува, <i>w</i> _e [м/с]	79	
Коэффициент, учитывающий скорость обдува (табл. 6.4), K_2	9	
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	1	
Коэффициент, учитывающий профиль поверхности складируемого материала, \mathcal{K}_{6}	0,1	
Количество часов работы в год Т	8000	
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0	
Коэффициент измельчения горной массы, $ ho$	0,1	

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_{c\partial} = q_{c\partial} \cdot S_m \cdot K_1 \cdot K_2 \cdot K_4 \cdot K_6 \cdot \rho \cdot T \cdot (1-\eta), m/200$$
 [1] $G_{c\partial} = q_{c\partial} \cdot S_m \cdot K_1 \cdot K_2 \cdot K_4 \cdot K_6 \cdot \rho \cdot (1-\eta) \cdot 1000, e/c$ [2]

где

Взам.инв.

MHB.№

 $q_{c \hat{\sigma}}$ – удельное количество сдуваемых твердых частиц с поверхности штабеля угля, кг/кв.м*с;

S_{*w*} – площадь вагона, кв.м;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

К₂ – коэффициент, учитывающий скорость обдува (таб. 6.4 Методики);

 \emph{K}_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 \emph{K}_{6} – коэффициент, учитывающий профиль поверхности складируемого материала;

 $oldsymbol{
ho}$ - коэффициент измельчения горной массы;

 $\underline{\pmb{\eta}}$ - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При зачистке вагонов:

ИВ работы по перегрузке глинозема на ж/д фронте

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 1-й стороны (K_4 = 0,1). Высота падения материала при пересыпке составляет 1,0 м (B = 0,5). Залповый сброс при разгрузке автосамосвала отсутствует (K_9 = 1). Расчетные скорости ветра, м/с: 0,5 (K_3 = 1); 2 (K_3 = 1); 4 (K_3 = 1,2); 6 (K_3 = 1,4); 8 (K_3 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_3 = 1,2).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

3	Загрязняющее вещество код наименование		няющее вещество Пылеподавление, %		разовый выброс, г/с	Годовой выброс, т/год	
код			пылеподавление, %	до	после	до	после
0101	диАлюминий пересчете на а	триоксид/в ілюминий/	90 Технология пылеподавления: Гранулирование пылящего материала. Процесс производства глинозема гидрохимическим способом Байера заключается в разложении (гидролизе) щелочно-алюминатных растворов при высоких температурах с последующим выделением гидроксида алюминия включает в себя	0,1785	0,01785	1,3608	0,13608

Изм	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	95	
						OBOC2.0	0.5	ı
						(\D (\C \)		
							Лист	ı
	1		1					l
								l
					ал	юминия включает в себя		l
								l
								ı
								ı
								ı
	. [тем	щелочно-алюминатных растворов при высоких температурах с последующим выделением гидроксида алюминия включает в себя	растворов при высоких температурах с последующим выделением гидроксида алюминия включает в себя Лист

3a	грязняющее вещество	Пылеподавление, %	Максимально	разовый выброс, г/с	Годовой выброс, т/год		
код	наименование	пылеподавление, 70	до	после	до	после	
		прокаливание и кальцинация					
		(обезвоживание) гидрооксида					
		алюминия, что по сути					
		связывает поверхность, поэтому					
		при перегрузке принято					
		снижение выбросов 90% как при					
		перегрузке гранулированного					
		материала.					

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Материал	Параметры	Одноврем
Материал	Параметры	енность
Глинозем (удельные коэффициенты	Количество перерабатываемого материала: Gч = 400 т/час; Gгод = 1200000	+
	т/год. Весовая доля пылевой фракции в материале: K_1 = 0,01. Доля пыли,	
	переходящая в аэрозоль: K_2 = 0,003. Влажность до 1% (K_5 = 0,9). Размер	
	куска 5-3 мм (K_7 = 0,7) (K_8 = 1). Технология пылеподавления:	
	Гранулирование пылящего материала.	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{FP} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_4 \cdot 10^6 / 3600, \ a/c$$
 (1.1.1)

где K_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 ${\it K}_{\it 2}$ - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

 K_3 - коэффициент, учитывающий местные метеоусловия;

*K*₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

 ${\it K}_{\it 5}$ - коэффициент, учитывающий влажность материала;

 ${\it K}_{7}$ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств K_8 = 1;

 \emph{K}_{9} - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_{4} - суммарное количество перерабатываемого материала в час, *m/час*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{eod}, m/eod$$
(1.1.2)

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Глинозем

Взам.инв.

윋

ИВ Работы по перегрузке медного штейна на ж/д фронте

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия — склады, хранилища, открытые с 4-х сторон (K_4 = 1). Высота падения материала при пересыпке составляет 2,0 м (B = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует (K_9 = 1). Расчетные скорости ветра, м/с: 0,5 (K_9 = 1); 2 (K_9 = 1); 4 (K_9 = 1,2); 6 (K_9 = 1,4); 8 (K_9 = 1,7); 8,4 (K_9 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_9 = 1,2).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

Загрязняющее вещество		Пылеподавление, %	1 BPIDDO		Годовой выброс, т/год	
код	наименование	70	до	после	до	после
Всего пь	ıли 100%, из них:	90	0,01785	0,001785	0,0021	0,00021
0146	Медь оксид/в пересчете на медь/(Медь	Технология	-	0,000714	-	0,0000840
	окись; тенорит)	пылеподавления:				
2908	Пыль неорганическая, содержащая	Гранулирование	-	0,00107	-	0,000126
	двуокись кремния, в %: - 70-20 (шамот,	пылящего				
	цемент, пыль цементного производства -	материала.				
	глина, глинистый сланец, доменный шлак,	Штейн —				
	песок, клинкер, зола кремнезем и другие)	промежуточный				
		продукт при				
		получении				
		некоторых				
		цветных				
		металлов (Cu, Ni,				
		Рb и другие) из их				
		сульфидных руд,				
		представляет				

Изм Колуд Лист Молок Поли Лата						
Изм Колуд Лист Молок Поли Лата						
Изм. Кол.уч Лист № док. Подп. Дата						
изм. пол.уч лист жедок. подп. дата	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

OBOC2.6

Лист

Материал	Параметры	Одноврем енность
Удельные показатели приняты по аналогу - гравий	Количество перерабатываемого материала: Gч = 1080 т/час; Gгод = 50000 т/год. Весовая доля пылевой фракции в материале: \mathbf{K}_1 = 0,01. Доля пыли, переходящая в аэрозоль: \mathbf{K}_2 = 0,001. Влажность свыше 10 до 20% (\mathbf{K}_5 = 0,01). Размер куска 50-10 мм (\mathbf{K}_7 = 0,5). Технология пылеподавления: Гранулирование пылящего материала.	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1): $\mathbf{M}_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_4 \cdot 10^6 / 3600, \ e/c$

где \mathbf{K}_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 ${\it K}_2$ - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств $K_8 = 1$;

 $extbf{K}_{9}$ - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_{4} - суммарное количество перерабатываемого материала в час, m/час.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{\text{eod}}, m/\text{eod}$$

$$\tag{1.1.2}$$

где $G_{eo\delta}$ - суммарное количество перерабатываемого материала в течение года, $m/eo\delta$.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Взам.инв.

윋

```
Медный штейн M_{\text{пыпи}}^{0.5 \text{ м/c}} = 0.01 \cdot 0.001 \cdot 1 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^6 / 3600 * (1-0.9) = 0.00105 e/c;
 M_{\text{пыли}}^{2 \, \text{M/c}} = 0.01 \cdot 0.001 \cdot 1 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^6 / 3600 * (1-0.9) = 0.00105 \, \text{e/c};
 \begin{array}{l} \mathbf{\textit{M}}_{\text{InJITU}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^{6} / 3600 \cdot (1-0.9) = 0.00103 \, \text{s/c}, \\ \mathbf{\textit{M}}_{\text{InJITU}} ^{4 \, \text{Mic}} = 0.01 \cdot 0.001 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^{6} / 3600 \cdot (1-0.9) = 0.00126 \, \text{s/c}; \\ \mathbf{\textit{M}}_{\text{InJITU}} ^{6 \, \text{Mic}} = 0.01 \cdot 0.001 \cdot 1.4 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^{6} / 3600 \cdot (1-0.9) = 0.00147 \, \text{s/c}; \\ \mathbf{\textit{M}}_{\text{InJITU}} ^{8 \, \text{Mic}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^{6} / 3600 \cdot (1-0.9) = 0.001785 \, \text{s/c}; \\ \mathbf{\textit{M}}_{\text{InJITU}} ^{8 \, \text{Mic}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^{6} / 3600 \cdot (1-0.9) = 0.001785 \, \text{s/c}; \\ \mathbf{\textit{M}}_{\text{InJITU}} ^{8 \, \text{Mic}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^{6} / 3600 \cdot (1-0.9) = 0.001785 \, \text{s/c}; \\ \mathbf{\textit{M}}_{\text{InJITU}} ^{8 \, \text{Mic}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^{6} / 3600 \cdot (1-0.9) = 0.001785 \, \text{s/c}; \\ \mathbf{\textit{M}}_{\text{InJITU}} ^{8 \, \text{Mic}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^{6} / 3600 \cdot (1-0.9) = 0.001785 \, \text{s/c}; \\ \mathbf{\textit{M}}_{\text{INDITU}} ^{8 \, \text{Mic}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^{6} / 3600 \cdot (1-0.9) = 0.001785 \, \text{s/c}; \\ \mathbf{\textit{M}}_{\text{INDITU}} ^{8 \, \text{Mic}} = 0.001 \cdot 0.001 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.001 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^{6} / 3600 \cdot (1-0.9) = 0.001785 \, \text{s/c}; \\ \mathbf{\textit{M}}_{\text{INDITU}} ^{8 \, \text{Mic}} = 0.001 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.001 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^{6} / 3600 \cdot (1-0.9) = 0.001785 \, \text{s/c}; \\ \mathbf{\textit{M}}_{\text{INDITU}} ^{8 \, \text{Mic}} = 0.001 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.001 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^{6} / 3600 \cdot 
 \Pi_{\text{пыпи}} = 0.01 \cdot 0.001 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 50000 * (1-0.9) = 0.00021 \text{ m/sod.}
```

В соответствии с ГОСТ Р 52998-2008 «Концентрат медный. Технические условия» содержание меди в концентрате до 40%. Содержание в выбросах оксидов меди составит 40 % от общего выброса:

```
M^{0.5 \text{ M/c}} = 0.00105 * 0.4 = 0.000420 \text{ e/c};
M^{2 \text{ M/c}} = 0.00105 * 0.4 = 0.000420 \text{ e/c};
M^{4 \text{ M/c}} = 0.00126 * 0.4 = 0.000504 \text{ e/c};

M^{6 \text{ M/c}} = 0.00147 * 0.4 = 0.000588 \text{ e/c};
M^{8 \text{ M/c}} = 0.001785 * 0.4 = 0.000714 \text{ e/c};

M^{8.4 \text{ M/c}} = 0.001785 * 0.4 = 0.000714 \text{ e/c};
\Pi = 0,00021 * 0,4 = 0,0000840 m/eod.
```

Остальные вещества нормируются как пыль неорганическая:

```
M^{0.5 \text{ m/c}} = 0.00105 * 0.6 = 0.000630 \text{ e/c};
M^{2 \text{ M/C}} = 0.00105 * 0.6 = 0.000630 \text{ e/c};
M^{4 \text{ M/c}} = 0.00126 * 0.6 = 0.000756 \text{ e/c};

M^{6 \text{ M/c}} = 0.00147 * 0.6 = 0.000882 \text{ e/c};
M^{8 \text{ M/C}} = 0.001785 * 0.6 = 0.00107 \text{ e/c};
M^{8.4 \text{ M/C}} = 0.001785 * 0.6 = 0.00107 \text{ e/c};
\Pi = 0,00021 * 0,6 = 0,000126 m/eod.
```

ИВ работы по перегрузке нефтекокса /кокса электродного на ж/д фронте

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

OBOC2.6

Лист

(1.1.1)

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

Загрязняющее вещество		Пылеподавление, %	Максимально разовый выброс, г/с		Годовой выброс, т/год	
код	наименование		до	после	до	после
328	Углерод (Сажа)	90 Технология пылеподавления: Гранулирование пылящего материала. Кокс подвергается прокаливанию. Прокаливание нефтяного кокса — это процесс нагрева сырого нефтяного кокса до 1250-1350°С. При этом его молекулярная структура принимает более организованную форму с четкой кристаллической решеткой. Благодаря физическим и химическим процессам, происходящим с сырьевым материалом, происходит улучшение потребительских свойств кокса, что по сути связывает поверхность кокса, поэтому при перегрузке принято снижение выбросов 90% как при перегрузке гранулированного материала.		0,14875	0,252	0,0252

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

restricted the property of the page 1		
Материал	Параметры	Одноврем
Материал	Параметры	енность
Перегружаемый материал: Нефтекокс / кокс	Количество перерабатываемого материала: Gч = 750 т/час; Gгод = 50000	+
электродный	т/год. Весовая доля пылевой фракции в материале: K_1 = 0,03. Доля пыли,	
Эмпирические коэффициенты, зависящие от	переходящая в аэрозоль: K_2 = 0,04. Влажность свыше 10 до 20% (K_5 = 0,01).	
типа перегружаемого материала приняты по	Размер куска 50-10 мм (K_7 = 0,5). Технология пылеподавления:	
аналогу - графит	Гранулирование пылящего материала.	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

 $\mathbf{M}_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_4 \cdot 10^6 / 3600, \text{ a/c}$

где K_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 ${\it K}_2$ - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

 ${\it K}_7$ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств $K_8 = 1$;

 K_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_{y} - суммарное количество перерабатываемого материала в час, *m/час*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{\text{eod}}, m/\text{eod}$$

$$\tag{1.1.2}$$

(1.1.1)

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Нефтекокс / кокс электродный

윋

```
M_{328}^{0.5 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 * (1-0.9) = 0.0875 \text{ e/c}
\mathbf{M}_{328}^{2 \text{ m/c}} = 0.03 \cdot 0.04 \cdot 1 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 * (1-0.9) = 0.0875 \text{ z/c};
\mathbf{M}_{328}^{2 \text{ m/c}} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 * (1-0.9) = 0.105 \text{ z/c};
\mathbf{M}_{328}^{4 \text{ m/c}} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 * (1-0.9) = 0.105 \text{ z/c};
\mathbf{M}_{328}^{6 \text{ m/c}} = 0.03 \cdot 0.04 \cdot 1.4 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 * (1-0.9) = 0.1225 \text{ z/c};
M_{328}^{8 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 * (1-0.9) = 0.14875 \ e/c;
M_{328}^{8.4 \text{ M/C}} = 0.03 \cdot 0.04 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 * (1-0.9) = 0.14875 \text{ e/c};
\Pi_{328} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 50000 * (1-0.9) = 0.0252  m/sod.
```

ИВ работы по перегрузке окалины (шлака) на ж/д фронте

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 4-х сторон (K₄ = 1). Высота падения материала при пересыпке составляет 2,0 м (В = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует ($K_9 = 1$). Расчетные скорости ветра, м/с: 0,5 ($K_3 = 1$); 2 ($K_3 = 1$); 4 ($K_3 = 1,2$); 6 ($K_3 = 1,4$); 8 ($K_3 = 1,4$); 9 ($(K_3 = 1,7)$. Средняя годовая скорость ветра 3,8 м/с $(K_3 = 1,2)$.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Пылеподавление, %	_	но разовый ос, г/с	Годовой выброс, т/год	
код	наименование	70	до	после	до	после
Всего пы	ли 100%, из них:	90	26,2395	2,62395	3,087	0,3087

		код		H	наименование			70	до	после	до	ПОС	пе
	E	Зсего пы	ли 100%	∕₀, из них				90	26,2395	2,62395	3,087	0,30	87
ŀ		T .	I										
ŀ								00000					Лист
L								OBOC2.6					
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата							98

жод наименование 0101 диАлюминий триоксид/в пересчете на алюминий/ (5,51%) 0123 диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид) (58,24%) 2909 Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие) 1	ДO - -	после 0,1446 1,528 0,951	ДО - -	после 0,01701 0,1798 0,1119
алюминий/ (5,51%) О123 диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид) (58,24%) О12909 Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие) О1290 Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие) О1290 Пыль неорганическая, содержащая прокаливанию. Прокаливание нефтяного кокса и другие) О1290 Пыль неорганическая, содержащая приокаливанию. Прокаливание нефтяного кокса и другие) О1290 Пыль неорганическая, содержащая приокаливанию. Прокаливание нефтяного кокса и другие) О1290 Пыль неорганическая, содержащая приокаливанию. Прокаливание нефтяного кокса и другие)		1,528		0,1798
7 диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид) (58,24%) 2909 Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие) 10123 ДиЖелезо триоксид, (железа оксид)/в пылящего материала. Кокс подвергается прокаливанию. Прокаливание нефтяного кокса — это процесс нагрева сырого нефтяного кокса до 1250—1350°С. При этом его молекулярная структура принимает более	-			
двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие) прокаливание нефтяного кокса — это процесс нагрева сырого нефтяного кокса до 1250- 1350°C. При этом его молекулярная структура принимает более	-	0,951	-	0,1119
организованную форму с четкой кристаллической решеткой. Благо даря физическим и химическим процессам, происходящим с сырьевым материалом, происходит улучшение потребительских свойств кокса, что по сути связывает поверхность кокса, поэтому при перегрузке принято снижение выбросов 90% как при перегрузке гранулированного				

- 3	COMIC TILL MONOGRIDIO ANNI PRO 1014						
	Материал	Параметры	Одноврем				
	'	·	енность				
	Шлак	Количество перерабатываемого материала: Gч = 1080 т/час; Gгод = 50000	+				
	ļ	т/год. Весовая доля пылевой фракции в материале: K_1 = 0,05. Доля пыли,					
	ļ	переходящая в аэрозоль: K_2 = 0,02. Влажность до 5% (K_5 = 0,7). Размер					
		куска 5-3 мм (K_7 = 0,7). Технология пылеподавления: Гранулирование					
	· ·	пылящего материала.					

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{\Gamma P} = \mathbf{K}_{1} \cdot \mathbf{K}_{2} \cdot \mathbf{K}_{3} \cdot \mathbf{K}_{4} \cdot \mathbf{K}_{5} \cdot \mathbf{K}_{7} \cdot \mathbf{K}_{8} \cdot \mathbf{K}_{9} \cdot \mathbf{B} \cdot \mathbf{G}_{4} \cdot 10^{6} / 3600, \, a/c$$
(1.1.1)

где $\textbf{\textit{K}}_1$ - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 K_2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

 ${\it K}_{\it 5}$ - коэффициент, учитывающий влажность материала;

 ${\it K}_7$ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств $K_8 = 1$;

 K_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 ${f G}_{\!\scriptscriptstyle 4}$ - суммарное количество перерабатываемого материала в час, ${\it m/чаc}$.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\mathbf{\Pi}_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{\text{eod}}, \, m/\text{eod}$$

$$\tag{1.1.2}$$

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Взам.инв..

AHB.No

 $\frac{\text{Шлак}}{\textit{M}_{\textit{Пыли}}^{0.5 \text{ M/c}}} = 0.05 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^6 \, / \, 3600 \, * \, (1-0.9) = 1.5435 \, \textit{e/c}; \\ \textit{M}_{\textit{Пыли}}^{2 \text{ M/c}} = 0.05 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^6 \, / \, 3600 \, * \, (1-0.9) = 1.5435 \, \textit{e/c};$

						OBOC2.6
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	

```
M_{\text{ПЫЛИ}}^{4 \text{ M/C}} = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^6 / 3600 * (1-0.9) = 1.8522 \text{ e/c};
M_{\text{Пыли}}^{6 \text{ M/c}} = 0.05 \cdot 0.02 \cdot 1.4 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^{6} / 3600 * (1-0.9) = 2,1609 \text{ s/c};
M_{nb/10}^{8 \text{ M/C}} = 0.05 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^6 / 3600 * (1-0.9) = 2,62395 \text{ e/c};

M_{nb/10}^{8.4 \text{ M/C}} = 0.05 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^6 / 3600 * (1-0.9) = 2,62395 \text{ e/c};
Содержание в выбросах оксидов алюминия составит 5,51 % от общего выброса:
M^{0.5 \text{ M/c}} = 1,5435 * 0,0551 = 0,0850 \text{ s/c};
M^{2 \text{ M/c}} = 1,5435 * 0,0551 = 0,0850 \text{ s/c};
M^{4 \text{ M/c}} = 1,8522 * 0,0551 = 0,102 \text{ e/c};
M^{6 \text{ M/C}} = 2.1609 * 0.0551 = 0.1191 \text{ e/c}
M^{8 \text{ m/c}} = 2,62395 * 0,0551 = 0,1446 \text{ e/c};
M^{8.4 \text{ m/c}} = 2,62395 * 0,0551 = 0,1446 \text{ e/c};
\Pi = 0,3087 * 0,0551 = 0,0170 m/zod.
Содержание в выбросах оксидов железа составит 58,24 % от общего выброса:
M^{0.5 \text{ M/C}} = 1,5435 * 0,5824 = 0,8989 \text{ e/c};

M^{2 \text{ M/C}} = 1,5435 * 0,5824 = 0,8989 \text{ e/c};
M^{4 \text{ m/c}} = 1,8522 * 0,5824 = 1,079 \text{ e/c};
M^{6 \text{ m/c}} = 2,1609 * 0,5824 = 1,259 \text{ e/c};
M^{8 \text{ m/c}} = 2,62395 * 0,5824 = 1,528 \text{ e/c};
M^{8.4 \text{ m/c}} = 2,62395 * 0,5824 = 1,528 \text{ e/c};
\Pi = 0,3087 * 0, 5824 = 0,1798 m/eod.
Остальные вещества нормируются как пыль неорганическая:
\mathbf{M}^{0.5 \text{ m/c}} = 1,5435 * 0,3625 = 0,5595 \text{ e/c};
M^{2 \text{ M/c}} = 1,5435 * 0,3625 = 0,5595 \text{ e/c};
M^{4 \text{ M/c}} = 1,8522 * 0,3625 = 0,671 \text{ e/c};
\mathbf{M}^{6 \text{ M/C}} = 2,1609 * 0,3625 = 0,783 \text{ e/c};
M^{8 \text{ M/c}} = 2,62395 * 0,3625 = 0,951 \text{ e/c};
M^{8.4 \text{ M/c}} = 2,62395 * 0,3625 = 0,951 \text{ e/c};
\Pi = 0,3087 * 0, 3625= 0,1119 m/zoð.
```

ИВ Погрузка ильменитовой руды в вагон (пр 73-75)

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с «Методическим пособием по расчету выбросов от неорганизованных источников в промышленности строительных материалов», Новороссийск, 2001; «Методическим пособием по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», СПб., 2012

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия — склады, хранилища, открытые с 4-х сторон (K_4 = 1). Высота падения материала при пересыпке составляет 2,0 м (B = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует (K_9 = 1). Расчетные скорости ветра, м/с: 0,5 (K_9 = 1); 2 (K_9 = 1); 4 (K_9 = 1,2); 6 (K_9 = 1,4); 8 (K_9 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_9 = 1,2).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	1 одовой выорос, 1/1од
0118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,28788	0,24386
0123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,32901	0,27869
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,20563	0,17418

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Материал	Параметры	Одноврем енность
Руда Коэффициенты сдуваемости приняты д щебня	Количество перерабатываемого материала: Gu = 360 т/час; Gгод = 120000 т/год. Весовая доля пылевой фракции в материале: K_1 = 0,04. Доля пыли, переходящая в аэрозоль: K_2 = 0,02. Влажность до 9% (K_5 = 0,2). Размер куска 500-100 мм (K_7 = 0,2). Грейфер 3830 грузоподъемностью 16 т (K_8 = 0,216).	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{\Gamma P} = \mathbf{K}_{1} \cdot \mathbf{K}_{2} \cdot \mathbf{K}_{3} \cdot \mathbf{K}_{4} \cdot \mathbf{K}_{5} \cdot \mathbf{K}_{7} \cdot \mathbf{K}_{8} \cdot \mathbf{K}_{9} \cdot \mathbf{B} \cdot \mathbf{G}_{4} \cdot 10^{6} / 3600, \, e/c$$
(1.1.1)

где K_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 ${\it K}_{\it 2}$ - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

 ${\it K}_{\it 3}$ - коэффициент, учитывающий местные метеоусловия;

Взам.инв.

윋

К₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

 ${\it K}_{\it 5}$ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств K_8 = 1;

 K_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_4 - суммарное количество перерабатываемого материала в час, *тичас*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{eod}, m/eod$$

(1.1.2)

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200

дан				ве продук	•	яющего вещества в виде дополнительного множителя учитывается масс	овал дол
							Ли
T	Копул	Пист	№ док.	Подп.	Дата	OBOC2.6	

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

```
Руда
M^{0.5 \text{ m/c}} = 0.04 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 / 3600 = 0.48384 \text{ e/c}
M^{2 \text{ m/c}} = 0.04 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 / 3600 = 0.48384 \text{ a/c};
M^{4 \text{ M/C}} = 0.04 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 / 3600 = 0.580608 \text{ e/c}
M^{6 \text{ M/C}} = 0.04 \cdot 0.02 \cdot 1.4 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^{6} / 3600 = 0.677376 \text{ e/c};
\emph{M}^{8 \text{ M/C}} = 0.04 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 / 3600 = 0.822528 \ \emph{e/c}; \emph{M}^{8.4 \text{ M/C}} = 0.04 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 / 3600 = 0.822528 \ \emph{e/c};
\Pi = 0,04 · 0,02 · 1,2 · 1 · 0,2 · 0,2 · 0,216 · 1 · 0,7 · 120000 = 0,69673 m/zod.
```

Ильменит (титанистый железняк) — минерал общей химической формулы FeO·TiO2 или FeTiO3. В ильменитовых концентратах содержится 35% диоксида титана и 40% железа. Таким образом, 35% от общего выброса нормируется как диоксид титана, 40% как оксид железа, остальные соединения приняты по пыли неорганической.

```
Выбросы диоксида титана:
```

```
M^{0.5 \text{ m/c}} = 0.48384 * 0.35 = 0.16934 \text{ a/c}:
M^{2 \text{ M/C}} = 0.48384 * 0.35 = 0.16934 \text{ e/c};
M^{4 \text{ m/c}} = 0.580608 * 0.35 = 0.20321 e/c;
M^{6 \text{ M/C}} = 0,677376 * 0,35 = 0,23708 e/c;
M^{8 \text{ M/C}} = 0.822528 * 0.35 = 0.28788 \text{ a/c};
M^{8.4 \text{ m/c}} = 0.822528 * 0.35 = 0.28788 \text{ s/c};
\Pi = 0,69673 * 0,35 = 0,24386m/200.
```

```
Выбросы оксида железа:
```

```
M^{0.5 \text{ M/c}} = 0.48384 * 0.4 = 0.19354 e/c;
M^{2 \text{ M/c}} = 0.48384 * 0.4 = 0.19354 \text{ s/c};

M^{4 \text{ M/c}} = 0.580608 * 0.4 = 0.23224 \text{ s/c};
M^{6 \text{ M/C}} = 0,677376 * 0,4 = 0,27095 a/c;
M^{8 \text{ m/c}} = 0.822528 * 0.4 = 0.32901 \text{e/c}
M^{8.4 \text{ m/c}} = 0.822528 * 0.4 = 0.32901 \text{e/c};
\Pi = 0.69673 * 0.4 = 0.27869 m/sod.
```

Выбросы пыли неорганической:

```
M^{0.5 \text{ M/c}} = 0.48384 * 0.25 = 0.12096 a/c;
M^{2 \text{ M/C}} = 0.48384 * 0.25 = 0.12096 a/c;
M^{4 \text{ m/c}} = 0.580608 * 0.25 = 0.14515 e/c;
M^{6 \text{ M/C}} = 0.677376 * 0.25 = 0.16934 \text{ e/c};
M^{8 \text{ M/C}} = 0.822528 * 0.25 = 0.20563e/c;
M^{8.4 \text{ m/c}} = 0.822528 * 0.25 = 0.20563 \text{ s/c};
\Pi = 0,69673 * 0,25 = 0,17418m/eoð.
```

ИВ Разгрузка ванадиевого шлака (пр №73-75)

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с «Методическим пособием по расчету выбросов от неорганизованных источников в промышленности строительных материалов», Новороссийск, 2001; «Методическим пособием по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», СПб.,

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 2-х сторон (K_4 = 0,2). Высота падения материала при пересыпке составляет 2,0 м (B = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует ($K_9 = 1$). Расчетные скорости ветра, м/с: 0,5 ($K_3 = 1$); 2 ($K_3 = 1$); 4 ($K_3 = 1,2$); 6 ($K_3 = 1,4$); 8 ($K_3 = 1,4$); 9 ($(K_3 = 1,7)$. Средняя годовая скорость ветра 3,8 м/с $(K_3 = 1,2)$.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
0110	диВанадий пентоксид (пыль) (Ванадиевый ангидрид)	0,0005355	0,000544
2907	Пыль неорганическая, содержащая >70% двуокиси кремния	0,0024395	0,00248

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Взам.инв.

윋

Материал	Параметры	Одноврем енность
	Количество перерабатываемого материала: $G_1 = 150$ т/час; $G_1 = 60000$ т/год. Весовая доля пылевой фракции в материале: $\mathbf{K}_1 = 0.05$. Доля пыли, переходящая в аэрозоль: $\mathbf{K}_2 = 0.02$. Влажность свыше 10 до 20% ($\mathbf{K}_5 = 0.01$). Размер куска 500-100 мм ($\mathbf{K}_7 = 0.2$). Грейфер 3445A, г/п до 16 т ($\mathbf{K}_8 = 0.15$).	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{\Gamma P} = \mathbf{K}_{1} \cdot \mathbf{K}_{2} \cdot \mathbf{K}_{3} \cdot \mathbf{K}_{4} \cdot \mathbf{K}_{5} \cdot \mathbf{K}_{7} \cdot \mathbf{K}_{8} \cdot \mathbf{K}_{9} \cdot \mathbf{B} \cdot \mathbf{G}_{4} \cdot 10^{6} / 3600, \, a/c$$
(1.1.1)

где K_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 ${\it K}_2$ - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала;

пер К 9 В -	оегрузоч - попраг коэффі	ных ус зочный ициент,	тройств коэффи учитыва	K ₈ = 1; циент при ающий выс	мощном юту пере	чных материалов в зависимости от типа греифера, при использовании иных залповом сбросе материала при разгрузке автосамосвала; ого материала в час, <i>m/час</i> .	INHOR
						OBOC2.6	Лист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.0	101

```
Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):
                                                  \Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{eod}, m/eod
                                                                                                                                                          (1.1.2)
где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.
     При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля
данного вещества в составе продукта.
     Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.
Ванадиевый шлак
```

```
\frac{c}{c} = 0.05 \cdot 0.02 \cdot 1 \cdot 0.2 \cdot 0.01 \cdot 0.2 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 150 \cdot 10^{6} / 3600 = 0.00175 \, e/c;
M^{2 \text{ M/C}} = 0.05 \cdot 0.02 \cdot 1 \cdot 0.2 \cdot 0.01 \cdot 0.2 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 150 \cdot 10^6 / 3600 = 0.00175 \text{ e/c};
M^{4 \text{ M/c}} = 0.05 \cdot 0.02 \cdot 1.2 \cdot 0.2 \cdot 0.01 \cdot 0.2 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 150 \cdot 10^6 / 3600 = 0.0021 \text{ g/c}
M^{6 \text{ M/C}} = 0.05 \cdot 0.02 \cdot 1.4 \cdot 0.2 \cdot 0.01 \cdot 0.2 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 150 \cdot 10^6 / 3600 = 0.00245 \text{ z/c};
M^{6 \text{ M/c}} = 0.05 \cdot 0.02 \cdot 1.7 \cdot 0.2 \cdot 0.01 \cdot 0.2 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 150 \cdot 10^{6} / 3600 = 0.002975 \text{ a/c};
M^{8.4 \text{ m/c}} = 0.05 \cdot 0.02 \cdot 1.7 \cdot 0.2 \cdot 0.01 \cdot 0.2 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 150 \cdot 10^6 / 3600 = 0.002975 \text{ a/c};
\Pi = 0,05 · 0,02 · 1,2 · 0,2 · 0,01 · 0,2 · 0,15 · 1 · 0,7 · 60000 = 0,003024 m/eod.
Согласно ТУ 14-11-178-86 «Шлак ванадиевый. Технические условия» содержание оксида ванадия (V) не менее 18%.
Таким образом, содержание в выбросах оксида ванадия (V) составит:
M^{0.5 \text{ m/c}} = 0.00175 * 0.18 = 0.000315 \text{ e/c}
M^{2 \text{ M/C}} = 0.00175 * 0.18 = 0.000315 \text{ e/c};
M^{4 \text{ m/c}} = 0.0021 * 0.18 = 0.000378 \text{ e/c};
M^{6 \text{ M/C}} = 0.00245 * 0.18 = 0.000441 \text{ e/c};
M^{8 \text{ m/c}} = 0.002975 * 0.18 = 0.0005355 \text{ e/c}
M^{8.4 \text{ M/c}} = 0.002975 * 0.18 = 0.0005355 \text{ e/c}
\Pi = 0,003024 * 0,18 = 0,000544 m/eod.
Остальные вещества классифицируются как пыль неорганическая SiO2 >70%, содержание в выбросах составит:
Таким образом, содержание в выбросах оксида ванадия (V) составит:
M^{0.5 \text{ m/c}} = 0.00175 * 0.82 = 0.001435 \text{ e/c};
M^{2 \text{ m/c}} = 0.00175 * 0.82 = 0.001435 \text{ e/c};
M^{4 \text{ M/C}} = 0.0021 * 0.82 = 0.001722 \text{ e/c}
M^{6 \text{ M/C}} = 0.00245 * 0.82 = 0.002009 \text{ e/c};
M^{8 \text{ M/C}} = 0.002975 * 0.82 = 0.0024395 e/c;
M^{8.4 \text{ M/c}} = 0.002975 * 0.82 = 0.0024395 e/c;
```

ИВ Разгрузка железорудного концентрата из вагонов (пр 73-75)

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с «Методическим пособием по расчету выбросов от неорганизованных источников в промышленности строительных материалов», Новороссийск, 2001; «Методическим пособием по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», СПб., 2012

Окатыш железорудный имеет следующий состав:

 Π = 0,003024 * 0,82 = 0,00248 *m/eod*.

Название	Процентный состав					
Железо общее	66%					
Оксид железа	0,2%					
Неорганические соединения	33,8%					

Суммарные выбросы железа нормируются по оксидам железа, неорганические соединения – по пыль неорганической.

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 4-х сторон (K₄ = 1). Высота падения материала при пересыпке составляет 2,0 м (В = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует ($K_9 = 1$). Расчетные скорости ветра, м/с: 0,5 ($K_3 = 1$); 2 ($K_3 = 1$); 4 ($K_3 = 1,2$); 6 ($K_3 = 1,4$); 8 ($K_3 = 1,4$); 9 ($(K_3 = 1,7)$. Средняя годовая скорость ветра 3,8 м/с $(K_3 = 1,2)$.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
		0,03230	0,13680
	железо/(Железо сесквиоксид)		
2908	Пыль неорганическая, содержащая 70-20% двуокиси	0,01649	0,06984
	кремния		
			·

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Взам.инв.

윋

Материал	Параметры	Одноврем
Материал	Параметры	енность
Железорудный концентрат	Количество перерабатываемого материала: Gч = 360 т/час; Gгод = 600000	+
Удельные показатели приняты по аналогу	т/год. Весовая доля пылевой фракции в материале: K_1 = 0,01. Доля пыли,	
- гравий	переходящая в аэрозоль: K_2 = 0,001. Влажность до 9% (K_5 = 0,2). Размер	
	куска 50-10 мм (K_7 = 0,5). Грейфер г/п 10 т (K_8 = 0,41).	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

 $M_{\Gamma P} = K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot K_5 \cdot K_7 \cdot K_8 \cdot K_9 \cdot B \cdot G_4 \cdot 10^6 / 3600, a/c$

(1.1.1)

где K_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале:

 ${\it K}_2$ - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

*K*₄- коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

 ${\it K}_{\it 5}$ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала;

G ₄ - сумм	арное количес	тво перераба	атываем	ого материала в час, <i>m/час</i> .					
	В - коэффициент, учитывающий высоту пересыпки; G _ч - суммарное количество перерабатываемого материала в час, <i>m/час</i> .								
				ODOCA (Лист				
Иом Колм	ч Лист № дог	к. Подп.	Дата	OBOC2.6	102				

(1.1.2)

где G_{eod} - суммарное количество перерабатываемого материала в течение года, m/eod. При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

```
<u>Концентрат</u>
```

```
\overline{w/c} = 0.01 \cdot 0.001 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 / 3600 = 0.0287 \, e/c;
\mathbf{M}^{2 \text{ M/C}} = 0.01 \cdot 0.001 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^{6} / 3600 = 0.0287 \text{ e/c};
\mathbf{M}^{4 \text{ m/c}} = 0.01 \cdot 0.001 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 / 3600 = 0.03444 \text{ a/c};

\mathbf{M}^{6 \text{ m/c}} = 0.01 \cdot 0.001 \cdot 1.4 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 / 3600 = 0.04018 \text{ a/c};
M^{8 \text{ m/c}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^{6} / 3600 = 0.04879 \text{ a/c};
M^{8.4 \text{ m/c}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 / 3600 = 0.04879 \text{ e/c};
\Pi = 0,01 · 0,001 · 1,2 · 1 · 0,2 · 0,5 · 0,41 · 1 · 0,7 · 600000 = 0,20664 m/eod.
```

Содержание в выбросах оксидов железа составит 66,2 % от общего выброса:

```
M^{0.5 \text{ M/c}} = 0.0287 * 0.662 = 0.01900 \text{ e/c}
M^{2 \text{ M/C}} = 0.0287 * 0.662 = 0.01900 \text{ e/c};
M^{4 \text{ M/C}} = 0.03444 * 0.662 = 0.02280 \text{ a/c};
M^{6 \text{ M/C}} = 0.04018 * 0.662 = 0.02660 \text{ s/c};
M^{8 \text{ M/C}} = 0.04879 * 0.662 = 0.03230 \text{ e/c}
M^{8.4 \text{ m/c}} = 0.04879 * 0.662 = 0.03230 e/c;
\Pi = 0,20664 * 0,662 = 0,13680m/zod.
```

Остальные вещества нормируются как пыль неорганическая:

```
\mathbf{M}^{0.5 \text{ M/C}} = 0.0287 * 0.338 = 0.00970 \text{ e/c};
\mathbf{M}^{2 \text{ M/C}} = 0.0287 * 0.338 = 0.00970 \text{ e/c};
M^{4 \text{ M/C}} = 0.03444 * 0.338 = 0.01164 \text{ e/c};
\mathbf{M}^{6 \text{ M/c}} = 0.04018 * 0.338 = 0.01358 \text{ e/c};
M^{8 \text{ M/C}} = 0.04879 * 0.338 = 0.01649 \text{ e/c};
M^{8.4 \text{ M/C}} = 0.04879 * 0.338 = 0.01649 \text{ e/c};
\Pi = 0,20664 * 0,338 = 0,06984 m/eod.
```

ИВ Воздуходувка

Источниками выделений загрязняющих веществ являются двигатели автомобилей, перемещающихся по территории предприятия.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами:

Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). Москва, 1998, с дополнениями и изменениями к Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М, 1999 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №49 в Перечне).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу от автотранспортных средств, приведена в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год	
код	наименование	выброс, г/с	Годовой выорос, 1/1од	
301	Азота диоксид (Азот (IV) оксид)	0,0007556	0,0009955	
304	Азот (II) оксид (Азота оксид)	0,0001228	0,0001618	
330	Сера диоксид (Ангидрид сернистый)	0,0002694	0,000355	
337	Углерод оксид	0,0522222	0,068808	
2704	Бензин (нефтяной, малосернистый)	0,0066667	0,008784	

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

I			Количество авто	Однов	
	Наименование	Тип автотранспортного средства	среднее в течение	максимально	ременн
			суток	е за 1 час	ОСТЬ
	воздуходувка	Легковой, объем свыше 3,5л, карбюр., бензин	1	1	+

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Выбросы *i*-го вещества при движении автомобилей по расчётному внутреннему проезду **М**_{ПР ik} рассчитывается по формуле (1.1.1):

$$M_{\Pi P i} = \sum_{k=1}^{k} m_{L i k} \cdot L \cdot N_k \cdot D_P \cdot 10^{-6},$$
т/год (1.1.1)

где m_{Lik} – пробеговый выброс *i*-го вещества, автомобилем k-й группы при движении со скоростью 10-20 км/час a/km;

L - протяженность расчётного внутреннего проезда, км;

 N_k - среднее количество автомобилей k-й группы, проезжающих по расчётному проезду в течении суток;

D_P - количество расчётных дней.

Максимально разовый выброс i-го вещества G_i рассчитывается по формуле (1.1.2):

$$\mathbf{G}_{i} = \sum_{k=1}^{K} \mathbf{m}_{Lik} \cdot \mathbf{L} \cdot \mathbf{N}'_{k} / 3600, \, \text{r/c}$$

$$\tag{1.1.2}$$

где N_k' – количество автомобилей k-й группы, проезжающих по расчётному проезду за 1 час, характеризующийся максимальной интенсивностью проезда автомобилей.

Удельные выбросы загрязняющих веществ при пробеге по расчётному проезду приведены в таблице 1.1.3.

Таблица 1.1.3 - Удельные выбросы загрязняющих веществ

Тип	Загрязняющее вещество	Пробег, г/км
Легковой, объем свыше 3,5л, карбюр., бензин	Азота диоксид (Азот (IV) оксид)	0,272
	Азот (II) оксид (Азота оксид)	0,0442

L						rteer (ii) energy (reera energy	
						OPOC2 (Лист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	103

Взам.инв.

윋

Тип	Загрязняющее вещество	Пробег, г/км
	Сера диоксид (Ангидрид сернистый)	0,097
	Углерод оксид	18,8
	Бензин (нефтяной, малосернистый)	2,4

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже. Годовое выделение загрязняющих веществ *M*, *m/год*:

воздуходувка

 $M_{301} = 0.272 \cdot 10 \cdot 1 \cdot 366 \cdot 10^{-6} = 0,0009955;$ $M_{304} = 0,0442 \cdot 10 \cdot 1 \cdot 366 \cdot 10^{-6} = 0,0001618;$ $M_{330} = 0,097 \cdot 10 \cdot 1 \cdot 366 \cdot 10^{-6} = 0,000355;$ $M_{337} = 18.8 \cdot 10 \cdot 1 \cdot 366 \cdot 10^{-6} = 0,068808;$ $M_{2704} = 2.4 \cdot 10 \cdot 1 \cdot 366 \cdot 10^{-6} = 0,008784.$

Максимально разовое выделение загрязняющих веществ G, a/c:

воздуходувка

 $G_{301} = 0.272 \cdot 10 \cdot 1 / 3600 = 0.0007556;$ $G_{304} = 0.0442 \cdot 10 \cdot 1 / 3600 = 0.0001228;$ $G_{330} = 0.097 \cdot 10 \cdot 1 / 3600 = 0.0002694;$ $G_{337} = 18.8 \cdot 10 \cdot 1 / 3600 = 0.0522222;$ $G_{2704} = 2.4 \cdot 10 \cdot 1 / 3600 = 0.0066667.$

Из результатов расчётов максимально разового выброса для каждого типа автотранспортных средств в итоговые результаты по источнику занесены наибольшие значения, полученные с учетом неодновременности и нестационарности во времени движения автотранспортных средств.

Взам.инв							
Подп. и дата							
Инв.№ подл.	Изм. Колу	ч Лист	№ док.	Подп.	Дата	OBOC2.6	Лист 104

ИЗАВ №6261. погрузо-разгрузочные работы на судовом грузовом фронте (причалы №73-75)

Источником выделения загрязняющих веществ является:

- перегрузочные работы на судовом грузовом фронте в углем; с коксом; ванадиевого шлака; с ильменитовой рудой, с железорудным окатышем, медным штейном; нефтекоксом; окалиной (шлаком); пеллетами;
- В расчете выбросов учтена неодновременность перегрузочных работ с разными грузами.
- Максимально-разовый выброс принят максимальный по каждому грузу

Валовый выброс суммирован с учетом всех видов грузов

Всего по источнику выбросов:

	Загрязняющее вещество	Максимально разовый Годовой выброс, т/			
код	наименование	выброс, г/с	годовой выорос, тлод		
	При перегрузке каменного				
3749	Пыль каменного угля	0,000793	0,003871		
	При перегрузке кокса	L			
3749	Пыль каменного угля	0,000793	0,000323		
	При перегрузке железорудного к	онцентрата			
123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,067290	0,136800		
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,034360	0,206640		
	При перегрузке ванадиевого	шлака			
110	диВанадий пентоксид (пыль) (Ванадиевый ангидрид)	0,002678	0,002722		
2907	Пыль неорганическая, содержащая >70% двуокиси крем-ния	0,012200	0,012400		
	При перегрузке ильменитово	ой руды			
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,599760	0,243860		
123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,685440	0,278690		
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,428400	0,174180		
	При перегрузке медного ш	тейна			
146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,000496	0,000084		
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,000744	0,000126		
	При перегрузке нефтекокса / кокса	электродного			
328	Углерод (пигмент черный)	0,148750	0,025200		
	При перегрузке окалины (ц	ілака)			
101	диАлюминий триоксид/в пересчете на алюминий/	0,100400	0,017010		
123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	1,061000	0,179800		
2909	Пыль неорганическая, содержащая дву-окись кремния, в %: - менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,661000	0,111900		
	При перегрузке пелле	Т			
2936	Пыль древесная	0,028333	0,060000		

Расчет по каждому грузу выполнен на максимальную загруженность склада, поэтому в расчете рассеивания учтена

неодновременность движения грузов, и по каждому веществу принят максимально-разовый выброс:

Загрязняющее вещество

Максимально разовый

	загрязняющее вещество	імаксимально разовый	Годовой выброс, т/год		
код	наименование	выброс, г/с	годовой выорос, глод		
101	диАлюминий триоксид/в пересчете на алюминий/	0,100400	0,017010		
110	диВанадий пентоксид (пыль) (Ванадиевый ангидрид)	0,002678	0,002722		
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,599760	0,243860		
123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	1,061000	0,595290		
146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,000496	0,000084		
328	Углерод (пигмент черный)	0,148750	0,025200		
2907	Пыль неорганическая, содержащая >70% двуокиси крем-ния	0,012200	0,012400		
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,428400	0,380946		
2909	Пыль неорганическая, содержащая дву-окись кремния, в %: - менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,661000	0,111900		
2936	Пыль древесная	0,028333	0,060000		
3749	Пыль каменного угля	0,000793	0,004193		

Максимально-разовый выброс с учетом ветра принят:

Скорость в	етра, м/с	0,5	2	4	6	8	8,4
Количество	3В, г/с						
101	диАлюминий триоксид/в пересчете на алюминий/	0,0591	0,0591	0,0709	0,0827	0,1004	0,100400
110	диВанадий пентоксид (пыль) (Ванадиевый ангидрид)	0,001575	0,001575	0,00189	0,002205	0,0026775	0,0026775
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,3528	0,3528	0,42336	0,49392	0,59976	0,59976

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

MHB.No

123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,6243	0,6243	0,749	0,874	1,061	1,061
146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	0,000292	0,000292	0,00035	0,000408	0,000496	0,000496
328	Углерод (пигмент черный)	0,0875	0,0875	0,105	0,1225	0,14875	0,14875
2907	Пыль неорганическая, содержащая >70% двуокиси крем-ния	0,007175	0,007175	0,00861	0,010045	0,0122	0,0122
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,252	0,252	0,3024	0,3528	0,4284	0,4284
2909	Пыль неорганическая, содержащая дву-окись кремния, в %: - менее 20 (доломит, пыль цементного производства - извест-няк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,3886	0,3886	0,466	0,544	0,661	0,661
2936	Пыль древесная	0,01666667	0,01666667	0,02	0,02333333	0,02833333	0,02833333
3749	Пыль каменного угля	0,000467	0,000467	0,000560	0,000653	0,000793	0,000793

ИВ погрузка угля в судно (пр 73-75)

Источником выделения пыли является перемещение масс угля (разгрузка и погрузка, ссыпание, перегрузка).

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой
код	код наименование		выброс, т/год
3749	Пыль каменного угля	0,000793	0,003871

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельное выделение при разгрузке (перегрузке) материала, q_n [г/т]	0,32
Количество разгружаемого (перегружаемого) материала, П₂ [т/год]	1440000
Количество разгружаемого (перегружаемого) материала, П, [т/час]	750
Влажность материала, %	11,00
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, <i>w</i> _в [м/с]	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, ₩₅ [м/с]	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Высота разгрузки материала, [м]	2
Коэффициент, учитывающий высоту пересыпки материала (табл. 6.9), K_3	0,7
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	1
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_n = q_n \cdot \Pi_2 \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot 10^{-6} \cdot (1-\eta), m/\text{eod}$$
 [1]
 $G_n = (q_n \cdot \Pi_4 \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot (1-\eta))/3600, \text{e/c}$ [2]

где

윋

 $m{q}_n$ – удельное выделение при разгрузке (перегрузке) материала, *а/т*;

 Π_e – количество разгружаемого (перегружаемого) материала, *m/год*;

 $\Pi_{\rm v}$ – максимальное количество перегружаемого материала за час, *m/час;*

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

*К*₃ – коэффициент, учитывающий высоту пересыпки материала (таб. 6.9 Методики);

 \textit{K}_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 ${m \eta}$ - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При разгрузочных (перегрузочных) работах:

 M_{3749} = 0,003871 m/200 G_{3749} = 0,000793 2/c

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,000467	0,000466667	0,000560	0,000653	0,000793	0,000793

ИВ погрузка кокса в судно (пр 73-75)

Источником выделения пыли является перемещение масс кокса(разгрузка и погрузка, ссыпание, перегрузка).

							Лист
	7.0	_				OBOC2.6	106
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата		

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой
код	код наименование		выброс, т/год
3749	Пыль каменного угля	0,000793	0,000323

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельное выделение при разгрузке (перегрузке) материала, q_n [г/т]	0,32
Количество разгружаемого (перегружаемого) материала, $\Pi_{\varepsilon}[т/год]$	120000
Количество разгружаемого (перегружаемого) материала, П, [т/час]	750
Влажность материала, %	11,00
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, ₩₅ [м/с]	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, w_e [м/с]	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Высота разгрузки материала, [м]	2
Коэффициент, учитывающий высоту пересыпки материала (табл. 6.9), К₃	0,7
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), К₄	1
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_n = q_n \cdot \Pi_e \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot 10^{-6} \cdot (1-\eta), m/eod$$
 [1]
 $G_n = (q_n \cdot \Pi_4 \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot (1-\eta))/3600, e/c$ [2]

где

 q_n – удельное выделение при разгрузке (перегрузке) материала, z/m;

 Π_{ϵ} – количество разгружаемого (перегружаемого) материала, $m/\epsilon o \partial$;

 Π_{v} – максимальное количество перегружаемого материала за час, m/vас;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

К₃ – коэффициент, учитывающий высоту пересыпки материала (таб. 6.9 Методики);

 $extit{K}_4$ – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

<u>При разгрузочных (перегрузочных) работах:</u> **М**₃₇₄₉= 0,000323 *m/eo∂*

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,000467	0,000466667	0,000560	0,000653	0,000793	0,000793

ИВ Работы по перегрузке медного штейна на судовом фронте

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 4-х сторон (K_4 = 1). Высота падения материала при пересыпке составляет 2,0 м (B = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует (K_9 = 1). Расчетные скорости ветра, м/с: 0,5 (K_9 = 1); 2 (K_9 = 1); 4 (K_9 = 1,2); 6 (K_9 = 1,4); 8 (K_9 = 1,7); 8,4 (K_9 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_9 = 1,2).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество		Максимально разовый выброс, г/с		Годовой выброс, т/год		
код	наименование	%	до	после	до	после	
Всего пь	ыли 100%, из них:	90	0,0123958	0,0012396	0,0021	0,00021	
0146	Медь оксид/в пересчете на медь/(Медь окись; тенорит)	Технология пылеподавления:	-	0,000496		0,0000840	
2908	Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и другие)		-	0,000744	-	0,000126	

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	

THB.No

Лист

	Загрязняющее вещество	Пылеподавление,		ьно разовый рос, г/с	Годовой выброс, т/го,		
код	наименование	%	до	после	до	после	
		собой сплав, что					
		по сути					
		связывает					
		поверхность					
		штейна, поэтому					
		при перегрузке					
		принято					
		снижение					
		выбросов 90% как					
		при перегрузке					
		гранулированного					
		материала.					
	е данные для расчета выделений - Исходные данные для расче		риведены в т	аблице 1.1.2.			
	Материал		Парамет	гры		Одноврем	
Ледный штей	и́н	Количество перерабатывае	емого матери	иапа: Gu = 750 т.	/час: Gгол = 50000	+	
	казатели приняты по аналогу						
гравий		переходящая в аэрозоль:					
		0,01). Размер куска 50-10					
		Гранулирование пылящего		,,,,	,,-		
Принятые	условные обозначения, расчет		•	иетры и их обосн	ование приведены	ниже.	
	тьно разовый выброс пыли при г						
		$\cdot K_2 \cdot K_3 \cdot K_4 \cdot K_5 \cdot K_7 \cdot K_8 \cdot K_8$, , ,	(1.1.1)	
е К 1 - весова	ая доля пылевой фракции (0 до 2	200 мкм) в материале;				` ′	
- доля пылі	и (от всей весовой пыли), перехо	дящая в аэрозоль (0 до 10	мкм);				
- коэффици	ент, учитывающий местные мет	еоусловия;					
- коэффици	ент, учитывающий местные усло	вия, степень защищенності	и узла от внеі	шних воздействи	й, условия пылеобр	разования;	
	ент, учитывающий влажность ма		•	••			
- коэффици	іент, учитывающий крупность ма	териала;					

 \emph{K}_{9} - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки; $G_{\text{ч}}$ - суммарное количество перерабатываемого материала в час, *m/час*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{\text{eoð}}, m/\text{eoð}$$

$$(1.1.2)$$

где $G_{eo\delta}$ - суммарное количество перерабатываемого материала в течение года, $m/eo\delta$.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Взам.инв.

```
Медный штейн M_{\text{пыли}}^{0.5 \text{ м/c}} = 0.01 \cdot 0.001 \cdot 1 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 * (1-0.9) = 0.00072917 \ \emph{e/c}; M_{\text{пыли}}^{2 \text{ м/c}} = 0.01 \cdot 0.001 \cdot 1 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 * (1-0.9) = 0.00072917 \ \emph{e/c};
M_{\text{Пыли}}^{4 \text{ M/C}} = 0.01 \cdot 0.001 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 * (1-0.9) = 0.000875 \ \text{s/c};
 \begin{array}{l} \mathbf{\textit{M}}_{\textit{hibitu}} \text{ }^{\textit{6} \, \textit{Mic}} = 0.01 \cdot 0.001 \cdot 1.4 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 \, / \, 3600 \, * \, (1-0.9) = 0.00102083 \, \textit{a/c}; \\ \mathbf{\textit{M}}_{\textit{hibitu}} \text{ }^{\textit{8} \, \textit{Mic}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 \, / \, 3600 \, * \, (1-0.9) = 0.00123958 \, \textit{a/c}; \\ \mathbf{\textit{M}}_{\textit{hibitu}} \text{ }^{\textit{8} \, \textit{A} \, \textit{Mic}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 \, / \, 3600 \, * \, (1-0.9) = 0.00123958 \, \textit{a/c}; \\ \mathbf{\textit{M}}_{\textit{hibitu}} \text{ }^{\textit{8} \, \textit{A} \, \textit{Mic}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 \, / \, 3600 \, * \, (1-0.9) = 0.00123958 \, \textit{a/c}; \\ \end{array} 
\Pi_{\text{пыпи}} = 0.01 \cdot 0.001 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 50000 * (1-0.9) = 0.00021 \text{ m/sod.}
```

В соответствии с ГОСТ Р 52998-2008 «Концентрат медный. Технические условия» содержание меди в концентрате до 40%. Содержание в выбросах оксидов меди составит 40 % от общего выброса:

```
M^{0.5 \text{ m/c}} = 0.00072917 * 0.4 = 0.000292 \text{ e/c};
M^{2 \text{ m/c}} = 0.00072917 * 0.4 = 0.000292 \text{ s/c};

M^{4 \text{ m/c}} = 0.000875 * 0.4 = 0.000350 \text{ s/c};
M^{6 \text{ M/C}} = 0.00102083 * 0.4 = 0.000408 \text{ e/c};
M^{8 \text{ M/C}} = 0.00123958 * 0.4 = 0.000496 \text{ s/c};
M^{8.4 \text{ m/c}} = 0.00123958 * 0.4 = 0.000496 \text{ e/c};
\Pi = 0,00021 * 0,4 = 0,0000840 m/eod.
```

Остальные вещества нормируются как пыль неорганическая:

```
\mathbf{M}^{0.5 \text{ M/c}} = 0,00072917 * 0,6 = 0,000438 \text{ e/c};
\mathbf{M}^{2 \text{ M/c}} = 0,00072917 * 0,6 = 0,000438 \text{ e/c};
M^{4 \text{ m/c}} = 0,00072517 0,5 0,005.156 2/c;

M^{6 \text{ m/c}} = 0,00102083 * 0,6 = 0,000612 2/c;

M^{6 \text{ m/c}} = 0,00123958 * 0,6 = 0,000744 2/c;
M^{8.4 \text{ m/c}} = 0.00123958 * 0.6 = 0.000744 \text{ e/c};
\Pi = 0,00021 * 0,6 = 0,000126 m/sod.
```

ИВ Погрузка нефтекокса / кокса электродного в судно (причал 73)

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения

						OPOC2 (Лист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	108

внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 4-х сторон (K₄ = 1). Высота падения материала при пересыпке составляет 2,0 м (В = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует ($K_9 = 1$). Расчетные скорости ветра, м/с: 0,5 ($K_3 = 1$); 2 ($K_3 = 1$); 4 ($K_3 = 1,2$); 6 ($K_3 = 1,4$); 8 ($K_3 = 1,7$); 8,4 $(K_3 = 1,7)$. Средняя годовая скорость ветра 3,8 м/с $(K_3 = 1,2)$.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Пылеподавление,		ьно разовый рос, г/с	Годовой	выброс, т/год
код	наименование	70	до после		до	после
код 328		90 Технология пылеподавления: Гранулирование пылящего материала. Кокс подвергается прокаливание нефтяного кокса – это процесс нагрева сырого нефтяного кокса до 1250- 1350°С. При этом его молекулярная структура принимает более организованную форму с четкой кристаллической решеткой. Благо даря физическим и химическим процессам, происходящим с сырьевым материалом, происходит				
		улучшение потребительских свойств кокса, что по сути связывает поверхность кокса, поэтому при перегрузке принято снижение выбросов 90% как при перегрузке гранулированного материала.				

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Взам.инв..

Инв.№

Материал	Параметры	Одноврем енность
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Количество перерабатываемого материала: Gч = 750 т/час; Gгод = 50000	
электродный	т/год. Весовая доля пылевой фракции в материале: K_1 = 0,03. Доля пыли,	
	переходящая в аэрозоль: K_2 = 0,04. Влажность свыше 10 до 20% (K_5 = 0,01).	
типа перегружаемого материала приняты по	Размер куска 50-10 мм (K_7 = 0,5). Технология пылеподавления:	
аналогу - графит	Гранулирование пылящего материала.	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_4 \cdot 10^6 / 3600, \, e/c$$
 (1.1.1)

где K_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 K_2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

*K*₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала;

К₈ - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств $K_8 = 1$;

 K_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_{4} - суммарное количество перерабатываемого материала в час, *тичас*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{\text{eod}}, \, m/\text{eod}$$

$$\tag{1.1.2}$$

						ODOCA (Лист
						OBOC2.6	
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата		109

где G_{eod} - суммарное количество перерабатываемого материала в течение года, m/eod.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

```
Нефтекокс / кокс электродный
```

Всего пыли 100%, из них:

диЖелезо

пересчете

Пыль

сесквиоксид) (58,24%)

0101

0123

2909

Взам.инв.

AHB.No

```
\mathbf{M}_{328}^{0.5 \text{ m/c}} = 0.03 \cdot 0.04 \cdot 1 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 * (1-0.9) = 0.0875 \text{ e/c};
M_{328}^{2 \text{ m/c}} = 0.03 \cdot 0.04 \cdot 1 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 * (1-0.9) = 0.0875 \ \text{s/c};

M_{328}^{4 \text{ m/c}} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 * (1-0.9) = 0.105 \ \text{s/c};
M_{328}^{6 \text{ m/c}} = 0.03 \cdot 0.04 \cdot 1.4 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 * (1-0.9) = 0.1225 e/c;
M_{328}^{8 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 * (1-0.9) = 0.14875 \ a/c;

M_{328}^{8 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 * (1-0.9) = 0.14875 \ a/c;
\Pi_{328} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 50000 * (1-0.9) = 0.0252  m/zod.
```

ИВ работы по перегрузке окалины (шлака) на судовом грузовом фронте

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 4-х сторон (K₄ = 1). Высота падения материала при пересыпке составляет 2,0 м (В = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует ($K_9 = 1$). Расчетные скорости ветра, м/с: 0,5 ($K_3 = 1$); 2 ($K_3 = 1$); 4 ($K_3 = 1,2$); 6 ($K_3 = 1,4$); 8 ($K_3 = 1,4$); 9 ($(K_3 = 1,7)$. Средняя годовая скорость ветра 3,8 м/с $(K_3 = 1,2)$.

выброс, г/с

после

1,8221875

0,1004

1,061

0,661

до

18,221875

Пылеподавление

90

Технология

пылеподавления

Гранулирование

пылящего

материала. Кокс

подвергается

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу Максимально разовый

(железа оксид)/в

железо/(Железо

содержащая

Загрязняющее вещество

триоксид,

неорганическая,

на

наименование

диАлюминий триоксид/в пересчете на алюминий/ (5,51%)

2303	пъль неорганическая, содержащая	одвор. ас. ол.	_	0,001	_	0,1119	
	двуокись кремния, в %: - менее 20	прокаливанию.					
	(доломит, пыль цементного производства -	Прокаливание					
	известняк, мел, огарки, сырьевая смесь,	нефтяного кокса					
	пыль вращающихся печей, боксит и	– это процесс					
	другие)	нагрева сырого					
		нефтяного кокса					
		до 1250-					
		1350°С. При этом					
		его молекулярная					
		структура					
		принимает более					
		организованную					
		форму с четкой					
		кристаллической					
		решеткой. Благо					
		даря физическим					
		и химическим					
		процессам,					
		происходящим с					
		сырьевым					
		материалом,					
		происходит					
		улучшение					
		потребительских					
		свойств кокса, что					
		по сути					
		связывает					
		поверхность					
		кокса, поэтому					
		при перегрузке					
		принято					
		снижение					1
		выбросов 90% как					
		при перегрузке					
		гранулированного					1
		материала.					1

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Материал	Параметры	Одноврем енность
	Количество перерабатываемого материала: Gu = 750 т/час; Grод = 50000 т/год. Весовая доля пылевой фракции в материале: \mathbf{K}_1 = 0,05. Доля пыли, переходящая в аэрозоль: \mathbf{K}_2 = 0,02. Влажность до 5% (\mathbf{K}_5 = 0,7). Размер	

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	

Годовой выброс, т/год

3,087

после

0,01701

0,1798

0,1119

0,3087

Одноврем

енность

(1.1.1)

(1.1.2)

Параметры

куска 5-3 мм (K_7 = 0,7). Технология пылеподавления: Гранулирование

пылящего материала.

 ${\it K}_{\it 9}$ - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов

 $\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{\text{eod}}, m/\text{eod}$

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля

 $\mathbf{M}_{FP} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_4 \cdot 10^6 / 3600, \ \text{a/c}$

Взам.инв.

подл 윋

ИHB.

Материал

где K_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 G_{v} - суммарное количество перерабатываемого материала в час, *m/час*.

где $G_{eo\delta}$ - суммарное количество перерабатываемого материала в течение года, $m/eo\delta$.

 $\overline{\mathbf{M}_{\text{пыли}}}^{0.5 \text{ м/c}} = 0.05 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 * (1-0.9) = 1.071875 \ \text{e/c};$ $M_{\text{пыпи}}^{2 \text{ M/c}} = 0.05 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 * (1-0.9) = 1.071875 \ \text{e/c};$ $M_{\text{ПЫЛИ}}^{4 \text{ M/C}} = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 * (1-0.9) = 1.28625 \text{ s/c};$ $M_{\text{Пыли}}^{6 \text{ M/c}} = 0.05 \cdot 0.02 \cdot 1.4 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 * (1-0.9) = 1,500625 \text{ s/c};$ $M_{\text{Пыли}}^{8 \text{ M/c}} = 0.05 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 * (1-0.9) = 1,8221875 \text{ s/c};$ $M_{\text{пыти}}^{8.4 \text{ M/C}} = 0.05 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 * (1-0.9) = 1.8221875 e/c;$

 $\mathbf{\Pi}_{\text{пыли}} = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 50000 * (1-0.9) = 0.3087 \text{ m/sod.}$ Содержание в выбросах оксидов алюминия составит 5,51 % от общего выброса:

К₃ - коэффициент, учитывающий местные метеоусловия;

 ${\it K}_{\it 5}$ - коэффициент, учитывающий влажность материала; **К**₇ - коэффициент, учитывающий крупность материала;

В - коэффициент, учитывающий высоту пересыпки;

перегрузочных устройств K_8 = 1;

данного вещества в составе продукта.

 $M^{0.5 \text{ m/c}} = 1,071875 * 0,0551 = 0,0591 \text{ e/c};$ $M^{2 \text{ M/C}} = 1,071875 * 0,0551 = 0,0591 \text{ a/c};$ $M^{4 \text{ M/C}} = 1,28625 * 0,0551 = 0,0709 \text{ e/c};$

Ш<u>лак</u>

 K_2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

пылящего материала.

Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

 $M_{\Gamma P} = K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot K_5 \cdot K_7 \cdot K_8 \cdot K_9 \cdot B \cdot G_4 \cdot 10^6 / 3600, a/c$

Материал

Удельные показатели приняты по аналогу

где **К**₁ - весовая доля пылевой фракции (0 до 200 мкм) в материале;

К₃ - коэффициент, учитывающий местные метеоусловия;

К₅ - коэффициент, учитывающий влажность материала; **К**₇ - коэффициент, учитывающий крупность материала;

Материал

где K_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 ${\it K}_{\it 3}$ - коэффициент, учитывающий местные метеоусловия;

К₅ - коэффициент, учитывающий влажность материала; **К**₇ - коэффициент, учитывающий крупность материала;

Подп

 ${\it K}_2$ - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

Дата

Концентрат

 K_2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

Пеллеты

Опилки древесные

Одноврем

енность

(1.1.1)

(1.1.2)

Годовой выброс, т/год

0.13680

0.20664

Одноврем

енность

(1.1.1)

Лист

112

Параметры

Количество перерабатываемого материала: Gч = 60 т/час; Gгод = 50000

т/год. Весовая доля пылевой фракции в материале: $K_1 = 0.04$. Доля пыли, переходящая в аэрозоль: K_2 = 0,01. Влажность до 10% (K_5 = 0,1). Размер

куска 50-10 мм (K_7 = 0,5). Технология пылеподавления: Гранулирование

Параметры

Количество перерабатываемого материала: Gч = 750 т/час; Gгод = 600000

переходящая в аэрозоль: K_2 = 0,001. Влажность до 9% (K_5 = 0,2). Размер

OBOC2.6

куска 50-10 мм (K_7 = 0,5). Грейфер г/п 10 т (K_8 = 0,41).

Удельные показатели приняты по аналогу т/год. Весовая доля пылевой фракции в материале: K₁ = 0,01. Доля пыли,

Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

 $M_{PP} = K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot K_5 \cdot K_7 \cdot K_8 \cdot K_9 \cdot B \cdot G_4 \cdot 10^6 / 3600, a/c$

подл Инв.№

Изм.

Кол.уч Лист № док

Взам.инв.

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств $K_8 = 1$;

 K_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_{v} - суммарное количество перерабатываемого материала в час, m/час.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

 $\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{eod}, m/eod$

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

```
Концентрат
```

```
M^{0.5 \text{ m/c}} = 0.01 \cdot 0.001 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 = 0.0597917 \text{ e/c};
M^{2 \text{ M/C}} = 0.01 \cdot 0.001 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 = 0.0597917 \text{ a/c};
M^{4 \text{ m/c}} = 0.01 \cdot 0.001 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 = 0.07175 \text{ e/c};
M^{6 \text{ m/c}} = 0.01 \cdot 0.001 \cdot 1.4 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 = 0.0837083 \text{ a/c};
M^{8 \text{ m/c}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 = 0.1016458 \text{ e/c};
M^{8.4 \text{ M/C}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 = 0.1016458 \text{ e/c};
\Pi = 0,01 · 0,001 · 1,2 · 1 · 0,2 · 0,5 · 0,41 · 1 · 0,7 · 600000 = 0,20664 m/eod.
```

Содержание в выбросах оксидов железа составит 66,2 % от общего выброса: $M^{0.5\,\mathrm{M/C}}=0,0597917$ * 0,662 = 0,03958 a/c;

```
M^{2 \text{ M/C}} = 0.0597917 * 0.662 = 0.03958 \text{ e/c};
M^{4 \text{ M/C}} = 0.07175 * 0.662 = 0.04750 \text{ e/c};
M^{6 \text{ M/c}} = 0.0837083 * 0.662 = 0.05541 \text{ e/c};
M^{8 \text{ m/c}} = 0.1016458 * 0.662 = 0.06729 \text{ e/c};
M^{8.4 \text{ m/c}} = 0.1016458 * 0.662 = 0.06729 \text{ e/c};
\Pi = 0.20664 * 0.662 = 0.13680 m/eod.
```

Остальные вещества нормируются как пыль неорганическая:

```
M^{0.5 \text{ m/c}} = 0.0597917 * 0.338 = 0.02021 \text{e/c};
M^{2 \text{ M/c}} = 0.0597917^* \ 0.338 = 0.02021 \ e/c;
M^{4 \text{ m/c}} = 0.07175^* \ 0.338 = 0.02425 \ e/c;
M^{6 \text{ M/C}} = 0.0837083 * 0.338 = 0.02829 \text{ e/c};
M^{8 \text{ M/c}} = 0.1016458 * 0.338 = 0.03436 \text{ e/c}
M^{8.4 \text{ m/c}} = 0,1016458 * 0,338 = 0,03436 \text{ e/c};
\Pi = 0,20664 * 0,338 = 0,06984 m/zod.
```

ИВ Отгрузка ильменитовой руды с судна (пр 73)

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 4-х сторон (K₄ = 1). Высота падения материала при пересыпке составляет 2,0 м (В = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует ($K_9 = 1$). Расчетные скорости ветра, м/с: 0,5 ($K_3 = 1$); 2 ($K_3 = 1$); 4 ($K_3 = 1,2$); 6 ($K_3 = 1,4$); 8 ($K_3 = 1,4$); 9 ((K_3 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_3 = 1,2).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
0118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,59976	0,24386
	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,68544	0,27869
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,42840	0,17418

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Взам.инв.

윋

And the state of t						
Материал	Параметры	Одноврем енность				
Коэффициенты сдуваемости приняты для щебня	Количество перерабатываемого материала: $G_4 = 750$ т/час; $G_{10} = 120000$ т/год. Весовая доля пылевой фракции в материале: $\mathbf{K}_1 = 0.04$. Доля пыли, переходящая в аэрозоль: $\mathbf{K}_2 = 0.02$. Влажность до 9% ($\mathbf{K}_5 = 0.2$). Размер куска 500-100 мм ($\mathbf{K}_7 = 0.2$). Грейфер 3830 грузоподъемностью 16 т ($\mathbf{K}_8 = 0.216$).					

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

 $M_{\Gamma P} = K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot K_5 \cdot K_7 \cdot K_8 \cdot K_9 \cdot B \cdot G_4 \cdot 10^6 / 3600, a/c$ (1.1.1)

где \mathbf{K}_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 ${\it K}_{\it 2}$ - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

 ${\it K}_{\it 5}$ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала;

 $extbf{K}_8$ - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств $K_8 = 1$;

 $extcolored{K}_9$ - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

OBOC2.6

Лист

(1.1.2)

113

Взам.инв.

подл

NHB.Nº

2907

В - коэффициент, учитывающий высоту пересыпки;

данного вещества в составе продукта.

 $G_{\text{ч}}$ - суммарное количество перерабатываемого материала в час, *m/час*.

 $\frac{\text{Py}_{DB}}{\textit{M}^{0.5}\,\text{M}^{c}} = 0.04 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} \, / \, 3600 = 1.008 \, \text{s/c}; \\ \textit{M}^{2\,\text{M/c}} = 0.04 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} \, / \, 3600 = 1.008 \, \text{s/c}; \\ \text{M}^{2\,\text{M/c}} = 0.04 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} \, / \, 3600 = 1.008 \, \text{s/c}; \\ \text{M}^{2\,\text{M/c}} = 0.04 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} \, / \, 3600 = 1.008 \, \text{s/c}; \\ \text{M}^{2\,\text{M/c}} = 0.04 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} \, / \, 3600 = 1.008 \, \text{s/c}; \\ \text{M}^{2\,\text{M/c}} = 0.04 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} \, / \, 3600 = 1.008 \, \text{s/c}; \\ \text{M}^{2\,\text{M/c}} = 0.04 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} \, / \, 3600 = 1.008 \, \text{s/c}; \\ \text{M}^{2\,\text{M/c}} = 0.04 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} \, / \, 3600 = 1.008 \, \text{s/c}; \\ \text{M}^{2\,\text{M/c}} = 0.04 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} \, / \, 3600 = 1.008 \, \text{s/c}; \\ \text{M}^{2\,\text{M/c}} = 0.04 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.2 \cdot$ $M^{4 \text{ m/c}} = 0.04 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 = 1,2096 \text{ e/c};$ $M^{6 \text{ m/c}} = 0.04 \cdot 0.02 \cdot 1.4 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 = 1.4112 \text{ s/c};$

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

 $\Pi_{\Gamma P}$ = $\mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{eod}$, m/20d

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля

(1.1.2)

```
Пыль неорганическая, содержащая >70% двуокиси кремния
    Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.
Таблица 1.1.2 - Исходные данные для расчета
                                                                                                                          Одноврем
                  Материал
                                                                              Параметры
                                                                                                                           енность
Ванадиевый шлак
                                              Количество перерабатываемого материала: Gч = 150 т/час; Gгод = 60000
                                              т/год. Весовая доля пылевой фракции в материале: \mathbf{K}_1 = 0,05. Доля пыли,
                                              переходящая в аэрозоль: K_2 = 0,02. Влажность свыше 10 до 20% (K_5 = 0,01).
                                              Размер куска 500-100 мм (K_7 = 0,2). Грейфер 3445A, г/п до 16 т (K_8 = 0,15).
     Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.
     Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):
                                     M_{\Gamma P} = K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot K_5 \cdot K_7 \cdot K_8 \cdot K_9 \cdot B \cdot G_4 \cdot 10^6 / 3600, a/c
                                                                                                                              (1.1.1)
где K_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;
{\it K}_{\it 2} - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);
К<sub>3</sub> - коэффициент, учитывающий местные метеоусловия;
K₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;
                                                                                                                                Лист
                                                                             OBOC2.6
                                                                                                                                114
  Кол.уч Лист № док
                           Подп
                                      Дата
```

Максимально разовый

выброс, г/с 0,0026775

0.0122

Годовой выброс, т/год

0,0027216

0,0124

```
{\it K}_{\it 5} - коэффициент, учитывающий влажность материала;
К<sub>7</sub> - коэффициент, учитывающий крупность материала;
K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов
перегрузочных устройств K_8 = 1;
\emph{K}_{9} - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;
В - коэффициент, учитывающий высоту пересыпки;
{f G}_{\!\scriptscriptstyle q} - суммарное количество перерабатываемого материала в час, {\it m}/{\it vac}.
       Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):
                                                        \Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{200}, m/200
                                                                                                                                                                            (1.1.2)
где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.
      При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля
данного вещества в составе продукта.
      Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.
Ванадиевый шлак
M_{\odot}^{0.5 \text{ m/c}} = 0.05 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.01 \cdot 0.2 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 150 \cdot 10^{6} / 3600 = 0.00875 \ a/c;
M^{2 \text{ M/C}} = 0.05 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.01 \cdot 0.2 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 150 \cdot 10^6 / 3600 = 0.00875 \text{ a/c};
M^{4 \text{ M/C}} = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.2 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 150 \cdot 10^6 / 3600 = 0.0105 \text{ e/c}
M^{6 \text{ M/C}} = 0.05 \cdot 0.02 \cdot 1.4 \cdot 1 \cdot 0.01 \cdot 0.2 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 150 \cdot 10^{6} / 3600 = 0.01225 \text{ e/c};
M^{6 \text{ M/c}} = 0.05 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.2 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 150 \cdot 10^{6} / 3600 = 0.014875 \text{ a/c};
M^{8.4 \text{ m/c}} = 0.05 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.2 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 150 \cdot 10^6 / 3600 = 0.014875 \text{ a/c};
\Pi = 0,05 · 0,02 · 1,2 · 1 · 0,01 · 0,2 · 0,15 · 1 · 0,7 · 60000 = 0,01512 m/sod.
Согласно ТУ 14-11-178-86 «Шлак ванадиевый. Технические условия» содержание оксида ванадия (V) не менее 18%.
Таким образом, содержание в выбросах оксида ванадия (V) составит:
M^{0.5 \text{ m/c}} = 0.00875 * 0.18 = 0.001575 \text{ e/c};
M^{2 \text{ M/C}} = 0.00875 * 0.18 = 0.001575 \text{ e/c};
M^{4 \text{ m/c}} = 0.0105 * 0.18 = 0.00189 \text{ e/c};
M^{6 \text{ M/C}} = 0.01225 * 0.18 = 0.002205 \text{ e/c}
M^{8 \text{ M/c}} = 0.014875 * 0.18 = 0.0026775 e/c;
M^{8.4 \text{ M/c}} = 0.014875 * 0.18 = 0.0026775 e/c;
\Pi = 0,01512 * 0,18 = 0,0027216 m/zod.
Остальные вещества классифицируются как пыль неорганическая SiO2 >70%, содержание в выбросах составит:
Таким образом, содержание в выбросах оксида ванадия (V) составит: \mathbf{M}^{0.5\,\mathrm{M/c}} = 0.00875 * 0.82 = 0.007175 \, \mathrm{a/c};
M^{2 \text{ m/c}} = 0,00875 * 0,82 = 0,007175 \text{ e/c};

M^{4 \text{ m/c}} = 0,0105 * 0,82 = 0,00861 \text{ e/c};
M^{6 \text{ M/C}} = 0.01225 * 0.82 = 0.010045 \text{ e/c};
M^{8 \text{ M/C}} = 0.014875 * 0.82 = 0.0122 \text{ e/c};
M^{8.4 \text{ m/c}} = 0.014875 * 0.82 = 0.0122 \text{ e/c};
\Pi = 0,01512 * 0,82 = 0,0124 m/200.
                                                                                                                                                                              Лист
                                                                                                         OBOC2.6
```

115

Взам.инв.

№ подл.

ИHB.

Кол.уч Лист № док

Подп

Дата

ИЗАВ №6262. Склады угля на причалах 76-78

ИВ Склады угля на причалах 76-78

Источником выделения пыли является унос пыли с верхнего слоя штабеля при статическом хранении.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,126940	1,656757

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельное количество сдуваемых твердых частиц с поверхности штабеля угля, <i>q</i> с∂ [кг/кв.м*с]	0,000001
Площадь основания штабеля угля, $S_{\omega}[\kappa B.M]$	51497
Влажность материала, %	11,00
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, w_e [м/с]	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, <i>w</i> ₅ [м/с]	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	1
Коэффициент, учитывающий профиль поверхности складируемого материала, К₅	1,45
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0
Коэффициент измельчения горной массы, <i>р</i>	0,1
Количество дней с устойчивым снежным покровом, T_{cn}	80
Количество дней с осадками в виде дождя, T_{δ}	71

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

где

 $oldsymbol{q}_{cd}$ – удельное количество сдуваемых твердых частиц с поверхности штабеля угля, кг/кв.м*с;

 S_{w} – площадь основания штабеля угля, кв.м;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 K_6 – коэффициент, учитывающий профиль поверхности складируемого материала;

 $oldsymbol{
ho}$ - коэффициент измельчения горной массы;

 T_{cn} - количество дней с устойчивым снежным покровом;

 T_{∂} - количество дней с осадками в виде дождя;

п - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При статическом хранении угля:

 M_{3749} = 1,656757 m/eod G_{3749} = 0,126940 e/c

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,074671	0,07467065	0,089605	0,104539	0,126940105	0,126940

ИЗАВ №6263. погрузо-разгрузочные работы на судовом грузовом фронте (причалы №76-78)

Источником выделения загрязняющих веществ является:

- перегрузочные работы на судовом грузовом фронте с углем; с ильменитовой рудой, с железорудным окатышем;

В расчете выбросов учтена неодновременность перегрузочных работ с разными грузами.

Максимально-разовый выброс принят максимальный по каждому грузу

Валовый выброс суммирован с учетом всех видов грузов

Всего по источнику выбросов:

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
	При перегрузке каменного угля		
3749	Пыль каменного угля	0,001587	0,009408
	При перегрузке железорудного концент	рата	
123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,067290	0,136800
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,034360	0,206640
	При перегрузке ильменитовой рудь	I	
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,599760	0,243860
123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,685440	0,278690
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,428400	0,174180

Расчет по каждому грузу выполнен на максимальную загруженность склада, поэтому в расчете рассеивания учтена

неодновременность движения грузов, и по каждому веществу принят максимально-разовый выброс:

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,599760	0,243860
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе- зо/(Железо сесквиоксид)	0,685440	0,415490
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,428400	0,380820
3749	Пыль каменного угля	0,001587	0,009408

Максимально-разовый выброс с учетом ветра принят:

Скорость в	етра, м/с	0,5	2	4	6	8	8,4
Количество	3B, r/c						
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,3528	0,3528	0,42336	0,49392	0,59976	0,59976
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе-зо/(Железо сесквиоксид)	0,4032	0,4032	0,48384	0,56448	0,68544	0,68544
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,252	0,252	0,3024	0,3528	0,4284	0,4284
3749	Пыль каменного угля	0,000933	0,000933	0,001120	0,001307	0,001587	0,001587

ИВ погрузка угля на судно (пр 76-78)

Источником выделения пыли является перемещение масс угля (разгрузка и погрузка, ссыпание, перегрузка).

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,001587	0,009408

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

MHB.No

$ $ Удельное выделение при разгрузке (перегрузке) материала, q_n [г/т]	0,32
Количество разгружаемого (перегружаемого) материала, П₂ [т/год]	3500000
Количество разгружаемого (перегружаемого) материала, $\Pi_{ m q}$ [т/час]	1500
Влажность материала, %	11,00
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, w _s [м/с]	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, <i>w</i> ₅ [м/с]	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Высота разгрузки материала, [м]	2
Коэффициент, учитывающий высоту пересыпки материала (табл. 6.9), K_3	0,7
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	1
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0
V	

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

 $M_n = q_n \cdot \Pi_e \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot 10^{-6} \cdot (1-\eta), \ m/\text{eod} \ [1]$

	де у л – удел	іьное ві	ыделени	е при разг		q _n · П ₄ · K ₁ · K ₂ · K ₃ · K ₄ · (1-η))/3600, a/c [2] регрузке) материала, a/m;	
						OPOC2 (Лист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	117

 Π_{q} – максимальное количество перегружаемого материала за час, *m/час*;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 K_3 – коэффициент, учитывающий высоту пересыпки материала (таб. 6.9 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При разгрузочных (перегрузочных) работах:

 M_{3749} = 0,009408 m/eod G_{3749} = 0,001587 e/c

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,000933	0,000933333	0,001120	0,001307	0,001587	0,001587

ИВ Отгрузка ильменитовой руды с судна (пр 78)

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 4-х сторон (K_4 = 1). Высота падения материала при пересыпке составляет 2,0 м (B = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует (K_9 = 1). Расчетные скорости ветра, м/с: 0,5 (K_9 = 1); 2 (K_9 = 1); 4 (K_9 = 1,2); 6 (K_9 = 1,4); 8 (K_9 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_9 = 1,2).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
0118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,59976	0,24386
	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,68544	0,27869
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,42840	0,17418

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Материал	Параметры	Одноврем енность
Коэффициенты сдуваемости приняты для щебня	Количество перерабатываемого материала: $G_4 = 750$ т/час; $G_{70} = 120000$ т/год. Весовая доля пылевой фракции в материале: $\mathbf{K}_7 = 0,04$. Доля пыли, переходящая в аэрозоль: $\mathbf{K}_2 = 0,02$. Влажность до 9% ($\mathbf{K}_5 = 0,2$). Размер куска 500-100 мм ($\mathbf{K}_7 = 0,2$). Грейфер 3830 грузоподъемностью 16 т ($\mathbf{K}_8 = 0,216$).	+

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{\Gamma P} = \mathbf{K}_{1} \cdot \mathbf{K}_{2} \cdot \mathbf{K}_{3} \cdot \mathbf{K}_{4} \cdot \mathbf{K}_{5} \cdot \mathbf{K}_{7} \cdot \mathbf{K}_{8} \cdot \mathbf{K}_{9} \cdot \mathbf{B} \cdot \mathbf{G}_{4} \cdot 10^{6} / 3600, \, a/c$$
(1.1.1)

где K_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 ${\it K}_2$ - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

 ${\it K}_{7}$ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств K_8 = 1;

 K_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 $G_{\text{ч}}$ - суммарное количество перерабатываемого материала в час, *m/час*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{aob}, m/aob$$

$$\tag{1.1.2}$$

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Руда

Взам.инв.

윋

Ильменит (титанистый железняк) — минерал общей химической формулы $FeO \cdot TiO2$ или $FeTiO_3$. В ильменитовых концентратах содержится 35% диоксида титана и 40% железа. Таким образом, 35% от общего выброса нормируется как диоксид титана, 40% как оксид железа, остальные соединения приняты по пыли неорганической.

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

```
Выбросы диоксида титана:
M^{0.5 \text{ m/c}} = 1,008 * 0,35 = 0,35280 \text{s/c};
M^{2 \text{ M/c}} = 1,008 * 0,35 = 0,35280 a/c;
M^{4 \text{ m/c}} = 1.2096 * 0.35 = 0.42336 \text{e/c}
M^{6 \text{ M/c}} = 1,4112 * 0,35 = 0,49392e/c;
M^{8 \text{ m/c}} = 1.7136 * 0.35 = 0.59976 \text{ e/c}
M^{8.4 \text{ M/C}} = 1,7136 * 0,35 = 0,59976 a/c;
\Pi = 0,69673 * 0,35 = 0,24386m/eod.
Выбросы оксида железа:
M^{0.5 \text{ M/c}} = 1.008 * 0.4 = 0.40320 e/c:
M^{2 \text{ M/c}} = 1,008 * 0,4 = 0,40320 \text{ s/c};
M^{4 \text{ M/c}} = 1,2096 * 0,4 = 0,48384 \text{ e/c};
M^{6 \text{ M/C}} = 1,4112 * 0,4 = 0,56448 \text{ e/c};
M^{8 \text{ M/C}} = 1,7136 * 0,4 = 0,68544 \text{ e/c};
M^{8.4 \text{ M/c}} = 1,7136 * 0,4 = 0,68544 e/c;
\Pi = 0.69673 * 0.4 = 0.27869 m/sod.
Выбросы пыли неорганической:
M^{0.5 \text{ M/c}} = 1,008 * 0,25 = 0,25200 \text{ e/c};
M^{2 \text{ M/c}} = 1,008 * 0,25 = 0,25200 e/c;
M^{4 \text{ m/c}} = 1.2096 * 0.25 = 0.30240 \text{ e/c}
M^{6 \text{ M/c}} = 1,4112 * 0,25 = 0,35280 \text{ a/c};
M^{8 \text{ m/c}} = 1,7136 * 0,25 = 0,42840 \text{ e/c};
M^{8.4 \text{ M/C}} = 1,7136 * 0,25 = 0,42840 \text{ a/c};
\Pi = 0.69673 * 0.25 = 0.17418 m/eod.
```

ИВ Погрузка железорудного концентрата в судно (пр 78)

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Окатыш железорудный имеет следующий состав:

Название	Процентный состав
Железо общее	66%
Оксид железа	0,2%
Неорганические соединения	33,8%

Суммарные выбросы железа нормируются по оксидам железа, неорганические соединения – по пыль неорганической.

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 4-х сторон (K_4 = 1). Высота падения материала при пересыпке составляет 2,0 м (B = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует ($K_9 = 1$). Расчетные скорости ветра, м/с: 0,5 ($K_3 = 1$); 2 ($K_3 = 1$); 4 ($K_3 = 1,2$); 6 ($K_3 = 1,4$); 8 ($K_3 = 1,4$); 9 ($(K_3 = 1,7)$. Средняя годовая скорость ветра 3,8 м/с $(K_3 = 1,2)$.

Таблица 1.1.1 - **Характеристика выделений загрязняющих веществ в атмосферу**

Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год	
код наименование	выброс, г/с	Годовой выорос, 1/10д	
0123 диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,06729	0,13680	
2908 Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,03436	0,20664	

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблина 1 1 2 - Исходные данные для расчета

assumed the property of the passing the pa		
Материал	Параметры	Одноврем
Материал	Параметры	енность
Железорудный концентрат	Количество перерабатываемого материала: Gч = 750 т/час; Gгод = 600000	+
Удельные показатели приняты по аналогу	т/год. Весовая доля пылевой фракции в материале: K_1 = 0,01. Доля пыли,	I
- гравий	переходящая в аэрозоль: K_2 = 0,001. Влажность до 9% (K_5 = 0,2). Размер	I
	куска 50-10 мм (K_7 = 0,5). Грейфер г/п 10 т (K_8 = 0,41).	l

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{\Gamma P} = \mathbf{K}_{1} \cdot \mathbf{K}_{2} \cdot \mathbf{K}_{3} \cdot \mathbf{K}_{4} \cdot \mathbf{K}_{5} \cdot \mathbf{K}_{7} \cdot \mathbf{K}_{8} \cdot \mathbf{K}_{9} \cdot \mathbf{B} \cdot \mathbf{G}_{4} \cdot 10^{6} / 3600, \, a/c$$
(1.1.1)

где K_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале:

 ${\it K}_{2}$ - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

Взам.инв.

윋

К₇ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств $K_8 = 1$;

 K_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_{4} - суммарное количество перерабатываемого материала в час, *m/час*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\mathbf{\Pi}_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{aod}, m/aod$$

$$\tag{1.1.2}$$

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля

	выделения загрязняющих веществ в атмосферу приведен ниже.							
								Лист
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	119

```
<u>Концентрат</u>
      M^{4 \text{ m/c}} = 0.01 \cdot 0.001 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 = 0.07175 \text{ e/c};

M^{6 \text{ m/c}} = 0.01 \cdot 0.001 \cdot 1.4 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 = 0.0837083 \text{ e/c};
       M^{8 \text{ m/c}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 = 0.1016458 \text{ a/c};
       M^{8.4 \text{ m/c}} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 = 0.1016458 \text{ e/c};
       \Pi = 0,01 · 0,001 · 1,2 · 1 · 0,2 · 0,5 · 0,41 · 1 · 0,7 · 600000 = 0,20664 m/eod.
      Содержание в выбросах оксидов железа составит 66,2 % от общего выброса: M^{0.5\ \text{M/C}} = 0.0597917 * 0.662 = 0.03958\ \text{e/c}; M^{2\ \text{M/C}} = 0.0597917 * 0.662 = 0.03958\ \text{e/c};
       M^{4 \text{ m/c}} = 0.07175 * 0.662 = 0.04750 \ e/c;
      M^{6 \text{ M/C}} = 0.0837083 * 0.662 = 0.05541 \text{ a/c};

M^{6 \text{ M/C}} = 0.1016458 * 0.662 = 0.06729 \text{ a/c};

M^{8.4 \text{ M/C}} = 0.1016458 * 0.662 = 0.06729 \text{ a/c};
       \Pi = 0,20664 * 0,662 = 0,13680m/20\partial.
       Остальные вещества нормируются как пыль неорганическая:
      M^{0.5 \text{ m/c}} = 0.0597917 * 0.338 = 0.02021 \text{ e/c};

M^{2 \text{ m/c}} = 0.0597917 * 0.338 = 0.02021 \text{ e/c};
      M^{4 \text{ m/c}} = 0.037517 \, 0.338 = 0.02425 \, e/c;

M^{6 \text{ m/c}} = 0.0837083 \, * 0.338 = 0.02829 \, e/c;

M^{6 \text{ m/c}} = 0.1016458 \, * 0.338 = 0.03436 \, e/c;
       M^{8.4 \text{ M/c}} = 0.1016458 * 0.338 = 0.03436 \text{ e/c};
       \Pi = 0,20664 * 0,338 = 0,06984 m/eod.
                                                                                                                                                                                                                                                       Лист
                                                                                                                                                       OBOC2.6
                                                                                                                                                                                                                                                         120
Изм. Кол.уч Лист № док.
                                                          Подп.
                                                                              Дата
```

Взам.инв.

подл

Инв.№

Источником выделения загрязняющих веществ является:

- перегрузочные работы на железнодорожном грузовом фронте в углем; с глиноземом; с ильменитовой рудой, с железорудным окатышем;
- работа ДСК и конвейеров;
- работа воздуходувок.

В расчете выбросов учтена неодновременность перегрузочных работ с разными грузами.

Максимально-разовый выброс принят максимальный по каждому грузу

Валовый выброс суммирован с учетом всех видов грузов

Всего по источнику выбросов:

	Загрязняющее вещество	Максимально	Годовой выброс,	
код	наименование	разовый выброс, г/с	т/год	
	При перегрузке каменного угля			
3749	Пыль каменного угля	0,014702	0,081924	
	При перегрузке железорудного концентра	та		
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе-зо/(Железо сесквиоксид)	0,032300	0,136800	
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,016490	0,069840	
	При перегрузке глинозема			
101	диАлюминий триоксид/в пересчете на алюминий/	0,017850	0,136080	
	При перегрузке ильменитовой руды			
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,287880	0,243860	
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе-зо/(Железо сесквиоксид)	0,329010	0,278690	
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,205630	0,174180	

Расчет по каждому грузу выполнен на максимальную загруженность склада, поэтому в расчете рассеивания учтена

неодновременность движения грузов, и по каждому веществу принят максимально-разовый выброс:

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
101	диАлюминий триоксид/в пересчете на алюминий/	0,017850	0,136080
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,287880	0,243860
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе-зо/(Железо сесквиоксид)	0,329010	0,415490
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,205630	0,244020
3749	Пыль каменного угля	0,014702	0,081924

Максимально разовый	выброс с учетом ветра принят:	
імаксимально-разовый	выорос с учетом ветра принят.	

Скорость	ветра, м/с	0,5	2	4	6	8	8,4
Количеств	ю 3В, г/с						
101	диАлюминий триоксид/в пересчете на алюминий/	0,0105	0,0105	0,0126	0,0147	0,01785	0,01785
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,16934	0,16934	0,20321	0,23708	0,28788	0,28788
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе-зо/(Железо сесквиоксид)	0,19354	0,19354	0,23224	0,27095	0,32901	0,32901
2908	Пыль неорганическая, содержащая 70- 20% двуокиси кремния	0,12096	0,12096	0,14515	0,16934	0,20563	0,20563
3749	Пыль каменного угля	0,014201	0,014201	0,014344	0,014488	0,01470	0,01470

Выбросы от воздуходувок составляют:

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год	
код	наименование	выброс, г/с	годовой выорос, глод	
301	Азота диоксид (Азот (IV) оксид)	0,0015111	0,001991	
304	Азот (II) оксид (Азота оксид)	0,0002456	0,0003235	
330	Сера диоксид (Ангидрид сернистый)	0,0005389	0,00071	
337	Углерод оксид	0,1044444	0,137616	
2704	Бензин (нефтяной, малосернистый)	0,0133333	0,017568	

ИВ Разгрузка угля на склад (пр. 76-78, каменный уголь)

Источником выделения пыли является перемещение масс угля (разгрузка и погрузка, ссыпание, перегрузка).

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,001219	0,009408

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - **Исходные данные для расчета**

Удельное выделение при разгрузке (перегрузке) материала, <i>q_n</i> [г/т]	0,32
Количество разгружаемого (перегружаемого) материала, Л₂[т/год]	3500000

ı							
ı							
ı	Иом	Копла	Пиот	Мо пои	Подп.	Дата	
	¥13M.	Kon.ya	JIMCT	лч док.	ттодп.	дата	

MHB.No

OBOC2.6

Лист

	I

윋

1152
>11%
0,01
8,4
1,7
3,8
1,2
2
0,7
1
0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

 $M_n = q_n \cdot \Pi_2 \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot 10^{-6} \cdot (1-\eta), m/\text{eod}$ [1] $G_n = (q_n \cdot \Pi_4 \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot (1-\eta))/3600, e/c$ [2]

где

 q_n – удельное выделение при разгрузке (перегрузке) материала, a/m;

 Π_{z} – количество разгружаемого (перегружаемого) материала, m/zод;

 Π_{q} – максимальное количество перегружаемого материала за час, *m/час*;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 K_3 – коэффициент, учитывающий высоту пересыпки материала (таб. 6.9 Методики);

К₄ – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

<u>При разгрузочных (перегрузочных) работах:</u> **М**₃₇₄₀= 0.009408 *m/год*

 M_{3749} = 0,009408 m/zoo G_{3749} = 0,001219 z/c

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

) (- - - - - -			P		P P		1
Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,000717	0,000717	0,000860	0,001004	0,001219	0,001219

ИВ Мобильные сортировочные устройства (пр. 76-78, каменный уголь)

Источником выделения пыли является работа дробильно-сортировочных установок

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество		Максимально	Годовой выброс,	
код		наимено	вание	разовый выброс, г/с	т/год
3749		Пыль камен	ного угля	0,009067	0,071400

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - **Исходные данные для расчета**

Наименование оборудования	ДСК
Количество одновременно работающих установок	4
Удельное выделение при дроблении материала, q_n [г/т]	2,04
Количество разгружаемого (перегружаемого) материала 1 ед. оборудования, <i>П</i> ₂ [т/год] (обшая 3 500 000 тонн)	875000
Количество разгружаемого (перегружаемого) материала 1 ед. оборудования, $\Pi_{\text{ч}}$ [т/час] (общая 400 тонн)	400
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_n = q_n \cdot \Pi_z \cdot K_1 \cdot 10^{-6}, m/zod$$
 [1] $G_n = (q_n \cdot \Pi_u \cdot K_1)/3600, z/c$ [2]

где: q_n — удельное выделение твердых частиц при работе самоходных дробильных установок, г/т породы;

Определеяется по таб. 6.11 Методики.

 $\Pi_{\rm v}$ – максимальное количество перегружаемого материала за час, $m/{\rm vac};$

 \emph{K}_1 - коэффициент, учитывающий влажность материала (табл.4.2 Методики).

Согласно «Методического пособия по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух» применяется поправочный коэффициент гравитации для пыли равный 0,4

ИВ Работа транспортерной ленты - 4 шт (пр. 76-78, каменный уголь)

Источником выделения пыли является унос пыли при транспортировании угля ленточным конвейером.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

Загрязняющее вещество	

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

выброс, г/с т/год			Максимально	Годовой
	код	наименование	разовый	выброс,
2740			выброс, г/с	т/год
3749 Тыль каменного угля 0,004320 0,00108	3749	Пыль каменного угля	0,004320	0,001089

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, q_n [г/кв.м*c]	0,003
Количество конвейеров одного типа, n_i	4
Ширина ленты конвейера, b_{i} [м];	1,2
Длина ленты конвейера, L_{i} [м];	30
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Количество рабочих часов конвейра в год, T_i [ч/год]	5040
Скорость ветра, $w_{\rm e}$ [м/с]	8,4
Скорость движения конвейера, <i>w₀</i> [м/с]	2
Скорость обдува материала, V₀₀ [м/с]	2
Коэффициент, учитывающий скорость обдува материала(принимается по ближайшему значению) (таб. 7.19 Методики), K_{ob}	1
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	1
Эффективность пылеподавления (таб 7.16), η [долл.ед]	0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_{c\partial} = \Sigma 3, 6 \cdot q_n \cdot b_j \cdot l_j \cdot T_j \cdot K_1 \cdot K_{o\delta} \cdot K_4 \cdot (1-\eta) \cdot 10^3, m/\text{eod}$$
 [1]
 $G_{c\partial} = \Sigma q_n \cdot b_j \cdot l_j \cdot n_j \cdot K_1 \cdot K_{o\delta} \cdot K_4 \cdot (1-\eta), e/c$ [2]

где

 $\stackrel{\cdot\cdot}{q_n}$ – удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, г/кв.м*с;

 b_i – ширина ленты ковейера, м;

 I_i – длина ленты конвейера, м;

 T_i – количество рабочих часов конвейра в год, ч/год;

 \dot{K}_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_{o6} – коэффициент, учитывающий скорость обдува материала (таб. 7.19 Методики);

 \emph{K}_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 7.16 Методики).

При расчете выбросов от конвейеров, эксплуатирующихся в помещении учитывается коэффициент осаждения 0,4, при этом коэффициент K_{o6} =1, остальные коэффициенты принимаются как указано выше

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При транспортировке ленточным конвейером:

M₃₇₄₉= 0,001089 *m/20*∂ **G**₃₇₄₉= 0,004320 *e/c*

ИВ Зачистка вагонов (пр. 76-78, каменный уголь)

Источником выделения пыли является унос пыли при зачистке вагонов.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой
код	наименование	разовый выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,000097	0,000027

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - **Исходные данные для расчета**

гаолица 2 - исходные данные для расчета	
Удельное количество сдуваемых твердых частиц с поверхности штабеля угля, q_{c0} [кг/кв.м*c]	0,000001
Площадь вагона, S_{ω} [кв.м]	27
Количество вагонов в сутки	60
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость обдува, W_e [м/с]	79
Коэффициент, учитывающий скорость обдува (табл. 6.4), K_2	9
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	1
Коэффициент, учитывающий профиль поверхности складируемого материала, K_6	0,1
Количество часов работы в год T	8000
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0
Коэффициент измельчения горной массы, о	0.1

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$\begin{aligned} \mathbf{M}_{c\partial} &= \mathbf{q}_{c\partial} \cdot \mathbf{S}_{u} \cdot \mathbf{K}_{1} \cdot \mathbf{K}_{2} \cdot \mathbf{K}_{4} \cdot \mathbf{K}_{6} \cdot \rho \cdot \mathbf{T} \cdot (\mathbf{1} \cdot \mathbf{\eta}), \, \mathbf{m/zo\partial} \quad [1] \\ \mathbf{G}_{c\partial} &= \mathbf{q}_{c\partial} \cdot \mathbf{S}_{u} \cdot \mathbf{K}_{1} \cdot \mathbf{K}_{2} \cdot \mathbf{K}_{4} \cdot \mathbf{K}_{6} \cdot \rho \cdot (\mathbf{1} \cdot \mathbf{\eta}) \cdot \mathbf{1000}, \, \mathbf{z/c} \end{aligned}$$

где

MHB.No

 ${m q}_{c \sigma}$ — удельное количество сдуваемых твердых частиц с поверхности штабеля угля, кг/кв.м*с;

 S_{w} – площадь вагона, кв.м;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 \emph{K}_{2} – коэффициент, учитывающий скорость обдува (таб. 6.4 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 K_6 – коэффициент, учитывающий профиль поверхности складируемого материала;

H						
L						
ľ	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Ω D	OC ₂	6
VD	いしん	.v

 $oldsymbol{
ho}$ - коэффициент измельчения горной массы;

 $oldsymbol{\eta}$ - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При зачистке вагонов:

 M_{3749} = 0,00003 m/200 G_{3749} = 0,00010 e/c

ИВ Погрузка ильменитовой руды в вагон (пр 76-78)

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия — склады, хранилища, открытые с 4-х сторон (K_4 = 1). Высота падения материала при пересыпке составляет 2,0 м (B = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует (K_9 = 1). Расчетные скорости ветра, м/с: 0,5 (K_9 = 1); 2 (K_9 = 1); 4 (K_9 = 1,2); 6 (K_9 = 1,4); 8 (K_9 = 1,7); 8,4 (K_9 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_9 = 1,2).

<u>Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу</u>

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
0118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,28788	0,24386
0123	диЖелезо триоксид, (железа оксид)/в пересчете на	0,32901	0,27869
	железо/(Железо сесквиоксид)		
2908	Пыль неорганическая, содержащая 70-20% двуокиси	0,20563	0,17418
	кремния		

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Материал	Параметры	Одноврем енность
Руда Коэффициенты сдуваемости приняты для щебня	Количество перерабатываемого материала: $G_4 = 360$ т/час; $G_{7} = 120000$ т/год. Весовая доля пылевой фракции в материале: $\mathbf{K}_1 = 0,04$. Доля пыли, переходящая в аэрозоль: $\mathbf{K}_2 = 0,02$. Влажность до 9% ($\mathbf{K}_5 = 0,2$). Размер куска 500-100 мм ($\mathbf{K}_7 = 0,2$). Грейфер 3830 грузоподъемностью 16 т ($\mathbf{K}_8 = 0,216$).	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_4 \cdot 10^6 / 3600, \, e/c$$
 (1.1.1)

где \mathbf{K}_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 ${\it K}_{\it 2}$ - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

 ${\it K}_{\it 3}$ - коэффициент, учитывающий местные метеоусловия;

K₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

 ${\it K}_{\it 5}$ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств K_8 = 1;

 \emph{K}_{9} - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_4 - суммарное количество перерабатываемого материала в час, *m/час*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{eod}, m/eod$$

$$\tag{1.1.2}$$

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

```
Руда
```

Взам.инв.

윋

```
\begin{array}{l} \frac{\mathbf{7}\cdot\mathbf{7}\cdot\mathbf{2}\cdot\mathbf{6}}{\mathbf{M}^{0.5\,\mathrm{M}c}} = 0.04 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 \, / \, 3600 = 0.48384 \, \, z/c; \\ \mathbf{M}^{2\,\mathrm{M}c} = 0.04 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 \, / \, 3600 = 0.48384 \, \, z/c; \\ \mathbf{M}^{4\,\mathrm{M}c} = 0.04 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 \, / \, 3600 = 0.580608 \, \, z/c; \\ \mathbf{M}^{6\,\mathrm{M}c} = 0.04 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 \, / \, 3600 = 0.677376 \, \, z/c; \\ \mathbf{M}^{8\,\mathrm{M}c} = 0.04 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 \, / \, 3600 = 0.822528 \, \, z/c; \\ \mathbf{M}^{8.4\,\mathrm{M}c} = 0.04 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 \, / \, 3600 = 0.822528 \, \, z/c; \\ \mathbf{\Pi} = 0.04 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.2 \cdot 0.216 \cdot 1 \cdot 0.7 \cdot 120000 = 0.69673 \, \, m/zoo. \end{array}
```

Ильменит (титанистый железняк) — минерал общей химической формулы $FeO \cdot TiO2$ или $FeTiO_3$. В ильменитовых концентратах содержится 35% диоксида титана и 40% железа. Таким образом, 35% от общего выброса нормируется как диоксид титана, 40% как оксид железа, остальные соединения приняты по пыли неорганической.

Выбросы диоксида титана:

```
BBIOPOCBI AIONCUIDA TUTANA.

M^{0.5 \text{ M/c}} = 0.48384^* 0.35 = 0.16934e/c;
M^{2 \text{ M/c}} = 0.48384^* 0.35 = 0.16934e/c;
M^{4 \text{ M/c}} = 0.580608^* 0.35 = 0.20321e/c;
M^{6 \text{ M/c}} = 0.677376^* 0.35 = 0.23708e/c;
M^{6 \text{ M/c}} = 0.822528^* 0.35 = 0.28788e/c;
M^{8 \text{ M/c}} = 0.822528^* 0.35 = 0.28788e/c;
M^{8.4 \text{ M/c}} = 0.822528^* 0.35 = 0.28788e/c;
M^{6.4 \text{ M/c}} = 0.69673^* 0.35 = 0.24386m/eod.
```

Выбросы оксида железа:

 $M^{0.5 \text{ M/C}} = 0.48384 * 0.4 = 0.19354 \text{ e/c};$ $M^{2 \text{ M/C}} = 0.48384 * 0.4 = 0.19354 \text{ e/c};$

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

```
M^{4 \text{ M/c}} = 0,580608 * 0,4 = 0,23224e/c;
M^{6 \text{ M/c}} = 0,677376* 0,4 = 0,27095e/c;
M^{8 \text{ M/c}} = 0,822528 * 0,4 = 0,32901e/c;
M^{8.4 \text{ M/c}} = 0,822528 * 0,4 = 0,32901e/c;
M = 0,69673 * 0,4 = 0,27869m/eoð.

Выбросы пыли неорганической:
M^{0.5 \text{ M/c}} = 0,48384 * 0,25 = 0,12096e/c;
M^{2 \text{ M/c}} = 0,48384 * 0,25 = 0,12096e/c;
M^{4 \text{ M/c}} = 0,580608 * 0,25 = 0,14515e/c;
M^{6 \text{ M/c}} = 0,677376* 0,25 = 0,16934e/c;
M^{8 \text{ M/c}} = 0,822528 * 0,25 = 0,20563e/c;
M^{8 \text{ M/c}} = 0,822528 * 0,25 = 0,20563e/c;
M^{6 \text{ M/c}} = 0,822528 * 0,25 = 0,20563e/c;
M^{6 \text{ M/c}} = 0,822528 * 0,25 = 0,20563e/c;
M^{6 \text{ M/c}} = 0,822528 * 0,25 = 0,20563e/c;
M^{6 \text{ M/c}} = 0,825528 * 0,25 = 0,20563e/c;
```

ИВ Разгрузка железорудного концентрата из вагонов (пр 76-78)

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Окатыш железорудный имеет следующий состав:

Название	Процентный состав
Железо общее	66%
Оксид железа	0,2%
Неорганические соединения	33,8%

Суммарные выбросы железа нормируются по оксидам железа, неорганические соединения – по пыль неорганической.

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 4-х сторон (K_4 = 1). Высота падения материала при пересыпке составляет 2,0 м (B = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует (K_9 = 1). Расчетные скорости ветра, м/с: 0,5 (K_9 = 1); 2 (K_9 = 1); 4 (K_9 = 1,2); 6 (K_9 = 1,4); 8 (K_9 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_9 = 1,2).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, тлод
0123	диЖелезо триоксид, (железа оксид)/в пересчете на	0,03230	0,13680
	железо/(Железо сесквиоксид)		
2908	Пыль неорганическая, содержащая 70-20% двуокиси	0,01649	0,06984
	кремния		

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Taomida Title Monogribio Aumbio Am pao i	J.u.	
Материал	Параметры	Одноврем
Материал	Параметры	енность
Концентрат	Количество перерабатываемого материала: Gч = 360 т/час; Gгод = 600000	+
Удельные показатели приняты по аналогу	т/год. Весовая доля пылевой фракции в материале: K_1 = 0,01. Доля пыли,	
- гравий	переходящая в аэрозоль: $K_2 = 0,001$. Влажность до 9% ($K_5 = 0,2$). Размер	
	куска 50-10 мм (K_7 = 0,5). Грейфер г/п 10 т (K_8 = 0,41).	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

 $\mathbf{M}_{\Gamma P} = \mathbf{K}_{1} \cdot \mathbf{K}_{2} \cdot \mathbf{K}_{3} \cdot \mathbf{K}_{4} \cdot \mathbf{K}_{5} \cdot \mathbf{K}_{7} \cdot \mathbf{K}_{8} \cdot \mathbf{K}_{9} \cdot \mathbf{B} \cdot \mathbf{G}_{4} \cdot 10^{6} / 3600, \, a/c$ (1.1.1)

где ${\it K}_1$ - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 ${\it K}_2$ - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

 ${\it K}_{\rm 3}$ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

 ${\it K}_{\it 5}$ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств K_8 = 1;

К₉ - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

Взам.инв.

윋

 G_{4} - суммарное количество перерабатываемого материала в час, *m/час*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{eo0}, m/eod$$
 (1.1.2)

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

```
КОНЦЕНТРАТ

\mathbf{M}^{0.5\ M/c} = 0.01 \cdot 0.001 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 / 3600 = 0.0287\ e/c;
\mathbf{M}^{2\ M/c} = 0.01 \cdot 0.001 \cdot 1 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 / 3600 = 0.0287\ e/c;
\mathbf{M}^{4\ M/c} = 0.01 \cdot 0.001 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 / 3600 = 0.03444\ e/c;
\mathbf{M}^{6\ M/c} = 0.01 \cdot 0.001 \cdot 1.4 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 / 3600 = 0.04018\ e/c;
\mathbf{M}^{6\ M/c} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 / 3600 = 0.04879\ e/c;
\mathbf{M}^{6.4\ M/c} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 / 3600 = 0.04879\ e/c;
\mathbf{M} = 0.01 \cdot 0.001 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 / 3600 = 0.04879\ e/c;
\mathbf{M} = 0.01 \cdot 0.001 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 360 \cdot 10^6 / 3600 = 0.04879\ e/c;
\mathbf{M} = 0.01 \cdot 0.001 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 0.41 \cdot 1 \cdot 0.7 \cdot 600000 = 0.20664\ m/eoð.
Содержание в выбросах оксидов железа составит 66,2% от общего выброса:
\mathbf{M}^{0.5\ M/c} = 0.0287 \cdot 0.662 = 0.01900\ e/c;
\mathbf{M}^{2\ M/c} = 0.0287 \cdot 0.662 = 0.01900\ e/c;
\mathbf{M}^{4\ M/c} = 0.03444 \cdot 0.662 = 0.02280e/c;
```

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

```
\emph{M}^{6\ M/c}=0,04018*0,662=0,02660 \emph{a/c};
\emph{M}^{8\ M/c}=0,04879*0,662=0,03230 \emph{a/c};
\emph{M}^{8.4\ M/c}=0,04879*0,662=0,03230 \emph{a/c};
\emph{П}=0,20664*0,662=0,13680 \emph{m/aod}.
Остальные вещества нормируются как пыль неорганическая: \emph{M}^{0.5\ M/c}=0,0287*0,338=0,00970\emph{a/c};
\emph{M}^{2\ M/c}=0,0287*0,338=0,00970\emph{a/c};
\emph{M}^{4\ M/c}=0,03444*0,338=0,01164\emph{a/c};
\emph{M}^{6\ M/c}=0,04018*0,338=0,01358\emph{a/c};
\emph{M}^{6\ M/c}=0,04879*0,338=0,01649\emph{a/c};
```

ИВ работы по перегрузке глинозема на ж/д фронте

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия — склады, хранилища, открытые с 1-й стороны (K_4 = 0,1). Высота падения материала при пересыпке составляет 1,0 м (B = 0,5). Залповый сброс при разгрузке автосамосвала отсутствует (K_9 = 1). Расчетные скорости ветра, м/с: 0,5 (K_3 = 1); 2 (K_3 = 1); 4 (K_3 = 1,2); 6 (K_3 = 1,4); 8 (K_3 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_3 = 1,2).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

38	агрязняющее ве	щество	Пылеподавление, %	Максимально	разовый выброс, г/с	Годовой выб	брос, т/год
код	наимено	вание	пылеподавление, 70	до	после	до	после
0101	диАлюминий	люминий триоксид/в 90		0,1785	0,01785	1,3608	0,13608
	пересчете на а	люминий/	Технология пылеподавления:				
			Гранулирование пылящего				
			материала. Процесс				
			производства глинозема				
			гидрохимическим способом				
			Байера заключается в				
			разложении (гидролизе)				
			щелочно-алюминатных				
			растворов при высоких				
			температурах с последующим				
			выделением гидроксида				
			алюминия включает в себя				
			прокаливание и кальцинация				
			(обезвоживание) гидрооксида				
			алюминия, что по сути				
			связывает поверхность, поэтому				
			при перегрузке принято				
			снижение выбросов 90% как при				
			перегрузке гранулированного				
			материала.				

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Материал	Параметры	Одноврем енность
сдуваемости приняты по аналогу – клинкер)	Количество перерабатываемого материала: $G_4 = 400$ т/час; $G_{7} = 1200000$ т/год. Весовая доля пылевой фракции в материале: $\mathbf{K}_1 = 0,01$. Доля пыли, переходящая в аэрозоль: $\mathbf{K}_2 = 0,003$. Влажность до 1% ($\mathbf{K}_5 = 0,9$). Размер куска 5-3 мм ($\mathbf{K}_7 = 0,7$) ($\mathbf{K}_8 = 1$). Технология пылеподавления: Гранулирование пылящего материала.	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

 $\mathbf{M}_{\Gamma P} = \mathbf{K}_{1} \cdot \mathbf{K}_{2} \cdot \mathbf{K}_{3} \cdot \mathbf{K}_{4} \cdot \mathbf{K}_{5} \cdot \mathbf{K}_{7} \cdot \mathbf{K}_{8} \cdot \mathbf{K}_{9} \cdot \mathbf{B} \cdot \mathbf{G}_{4} \cdot 10^{6} / 3600, \, a/c$ (1.1.1)

где **К**₁ - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 K_2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

 ${\it K}_{\it 3}$ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала;

Взам.инв.

윋

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств K_8 = 1;

 K_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_{4} - суммарное количество перерабатываемого материала в час, m/час.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{eod}, m/eod$$

$$\tag{1.1.2}$$

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

 <u>Гл</u>	<u>инозем</u>						
						OPOC2 (Лист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	126

```
\mathbf{\textit{M}}_{0101}{}^{0.5\,\mathrm{m/c}} = 0,01 · 0,003 · 1 · 0,1 · 0,9 · 0,7 · 1 · 1 · 0,5 · 400 · 10<sup>6</sup> / 3600 * (1-0,9)= 0,0105 \mathit{e/c};
M_{0101}^{2 \text{ M/c}} = 0.01 \cdot 0.003 \cdot 1 \cdot 0.1 \cdot 0.9 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.5 \cdot 400 \cdot 10^{6} / 3600 * (1-0.9) = 0.0105 \text{ s/c};
\mathbf{M}_{0101}^{4 \text{ M/c}} = 0.01 \cdot 0.003 \cdot 1.2 \cdot 0.1 \cdot 0.9 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.5 \cdot 400 \cdot 10^{6} / 3600 \cdot (1-0.9) = 0.0126 \text{ e/c}
M_{0.101}^{6 \text{ M/C}} = 0.01 \cdot 0.003 \cdot 1.4 \cdot 0.1 \cdot 0.9 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.5 \cdot 400 \cdot 10^{6} / 3600 * (1-0.9) = 0.0147 \ e/c;
M_{0101}^{8 \text{ M/c}} = 0.01 \cdot 0.003 \cdot 1.7 \cdot 0.1 \cdot 0.9 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.5 \cdot 400 \cdot 10^{6} / 3600 * (1-0.9) = 0.01785 \ e/c;
M_{0101}^{8.4 \text{ M/C}} = 0.01 \cdot 0.003 \cdot 1.7 \cdot 0.1 \cdot 0.9 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.5 \cdot 400 \cdot 10^6 / 3600 * (1-0.9) = 0.01785 \text{ e/c};
\Pi_{0101} = 0.01 \cdot 0.003 \cdot 1.2 \cdot 0.1 \cdot 0.9 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.5 \cdot 1200000 * (1-0.9) = 0.13608  m/sod.
```

ИВ воздуходувки (2 шт)

Источниками выделений загрязняющих веществ являются двигатели автомобилей, перемещающихся по территории предприятия.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами:

Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). Москва, 1998, с дополнениями и изменениями к Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М, 1999 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №49 в Перечне).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу от автотранспортных средств. приведена в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	1 одовой выорос, 1/1 од
301	Азота диоксид (Азот (IV) оксид)	0,0015111	0,001991
304	Азот (II) оксид (Азота оксид)	0,0002456	0,0003235
330	Сера диоксид (Ангидрид сернистый)	0,0005389	0,00071
337	Углерод оксид	0,1044444	0,137616
2704	Бензин (нефтяной, малосернистый)	0,0133333	0,017568

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

		Количество авто	мобилей	Однов
Наименование	Тип автотранспортного средства	среднее в течение	максимально	ременн
		суток	е за 1 час	ОСТЬ
воздуходувка	Легковой, объем свыше 3,5л, карбюр., бензин	2	2	+

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Выбросы i-го вещества при движении автомобилей по расчётному внутреннему проезду $M_{\Pi P \ ik}$ рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{\Pi P i} = \sum_{k=1}^{K} \mathbf{m}_{L i k} \cdot \mathbf{L} \cdot \mathbf{N}_{k} \cdot \mathbf{D}_{P} \cdot 10^{-6},$$
т/год (1.1.1)

где m_{Lik} – пробеговый выброс *i*-го вещества, автомобилем k-й группы при движении со скоростью 10-20 км/час a/km;

L - протяженность расчётного внутреннего проезда, км; N_k - среднее количество автомобилей k-й группы, проезжающих по расчётному проезду в течении суток;

 D_P - количество расчётных дней.

Максимально разовый выброс i-го вещества G_i рассчитывается по формуле (1.1.2):

$$G_{i} = \sum_{k=1}^{k} m_{Lik} \cdot L \cdot N'_{k} / 3600, \, r/c$$
 (1.1.2)

где N_k' – количество автомобилей k-й группы, проезжающих по расчётному проезду за 1 час, характеризующийся максимальной интенсивностью проезда автомобилей.

Удельные выбросы загрязняющих веществ при пробеге по расчётному проезду приведены в таблице 1.1.3.

Таблица 1.1.3 - Удельные выбросы загрязняющих веществ

Тип	Загрязняющее вещество	Пробег, г/км
Легковой, объем свыше 3,5л, карбюр., бензин	Азота диоксид (Азот (IV) оксид)	0,272
	Азот (II) оксид (Азота оксид)	0,0442
	Сера диоксид (Ангидрид сернистый)	0,097
	Углерод оксид	18,8
	Бензин (нефтяной, малосернистый)	2,4

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Годовое выделение загрязняющих веществ M, m/200:

воздуходувка

 $M_{301} = 0.272 \cdot 10 \cdot 2 \cdot 366 \cdot 10^{-6} = 0.001991;$ $\mathbf{M}_{304} = 0.0442 \cdot 10 \cdot 2 \cdot 366 \cdot 10^{-6} = 0.0003235;$ $\mathbf{M}_{330} = 0.097 \cdot 10 \cdot 2 \cdot 366 \cdot 10^{-6} = 0.00071;$ $M_{337} = 18.8 \cdot 10 \cdot 2 \cdot 366 \cdot 10^{-6} = 0.137616;$ $M_{2704} = 2.4 \cdot 10 \cdot 2 \cdot 366 \cdot 10^{-6} = 0.017568.$

Максимально разовое выделение загрязняющих веществ G, г/с:

воздуходувка

Взам.инв.

윋

 $G_{301} = 0.272 \cdot 10 \cdot 2 / 3600 = 0.0015111;$ $G_{304} = 0.0442 \cdot 10 \cdot 2 / 3600 = 0.0002456;$

 $G_{330} = 0.097 \cdot 10 \cdot 2 / 3600 = 0.0005389;$

 $G_{337} = 18.8 \cdot 10 \cdot 2 / 3600 = 0.1044444;$

 $G_{2704} = 2.4 \cdot 10 \cdot 2 / 3600 = 0.01333333.$

Из результатов расчётов максимально разового выброса для каждого типа автотранспортных средств в итоговые результаты по источнику занесены наибольшие значения, полученные с учетом неодновременности и нестационарности во времени движения

ав	тотранс	портны	х средст	В.			
							Лист
						OBOC2.6	
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата		127

Источниками выделения загрязняющих веществ являются:

- рейсирование техники при проведении работ;
- работа ДВС мобильных сортировочных устройств.

Всего выбросов по источнику:

	Загрязняющее вещество	Максимально разовый выброс, г/с	Годовой выброс, т/год		
код	наименование	імаксимально разовый выорос, і/с	тодовой выорос, тлод		
301	Азота диоксид (Азот (IV) оксид)	0,1944229	3,733737		
304	Азот (II) оксид (Азота оксид)	0,0315937	0,606732		
328	Углерод (Сажа)	0,0292148	0,398418		
330	Сера диоксид (Ангидрид сернистый)	0,0468805	0,939581		
337	Углерод оксид	0,5208021	8,225079		
2732	Керосин	0,1148566	2,006342		

ИВ Рейсирование спецтехники (причалы №71-75)

Источниками выделений загрязняющих веществ являются двигатели автопогрузчиков в период движения по территории, во время работы в нагрузочном режиме и режиме холостого хода.

Расчет выбросов от автопогрузчиков на автомобильной базе выполнен с применением удельных показателей выбросов для грузовых автомобилей, аналогичных базе автопогрузчиков.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами:

Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). Москва, 1998, с дополнениями и изменениями к Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М, 1999 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №49 в Перечне).

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу от автопогрузчиков, приведены в таблице 1.1.1.

 Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
301	Азота диоксид (Двуокись азота; пероксид азота)	0,1720018	3,710708
304	Азот (II) оксид (Азот монооксид)	0,0279503	0,60299
328	Углерод (Пигмент черный)	0,017674	0,391907
330	Сера диоксид	0,0426982	0,936117
337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,3777919	8,143349
2732	Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,0910937	1,992322

Расчет выполнен для площадки работы автопогрузчиков. Количество расчётных дней холодного периода – . Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - **Исходные данные для расчета**

AHB.No

Haussaus	Тип автомобиля		Рабоча		Время работы одного автопогрузчика								
Наимено		Количе	a	Кол-во		в течен	ии суток, ч	l	за 30 мин, мин		Экоко	Однов	
автопогр узчика	базе автопогрузчика	СТВО	скорос ть, км/ч	рабочи х дней	всего	без нагрузк и	под нагрузко й	холосто й ход	без нагрузк и	под нагрузк ой	холост ой ход	нтрол ь	ремен ность
автопогр узчик	Грузовой, г/п свыше 16 т, дизель	21 (14)	4	365	12	5,2	4,8	2	13	12	5	-	+
	Грузовой, г/п от 8 до 16 т, дизель	19 (18)	4	365	12	5,2	4,8	2	13	12	5	-	+
автопогр узчик	Грузовой, г/п от 5 до 8 т, дизель	5 (5)	4	365	12	5,2	4,8	2	13	12	5	-	+
	Грузовой, г/п до 2 т, дизель	8 (3)	4	365	12	5,2	4,8	2	13	12	5	-	+
самосвал	Грузовой, г/п свыше 16 т, дизель	4 (4)	4	365	12	5,2	4,8	2	13	12	5	-	-
	Грузовой, г/п от 2 до 5 т, дизель	` '	4	365	12	5,2	4,8	2	13	12	5	-	+
	Грузовой, г/п от 5 до 8 т, дизель	2 (2)	4	365	12	5,2	4,8	2	13	12	5	-	+
ания для гидропос ева	Грузовой, г/п от 5 до 8 т, дизель	, ,	4	365	12	5,2	4,8	2	13	12	5	-	+

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Расчет максимально разовых выбросов *i*-го вещества осуществляется по формуле (1.1.1):

$$G_{i} = \sum_{k=1}^{k} (m_{AB ik} \cdot t_{AB} + 1, 3 \cdot m_{AB ik} \cdot t_{HAPP} + m_{XX ik} \cdot t_{XX}) \cdot N_{k} / 1800, \ e/c$$
(1.1.1)

где $m_{\mathit{ЛВ ik}}$ – удельный выброс *i*-го вещества при движении погрузчика k-й группы без нагрузки, e/muh;

 $1,3 \cdot m_{BB,k}$ – удельный выброс *i*-го вещества при движении погрузчика *k*-й группы под нагрузкой, *г/мин*;

m_{\times}	_{∕Х ік} — уд€	ельныи	выорос	<i>I</i> -го вещест	гва при р	работе двигателя погрузчика к -й группы на холостом ходу, <i>е/мин</i> ;	
						ODOC2 (Лист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	128

 $\emph{t}_{\text{ДВ}}$ - время движения погрузчика за 30-ти минутный интервал без нагрузки, *мин*;

 $\emph{t}_{\textit{HAPP.}}$ - время движения погрузчика за 30-ти минутный интервал под нагрузкой, *мин*;

 \emph{t}_{XX} - время движения погрузчика за 30-ти минутный интервал на холостом ходу, *мин*;

 $\emph{N}_\emph{k}$ - наибольшее количество погрузчиков \emph{k} -й группы, одновременно работающих за 30-ти минутный интервал.

При этом для перевода величины удельного выброса загрязняющего вещества при пробеге автомобилей m_{Lik} (a/km) в величину $m_{\mathcal{A}\mathcal{B}}$ (а/км) использовалась рабочая скорость автопогрузчика (км/ч).

 $\dot{ extbf{U}}$ 3 полученных значений $oldsymbol{G}_i$ выбирается максимальное с учетом одновременности движения погрузчиков разных групп.

При проведении экологического контроля удельные выбросы загрязняющих веществ автомобилями на холостом ходу снижаются, поэтому и должны пересчитываться по формуле (1.1.2): (1.1.2)

$$m'_{XXik} = m_{XXik} \cdot K_i$$
, e/muh

где K_i – коэффициент, учитывающий снижение выброса i-го загрязняющего вещества при проведении экологического контроля. Расчет валовых выбросов k-го вещества осуществляется по формуле (1.1.3):

$$\mathbf{M}_{i} = \sum_{k=1}^{k} (\mathbf{m}_{ABik} \cdot \mathbf{t'}_{AB} + 1.3 \cdot \mathbf{m}_{ABik} \cdot \mathbf{t'}_{HAIP} + \mathbf{m}_{XXik} \cdot \mathbf{t'}_{XX}) \cdot 10^{-6}, m/200$$
 (1.1.3)

где $t'_{\mathcal{A}\mathcal{B}}$ – суммарное время движения без нагрузки всех погрузчиков k-й группы, muh ;

 $t'_{\text{HAPP.}}$ – суммарное время движения под нагрузкой всех погрузчиков k-й группы, muH;

 $t'_{\it LB}$ – суммарное время работы двигателей всех погрузчиков \emph{k} -й группы на холостом ходу, $\it muh.$

Удельные выбросы загрязняющих веществ при работе автомобилей, аналогичных базе автопогрузчиков, приведены в таблице

Таблица 1.1.3 - Удельные выбросы загрязняющих веществ

Sarnasuanillee Belliecten	Примение г/км	Холостой ход,	Экоконт
оагрязняющее вещество	движение, т/кім	г/мин	роль, Кі
Азота диоксид (Двуокись азота; пероксид азота)	3,12	0,448	1
Азот (II) оксид (Азот монооксид)	0,507	0,0728	1
Углерод (Пигмент черный)	0,45	0,023	0,8
Сера диоксид	0,86	0,112	0,95
Углерода оксид (Углерод окись;	7,2	1,03	0,9
углерод моноокись; угарный газ)			
	1	0,57	0,9
	2,72	0,368	1
		-,	1
		· ·	0,8
	,	- /	0,95
Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	5,9	0,84	0,9
Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,8	0,42	0,9
Азота диоксид (Двуокись азота;	2,4	0,232	1
	0.39	0.0377	1
			0,8
			0,95
Углерода оксид (Углерод окись;	4,9	0,54	0,9
Керосин (Керосин прямой перегонки;	0,7	0,27	0,9
Азота диоксид (Двуокись азота;	1,52	0,096	1
	0.247	0.0156	1
		·	0,8
		-,	0,95
Углерода оксид (Углерод окись;	2,2	0,22	0,9
Керосин (Керосин прямой перегонки;	0,5	0,11	0,9
Азота диоксид (Двуокись азота;	1,76	0,16	1
	0.286	0.026	1
			0,8
	- /		0,95
			0,93
	5,5	0,00	0,5
Керосин (Керосин прямой перегонки;	0,6	0,18	0,9
	пероксид азота) Азот (II) оксид (Азот монооксид) Углерод (Пигмент черный) Сера диоксид Углерода оксид (Углерод окись; углерод моноокись; угарный газ) Керосин (Керосин прямой перегонки; керосин дезодорированный) Азота диоксид (Двуокись азота; пероксид азота) Азот (II) оксид (Азот монооксид) Углерод (Пигмент черный) Сера диоксид Углерода оксид (Углерод окись; углерод моноокись; угарный газ) Керосин (Керосин прямой перегонки; керосин дезодорированный) Азота диоксид (Двуокись азота; пероксид азота) Азот (II) оксид (Азот монооксид) Углерод (Пигмент черный) Сера диоксид Углерод (Пигмент черный) Сера диоксид Углерод оксид (Углерод окись; углерод моноокись; угарный газ) Керосин (Керосин прямой перегонки; керосин дезодорированный) Азота диоксид (Двуокись азота; пероксид азота) Азот (II) оксид (Азот монооксид) Углерод (Пигмент черный) Сера диоксид Углерод оксид (Углерод окись; углерод моноокись; угарный газ) Керосин (Керосин прямой перегонки; керосин дезодорированный) Азота диоксид (Двуокись азота; пероксид азота) Азот (II) оксид (Азот монооксид) Углерод (Пигмент черный) Азота диоксид (Двуокись азота; пероксид азота) Азот (II) оксид (Азот монооксид) Углерод (Пигмент черный) Сера диоксид Углерод (Пигмент черный) Сера диоксид Углерод окись; угарный газ)	Азота диоксид (Двуокись азота; пероксид азота) Азот (II) оксид (Азот монооксид) О,507 Углерод (Пигмент черный) О,45 Сера диоксид Углерода оксид (Углерод окись; углерод моноокись; угарный газ) Керосин (Керосин прямой перегонки; керосин дезодорированный) Азота диоксид (Двуокись азота; пероксид азота) Азот (II) оксид (Азот монооксид) О,59 Углерод моноокись; угарный газ) Керосин (Керосин прямой перегонки; о,59 Углерод (Пигмент черный) О,3 Сера диоксид О,59 Углерод моноокись; угарный газ) Керосин (Керосин прямой перегонки; о,8 керосин дезодорированный) Азота диоксид (Двуокись азота; пероксид азота) Азот (II) оксид (Азот монооксид) О,39 Углерод (Пигмент черный) О,23 Сера диоксид Огра оксид (Углерод окись; углерод окись; углерод окисид (Двуокись азота; пероксид азота) Азот (II) оксид (Азот монооксид) О,5 Углерод оксид (Углерод окись; углерод моноокись; угарный газ) Керосин (Керосин прямой перегонки; о,7 керосин дезодорированный) Азота диоксид (Двуокись азота; пероксид азота) Азот (II) оксид (Азот монооксид) О,247 Углерод (Пигмент черный) О,25 Сера диоксид (Двуокись азота; пероксид азота) Азот (II) оксид (Азот монооксид) О,247 Углерод (Пигмент черный) О,25 Сера диоксид (Двуокись азота; пероксид азота) Керосин (Керосин прямой перегонки; керосин (Керосин прямой перегонки; керосин (Керосин прямой перегонки; о,5 керосин (Керосин (Двуокись азота; 1,76 пероксид азота) Азот (II) оксид (Азот монооксид) О,286 Углерод (Пигмент черный) О,2 Сера диоксид О,43 Углерод моноокись; угарный газ) Керосин (Керосин прямой перегонки; о,6	Азота диоксид (Двуокись азота; а.12 0,448 пероксид азота) Азот (II) оксид (Азот монооксид) 0,507 0,0728 Углерод (Пигмент черный) 0,45 0,023 Сера диоксид Углерод окись; 7,2 1,03 Углерод моноокись; угарный газ) Керосин (Керосин прямой перегонки; 1 0,57 керосин дезодорированный) 0,442 0,0598 Углерод оксид (Углерод окись; 7,2 0,368 пероксид азота) 0,442 0,0598 Углерод (Пигмент черный) 0,442 0,0598 Углерод (Пигмент черный) 0,3 0,019 Сера диоксид (Углерод окись; 5,9 0,84 Углерод (Пигмент черный) 0,3 0,019 Сера диоксид (Углерод окись; 5,9 0,84 Углерод моноокись; угарный газ) Керосин (Керосин прямой перегонки; 0,8 0,42 керосин дезодорированный) 0,3 0,019 Сера диоксид (Двуокись азота; 2,4 0,232 пероксид азота) 0,42 керосин (Керосин прямой перегонки; 0,8 0,42 керосин дезодорированный) 0,23 0,012 Сера диоксид (Двуокись азота; 2,4 0,232 пероксид азота) 0,039 0,0377 Углерод (Пигмент черный) 0,23 0,012 Сера диоксид (Углерод окись; 4,9 0,54 Углерод моноокись; угарный газ) Керосин (Керосин прямой перегонки; 0,7 0,27 керосин дезодорированный) 0,23 0,012 Сера диоксид (Двуокись азота; 1,52 0,096 пероксид азота) 0,331 0,048 Углерод (Пигмент черный газ) Керосин (Керосин прямой перегонки; 0,7 0,27 керосин дезодорированный) 0,15 0,005 Сера диоксид (Двуокись азота; 1,52 0,096 пероксид азота) 0,313 0,048 Углерода оксид (Углерод окись; 2,2 0,22 углерод моноокись; угарный газ) Керосин (Керосин прямой перегонки; 0,5 0,11 керосин дезодорированный) 0,15 0,005 Сера диоксид (Двуокись азота; 1,76 0,16 пероксид азота) 0,048 Углерода оксид (Двуокись азота; 1,76 0,16 пероксид азота) 0,028 О,026 О,026 О,026 О,027 О,028 О,029 О,037 О,0

Расчет максимально разового и годового выделения загрязняющих веществ в атмосферу приведен ниже.

автопогрузчик

Взам.инв.

AHB.No

 $G_{301} = (3,12 \cdot 4 \cdot 13 / 60 + 1,3 \cdot 3,12 \cdot 4 \cdot 12 / 60 + 0,448 \cdot 5) \cdot 14 / 1800 = 0,0636907 e/c;$ $\mathbf{M}_{307} = (3.12 \cdot 4 \cdot 365 \cdot 5.2 \cdot 21 + 1.3 \cdot 3.12 \cdot 4 \cdot 365 \cdot 4.8 \cdot 21 + 0.448 \cdot 365 \cdot 2 \cdot 60 \cdot 21) \cdot 10^{-6} = 1.506412 \text{ m/eod};$

 $G_{304} = (0.507 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.507 \cdot 4 \cdot 12 / 60 + 0.0728 \cdot 5) \cdot 14 / 1800 = 0.0103497 e/c;$

 $\textbf{\textit{M}}_{304} = (0.507 \cdot 4 \cdot 365 \cdot 5.2 \cdot 21 + 1.3 \cdot 0.507 \cdot 4 \cdot 365 \cdot 4.8 \cdot 21 + 0.0728 \cdot 365 \cdot 2 \cdot 60 \cdot 21) \cdot 10^{-6} = 0.244792 \text{ m/eo};$

 $G_{328} = (0.45 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.45 \cdot 4 \cdot 12 / 60 + 0.023 \cdot 5) \cdot 14 / 1800 = 0.0075678 \ a/c;$

 $M_{328} = (0.45 \cdot 4 \cdot 365 \cdot 5.2 \cdot 21 + 1.3 \cdot 0.45 \cdot 4 \cdot 365 \cdot 4.8 \cdot 21 + 0.023 \cdot 365 \cdot 2 \cdot 60 \cdot 21) \cdot 10^{-6} = 0.178993$ m/20 δ ; $G_{330} = (0.86 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.86 \cdot 4 \cdot 12 / 60 + 0.112 \cdot 5) \cdot 14 / 1800 = 0.017109$ e/c;

 $\textbf{\textit{M}}_{330} = (0.86 \cdot 4 \cdot 365 \cdot 5.2 \cdot 21 + 1.3 \cdot 0.86 \cdot 4 \cdot 365 \cdot 4.8 \cdot 21 + 0.112 \cdot 365 \cdot 2 \cdot 60 \cdot 21) \cdot 10^{-6} = 0.404663 \, \text{m/eo};$

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

```
\overline{\mathbf{G}_{301}} = (2,72 \cdot 4 \cdot 13 / 60 + 1,3 \cdot 2,72 \cdot 4 \cdot 12 / 60 + 0,368 \cdot 5) \cdot 18 / 1800 = 0,0702613 \text{ a/c};
      \mathbf{M}_{307} = (2.72 \cdot 4 \cdot 365 \cdot 5.2 \cdot 19 + 1.3 \cdot 2.72 \cdot 4 \cdot 365 \cdot 4.8 \cdot 19 + 0.368 \cdot 365 \cdot 2 \cdot 60 \cdot 19) \cdot 10^{-6} = 1.16943 \, \text{m/soo}
      \textbf{\textit{G}}_{304} = (0.442 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.442 \cdot 4 \cdot 12 / 60 + 0.0598 \cdot 5) \cdot 18 / 1800 = 0.0114175 \ \textit{e/c};
\textbf{\textit{M}}_{304} = (0.442 \cdot 4 \cdot 365 \cdot 5.2 \cdot 19 + 1.3 \cdot 0.442 \cdot 4 \cdot 365 \cdot 4.8 \cdot 19 + 0.0598 \cdot 365 \cdot 2 \cdot 60 \cdot 19) \cdot 10^{-6} = 0.1900323 \ \textit{m/eoo};
      G_{328} = (0.3 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.3 \cdot 4 \cdot 12 / 60 + 0.019 \cdot 5) \cdot 18 / 1800 = 0.00667 e/c;
      \mathbf{M}_{328} = (0.3 \cdot 4 \cdot 365 \cdot 5.2 \cdot 19 + 1.3 \cdot 0.3 \cdot 4 \cdot 365 \cdot 4.8 \cdot 19 + 0.019 \cdot 365 \cdot 2 \cdot 60 \cdot 19) \cdot 10^{-6} = 0.1110155 \text{ m/eod}
      G_{330} = (0.59 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.59 \cdot 4 \cdot 12 / 60 + 0.1 \cdot 5) \cdot 18 / 1800 = 0.0162493 e/c;
      \textbf{\textit{M}}_{330} = (0.59 \cdot 4 \cdot 365 \cdot 5.2 \cdot 19 + 1.3 \cdot 0.59 \cdot 4 \cdot 365 \cdot 4.8 \cdot 19 + 0.1 \cdot 365 \cdot 2 \cdot 60 \cdot 19) \cdot 10^{-6} = 0.270454 \text{ m/soo};
      G_{337} = (5.9 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 5.9 \cdot 4 \cdot 12 / 60 + 0.84 \cdot 5) \cdot 18 / 1800 = 0.1544933 e/c;
      M_{337} = (5.9 \cdot 4 \cdot 365 \cdot 5.2 \cdot 19 + 1.3 \cdot 5.9 \cdot 4 \cdot 365 \cdot 4.8 \cdot 19 + 0.84 \cdot 365 \cdot 2 \cdot 60 \cdot 19) \cdot 10^{-6} = 2.571387 \text{ m/eod};
      G_{2732} = (0.8 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.8 \cdot 4 \cdot 12 / 60 + 0.42 \cdot 5) \cdot 18 / 1800 = 0.0362533 e/c;
      \mathbf{M}_{2732} = (0.8 \cdot 4 \cdot 365 \cdot 5, 2 \cdot 19 + 1, 3 \cdot 0, 8 \cdot 4 \cdot 365 \cdot 4, 8 \cdot 19 + 0, 42 \cdot 365 \cdot 2 \cdot 60 \cdot 19) \cdot 10^{-6} = 0,6034 \text{ m/eod}.
      автопогрузчик
      G_{301} = (2.4 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 2.4 \cdot 4 \cdot 12 / 60 + 0.232 \cdot 5) \cdot 5 / 1800 = 0.0159333 e/c;
      \textit{M}_{301} = (2, 4 \cdot 4 \cdot 365 \cdot 5, 2 \cdot 5 + 1, 3 \cdot 2, 4 \cdot 4 \cdot 365 \cdot 4, 8 \cdot 5 + 0, 232 \cdot 365 \cdot 2 \cdot 60 \cdot 5) \cdot 10^{-6} = 0, 251237 \text{ m/eod};
      G_{304} = (0.39 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.39 \cdot 4 \cdot 12 / 60 + 0.0377 \cdot 5) \cdot 5 / 1800 = 0.0025892 e/c;
      \mathbf{\textit{M}}_{304} = (0.39 \cdot 4 \cdot 365 \cdot 5.2 \cdot 5 + 1.3 \cdot 0.39 \cdot 4 \cdot 365 \cdot 4.8 \cdot 5 + 0.0377 \cdot 365 \cdot 2 \cdot 60 \cdot 5) \cdot 10^{-6} = 0.040826 \, \text{m/eo};
      G_{328} = (0.23 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.23 \cdot 4 \cdot 12 / 60 + 0.012 \cdot 5) \cdot 5 / 1800 = 0.0013848 e/c;
      \mathbf{M}_{328} = (0.23 \cdot 4 \cdot 365 \cdot 5.2 \cdot 5 + 1.3 \cdot 0.23 \cdot 4 \cdot 365 \cdot 4.8 \cdot 5 + 0.012 \cdot 365 \cdot 2 \cdot 60 \cdot 5) \cdot 10^{-6} = 0.0218358 \, \text{m/sod};
      G_{330} = (0.5 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.5 \cdot 4 \cdot 12 / 60 + 0.081 \cdot 5) \cdot 5 / 1800 = 0.0037731 e/c;
      M_{330} = (0.5 \cdot 4 \cdot 365 \cdot 5.2 \cdot 5 + 1.3 \cdot 0.5 \cdot 4 \cdot 365 \cdot 4.8 \cdot 5 + 0.081 \cdot 365 \cdot 2 \cdot 60 \cdot 5) \cdot 10^{-6} = 0.059495 \, \text{m/eod};
      G_{337} = (4.9 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 4.9 \cdot 4 \cdot 12 / 60 + 0.54 \cdot 5) \cdot 5 / 1800 = 0.0334519 e/c;
      \mathbf{M}_{337} = (4.9 \cdot 4 \cdot 365 \cdot 5.2 \cdot 5 + 1.3 \cdot 4.9 \cdot 4 \cdot 365 \cdot 4.8 \cdot 5 + 0.54 \cdot 365 \cdot 2 \cdot 60 \cdot 5) \cdot 10^{-6} = 0.527469 \, \text{m/soo};
      G_{2732} = (0.7 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.7 \cdot 4 \cdot 12 / 60 + 0.27 \cdot 5) \cdot 5 / 1800 = 0.0074574 e/c
      M_{2732} = (0.7 \cdot 4 \cdot 365 \cdot 5.2 \cdot 5 + 1.3 \cdot 0.7 \cdot 4 \cdot 365 \cdot 4.8 \cdot 5 + 0.27 \cdot 365 \cdot 2 \cdot 60 \cdot 5) \cdot 10^{-6} = 0.1175884  m/20d.
      автопогрузчик
      \overline{\mathbf{G}_{301}} = (1,52 \cdot 4 \cdot 13 / 60 + 1,3 \cdot 1,52 \cdot 4 \cdot 12 / 60 + 0,096 \cdot 5) \cdot 3 / 1800 = 0,0056302 \, \text{g/c};
      \mathbf{\textit{M}}_{301} = (1,52 \cdot 4 \cdot 365 \cdot 5,2 \cdot 8 + 1,3 \cdot 1,52 \cdot 4 \cdot 365 \cdot 4,8 \cdot 8 + 0,096 \cdot 365 \cdot 2 \cdot 60 \cdot 8) \cdot 10^{-6} = 0,2367396 \ \textit{m/eod}; \mathbf{\textit{G}}_{304} = (0,247 \cdot 4 \cdot 13 \ / \ 60 + 1,3 \cdot 0,247 \cdot 4 \cdot 12 \ / \ 60 + 0,0156 \cdot 5) \cdot 3 \ / \ 1800 = 0,0009149 \ \textit{e/c};
      \mathbf{M}_{304} = (0.247 \cdot 4 \cdot 365 \cdot 5.2 \cdot 8 + 1.3 \cdot 0.247 \cdot 4 \cdot 365 \cdot 4.8 \cdot 8 + 0.0156 \cdot 365 \cdot 2 \cdot 60 \cdot 8) \cdot 10^{-6} = 0.0384702 \text{ m/soo}
      G_{328} = (0.15 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.15 \cdot 4 \cdot 12 / 60 + 0.005 \cdot 5) \cdot 3 / 1800 = 0.0005183 e/c;
      \mathbf{M}_{328} = (0.15 \cdot 4 \cdot 365 \cdot 5.2 \cdot 8 + 1.3 \cdot 0.15 \cdot 4 \cdot 365 \cdot 4.8 \cdot 8 + 0.005 \cdot 365 \cdot 2 \cdot 60 \cdot 8) \cdot 10^{-6} = 0.0217949 \text{ m/eod};
      G_{330} = (0.313 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.313 \cdot 4 \cdot 12 / 60 + 0.048 \cdot 5) \cdot 3 / 1800 = 0.0013946 e/c;
      M_{330} = (0.313 \cdot 4 \cdot 365 \cdot 5.2 \cdot 8 + 1.3 \cdot 0.313 \cdot 4 \cdot 365 \cdot 4.8 \cdot 8 + 0.048 \cdot 365 \cdot 2 \cdot 60 \cdot 8) \cdot 10^{-6} = 0.058642 \, \text{m/sod}
      G_{337} = (2.2 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 2.2 \cdot 4 \cdot 12 / 60 + 0.22 \cdot 5) \cdot 3 / 1800 = 0.0088244 \ a/c
      M_{337} = (2.2 \cdot 4 \cdot 365 \cdot 5.2 \cdot 8 + 1.3 \cdot 2.2 \cdot 4 \cdot 365 \cdot 4.8 \cdot 8 + 0.22 \cdot 365 \cdot 2 \cdot 60 \cdot 8) \cdot 10^{-6} = 0.37105 \ m/eod;
      G_{2732} = (0.5 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.5 \cdot 4 \cdot 12 / 60 + 0.11 \cdot 5) \cdot 3 / 1800 = 0.0025056 e/c;
      M_{2732} = (0.5 \cdot 4 \cdot 365 \cdot 5.2 \cdot 8 + 1.3 \cdot 0.5 \cdot 4 \cdot 365 \cdot 4.8 \cdot 8 + 0.11 \cdot 365 \cdot 2 \cdot 60 \cdot 8) \cdot 10^{-6} = 0.1053536 \, \text{m/eod}.
      G_{301} = (3.12 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 3.12 \cdot 4 \cdot 12 / 60 + 0.448 \cdot 5) \cdot 4 / 1800 = 0.0181973 e/c;
      \mathbf{M}_{301} = (3.12 \cdot 4 \cdot 365 \cdot 5.2 \cdot 4 + 1.3 \cdot 3.12 \cdot 4 \cdot 365 \cdot 4.8 \cdot 4 + 0.448 \cdot 365 \cdot 2 \cdot 60 \cdot 4) \cdot 10^{-6} = 0.2869356  m/eoð;
      G_{304} = (0.507 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.507 \cdot 4 \cdot 12 / 60 + 0.0728 \cdot 5) \cdot 4 / 1800 = 0.0029571 e/c;
      \textbf{\textit{M}}_{304} = (0.507 \cdot 4 \cdot 365 \cdot 5.2 \cdot 4 + 1.3 \cdot 0.507 \cdot 4 \cdot 365 \cdot 4.8 \cdot 4 + 0.0728 \cdot 365 \cdot 2 \cdot 60 \cdot 4) \cdot 10^{-6} = 0.046627 \text{ m/eod};
      G_{328} = (0.45 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.45 \cdot 4 \cdot 12 / 60 + 0.023 \cdot 5) \cdot 4 / 1800 = 0.0021622 e/c;
      \mathbf{M}_{328} = (0.45 \cdot 4 \cdot 365 \cdot 5.2 \cdot 4 + 1.3 \cdot 0.45 \cdot 4 \cdot 365 \cdot 4.8 \cdot 4 + 0.023 \cdot 365 \cdot 2 \cdot 60 \cdot 4) \cdot 10^{-6} = 0.0340939 \text{ m/eod}
      G_{330} = (0.86 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.86 \cdot 4 \cdot 12 / 60 + 0.112 \cdot 5) \cdot 4 / 1800 = 0.0048883 e/c;
      M_{330} = (0.86 \cdot 4 \cdot 365 \cdot 5.2 \cdot 4 + 1.3 \cdot 0.86 \cdot 4 \cdot 365 \cdot 4.8 \cdot 4 + 0.112 \cdot 365 \cdot 2 \cdot 60 \cdot 4) \cdot 10^{-6} = 0.0770787 \text{ m/sod}
      G_{337} = (7.2 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 7.2 \cdot 4 \cdot 12 / 60 + 1.03 \cdot 5) \cdot 4 / 1800 = 0.0419511 e/c;
      \mathbf{\textit{M}}_{337} = (7.2 \cdot 4 \cdot 365 \cdot 5.2 \cdot 4 + 1.3 \cdot 7.2 \cdot 4 \cdot 365 \cdot 4.8 \cdot 4 + 1.03 \cdot 365 \cdot 2 \cdot 60 \cdot 4) \cdot 10^{-6} = 0.661485 \, \text{m/eo};
      G_{2732} = (1 \cdot 4 \cdot 13 / 60 + 1, 3 \cdot 1 \cdot 4 \cdot 12 / 60 + 0, 57 \cdot 5) \cdot 4 / 1800 = 0,0105704 e/c;
      \mathbf{M}_{2732} = (1 \cdot 4 \cdot 365 \cdot 5, 2 \cdot 4 + 1, 3 \cdot 1 \cdot 4 \cdot 365 \cdot 4, 8 \cdot 4 + 0, 57 \cdot 365 \cdot 2 \cdot 60 \cdot 4) \cdot 10^{-6} = 0,1666736  m/eoð.
      автопогрузчик
      \overline{G_{301}} = (1,76 \cdot 4 \cdot 13 / 60 + 1,3 \cdot 1,76 \cdot 4 \cdot 12 / 60 + 0,16 \cdot 5) \cdot 3 / 1800 = 0,0069262 e/c;
      M_{301} = (1.76 \cdot 4 \cdot 365 \cdot 5.2 \cdot 3 + 1.3 \cdot 1.76 \cdot 4 \cdot 365 \cdot 4.8 \cdot 3 + 0.16 \cdot 365 \cdot 2 \cdot 60 \cdot 3) \cdot 10^{-6} = 0.1092127 \text{ m/zod};
      G_{304} = (0.286 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.286 \cdot 4 \cdot 12 / 60 + 0.026 \cdot 5) \cdot 3 / 1800 = 0.0011255  e/c;
      \mathbf{M}_{304} = (0.286 \cdot 4 \cdot 365 \cdot 5.2 \cdot 3 + 1.3 \cdot 0.286 \cdot 4 \cdot 365 \cdot 4.8 \cdot 3 + 0.026 \cdot 365 \cdot 2 \cdot 60 \cdot 3) \cdot 10^{-6} = 0.0177471  m/eoð;
      G_{328} = (0.2 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.2 \cdot 4 \cdot 12 / 60 + 0.008 \cdot 5) \cdot 3 / 1800 = 0.0007022 e/c;
      M_{328} = (0.2 \cdot 4 \cdot 365 \cdot 5.2 \cdot 3 + 1.3 \cdot 0.2 \cdot 4 \cdot 365 \cdot 4.8 \cdot 3 + 0.008 \cdot 365 \cdot 2 \cdot 60 \cdot 3) \cdot 10^{-6} = 0.0110726  m/200;
      G_{330} = (0.43 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.43 \cdot 4 \cdot 12 / 60 + 0.065 \cdot 5) \cdot 3 / 1800 = 0.0019081 a/c;
      \mathbf{M}_{330} = (0.43 \cdot 4 \cdot 365 \cdot 5.2 \cdot 3 + 1.3 \cdot 0.43 \cdot 4 \cdot 365 \cdot 4.8 \cdot 3 + 0.065 \cdot 365 \cdot 2 \cdot 60 \cdot 3) \cdot 10^{-6} = 0.0300871 \text{ m/eod};
      G_{337} = (3.5 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 3.5 \cdot 4 \cdot 12 / 60 + 0.36 \cdot 5) \cdot 3 / 1800 = 0.0141222 e/c;
      M_{337} = (3.5 \cdot 4 \cdot 365 \cdot 5.2 \cdot 3 + 1.3 \cdot 3.5 \cdot 4 \cdot 365 \cdot 4.8 \cdot 3 + 0.36 \cdot 365 \cdot 2 \cdot 60 \cdot 3) \cdot 10^{-6} = 0.222679 \text{ m/eod}
      G_{2732} = (0.6 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.6 \cdot 4 \cdot 12 / 60 + 0.18 \cdot 5) \cdot 3 / 1800 = 0.0034067  a/c;
      M_{2732} = (0.6 \cdot 4 \cdot 365 \cdot 5.2 \cdot 3 + 1.3 \cdot 0.6 \cdot 4 \cdot 365 \cdot 4.8 \cdot 3 + 0.18 \cdot 365 \cdot 2 \cdot 60 \cdot 3) \cdot 10^{-6} = 0.0537163 \,\text{m/sod}.
      мобильная система пылеподавления
      G_{301} = (2.4 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 2.4 \cdot 4 \cdot 12 / 60 + 0.232 \cdot 5) \cdot 2 / 1800 = 0.0063733 e/c;
      \textit{M}_{301} = (2, 4 \cdot 4 \cdot 365 \cdot 5, 2 \cdot 2 + 1, 3 \cdot 2, 4 \cdot 4 \cdot 365 \cdot 4, 8 \cdot 2 + 0, 232 \cdot 365 \cdot 2 \cdot 60 \cdot 2) \cdot 10^{-6} = 0, 1004947 \text{ m/eod};
      \mathbf{G}_{304} = (0.39 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.39 \cdot 4 \cdot 12 / 60 + 0.0377 \cdot 5) \cdot 2 / 1800 = 0.0010357  e/c;
      M_{304} = (0.39 \cdot 4 \cdot 365 \cdot 5.2 \cdot 2 + 1.3 \cdot 0.39 \cdot 4 \cdot 365 \cdot 4.8 \cdot 2 + 0.0377 \cdot 365 \cdot 2 \cdot 60 \cdot 2) \cdot 10^{-6} = 0.0163304 \, \text{m/zod}
      G_{328} = (0.23 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.23 \cdot 4 \cdot 12 / 60 + 0.012 \cdot 5) \cdot 2 / 1800 = 0.0005539 e/c;
      \mathbf{M}_{328} = (0.23 \cdot 4 \cdot 365 \cdot 5.2 \cdot 2 + 1.3 \cdot 0.23 \cdot 4 \cdot 365 \cdot 4.8 \cdot 2 + 0.012 \cdot 365 \cdot 2 \cdot 60 \cdot 2) \cdot 10^{-6} = 0.0087343 \text{ m/eod};
      \mathbf{G}_{330} = (0.5 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.5 \cdot 4 \cdot 12 / 60 + 0.081 \cdot 5) \cdot 2 / 1800 = 0.0015093 \ e/c;
      \mathbf{M}_{330} = (0.5 \cdot 4 \cdot 365 \cdot 5.2 \cdot 2 + 1.3 \cdot 0.5 \cdot 4 \cdot 365 \cdot 4.8 \cdot 2 + 0.081 \cdot 365 \cdot 2 \cdot 60 \cdot 2) \cdot 10^{-6} = 0.023798 \, \text{m/eoo};
      G_{337} = (4.9 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 4.9 \cdot 4 \cdot 12 / 60 + 0.54 \cdot 5) \cdot 2 / 1800 = 0.0133807 e/c;
                                                                                                                                                                                                                                       Лист
                                                                                                                                             OBOC2.6
                                                                                                                                                                                                                                        130
Изм. Кол.уч Лист № док.
                                                       Подп
                                                                         Дата
```

 $G_{337} = (7,2 \cdot 4 \cdot 13 / 60 + 1,3 \cdot 7,2 \cdot 4 \cdot 12 / 60 + 1,03 \cdot 5) \cdot 14 / 1800 = 0,1468289 e/c;$

 $G_{2732} = (1 \cdot 4 \cdot 13 / 60 + 1, 3 \cdot 1 \cdot 4 \cdot 12 / 60 + 0, 57 \cdot 5) \cdot 14 / 1800 = 0,0369963 a/c;$

автопогрузчик

Взам.инв.

№ подл.

 $M_{337} = (7.2 \cdot 4 \cdot 365 \cdot 5.2 \cdot 21 + 1.3 \cdot 7.2 \cdot 4 \cdot 365 \cdot 4.8 \cdot 21 + 1.03 \cdot 365 \cdot 2 \cdot 60 \cdot 21) \cdot 10^{-6} = 3.472797 \text{ m/eo}\hat{\sigma};$

 $\mathbf{\textit{M}}_{2732} = (1 \cdot 4 \cdot 365 \cdot 5, 2 \cdot 21 + 1, 3 \cdot 1 \cdot 4 \cdot 365 \cdot 4, 8 \cdot 21 + 0, 57 \cdot 365 \cdot 2 \cdot 60 \cdot 21) \cdot 10^{-6} = 0,875036 \, \text{m/eod}.$

```
\textit{M}_{337} = (4,9 \cdot 4 \cdot 365 \cdot 5,2 \cdot 2 + 1,3 \cdot 4,9 \cdot 4 \cdot 365 \cdot 4,8 \cdot 2 + 0,54 \cdot 365 \cdot 2 \cdot 60 \cdot 2) \cdot 10^{-6} = 0,2109875 \; \textit{m/eod};
G_{2732} = (0.7 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.7 \cdot 4 \cdot 12 / 60 + 0.27 \cdot 5) \cdot 2 / 1800 = 0.002983 e/c;
\mathbf{M}_{2732} = (0.7 \cdot 4 \cdot 365 \cdot 5, 2 \cdot 2 + 1, 3 \cdot 0, 7 \cdot 4 \cdot 365 \cdot 4, 8 \cdot 2 + 0, 27 \cdot 365 \cdot 2 \cdot 60 \cdot 2) \cdot 10^{-6} = 0,0470354 \text{ m/eod}.
оборудования для гидропосева
\mathbf{G}_{301} = (2.4 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 2.4 \cdot 4 \cdot 12 / 60 + 0.232 \cdot 5) \cdot 1 / 1800 = 0.0031867 \ e/c;
M_{301} = (2,4 \cdot 4 \cdot 365 \cdot 5,2 \cdot 1 + 1,3 \cdot 2,4 \cdot 4 \cdot 365 \cdot 4,8 \cdot 1 + 0,232 \cdot 365 \cdot 2 \cdot 60 \cdot 1) \cdot 10^{-6} = 0,0502474 \text{ m/zod};
G_{304} = (0.39 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.39 \cdot 4 \cdot 12 / 60 + 0.0377 \cdot 5) \cdot 1 / 1800 = 0.0005178 e/c;
\mathbf{M}_{304} = (0.39 \cdot 4 \cdot 365 \cdot 5.2 \cdot 1 + 1.3 \cdot 0.39 \cdot 4 \cdot 365 \cdot 4.8 \cdot 1 + 0.0377 \cdot 365 \cdot 2 \cdot 60 \cdot 1) \cdot 10^{-6} = 0.0081652 \text{ m/eod};
G_{328} = (0.23 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.23 \cdot 4 \cdot 12 / 60 + 0.012 \cdot 5) \cdot 1 / 1800 = 0.000277 e/c;
\mathbf{M}_{328} = (0.23 \cdot 4 \cdot 365 \cdot 5.2 \cdot 1 + 1.3 \cdot 0.23 \cdot 4 \cdot 365 \cdot 4.8 \cdot 1 + 0.012 \cdot 365 \cdot 2 \cdot 60 \cdot 1) \cdot 10^{-6} = 0.0043672 \, \text{m/eo};
G_{330} = (0.5 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.5 \cdot 4 \cdot 12 / 60 + 0.081 \cdot 5) \cdot 1 / 1800 = 0.0007546 e/c;
M_{330} = (0.5 \cdot 4 \cdot 365 \cdot 5.2 \cdot 1 + 1.3 \cdot 0.5 \cdot 4 \cdot 365 \cdot 4.8 \cdot 1 + 0.081 \cdot 365 \cdot 2 \cdot 60 \cdot 1) \cdot 10^{-6} = 0.011899 \text{ m/sod}
G_{337} = (4.9 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 4.9 \cdot 4 \cdot 12 / 60 + 0.54 \cdot 5) \cdot 1 / 1800 = 0.0066904 e/c;
\mathbf{M}_{337} = (4.9 \cdot 4 \cdot 365 \cdot 5.2 \cdot 1 + 1.3 \cdot 4.9 \cdot 4 \cdot 365 \cdot 4.8 \cdot 1 + 0.54 \cdot 365 \cdot 2 \cdot 60 \cdot 1) \cdot 10^{-6} = 0.1054938 \, \text{m/eod};
G_{2732} = (0.7 \cdot 4 \cdot 13 / 60 + 1.3 \cdot 0.7 \cdot 4 \cdot 12 / 60 + 0.27 \cdot 5) \cdot 1 / 1800 = 0.0014915 e/c;
M_{2732} = (0.7 \cdot 4 \cdot 365 \cdot 5.2 \cdot 1 + 1.3 \cdot 0.7 \cdot 4 \cdot 365 \cdot 4.8 \cdot 1 + 0.27 \cdot 365 \cdot 2 \cdot 60 \cdot 1) \cdot 10^{-6} = 0.0235177 \text{ m/eod.}
```

ИВ ДВС мобильных сортировочных устройств (причалы №71-75)

Валовые и максимальные выбросы участка №2, цех №0, площадка №0 Работа УСМ причалы 71-75, тип - 8 - Дорожная техника на неотапливаемой стоянке, предприятие №57, НМТП Астафьева, Находка. 2021 г.

Расчет произведен программой «АТП-Эколог», версия 3.10.20 от 20.05.2020 Copyright© 1995-2020 ФИРМА «ИНТЕГРАЛ»

Программа основана на следующих методических документах:

- 1. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). Москва, 1998, с дополнениями и изменениями к Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М, 1999 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №49 в Перечне).
- 2. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для авторемонтных предприятий (расчетным методом). Москва, 1998
- (с Дополнением к Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для авторемонтных предприятий (расчетным методом). Москва, 1999) (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №98 в Перечне).
- 3. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом). Москва, 1998 (с Дополнениями к методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом Москва, 1999) (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №99 в Перечне).

Программа зарегистрирована на: ООО "ЦАиК "ЭКОПРОЕКТ" Регистрационный номер: 01-01-5855

Находка, 2021 г.: среднемесячная и средняя минимальная температура воздуха, °С

Характеристики	1	II	III	IV	V	VI	VII	VIII	IX	X	ΧI	XII
Среднемесячная температура, °С	-10	-6.8	-0.8	5.6	10.4	14.3	18.7	20.7	16.9	9	0.2	-7.4
Расчетные периоды года	X	Х	П	Τ	Τ	Τ	Т	Т	Т	Т	П	Х
Средняя минимальная температура, °C	-10	-6.8	-0.8	5.6	10.4	14.3	18.7	20.7	16.9	9	0.2	-7.4
Расчетные периоды года	X	X	П	Т	Т	Т	T	Т	Т	Т	П	Х

В следующих месяцах значения среднемесячной и средней минимальной температур совпадают: Январь, Февраль, Март, Апрель, Май, Июнь, Июль, Август, Сентябрь, Октябрь, Ноябрь

Характеристики периодов года для расчета валовых выбросов загрязняющих веществ

Период года	Месяцы	Всего дней
Теплый	Апрель; Май; Июнь; Июль; Август; Сентябрь; Октябрь;	214
Переходный	Март; Ноябрь;	61
Холодный	Январь; Февраль; Декабрь;	90
Всего за год	Январь-Декабрь	365

Общее описание участка

Пробег дорожных машин до выезда со стоянки (км)

- от ближайшего к выезду места стоянки: 0.001
- от наиболее удаленного от выезда места стоянки: 0.200

Пробег дорожных машин от въезда на стоянку (км)

- до ближайшего к въезду места стоянки:

Взам.инв.

윋

- 0.001
- до наиболее удаленного от въезда места стоянки: 0.20

	Характеристики автомобилей/дорожной техники на участке										
_							OBOC2.6	Лист			
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	UBUC2.0				

Марка	Категория	Мощность двигателя	ЭС
Screen Machine 4043	Гусеничная	161-260 КВт (220-354 л.с.)	да
POWERTRACK-1400 или Анаконда	Гусеничная	61-100 КВт (83-136 л.с.)	да

Screen Machine 4043 : количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	1.00	1
Февраль	1.00	1
Март	1.00	1
Апрель	1.00	1
Май	1.00	1
Июнь	1.00	1
Июль	1.00	1
Август	1.00	1
Сентябрь	1.00	1
Октябрь	1.00	1
Ноябрь	1.00	1
Декабрь	1.00	1

POWERTRACK-1400 или Анаконда : количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	5.00	5
Февраль	5.00	5
Март	5.00	5
Апрель	5.00	5
Май	5.00	5
Июнь	5.00	5
Июль	5.00	5
Август	5.00	5
Сентябрь	5.00	5
Октябрь	5.00	5
Ноябрь	5.00	5
Декабрь	5.00	5

Выбросы участка

Код	Название	Макс. выброс	Валовый выброс	
в-ва	вещества	(s/c)	(m/soð)	
	Оксиды азота (NOx)*	0.0280263	0.028786	
	В том числе:			
0301	*Азота диоксид (Азот (IV) оксид)	0.0224211	0.023029	
0304	*Азот (II) оксид (Азота оксид)	0.0036434	0.003742	
0328	Углерод (Сажа)	0.0115408	0.006511	
0330	Сера диоксид-Ангидрид сернистый	0.0041823	0.003464	
0337	Углерод оксид	0.1430102	0.081730	
0401	Углеводороды**	0.0237629	0.014020	
	В том числе:			
2732	**Керосин	0.0237629	0.014020	

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13 NO₂ - 0.80

Инв.№

2. Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Расшифровка выбросов по веществам:

Выбрасываемое вещество - 0337 - Углерод оксид Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Screen Machine 4043	0.007137
	POWERTRACK-1400 или Анаконда	0.013601
	BCEFO:	0.020738
Переходный	Screen Machine 4043	0.005440

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

OBOC2.6

Лист

	POWERTRACK-1400 или Анаконда	0.010364
	ВСЕГО:	0.015804
Холодный	Screen Machine 4043	0.015556
	POWERTRACK-1400 или Анаконда	0.029632
	ВСЕГО:	0.045188
Всего за год		0.081730

Максимальный выброс составляет: 0.1430102 г/с. Месяц достижения: Январь.

Здесь и далее:

Расчет валовых выбросов производился по формуле:

 M_i =**S**((M'+M")·D_{фк}·10⁻⁶), где

М' - выброс вещества в сутки при выезде (г);

М" - выброс вещества в сутки при въезде (г);

 $M' = M_n \cdot T_n + M_{np} \cdot T_{np} + M_{dB} \cdot T_{dB1} + M_{xx} \cdot T_{xx};$

 $M"=M_{AB.Ten.} \cdot T_{AB2} + M_{xx} \cdot T_{xx};$

 $D_{\Phi \kappa} = D_p \cdot N_{\kappa}$ - суммарное количество дней работы в расчетном периоде.

 N_{κ} - количество ДМ данной группы, ежедневно выходящих на линию;

D_p - количество рабочих дней в расчетном периоде.

Расчет максимально разовых выбросов производился по формуле:

 $G_i = (M_n \cdot T_n + M_{np} \cdot T_{np} + M_{dB} \cdot T_{dB1} + M_{xx} \cdot T_{xx}) \cdot N'/T_{cp} r/c (*),$

С учетом синхронности работы: G_{max} =**S**(G_i), где

 M_n - удельный выброс пускового двигателя (г/мин.);

Т_п - время работы пускового двигателя (мин.);

 M_{np} - удельный выброс при прогреве двигателя (г/мин.);

Тпр - время прогрева двигателя (мин.);

Мдв=М, - пробеговый удельный выброс (г/мин.);

М_{дв.теп.} - пробеговый удельный выброс в теплый период (г/км);

 $T_{\text{дв1}}$ =60·L₁/V_{дв}=1.206 мин. - среднее время движения при выезде со стоянки;

 $T_{дв2}$ =60· $L_2/V_{дв}$ =1.206 мин. - среднее время движения при въезде на стоянку;

 L_1 =(L_{16} + $L_{1д}$)/2=0.101 км - средний пробег при выезде со стоянки;

 $L_2=(L_{26}+L_{2p})/2=0.101$ км - средний пробег при въезде на стоянку;

 T_{xx} =1 мин. - время работы двигателя на холостом ходу;

V_{дв} - средняя скорость движения по территории стоянки (км/ч);

М_{хх} - удельный выброс техники на холостом ходу (г/мин.);

N' - наибольшее количество техники, выезжающей со стоянки в течение времени Tcp, характеризующегося максимальной интенсивностью выезда.

(*) В соответствии с методическим пособием по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, СПб, 2012 г.

 T_{cp} =3300 сек. - среднее время выезда всей техники со стоянки;

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименование	Мп	Тп	Мпр	Тпр	Мдв	М∂в.теп.	V∂в	Mxx	Схр	Выброс (г/с)
Screen Machine 4043	0.000	4.0	12.600	12.0	4.110	3.370	5	6.310	да	
	0.000	4.0	12.600	12.0	4.110	3.370	5	6.310	да	0.0492323
POWERTRACK- 1400 или Анаконда	0.000	4.0	4.800	12.0	1.570	1.290	5	2.400	да	
	0.000	4.0	4.800	12.0	1.570	1.290	5	2.400	да	0.0937779

Выбрасываемое вещество - 0401 - Углеводороды Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Screen Machine 4043	0.001265
	POWERTRACK-1400 или Анаконда	0.002394
	ВСЕГО:	0.003658
Переходный	Screen Machine 4043	0.000946
	POWERTRACK-1400 или Анаконда	0.001795
	ВСЕГО:	0.002741
Холодный	Screen Machine 4043	0.002629
	POWERTRACK-1400 или Анаконда	0.004992
	ВСЕГО:	0.007621
Всего за год		0.014020

Максимальный выброс составляет: 0.0237629 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименование	Мπ	Тп	Мпр	Тпр	Мдв	М∂в.теп.	V∂в	Mxx	Схр	Выброс (г/с)	ı

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	

Инв.№

Выбрасываемое вещество - Оксиды азота (NOx) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Screen Machine 4043	0.004427
	POWERTRACK-1400 или Анаконда	0.008429
	ВСЕГО:	0.012856
Переходный	Screen Machine 4043	0.001806
	POWERTRACK-1400 или Анаконда	0.003427
	BCEFO:	0.005233
Холодный	Screen Machine 4043	0.003696
	POWERTRACK-1400 или Анаконда	0.007001
	ВСЕГО:	0.010697
Всего за год		0.028786

Максимальный выброс составляет: 0.0280263 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименование	Мп	Τп	Мпр	Тпр	Мдв	М∂в.теп.	V∂в	Mxx	Схр	Выброс (г/с)
Screen Machine 4043	0.000	4.0	1.910	12.0	6.470	6.470	5	1.270	да	
	0.000	4.0	1.910	12.0	6.470	6.470	5	1.270	да	0.0096948
POWERTRACK- 1400 или Анаконда	0.000	4.0	0.720	12.0	2.470	2.470	5	0.480	да	
	0.000	4.0	0.720	12.0	2.470	2.470	5	0.480	да	0.0183315

Выбрасываемое вещество - 0328 - Углерод (Сажа) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Screen Machine 4043	0.000517
	POWERTRACK-1400 или Анаконда	0.000954
	ВСЕГО:	0.001471
Переходный	Screen Machine 4043	0.000481
	POWERTRACK-1400 или Анаконда	0.000865
	ВСЕГО:	0.001346
Холодный	Screen Machine 4043	0.001328
	POWERTRACK-1400 или Анаконда	0.002367
	ВСЕГО:	0.003695
Всего за год		0.006511

Максимальный выброс составляет: 0.0115408 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименование	Мп	Тп	Мпр	Тпр	Мдв	М∂в.теп.	V∂в	Mxx	Схр	Выброс (г/с)
Screen Machine 4043	0.000	4.0	1.020	12.0	1.080	0.720	5	0.170	да	
	0.000	4.0	1.020	12.0	1.080	0.720	5	0.170	да	0.0041553
POWERTRACK- 1400 или	0.000	4.0	0.360	12.0	0.410	0.270	5	0.060	да	
Анаконда										
	0.000	4.0	0.360	12.0	0.410	0.270	5	0.060	да	0.0073855

Выбрасываемое вещество - 0330 - Сера диоксид-Ангидрид сернистый Валовые выбросы

	Пери	юд		Марка автомобиля	Валовый выброс	
						Лист

Изм. Кол.уч Лист № док. Подп

Взам.инв.№

подл.

MHB.No

OBOC2.6

134

года	или дорожной техники	(тонн/период) (тонн/год)
Теплый	Screen Machine 4043	0.000477
	POWERTRACK-1400 или Анаконда	0.000906
	ВСЕГО:	0.001383
Переходный	Screen Machine 4043	0.000212
	POWERTRACK-1400 или Анаконда	0.000403
	ВСЕГО:	0.000615
Холодный	Screen Machine 4043	0.000504
	POWERTRACK-1400 или Анаконда	0.000963
	ВСЕГО:	0.001467
Всего за год		0.003464

Максимальный выброс составляет: 0.0041823 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименование	Мп	Τп	Мпр	Тпр	Мдв	М∂в.теп.	V∂в	Mxx	Схр	Выброс (г/с)
Screen Machine 4043	0.000	4.0	0.310	12.0	0.630	0.510	5	0.250	да	
	0.000	4.0	0.310	12.0	0.630	0.510	5	0.250	да	0.0014333
POWERTRACK- 1400 или Анаконда	0.000	4.0	0.120	12.0	0.230	0.190	5	0.097	да	
	0.000	4.0	0.120	12.0	0.230	0.190	5	0.097	да	0.0027491

Трансформация оксидов азота Выбрасываемое вещество - 0301 - Азота диоксид (Азот (IV) оксид) Коэффициент трансформации - 0.8 Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Screen Machine 4043	0.003541
	POWERTRACK-1400 или Анаконда	0.006743
	ВСЕГО:	0.010285
Переходный	Screen Machine 4043	0.001445
	POWERTRACK-1400 или Анаконда	0.002742
	ВСЕГО:	0.004187
Холодный	Screen Machine 4043	0.002957
	POWERTRACK-1400 или Анаконда	0.005601
	ВСЕГО:	0.008557
Всего за год		0.023029

Максимальный выброс составляет: 0.0224211 г/с. Месяц достижения: Январь.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азота оксид) Коэффициент трансформации - 0.13 Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Screen Machine 4043	0.000575
	POWERTRACK-1400 или Анаконда	0.001096
	ВСЕГО:	0.001671
Переходный	Screen Machine 4043	0.000235
	POWERTRACK-1400 или Анаконда	0.000446
	ВСЕГО:	0.000680
Холодный	Screen Machine 4043	0.000480
	POWERTRACK-1400 или Анаконда	0.000910
	ВСЕГО:	0.001391
Всего за год		0.003742

Максимальный выброс составляет: 0.0036434 г/с. Месяц достижения: Январь.

Распределение углеводородов Выбрасываемое вещество - 2732 - Керосин Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)

I						
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Инв.№ подл.

Теплый	Screen Machine 4043	0.001265
	POWERTRACK-1400 или Анаконда	0.002394
	ВСЕГО:	0.003658
Переходный	Screen Machine 4043	0.000946
	POWERTRACK-1400 или Анаконда	0.001795
	ВСЕГО:	0.002741
Холодный	Screen Machine 4043	0.002629
	POWERTRACK-1400 или Анаконда	0.004992
	ВСЕГО:	0.007621
Всего за год		0.014020

Максимальный выброс составляет: 0.0237629 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименование	Μп	Тп	%%	Мпр	Тпр	Мдв	Мдв.те	V∂в	Mxx	%%	Схр	Выброс (г/с)
			пуск.				П.			двиг.		
Screen Machine 4043	0.000	4.0	0.0	2.050	12.0	1.370	1.140	5	0.790	100.0	да	
	0.000	4.0	0.0	2.050	12.0	1.370	1.140	5	0.790	100.0	да	0.0081946
POWERTRACK- 1400 или Анаконда	0.000	4.0	0.0	0.780	12.0	0.510	0.430	5	0.300	100.0	да	
	0.000	4.0	0.0	0.780	12.0	0.510	0.430	5	0.300	100.0	да	0.0155683

Подп. и дата							
Инв.№ подл.	Ізм. Кол.уч	Лист Ј	№ док.	Подп.	Дата	OBOC2.6	Лист 136

ИЗАВ №6290. склады угля (причал №71-72)

Источниками выделений загрязняющих веществ являютяс:

- хранение угля на причалах 71-72
- хранение нефтекокса на причалах 71-72
- хранение окалины (шлака) на причалах 71-72.

В расчете выбросов учтена неодновременность перегрузочных работ с разными грузами.

Максимально-разовый выброс принят максимальный по каждому грузу

Валовый выброс суммирован с учетом всех видов грузов

Всего по источнику выбросов:

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	тодовой выорос, глод
	При хранении каменного угл	пя	
3749	Пыль каменного угля	0,021396	0,279252
	При хранении нефтекокса / кокса эле	ектродного	
328	Углерод (пигмент черный)	0,020463	0,001663
	При хранении окалины (шла	ка)	
101	диАлюминий триоксид/в пересчете на алюминий/	0,184000	0,015000
123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	1,947000	0,158000
2909	Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства - из-вестняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	1,212000	0,098500

Расчет по каждому грузу выполнен на максимальную загруженность склада, поэтому в расчете рассеивания учтена

неодновременность движения грузов, и по каждому веществу принят максимально-разовый выброс:

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
101	диАлюминий триоксид/в пересчете на алюминий/	0,184000	0,015000
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе- зо/(Железо сесквиоксид)	1,947000	0,158000
328	Углерод (пигмент черный)	0,020463	0,001663
2909	Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства - из-вестняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	1,212000	0,098500
3749	Пыль каменного угля	0,021396	0,279252

Максимально-разовый выброс с учетом ветра принят:

Скорост	ъ ветра, м/с	0,5	2	4	6	8	8,4
Количество ЗВ, г/с							
101	диАлюминий триоксид/в пересчете на алюминий/	0,00000252	0,000618	0,0097	0,0484	0,152	0,184
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе-зо/(Железо сесквиоксид)	0,0000266	0,00653	0,102	0,512	1,604	1,947
328	Углерод (пигмент черный)	0,0000003	0,0000687	0,0010759	0,0053807	0,0168597	0,0204631
2909	Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства - из-вестняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,0000166	0,00406	0,0637	0,319	0,998	1,212
3749	Пыль каменного угля	0,012586	0,012586	0,015103	0,017620	0,021396	0,021396

ИВ склады угля (причал №71-72)

Источником выделения пыли является унос пыли с верхнего слоя штабеля при статическом хранении.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,021396	0,279252

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

MHB.No

Удельное количество сдуваемых твердых частиц с поверхности штабеля угля, $q_{c\delta}$ [кг/кв.м*c]	0,000001
Площадь основания штабеля угля, $S_{\omega}[\kappa B.M]$	17360
Влажность материала, %	11,00
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, $W_{\mathfrak{g}}[M/c]$	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, w_e [м/с]	3,8

			,		ощии влаж еспеченнос		регружаемого материала (таол. 4.2), к ₁ 0,01 /c] 8,4	\dashv \mid
	Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2						ра 95% обеспеченности (табл. 6.4), K_2 1,7	
_	N	Лаксима	льная с	реднего	довая скор	ость вет	$rpa, w_e[M/c]$ 3,8	
								Лист
							OBOC2.6	
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	<u> </u>	137

Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	0,5
Коэффициент, учитывающий профиль поверхности складируемого материала, K_6	1,45
Эффективность пылеподавления (таб 6.5), <i>η</i> [долл.ед]	0
Коэффициент измельчения горной массы, $ ho$	0,1
Количество дней с устойчивым снежным покровом, T_{cn}	80
Количество дней с осадками в виде дождя, T_{δ}	71

 $m{q}_{cd}$ — удельное количество сдуваемых твердых частиц с поверхности штабеля угля, кг/кв.м*с;

 $S_{\it w}$ – площадь основания штабеля угля, кв.м;

 \textit{K}_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

*K*₂ – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 \textit{K}_{6} – коэффициент, учитывающий профиль поверхности складируемого материала;

р - коэффициент измельчения горной массы;

 T_{cn} - количество дней с устойчивым снежным покровом;

 T_{∂} - количество дней с осадками в виде дождя;

 $oldsymbol{\eta}$ - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При статическом хранении угля:

0,279252 $M_{3749} =$ т/год 0,021396

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,012586	0,012586	0,015103	0,017620	0,021396	0,021396

ИВ склад нефтекокса / кокса электродного (пр №71-72)

Расчет выделения пыли при хранении пылящих материалов выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне); «Временные методические указания по расчету выбросов загрязняющих веществ (пыли) в атмосферу при складировании и перегрузке сыпучих материалов на предприятиях речного флота. Белгород, 1992 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р, позиция №102).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

таолица т.	по маракториотика выдологии сагристинодии вощества	, и писофору	
	Загрязняющее вещество	Максимально разовый	Головой выброс т/гол
код	наименование	выброс, г/с	Годовой выброс, т/год
328	Углерод (пигмент черный)	0.0204631	0.0016628

Технология пылеподавления: Гранулирование пылящего материала. Кокс подвергается прокаливанию. Прокаливание нефтяного кокса – это процесс нагрева сырого нефтяного кокса до 1250-1350°C. При этом его молекулярная структура принимает более организованную форму с четкой кристаллической решеткой. Благодаря физическим и химическим процессам, происходящим с сырьевым материалом, происходит улучшение потребительских свойств кокса, что по сути связывает поверхность кокса, поэтому при перегрузке принято снижение выбросов 90% как при перегрузке гранулированного материала.

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{XP} = \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{pa6} + \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot 0,11 \cdot \mathbf{q} \cdot (\mathbf{F}_{nn} - \mathbf{F}_{pa6}) \cdot (1 - \mathbf{\eta}), \ a/c$$

$$(1.1.1)$$

 $M_{XP} = K_4 \cdot K_5 \cdot K_6 \cdot K_7 \cdot q \cdot F_{pa6} + K_4 \cdot K_5 \cdot K_6 \cdot K_7 \cdot 0,11 \cdot q \cdot (F_{nn} - F_{pa6}) \cdot (1 - \eta), a/c$ (1.1.1) где K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

 K_6 - коэффициент, учитывающий профиль поверхности складируемого материала;

 ${\it K}_{7}$ - коэффициент, учитывающий крупность материала;

 $\emph{\emph{F}}_{\it pa6}$ - площадь в плане, на которой систематически производятся погрузочно-разгрузочные работы, $\emph{\emph{M}}^{\it 2}$,

 \vec{F}_{nn} - поверхность пыления в плане, M^2 ;

 ${m q}$ - максимальная удельная сдуваемость пыли, ${\it c/(m^2 \cdot c)};$

 η - степень снижения выбросов при применении систем пылеподавления.

Значение коэффициента $\textbf{\textit{K}}_{6}$ определяется по формуле (1.1.2):

$$\mathbf{K}_{6} = \mathbf{F}_{\text{MAKC}} / \mathbf{F}_{\text{ПЛ}} \tag{1.1.2}$$

где ${\it F}_{{\it MBKC}}$ - фактическая площадь поверхности складируемого материала при максимальном заполнении склада, ${\it M}^2$.

Значение максимальной удельной сдуваемости пылящего материала определяется по формуле (1.1.3): $\mathbf{q} = 10^{-3} \cdot \mathbf{a} \cdot \mathbf{U}^0$, $\mathbf{z}/(\mathbf{m}^2 \cdot \mathbf{c})$

(1.1.3)

где ${\it a}$ и ${\it b}$ – эмпирические коэффициенты, зависящие от типа перегружаемого материала;

U^о - скорость ветра, *м/с*.

Взам.инв.

AHB.No

Валовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.4): $\boldsymbol{\Pi}_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot \boldsymbol{K}_4 \cdot \boldsymbol{K}_5 \cdot \boldsymbol{K}_6 \cdot \boldsymbol{K}_7 \cdot \boldsymbol{q} \cdot \boldsymbol{F}_{nn} \cdot (1 - \boldsymbol{\eta}) \cdot (\boldsymbol{T} - \boldsymbol{T}_0 - \boldsymbol{T}_c) \text{ m/zod}$

$$\mathbf{\Pi}_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{nn} \cdot (1 - \mathbf{\eta}) \cdot (\mathbf{T} - \mathbf{T}_o - \mathbf{T}_c) \text{ m/eod}$$

$$\tag{1.1.4}$$

где \emph{T} - общее время хранения материала за рассматриваемый период, в сутках;

 $T_∂$ - число дней с дождем;

 T_c - число дней с устойчивым снежным покровом.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

OBOC2.6

Лист

Таблица 1.1.2 - Расчетные параметры и их значения

Расчетные параметры	Значения
Перегружаемый материал: Нефтекокс / кокс электродный	a = 0,0012
Эмпирические коэффициенты, зависящие от типа перегружаемого материала приняты по аналогу - шлак	b = 3,97
Местные условия – склады, хранилища, открытые с 2-х сторон полностью и с 2-х сторон частично	$K_4 = 0.3$
Влажность материала свыше 10 до 20%	$K_5 = 0.01$
Профиль поверхности складируемого материала	K ₆ = 22568 / 17360 = 1,3
Крупность материала – куски размером 50-10 мм	$K_7 = 0.5$
Расчетные скорости ветра, м/с	U' = 0,5; 2; 4; 6; 8; 8,4
Среднегодовая скорость ветра, м/с	U = 3,8
Площадь поверхности погрузочно-разгрузочных работы в плане, м²	$F_{pa6} = 1700$
Площадь поверхности пыления в плане, м ²	$F_{nn} = 17360$
Площадь фактической поверхности пыления, м ²	$F_{\text{Makc}} = 22568$
Общее время хранения материала за рассматриваемый период, в сутках	T = 366
Число дней с дождем	$T_{\partial} = 71$
Число дней с устойчивым снежным покровом	$T_c = 80$

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

```
<u>Нефтекокс \ кокс электродный</u> q_{0328}^{0.5 \text{ м/c}} = 10^{-3} \cdot 0,0012 \cdot 0,5^{3.97} = 0,0000001 \text{ s/(M}^2 \cdot c);
+0.3 \cdot 0.01 \cdot 1.3 \cdot 0.5 \cdot 0.11 \cdot 0.0000001 \cdot (17360 - 1700) \cdot (1-0.9) = 0.0000003 \ e/c;
q_{0328}^{2 \text{ m/c}} = 10^{-3} \cdot 0,0012 \cdot 2^{3.97} = 0,0000188 \text{ e/(}m^2 \cdot \text{c});
M_{0328}^{2 \text{ M/c}} = 0.3 \cdot 0.01 \cdot 1.3 \cdot 0.5 \cdot 0.0000188 \cdot 1700 +
           +0.3 \cdot 0.01 \cdot 1.3 \cdot 0.5 \cdot 0.11 \cdot 0.0000188 \cdot (17360 - 1700) \cdot (1-0.9) = 0.0000687 \ e/c;
q_{0328}^{4 \text{ m/c}} = 10^{-3} \cdot 0,0012 \cdot 4^{3.97} = 0,0002947 \text{ s/(m²·c)};
M_{0328}^{4 \text{ M/c}} = 0.3 \cdot 0.01 \cdot 1.3 \cdot 0.5 \cdot 0.0002947 \cdot 1700 +
          +0.3 \cdot 0.01 \cdot 1.3 \cdot 0.5 \cdot 0.11 \cdot 0.0002947 \cdot (17360 - 1700) \cdot (1-0.9) = 0.0010759 \ e/c;
q_{0328}^{6 \text{ m/c}} = 10^{-3} \cdot 0,0012 \cdot 6^{3.97} = 0,0014738 \text{ s/(m}^2 \cdot c);
\dot{M}_{0328}^{6 \text{ m/c}} = 0.3 \cdot 0.01 \cdot 1.3 \cdot 0.5 \cdot 0.0014738 \cdot 1700 +
+ 0,3 · 0,01 · 1,3 · 0,5 · 0,11 · 0,0014738 · (17360 - 1700)·(1-0,9) = 0,0053807 e/c; \mathbf{q}_{0328}^{8 \text{ m/c}} = 10^{-3} \cdot 0,0012 \cdot 8^{3.97} = 0,0046179 e/(m^2 \cdot c);
M_{0328}^{8 \text{ M/c}} = 0.3 \cdot 0.01 \cdot 1.3 \cdot 0.5 \cdot 0.0046179 \cdot 1700 + 0.3 \cdot 0.01 \cdot 1.3 \cdot 0.5 \cdot 0.11 \cdot 0.0046179 \cdot (17360 - 1700) \cdot (1-0.9) = 0.0168597 \text{ e/c};
q_{0328}^{8.4 \text{ M/c}} = 10^{-3} \cdot 0.0012 \cdot 8.4^{3.97} = 0.0056049 \text{ e/(m}^2 \cdot c);
M_{0328}^{8.4 \text{ m/c}} = 0.3 \cdot 0.01 \cdot 1.3 \cdot 0.5 \cdot 0.0056049 \cdot 1700 +
          +0.3 \cdot 0.01 \cdot 1.3 \cdot 0.5 \cdot 0.11 \cdot 0.0056049 \cdot (17360 - 1700) \cdot (1-0.9) = 0.0204631  a/c;
 \mathbf{q}_{0328} = 10^{-3} \cdot 0,0012 \cdot 3,8^{3.97} = 0,0002404 \, e/(m^2 \cdot c); 
 \mathbf{\Pi}_{0328} = 0,11 \cdot 8,64 \cdot 10^{-2} \cdot 0,3 \cdot 0,011 \cdot 1,3 \cdot 0,5 \cdot 0,0002404 \cdot 17360 \cdot (366-71-80) \cdot (1-0,9) = 0,0016628 \, m/eod.
```

ИВ склад окалины (шлака) (ГУТ-2 причалы 71-72)

Расчет выделения пыли при хранении пылящих материалов выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне); «Временные методические указания по расчету выбросов загрязняющих веществ (пыли) в атмосферу при складировании и перегрузке сыпучих материалов на предприятиях речного флота. Белгород, 1992 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р, позиция №102).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1 1 1

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс,
код	наименование	выброс, г/с	т/год
Всего пыли	и 100%, из них:	3,3423014	0,271598
0101	диАлюминий триоксид/в пересчете на алюминий/ (5,51%)	0,184	0,0150
0123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид) (58,24%)	1,947	0,158
	Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)		0,0985

Технология пылеподавления: Гранулирование пылящего материала.

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{XP} = \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{pa6} + \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot 0, 11 \cdot \mathbf{q} \cdot (\mathbf{F}_{nn} - \mathbf{F}_{pa6}) \cdot (1 - \eta), \ a/c$$

$$(1.1.1)$$

где K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

 K_5 - коэффициент, учитывающий влажность материала;

К₀ - коэффициент, учитывающий профиль поверхности складируемого материала;

К₇ - коэффициент, учитывающий крупность материала;

 $\emph{\textbf{F}}_{\it pa6}$ - площадь в плане, на которой систематически производятся погрузочно-разгрузочные работы, \emph{M}^2 ,

 F_{nn} - поверхность пыления в плане, M^2 ;

Взам.инв.

윋

 ${m q}$ - максимальная удельная сдуваемость пыли, ${\it e/(M^2 \cdot c)};$

 η - степень снижения выбросов при применении систем пылеподавления.

Значение коэффициента K_6 определяется по формуле (1.1.2):

$$K_6 = F_{\text{MAKC}} / F_{\text{ПЛ}} \tag{1.1.2}$$

							Лист
						OBOC2.6	100
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата		139

```
где F_{\text{макс}} - фактическая площадь поверхности складируемого материала при максимальном заполнении склада, M^2.
       Значение максимальной удельной сдуваемости пылящего материала определяется по формуле (1.1.3):
                                                                                 q = 10^{-3} \cdot a \cdot U^{0}, c/(M^{2} \cdot c)
                                                                                                                                                                                    (1.1.3)
где a и b – эмпирические коэффициенты, зависящие от типа перегружаемого материала;
U<sup>o</sup> - скорость ветра, м/с.
       Валовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.4):
                                             \Pi_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{nn} \cdot (1 - \mathbf{\eta}) \cdot (\mathbf{T} - \mathbf{T}_0 - \mathbf{T}_c) \, m/cod
                                                                                                                                                                                    (1.1.4)
где T - общее время хранения материала за рассматриваемый период, в сутках;
T<sub>∂</sub> - число дней с дождем;
T_c - число дней с устойчивым снежным покровом.
      При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля
данного вещества в составе продукта.
       Расчетные параметры и их значения приведены в таблице 1.1.2.
Таблица 1.1.2 - Расчетные параметры и их значения
                                                      Расчетные параметрь
                                                                                                                                                               Значения
 Перегружаемый материал: Шлак
                                                                                                                                              a = 0.0012
 Эмпирические коэффициенты, зависящие от типа перегружаемого материала
                                                                                                                                              b = 3,97
                                                                                                                                              K_4 = 0.5
 Местные условия – склады, хранилища, открытые с 3-х сторон
                                                                                                                                              K_5 = 0.7
 Влажность материала до 5%
                                                                                                                                              K_6 = 22568 / 17360 = 1,3
 Профиль поверхности складируемого материала
                                                                                                                                              K_7 = 0.7
 Крупность материала – куски размером 5-3 мм
 Расчетные скорости ветра, м/с
                                                                                                                                              U' = 0,5; 2; 4; 6; 8; 8,4
                                                                                                                                              U = 3,8
 Среднегодовая скорость ветра, м/с
                                                                                                                                              F_{pa6} = 1700
 Площадь поверхности погрузочно-разгрузочных работы в плане, м<sup>2</sup>
                                                                                                                                              F_{nn} = 17360
 Площадь поверхности пыления в плане, м<sup>2</sup>
 Площадь фактической поверхности пыления, м<sup>2</sup>
                                                                                                                                              F_{\text{макс}} = 22568
                                                                                                                                              T = 366
 Общее время хранения материала за рассматриваемый период, в сутках
                                                                                                                                              T_∂ = 71
 Число дней с дождем
 Число дней с устойчивым снежным покровом
                                                                                                                                              T_c = 80
       Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.
<u>Шлак</u> q_{nbinu}^{0.5 \text{ м/c}} = 10^{-3} \cdot 0,0012 \cdot 0,5^{3.97} = 0,0000001 \ e/(m^2 \cdot c);
\mathbf{M}_{\text{пыли}}^{0.5 \text{ м/c}} = 0.5 \cdot 0.7 \cdot 1.3 \cdot 0.7 \cdot 0.0000001 \cdot 1700 +
        +0.5 \cdot 0.7 \cdot 1.3 \cdot 0.7 \cdot 0.11 \cdot 0.0000001 \cdot (17360 - 1700) \cdot (1-0.9) = 0.0000457 \ e/c;
q_{\text{пыли}^2}^{\text{м/c}} = 10^{-3} \cdot 0,0012 \cdot 2^{3.97} = 0,0000188 \text{ s/(M}^2 \cdot c);
\mathbf{M}_{\text{пыли}}^{2 \text{ м/c}} = 0.5 \cdot 0.7 \cdot 1.3 \cdot 0.7 \cdot 0.0000188 \cdot 1700 +
 + 0.5 \cdot 0.7 \cdot 1.3 \cdot 0.7 \cdot 0.11 \cdot 0.0000188 \cdot (17360 - 1700) \cdot (1-0.9) = 0.0112136 \ e/c;   q_{n \omega n u^{4 \ M/C}} = 10^{-3} \cdot 0.0012 \cdot 4^{3.97} = 0.0002947 \ e/(m^2 \cdot c); 
\mathbf{M}_{\text{пыли}}^{4 \text{ м/c}} = 0.5 \cdot 0.7 \cdot 1.3 \cdot 0.7 \cdot 0.0002947 \cdot 1700 +
       + 0.5 \cdot 0.7 \cdot 1.3 \cdot 0.7 \cdot 0.11 \cdot 0.0002947 \cdot (17360 - 1700) \cdot (1-0.9) = 0.1757256 e/c;
m{q}_{n \bowtie n u}^{6 \ \text{M/C}} = 10^{-3} \cdot 0,0012 \cdot 6^{3.97} = 0,0014738 \ e/(M^2 \cdot c);
m{M}_{n \bowtie n u}^{6 \ \text{M/C}} = 0,5 \cdot 0,7 \cdot 1,3 \cdot 0,7 \cdot 0,0014738 \cdot 1700 +
 + 0.5 \cdot 0.7 \cdot 1.3 \cdot 0.7 \cdot 0.11 \cdot 0.0014738 \cdot (17360 - 1700) \cdot (1-0.9) = 0.8788552 \text{ e/c};   \mathbf{q}_{n_{bl}n_{ll}} {}^{8 \text{ M/C}} = 10^{-3} \cdot 0.0012 \cdot 8^{3.97} = 0.0046179 \text{ e/(M}^{2} \cdot c); 
\mathbf{M}_{\text{ПЫЛИ}}^{8 \text{ M/C}} = 0.5 \cdot 0.7 \cdot 1.3 \cdot 0.7 \cdot 0.0046179 \cdot 1700 +
+ 0.5 · 0.7 · 1.3 · 0.7 · 0.11 · 0.0046179 · (17360 - 1700)·(1-0.9) = 2,7537473 e/c; q_{nbinu}^{8.4 \text{ M/C}} = 10^{-3} \cdot 0.0012 \cdot 8.4^{3.97} = 0.0056049 e/(m^2 c);
+ 0,5 · 0,7 · 1,3 · 0,7 · 0,11 · 0,0056049 · (17360 - 1700)·(1-0,9) = 3,3423014 e/c;

\mathbf{q}_{nb,nu} = 10^{-3} \cdot 0,0012 \cdot 3,8^{3.97} = 0,0002404 e/(m^2 \cdot c);

\vec{\Pi}_{\text{пыли}} = 0,11\cdot8,64\cdot10^{-2}\cdot0,5\cdot0,7\cdot1,3\cdot0,7\cdot0,0002404\cdot17360\cdot(366-71-80)\cdot(1-0,9) = 0,271598 \text{ m/sod.}

Содержание в выбросах оксидов алюминия составит 5,51 % от общего выброса: \pmb{M}^{0.5\,\text{M/c}}=0,0000457*0,0551=0,00000252~e/c; \pmb{M}^{2\,\text{M/c}}=0,0112136*0,0551=0,000618~e/c;
M^{4 \text{ M/C}} = 0.1757256 * 0.0551 = 0.0097 \ e/c;
M^{6 \text{ M/c}} = 0,8788552 * 0,0551 = 0,0484 \text{ e/c};
M^{8 \text{ m/c}} = 2,7537473 * 0,0551 = 0,152 \text{ e/c};
M^{8.4 \text{ m/c}} = 3,3423014 * 0,0551 = 0,184 \text{ e/c};
\Pi = 0,271598 * 0,0551 = 0,0150 m/sod.
Содержание в выбросах оксидов железа составит 58,24 % от общего выброса:
M^{0.5 \text{ M/c}} = 0,0000457 * 0,5824 = 0,0000266 \text{ e/c};
M^{2 \text{ M/C}} = 0.0112136 * 0.5824 = 0.00653 e/c;
M^{4 \text{ m/c}} = 0.1757256 * 0.5824 = 0.102 e/c;
                                                                                      я:
```

дата	M ^{6 M/c} = 0,8788552 * 0, 5824 = 0,512 e/c ; M ^{8 M/c} = 2,7537473 * 0,5824 = 1,604 e/c ; M ^{8.4 M/c} = 3,3423014 * 0, 5824 = 1,947 e/c ; T = 0,271598 * 0, 5824 = 0,158 e/c 0.
ПОДП. И	Остальные вещества нормируются как пыль неорганическая $M^{0.5 \text{ м/c}} = 0,0000457 * 0,3625 = 0,0000166 e/c;$ $M^{2 \text{ м/c}} = 0,0112136 * 0,3625 = 0,00406 e/c;$ $M^{4 \text{ м/c}} = 0,1757256 * 0,3625 = 0,0637 e/c;$ $M^{6 \text{ m/c}} = 0,8788552 * 0,3625 = 0,319 e/c;$ $M^{8 \text{ m/c}} = 2,7537473 * 0,3625 = 0,998 e/c;$
№ подл.	M ^{8.4 M/c} = 3,3423014 * 0, 3625 = 1,212 <i>e/c</i> ;

№ док

Подп

Кол.уч Лист

Лист

	"	- ∪,∠/ 15	J30 U, (υυ∠ט= U,	,098 <i>т/год</i> .			
1	-							
	-							
	-							
								п
		TC					OBOC2.6	Лист
' I	Изм	Кол.уч	Лист	№ док.	Подп.	Дата		141

ИЗАВ №6291. погрузо-разгрузочные работы на судовом грузовом фронте (причалы №71-72)

Источниками выделения являются:

- перегрузка угля;
- перегрузка кокса;
- перегрузка нефтекокса;
- перегрузка окалины;
- перегрузка пеллет.

Всего выбросов по источнику:

В расчете выбросов учтена неодновременность перегрузочных работ с разными грузами.

Максимально-разовый выброс принят максимальный по каждому грузу

Валовый выброс суммирован с учетом всех видов грузов

Всего по источнику выбросов:

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	тодовой выорос, тлод
	При перегрузке каменного у	гля	
3749	Пыль каменного угля	0,000793	0,002580
	При перегрузке кокса		
3749	Пыль каменного угля	0,000793	0,000323
	При перегрузке нефтекокса / кокса э	пектродного	
328	Углерод (пигмент черный)	0,148750	0,025200
	При перегрузке окалины (шл	ака)	
101	диАлюминий триоксид/в пересчете на алюминий/	0,100400	0,017010
123	диЖелезо триоксид, (железа оксид)/в пе-ресчете на железо/(Железо сесквиоксид)	1,061000	0,179800
2909	Пыль неорганическая, содержащая дву-окись кремния, в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,661000	0,111900
	При перегрузке пеллет	·	·
2936	Пыль древесная	0,028333	0,060000

Расчет по каждому грузу выполнен на максимальную загруженность склада, поэтому в расчете рассеивания учтена

неодновременность движения грузов, и по каждому веществу принят максимально-разовый выброс:

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	тодовой выорос, тлод
101	диАлюминий триоксид/в пересчете на алюминий/	0,100400	0,017010
123	диЖелезо триоксид, (железа оксид)/в пе-ресчете на железо/(Железо сесквиоксид)	1,061000	0,179800
328	Углерод (пигмент черный)	0,148750	0,025200
2909	Пыль неорганическая, содержащая дву-окись кремния, в %: - менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,661000	0,111900
2936	Пыль древесная	0,028333	0,060000
3749	Пыль каменного угля	0,000793	0,002903

Максимально-разовый выброс с учетом ветра принят:

Скорс	ость ветра, м/с	0,5	2	4	6	8	8,4
Колич	ество ЗВ, г/с						
101	диАлюминий триоксид/в пересчете на алюминий/	0,0591	0,0591	0,0709	0,0827	0,1004	0,1004
123	диЖелезо триоксид, (железа оксид)/в пе-ресчете на железо/(Железо сесквиоксид)	0,6243	0,6243	0,749	0,874	1,061	1,061
328	Углерод (пигмент черный)	0,0875	0,0875	0,105	0,1225	0,14875	0,14875
2909	Пыль неорганическая, содержащая дву-окись кремния, в %: - менее 20 (доломит, пыль цементного производства - извест-няк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,3886	0,3886	0,466	0,544	0,661	0,661
2936	Пыль древесная	0,01666667	0,01666667	0,02	0,02333333	0,02833333	0,02833333
3749	Пыль каменного угля	0,000467	0,000467	0,000560	0,000653	0,000793	0,000793

ИВ погрузка угля на судно (пр 71-72)

NHB.№

Источником выделения пыли является перемещение масс угля (разгрузка и погрузка, ссыпание, перегрузка).

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

-							OBOC2.
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	

Лист

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,000793	0,002580

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельное выделение при разгрузке (перегрузке) материала, q_n [г/т]	0,32
Количество разгружаемого (перегружаемого) материала, П₂ [т/год]	960000
Количество разгружаемого (перегружаемого) материала, П, [т/час]	750
Влажность материала, %	11,00
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, ₩₅ [м/с]	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, w _e [м/с]	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Высота разгрузки материала, [м]	2
Коэффициент, учитывающий высоту пересыпки материала (табл. 6.9), К₃	0,7
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), К₄	1
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_n = \mathbf{q}_n \cdot \Pi_2 \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot 10^{-6} \cdot (1-\eta), \ m/\text{eod} \ [1]$$
 $G_n = (\mathbf{q}_n \cdot \Pi_4 \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot (1-\eta))/3600, \ e/c \ [2]$

где

 q_n – удельное выделение при разгрузке (перегрузке) материала, z/m;

 $\vec{\Pi}_{e}$ – количество разгружаемого (перегружаемого) материала, m/200;

 $\Pi_{\rm v}$ – максимальное количество перегружаемого материала за час, *m/час*;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 K_3 – коэффициент, учитывающий высоту пересыпки материала (таб. 6.9 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При разгрузочных (перегрузочных) работах:

M₃₇₄₉= 0,002580 m/eo∂ **G**₃₇₄₉= 0,000793 e/c

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,000467	0,000466667	0,000560	0,000653	0,000793	0,000793

ИВ погрузка кокса на судно (пр 71-72)

Источником выделения пыли является перемещение масс кокса (разгрузка и погрузка, ссыпание, перегрузка).

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - **Характеристика выделений загрязняющих веществ в атмосферу**

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0.000793	0.000323

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

таолица 2 - исходные данные для расчета	
Удельное выделение при разгрузке (перегрузке) материала, q_n [г/т]	0,32
Количество разгружаемого (перегружаемого) материала, Пе [т/год]	120000
Количество разгружаемого (перегружаемого) материала, Π_{q} [т/час]	750
Влажность материала, %	11,00
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, w_s [м/с]	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, <i>w</i> ₅ [м/с]	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Высота разгрузки материала, [м]	2
Коэффициент, учитывающий высоту пересыпки материала (табл. 6.9), K_3	0,7
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), К₄	1
Эффективность пылеподавления (таб 6.5), <i>η</i> [долл.ед]	0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_n = q_n \cdot \Pi_2 \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot 10^{-6} \cdot (1-\eta), m/\text{eod}$$
 [1] $G_n = (q_n \cdot \Pi_4 \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot (1-\eta))/3600, e/c$ [2]

где

Взам.инв.

AHB.No

 ${m q}_n$ – удельное выделение при разгрузке (перегрузке) материала, ${\it e/m}$;

 Π_{e} – количество разгружаемого (перегружаемого) материала, m/eод;

П_ч – максимальное количество перегружаемого материала за час, *m/час*;

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

$\mathbf{O}\mathbf{D}$	$\mathbf{\Omega}$	α	_
OB	v	LΖ,	o.

 \emph{K}_{1} – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

К₂ – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

К₃ – коэффициент, учитывающий высоту пересыпки материала (таб. 6.9 Методики);

 \emph{K}_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

<u>При разгрузочных (перегрузочных) работах.</u> **М**₃₇₄₉= 0,000323 *m/200* **G** ₃₇₄₉= 0,000793 *e/c*

Загрязняющее вещество

Углерод (Сажа)

код

328

Взам.инв.

AHB.No

наименование

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,000467	0,000466667	0,000560	0,000653	0,000793	0,000793

ИВ работы по перегрузке нефтекокса /кокса электродного на судовом фронте

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия — склады, хранилища, открытые с 4-х сторон (K_4 = 1). Высота падения материала при пересыпке составляет 2,0 м (B = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует (K_9 = 1). Расчетные скорости ветра, м/с: 0,5 (K_9 = 1); 2 (K_9 = 1); 4 (K_9 = 1,2); 6 (K_9 = 1,4); 8 (K_9 = 1,7); 8,4 (K_9 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_9 = 1,2).

Пылеподавление

90
Технология
пылеподавления:
Гранулирование
пылящего
материала. Кокс
подвергается
прокаливанию.
Прокаливание
нефтяного кокса
– это процесс
нагрева сырого

Максимально разовый

выброс, г/с

1,4875

после

0,14875

Годовой выброс, т/год

0,252

после

0,0252

 Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	нефтяного кокса		ĺ
	до 1250-		ĺ
	1350°C. При этом	Λ	ĺ
	его молекулярная		ĺ
	структура		ĺ
	принимает более		ĺ
	организованную		ĺ
	форму с четкой		ĺ
	кристаллической	i	i
	решеткой. Благо		ĺ
	даря физическим	Λ	ĺ
	и химическим		ĺ
	процессам,		ĺ
	происходящим с		ĺ
	сырьевым		i
	материалом,		ĺ
	происходит		ĺ
	улучшение		ĺ
	потребительских		ĺ
	свойств кокса, что	0	ĺ
	по сути		ĺ
	связывает		ĺ
	поверхность		ĺ
	кокса, поэтому		ĺ
	при перегрузке		ĺ
	принято		ĺ
	снижение		ĺ
	выбросов 90% ка	κ	ĺ
	при перегрузке		ĺ
	гранулированного	0	ı
	материала.		ĺ

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2. Таблица 1.1.2 - **Исходные данные для расчета**

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Материал	Параметры	Одноврем енность
электродный	Количество перерабатываемого материала: Gu = 750 т/час; Gгод = 50000 т/год. Весовая доля пылевой фракции в материале: K_1 = 0,03. Доля пыли, переходящая в аэрозоль: K_2 = 0,04. Влажность свыше 10 до 20% (K_5 = 0,01).	
	Размер куска 50-10 мм ($K_7 = 0,5$). Технология пылеподавления: Гранулирование пылящего материала.	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

 $\mathbf{M}_{PP} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_9 \cdot 10^6 / 3600, a/c$

где K_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 ${\it K}_2$ - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств K_8 = 1;

 K_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

Загрязняющее вещество

наименование

 G_{v} - суммарное количество перерабатываемого материала в час, *m/час*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{\text{eod}}, \, m/\text{eod}$$

$$\tag{1.1.2}$$

Максимально разовый

выброс, г/с

ЛΩ

после

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Нефтекокс / кокс электродный

код

```
\begin{array}{l} \textbf{M}_{328}^{0.5\,\text{MiC}} = 0.03 \cdot 0.04 \cdot 1 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 \, / \, 3600 \, ^* \, (1\text{-}0.9) = 0.0875 \, \textit{z/c}; \\ \textbf{M}_{328}^{2\,\text{MiC}} = 0.03 \cdot 0.04 \cdot 1 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 \, / \, 3600 \, ^* \, (1\text{-}0.9) = 0.0875 \, \textit{z/c}; \\ \textbf{M}_{328}^{4\,\text{MiC}} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 \, / \, 3600 \, ^* \, (1\text{-}0.9) = 0.105 \, \textit{z/c}; \\ \textbf{M}_{328}^{6\,\text{MiC}} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 \, / \, 3600 \, ^* \, (1\text{-}0.9) = 0.1225 \, \textit{z/c}; \\ \textbf{M}_{328}^{6\,\text{MiC}} = 0.03 \cdot 0.04 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 \, / \, 3600 \, ^* \, (1\text{-}0.9) = 0.14875 \, \textit{z/c}; \\ \textbf{M}_{328}^{8\,\text{MiC}} = 0.03 \cdot 0.04 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 \, / \, 3600 \, ^* \, (1\text{-}0.9) = 0.14875 \, \textit{z/c}; \\ \textbf{M}_{328}^{8\,\text{A}\,\text{MiC}} = 0.03 \cdot 0.04 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 \, / \, 3600 \, ^* \, (1\text{-}0.9) = 0.14875 \, \textit{z/c}; \\ \textbf{M}_{328}^{8\,\text{A}\,\text{MiC}} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 \, / \, 3600 \, ^* \, (1\text{-}0.9) = 0.14875 \, \textit{z/c}; \\ \textbf{M}_{328}^{8\,\text{A}\,\text{MiC}} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 50000 \, ^* \, (1\text{-}0.9) = 0.0252 \, \textit{m/zod}. \end{array}
```

ИВ работы по перегрузке окалины (шлака) на судовом грузовом фронте

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия — склады, хранилища, открытые с 4-х сторон (K_4 = 1). Высота падения материала при пересыпке составляет 2,0 м (B = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует (K_9 = 1). Расчетные скорости ветра, м/с: 0,5 (K_9 = 1); 2 (K_9 = 1); 4 (K_9 = 1,2); 6 (K_9 = 1,4); 8 (K_9 = 1,7); 8,4 (K_9 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_9 = 1,2).

Пылеподавление,

%

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

					_~	
Всего пыль	и 100%, из них:	90	18,221875	1,8221875	3,087	0,3087
	иАлюминий триоксид/в пересчете на люминий/ (5,51%)	Технология пылеподавления:	-	0,1004	-	0,01701
0123 ді пе	иЖелезо триоксид, (железа оксид)/в ересчете на железо/(Железо есквиоксид) (58,24%)	пылящего материала. Кокс	1	1,061	-	0,1798
2909 П ді (д из	Іыль неорганическая, содержащая вуокись кремния, в %: - менее 20 доломит, пыль цементного производства - звестняк, мел, огарки, сырьевая смесь, ыль вращающихся печей, боксит и ругие)	прокаливанию. Прокаливание нефтяного кокса	-	0,661	-	0,1119

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

MHB.No

Годовой выброс, т/год

до после

(1.1.1)

Загрязняющее вещество		Пылеподавление, %	Максимально разовый выброс, г/с		Годовой выброс, т/год	
код	наименование	70	до	после	до	после
		материалом,				
		происходит				
		улучшение				
		потребительских				
		свойств кокса, что				
		по сути				
		связывает				
		поверхность				
		кокса, поэтому				
		при перегрузке				
		принято				
		снижение				
		выбросов 90% как				
		при перегрузке				
1		гранулированного				
		материала.				

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Материал	Параметры	Одноврем енность
	Количество перерабатываемого материала: $G_1 = 750$ т/час; $G_1 = 50000$ т/год. Весовая доля пылевой фракции в материале: $K_1 = 0,05$. Доля пыли, переходящая в аэрозоль: $K_2 = 0,02$. Влажность до 5% ($K_5 = 0,7$). Размер куска 5-3 мм ($K_7 = 0,7$). Технология пылеподавления: Гранулирование пылящего материала.	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$M_{PP} = K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot K_5 \cdot K_7 \cdot K_8 \cdot K_9 \cdot B \cdot G_4 \cdot 10^6 / 3600, e/c$$
(1.1.1)

где \mathbf{K}_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 ${\it K}_2$ - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

 ${\it K}_{\it 5}$ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств $K_8 = 1$;

 K_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_{4} - суммарное количество перерабатываемого материала в час, *m/час*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{\text{200}}, m/\text{200}$$

$$\tag{1.1.2}$$

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Взам.инв.

윋

```
\frac{\text{Шлак}}{\mathbf{M}_{nb,nn}}^{0.5 \text{ M/C}} = 0.05 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 * (1-0.9) = 1.071875 \text{ s/c};
 \begin{array}{l} \textit{\textit{M}}_{\textit{\textit{hi}}\textit{\textit{hi}}\textit{\textit{l}}}^{0.5~\textit{\textit{Mi}}\textit{\textit{C}}} = 0.05 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 \, / \, 3600 \, ^* \, (1 \text{-} 0.9) = 1.071875 \, \textit{\textit{a/c}} \\ \textit{\textit{M}}_{\textit{\textit{hi}}\textit{\textit{hi}}\textit{\textit{l}}}^{2~\textit{\textit{Mi}}\textit{\textit{C}}} = 0.05 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 \, / \, 3600 \, ^* \, (1 \text{-} 0.9) = 1.071875 \, \textit{\textit{a/c}}; \\ \textit{\textit{M}}_{\textit{\textit{hi}}\textit{\textit{hi}}\textit{\textit{l}}}^{4~\textit{\textit{Mi}}\textit{\textit{C}}} = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 \, / \, 3600 \, ^* \, (1 \text{-} 0.9) = 1.28625 \, \textit{\textit{a/c}}; \\ \textit{\textit{M}}_{\textit{\textit{hi}}\textit{\textit{hi}}\textit{\textit{l}}}^{4~\textit{\textit{Mi}}\textit{\textit{C}}} = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 \, / \, 3600 \, ^* \, (1 \text{-} 0.9) = 1.28625 \, \textit{\textit{a/c}}; \\ \textit{\textit{M}}_{\textit{\textit{hi}}\textit{\textit{hi}}\textit{\textit{l}}}^{4~\textit{\textit{Mi}}\textit{\textit{C}}} = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 \, / \, 3600 \, ^* \, (1 \text{-} 0.9) = 1.28625 \, \textit{\textit{a/c}}; \\ \textit{\textit{M}}_{\textit{\textit{hi}}\textit{\textit{hi}}\textit{\textit{hi}}}^{4~\textit{\textit{Mi}}\textit{\textit{C}}} = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 \, / \, 3600 \, ^* \, (1 \text{-} 0.9) = 1.28625 \, \textit{\textit{a/c}}; \\ \textit{\textit{M}}_{\textit{\textit{hi}}\textit{\textit{hi}}\textit{\textit{hi}}}^{4~\textit{\textit{hi}}\textit{\textit{C}}} = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 \, / \, 3600 \, ^* \, (1 \text{-} 0.9) = 1.28625 \, \textit{\textit{a/c}}; \\ \textit{\textit{hi}}^{4~\textit{\textit{hi}}\textit{\textit{C}}} = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.7 \cdot 0.7 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 0.
 \mathbf{M}_{\text{Повіли}}^{6 \text{ M/C}} = 0.05 \cdot 0.02 \cdot 1.4 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 * (1-0.9) = 1.500625 \text{ z/c};
 M_{\text{пыли}}^{8 \text{ м/c}} = 0.05 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 * (1-0.9) = 1.8221875 \ z/c;
 \mathbf{\textit{M}}_{\textit{nijru}} <sup>8.4 m/c</sup> = 0,05 · 0,02 · 1,7 · 1 · 0,7 · 0,7 · 0,15 · 1 · 0,7 · 750 · 10<sup>6</sup> / 3600 * (1-0,9)= 1,8221875 \mathbf{\textit{e/c}};
 \Pi_{\text{Пыпи}} = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 50000 * (1-0.9) = 0.3087 \text{ m/sod.}
```

Содержание в выбросах оксидов алюминия составит 5,51 % от общего выброса:

```
M^{0.5 \text{ m/c}} = 1,071875 * 0,0551 = 0,0591 \text{ e/c};
M^{2 \text{ M/c}} = 1,071875 * 0,0551 = 0,0591 \text{ e/c};
M^{4 \text{ M/C}} = 1,28625 * 0,0551 = 0,0709 \text{ e/c};
M^{6 \text{ M/c}} = 1,500625 * 0,0551 = 0,0827 \text{ e/c};
M^{8 \text{ M/c}} = 1,8221875 * 0,0551 = 0,1004 \text{ e/c};

M^{8.4 \text{ M/c}} = 1,8221875 * 0,0551 = 0,1004 \text{ e/c};
\Pi = 0,3087 * 0,0551 = 0,0170 m/eod.
```

Содержание в выбросах оксидов железа составит 58,24 % от общего выброса:

```
M^{0.5 \text{ m/c}} = 1,071875 * 0,5824 = 0,6243 \text{ e/c};
M^{2 \text{ M/C}} = 1,071875 * 0,5824 = 0,6243 \text{ e/c};
M^{4 \text{ M/C}} = 1,28625 * 0,5824 = 0,749 \text{ e/c};
M^{6 \text{ M/C}} = 1,500625 * 0,5824 = 0,874 \text{ e/c};
M^{8 \text{ M/C}} = 1,8221875 * 0,5824 = 1,061 e/c;
M^{8.4 \text{ m/c}} = 1,8221875 * 0,5824 = 1,061 e/c;
\Pi = 0,3087 * 0, 5824 = 0,1798 m/sod.
```

Остальные вещества нормируются как пыль неорганическая:

 $M^{0.5 \text{ m/c}} = 1,071875 * 0,3625 = 0,3886 \text{ e/c};$

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

```
M^{2 \text{ M/c}} = 1,071875 * 0,3625 = 0,3886 \text{ e/c};
M^{4 \text{ M/c}} = 1,28625 * 0,3625 = 0,466 \text{ e/c};
M^{6 \text{ M/C}} = 1,500625 * 0,3625 = 0,544 \text{ e/c};
M^{8 \text{ M/c}} = 1,8221875 * 0,3625 = 0,661 \text{ e/c};
M^{8.4 \text{ m/c}} = 1,8221875 * 0,3625 = 0,661 \text{ e/c};
\Pi = 0,3087 * 0, 3625= 0,1119 m/zoð.
```

ИВ Работы по перегрузке пеллет на судовом фронте

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 4-х сторон (K₄ = 1). Высота падения материала при пересыпке составляет 1,0 м (В = 0,5). Залповый сброс при разгрузке автосамосвала отсутствует ($K_9 = 1$). Расчетные скорости ветра, м/с: 0,5 ($K_3 = 1$); 2 ($K_3 = 1$); 4 ($K_3 = 1,2$); 6 ($K_3 = 1,4$); 8 ($K_3 = 1,4$); 9 ($(K_3 = 1,7)$. Средняя годовая скорость ветра 3,8 м/с $(K_3 = 1,2)$.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

Загрязняющее вещество		Пылеподавление, %	Максимально разовый выброс, г/с		Годовой выброс, т/год	
код	наименование	70	до	после	до	после
2936	Пыль древесная	90	0,2833333	0,0283333	0,6	0,06

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Материал	Параметры	Одноврем енность
Удельные показатели приняты по аналогу - Опилки древесные	Количество перерабатываемого материала: $G_4 = 60$ т/час; $G_{17} = 50000$ т/год. Весовая доля пылевой фракции в материале: $\mathbf{K}_{1} = 0,04$. Доля пыли, переходящая в аэрозоль: $\mathbf{K}_{2} = 0,01$. Влажность до 10% ($\mathbf{K}_{5} = 0,1$). Размер куска 50-10 мм ($\mathbf{K}_{7} = 0,5$). Технология пылеподавления: Гранулирование пылящего материала.	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{TP} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_4 \cdot 10^6 / 3600, \, \text{e/c}$$
 (1.1.1)

где **К**₁ - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 K_2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

 ${\it K}_{\it 3}$ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

 ${\it K}_{\it 5}$ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств $K_8 = 1$;

 \emph{K}_{9} - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_{4} - суммарное количество перерабатываемого материала в час, *тичас*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{\text{200}}, \, m/\text{200}$$

$$\tag{1.1.2}$$

где G_{eod} - суммарное количество перерабатываемого материала в течение года, m/eod.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

<u>Пеллеты</u> $M_{2936}^{0.5 \text{ м/c}} = 0.04 \cdot 0.01 \cdot 1 \cdot 1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.5 \cdot 60 \cdot 10^6 / 3600 * (1-0.9) = 0.01666667 e/c;$ $M_{2936}^{2 \text{ M/C}} = 0.04 \cdot 0.01 \cdot 1 \cdot 1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.5 \cdot 60 \cdot 10^6 / 3600 * (1-0.9) = 0.01666667 \text{ e/c};$ $M_{2936}^{4 \text{ M/c}} = 0.04 \cdot 0.01 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.5 \cdot 60 \cdot 10^{6} / 3600 \times (1-0.9) = 0.02 \text{ s/c};$ $\begin{array}{l} \textit{\textit{M}}_{2336}^{6 \text{ M/c}} = 0.04 \cdot 0.01 \cdot 1.4 \cdot 1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.5 \cdot 60 \cdot 10^{6} / 3600 * (1-0.9) = 0.02333333 \textit{s/c}; \\ \textit{\textit{M}}_{2936}^{8 \text{ M/c}} = 0.04 \cdot 0.01 \cdot 1.7 \cdot 1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.5 \cdot 60 \cdot 10^{6} / 3600 * (1-0.9) = 0.02833333 \textit{s/c}; \\ \textit{\textit{M}}_{2936}^{8 \text{ M/c}} = 0.04 \cdot 0.01 \cdot 1.7 \cdot 1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.5 \cdot 60 \cdot 10^{6} / 3600 * (1-0.9) = 0.02833333 \textit{s/c}; \\ \textit{\textit{M}}_{2936}^{8 \text{ M/c}} = 0.04 \cdot 0.01 \cdot 1.7 \cdot 1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.5 \cdot 60 \cdot 10^{6} / 3600 * (1-0.9) = 0.02833333 \textit{s/c}; \\ \end{array}$ $\Pi_{2936} = 0.04 \cdot 0.01 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.5 \cdot 50000 * (1-0.9) = 0.06 m/eod.$

Взам.инв.№	
Подп. и дата	
Инв.№ подл.	

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

ИЗАВ №6292. погрузо-разгрузочные работы на железнодорожном грузовом фронте (причалы №71-72)

Источниками выделения являются:

- перегрузка угля;
- перегрузка кокса;
- работа ДСК и конвейера;
- работа воздуходувок.
- перегрузка глинозема
- перегрузка нефтекокса
- перегрузка окалины (шлака)

Выбросы от воздуходувок составят:

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год	
код	наименование	выброс, г/с	годовой выорос, глод	
301	Азота диоксид (Азот (IV) оксид)	0,0007556	0,0009955	
304	Азот (II) оксид (Азота оксид)	0,0001228	0,0001618	
330	Сера диоксид (Ангидрид сернистый)	0,0002694	0,000355	
337	Углерод оксид	0,0522222	0,068808	
2704	Бензин (нефтяной, малосернистый)	0,0066667	0,008784	

В расчете выбросов учтена неодновременность перегрузочных работ с разными грузами.

Максимально-разовый выброс принят максимальный по каждому грузу

Валовый выброс суммирован с учетом всех видов грузов

Всего по источнику выбросов:

	Загрязняющее вещество	Максимально	Годовой
коп.	наименование	разовый	выброс,
код	паимспование	выброс, г/с	т/год
	При перегрузке каменного угля		
3749	Пыль каменного угля	0,010931	0,023825
	При перегрузке кокса		
3749	Пыль каменного угля	0,004548	0,004431
	При перегрузке глинозема		
101	диАлюминий триоксид/в пересчете на алюминий/	0,017850	0,136080
	При перегрузке нефтекокса / кокса электродного		
328	Углерод (пигмент черный)	0,148750	0,025200
	При перегрузке окалины (шлака)		
101	диАлюминий триоксид/в пересчете на алюминий/	0,144600	0,017010
123	диЖелезо триоксид, (железа оксид)/в пе-ресчете на железо/(Железо сесквиоксид)	1,528000	0,179800
	Пыль неорганическая, содержащая дву-окись кремния, в %: - менее 20 (доломит, пыль		
2909	цементного производства - извест-няк, мел, огарки, сырьевая смесь, пыль вращающихся	0,951000	0,111900
	печей, боксит и другие)		

Расчет по каждому грузу выполнен на максимальную загруженность склада, поэтому в расчете рассеивания учтена неодновременность движения грузов, и по каждому веществу принят максимально-разовый выброс:

	Загрязняющее вещество	Максимально	Годовой
код	наименование	разовый	выброс,
	паименование	выброс, г/с	т/год
101	диАлюминий триоксид/в пересчете на алюминий/	0,144600	0,153090
123	диЖелезо триоксид, (железа оксид)/в пе-ресчете на железо/(Железо сесквиоксид)	1,528000	0,179800
328	Углерод (пигмент черный)	0,148750	0,025200
	Пыль неорганическая, содержащая дву-окись кремния, в %: - менее 20 (доломит, пыль		
2909	цементного производства - извест-няк, мел, огарки, сырьевая смесь, пыль вращающихся	0,951000	0,111900
	печей, боксит и другие)		
3749	Пыль каменного угля	0.010931	0.028255

Максимально-разовый выброс с учетом ветра принят:

Скорс	ость ветра, м/с	0,5	2	4	6	8	8,4
Колич	ество ЗВ, г/с						
101 диАлюминий триоксид/в пересчете на алюминий/		0,085	0,085	0,102	0,1191	0,1446	0,1446
123	диЖелезо триоксид, (железа оксид)/в пе-ресчете на железо/(Железо сесквиоксид)	0,8989	0,8989	1,079	1,259	1,528	1,528
328	Углерод (пигмент черный)	0,0875	0,0875	0,105	0,1225	0,14875	0,14875
2909	Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства - извест-няк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,5595	0,5595	0,671	0,783	0,951	0,951
3749	Пыль каменного угля	0,010604	0,010604	0,010697	0,010790	0,010930	0,010930

ИВ Разгрузка угля на склад (пр. 71-72)

Источником выделения пыли является перемещение масс угля (разгрузка и погрузка, ссыпание, перегрузка).

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

MHB.No

и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,000793	0,002580

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельное выделение при разгрузке (перегрузке) материала, q_n [г/т]	0,32
Количество разгружаемого (перегружаемого) материала, Π_e [т/год]	960000
Количество разгружаемого (перегружаемого) материала, Π_{i} [т/час]	750
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, № [м/с]	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, $w_{\varepsilon}[\text{м/c}]$	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Высота разгрузки материала, [м]	2
Коэффициент, учитывающий высоту пересыпки материала (табл. 6.9), K_3	0,7
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	1
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_n = q_n \cdot \Pi_z \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot 10^{-6} \cdot (1-\eta), \ m/zo\partial$$
[1]
 $G_n = (q_n \cdot \Pi_u \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot (1-\eta))/3600, \ z/c$ [2]

где

Взам.инв.

윋

 q_n – удельное выделение при разгрузке (перегрузке) материала, z/m;

 Π_e – количество разгружаемого (перегружаемого) материала, $m/eo\partial$;

П_ч – максимальное количество перегружаемого материала за час, *m/час*;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

*К*₃ – коэффициент, учитывающий высоту пересыпки материала (таб. 6.9 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

<u>При разгрузочных (перегрузочных) работах:</u> **М**₃₇₄₉= 0,002580 *m*/год

G ₃₇₄₉= 0,002580 111/200

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,000467	0,000467	0,000560	0,000653	0,000793	0,000793

ИВ Разгрузка кокса на склад (пр. 71-72)

Источником выделения пыли является перемещение масс кокса (разгрузка и погрузка, ссыпание, перегрузка).

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

Taominga T Mapaniropin	тика выдолении сагрисниющих воществ в аттосфор	3	
	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0.000190	0.000323

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

. com de a manadiment de maniera de mante de maniera de	
Удельное выделение при разгрузке (перегрузке) материала, q_n [г/т]	0,32
Количество разгружаемого (перегружаемого) материала, П₂[т/год]	120000
Количество разгружаемого (перегружаемого) материала, П, [т/час]	180
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, $w_{\rm s}$ [м/с]	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, <i>w</i> ₅ [м/с]	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Высота разгрузки материала, [м]	2
Коэффициент, учитывающий высоту пересыпки материала (табл. 6.9), K_3	0,7
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), К₄	1
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0
<u> </u>	

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

Количество пыли, выорасываемои в атмосферу, рассчитывается по формулам (1, 2):							
						ODOGA (Лист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	149

где

 q_n – удельное выделение при разгрузке (перегрузке) материала, a/m;

 Π_z – количество разгружаемого (перегружаемого) материала, m/zod;

П₄ – максимальное количество перегружаемого материала за час, *m/час;*

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 K_3 – коэффициент, учитывающий высоту пересыпки материала (таб. 6.9 Методики);

 $\it K_4$ – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При разгрузочных (перегрузочных) работах. M_{3749} = 0,000323 m/200 G_{3749} = 0,000190 e/20

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,000112	0,000112	0,000134	0,000157	0,000190	0,000190

ИВ Мобильные сортировочные устройства (уголь) (пр. 71-72)

Источником выделения пыли является работа дробильно-сортировочных установок

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
3749	Пыль каменного угля	0,006800	0,019584

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Наименование оборудования	дск
Количество одновременно работающих установок	3
Удельное выделение при дроблении материала, q_n [г/т]	2,04
Количество разгружаемого (перегружаемого) материала, П₂ [т/год]	960000
Количество разгружаемого (перегружаемого) материала, П, [т/час]	1200
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_n = q_n \cdot \Pi_z \cdot K_1 \cdot 10^{-6}, m/\text{200}$$
 [1] $G_n = (q_n \cdot \Pi_y \cdot K_1)/3600, e/c$ [2]

где: q_n – удельное выделение твердых частиц при работе самоходных дробильных установок, г/т породы;

Определеяется по таб. 6.11 Методики.

 Π_{ϵ} - количество переработанной породы за год, *m/год*;

 Π_{y} – максимальное количество перегружаемого материала за час, m/час;

 K_1 - коэффициент, учитывающий влажность материала (табл.4.2 Методики).

Согласно «Методического пособия по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух» применяется поправочный коэффициент гравитации для пыли равный 0,4

ИВ Мобильные сортировочные устройства (кокс) (пр. 71-72)

Источником выделения пыли является работа дробильно-сортировочных установок

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
3749	Пыль каменного угля	0,001020	0,002448

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

MHB.No

Наименование оборудования	ДСК
Количество одновременно работающих установок	3
Удельное выделение при дроблении материала, qn [г/т]	2,04
Количество разгружаемого (перегружаемого) материала, Л₂[т/год]	120000
Количество разгружаемого (перегружаемого) материала, П, [т/час]	180
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$M_n=q_n\cdot\Pi_a\cdot K_1\cdot 10^6,\ m/co\partial$ [1] $G_n=(q_n\cdot\Pi_a\cdot K_1)/3600,\ c/c$ [2]								
							Лист	
Изм	Коп уч	Пист	№ док.	Подп.	Дата	OBOC2.6	150	
113M.	1031.y 1	этист	У12 ДОК.	тюди.	дата			

где: q_n – удельное выделение твердых частиц при работе самоходных дробильных установок, г/т породы; Определеяется по таб. 6.11 Методики.

 Π_{ϵ} - количество переработанной породы за год, $m/\epsilon o \partial$;

П_ч – максимальное количество перегружаемого материала за час, *m/час;*

 K_1 - коэффициент, учитывающий влажность материала (табл.4.2 Методики).

Согласно «Методического пособия по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух» применяется поправочный коэффициент гравитации для пыли равный 0,4

ИВ Работа транспортерной ленты - 2 шт (пр. 71-72)

Источником выделения пыли является унос пыли при транспортировании угля ленточным конвейером.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Максимально	Годовой	
1/05	HOMMOHODOHIMO	разовый	выброс,
код	наименование	выброс, г/с	т/год
3749	Пыль каменного угля	0,003240	0,001633

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, q_n [г/кв.м*с]	0,003
Количество конвейеров одного типа, n_i	3
Ширина ленты конвейера, b_I [м];	1,2
Длина ленты конвейера, L_j [м];	30
Влажность материала, %	>11%
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Количество рабочих часов конвейра в год, T_i [ч/год]	5040
Скорость ветра, W_{θ} [м/с]	8,4
Скорость движения конвейера, w₀[м/с]	2
Скорость обдува материала, V _{of} [м/с]	2
Коэффициент, учитывающий скорость обдува материала(принимается по ближайшему значению) (таб. 7.19 Методики), K_{ob}	1
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), К₄	1
Эффективность пылеподавления (таб 7.16), η [долл.ед]	0
14 11 11 11 11 11 11 11	

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

где

Взам.инв..

MHB.No

 q_n – удельная сдуваемость твердых частиц с 1 кв.м поверхности массы, г/кв.м*с;

 b_i — ширина ленты ковейера, м;

 I_{i} – длина ленты конвейера, м;

 T_i – количество рабочих часов конвейра в год, ч/год;

 \textit{K}_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_{ob} – коэффициент, учитывающий скорость обдува материала (таб. 7.19 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

п - эффективность применяемых средств пылеподавления, дол.ед (таб. 7.16 Методики).

При расчете выбросов от конвейеров, эксплуатирующихся в помещении учитывается коэффициент осаждения 0,4, при этом коэффициент К_{об}=1, остальные коэффициенты принимаются как указано выше

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При транспортировке ленточным конвейером:

0.001633 т/год $M_{3749} =$ 0.003240 **G** 3749=

ИВ Зачистка вагонов (пр. 71-72)

Источником выделения пыли является унос пыли при зачистке вагонов.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне) Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

Загрязняющее	Максимальн	Годовой	
WO F	HOMMOHODOHMO	о разовый	выброс,
код	наименование	выброс, г/с	т/год
3749	Пыль каменного угля	0,000097	0,00002 7

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельное количество сдуваемых твердых частиц с поверхности штабеля угля, $q_{c\partial}$ [кг/кв.м*c]	0,00000 1
Площадь вагона, S_{ω} [кв.м]	27
Количество вагонов в сутки	60
Влажность материала, %	>11%

	Площадь вагона, S_{ω} [кв.м]										
	Количество вагонов в сутки										
		Влажность материала, %									
									Лист		
							OBOC2.6				
	Изм	. Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.0		151		
_	-	•		-		•					

Взам.инв.

윋

Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость обдува, w_e [м/с]	79
Коэффициент, учитывающий скорость обдува (табл. 6.4), K_2	9
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), К₄	1
Коэффициент, учитывающий профиль поверхности складируемого материала, K_6	0,1
Количество часов работы в год Т	8000
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0
Коэффициент измельчения горной массы, $ ho$	0,1

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

где

 $extbf{ extit{q}}_{car{o}}$ – удельное количество сдуваемых твердых частиц с поверхности штабеля угля, кг/кв.м*с;

S_{*w*} − площадь вагона, кв.м;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 ${\it K}_2$ – коэффициент, учитывающий скорость обдува (таб. 6.4 Методики);

К₄ – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 K_6 – коэффициент, учитывающий профиль поверхности складируемого материала;

р - коэффициент измельчения горной массы;

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При зачистке вагонов:

 M_{3749} = 0,0000 m_{3749} = 0,0001 m_{3749} = 0 m_{3749} = 0 m_{3749} = 0

ИВ Воздуходувка

Источниками выделений загрязняющих веществ являются двигатели автомобилей, перемещающихся по территории предприятия.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами:

Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). Москва, 1998, с дополнениями и изменениями к Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М, 1999 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №49 в Перечне).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу от автотранспортных средств, приведена в таблице 1.1.1.

Таблица 1.1.1 - **Характеристика выделений загрязняющих веществ в атмосферу**

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
301	Азота диоксид (Азот (IV) оксид)	0,0007556	0,0009955
304	Азот (II) оксид (Азота оксид)	0,0001228	0,0001618
330	Сера диоксид (Ангидрид сернистый)	0,0002694	0,000355
337	Углерод оксид	0,0522222	0,068808
2704	Бензин (нефтяной, малосернистый)	0,0066667	0,008784

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

		Количество авто	Однов	
Наименование	Тип автотранспортного средства	среднее в течение	максимально	ременн
		суток	е за 1 час	ОСТЬ
воздуходувка	Легковой, объем свыше 3,5л, карбюр., бензин	1	1	+

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Выбросы *i*-го вещества при движении автомобилей по расчётному внутреннему проезду *M_{пР ік}* рассчитывается по формуле 1.1.1):

$$\mathbf{M}_{\Pi P i} = \sum_{k=1}^{K} \mathbf{m}_{L i k} \cdot \mathbf{L} \cdot \mathbf{N}_{k} \cdot \mathbf{D}_{P} \cdot 10^{-6},$$
т/год (1.1.1)

где m_{Lik} – пробеговый выброс i-го вещества, автомобилем k-й группы при движении со скоростью 10-20 км/час e/км;

 $m{L}$ - протяженность расчётного внутреннего проезда, ${\it km}$;

 $\emph{\textbf{N}}_\emph{k}$ - среднее количество автомобилей $\emph{\textbf{k}}$ -й группы, проезжающих по расчётному проезду в течении суток;

 D_P - количество расчётных дней.

Максимально разовый выброс i-го вещества G_i рассчитывается по формуле (1.1.2):

$$G_{i} = \sum_{k=1}^{k} m_{Lik} \cdot L \cdot N'_{k} / 3600, r/c$$
 (1.1.2)

где N'_k – количество автомобилей k-й группы, проезжающих по расчётному проезду за 1 час, характеризующийся максимальной интенсивностью проезда автомобилей.

Удельные выбросы загрязняющих веществ при пробеге по расчётному проезду приведены в таблице 1.1.3.

Таблица 1.1.3 - Удельные выбросы загрязняющих веществ

Тип	Загрязняющее вещество	Пробег, г/км
Легковой, объем свыше 3,5л, карбюр., бензин	Азота диоксид (Азот (IV) оксид)	0,272
	Азот (II) оксид (Азота оксид)	0,0442
	Сера диоксид (Ангидрид сернистый)	0,097
	Углерод оксид	18,8
	Бензин (нефтяной, малосернистый)	2,4

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Годовое выделение загрязняющих веществ **М**, *m/год*:

воздуходувка

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	

Взам.инв.

Инв.№

```
M_{301} = 0,272 · 10 · 1 · 366 · 10<sup>-6</sup> = 0,0009955:
M_{304} = 0.0442 \cdot 10 \cdot 1 \cdot 366 \cdot 10^{-6} = 0.0001618;
M_{330} = 0.097 \cdot 10 \cdot 1 \cdot 366 \cdot 10^{-6} = 0.000355;
M_{337} = 18.8 \cdot 10 \cdot 1 \cdot 366 \cdot 10^{-6} = 0.068808;
\mathbf{M}_{2704} = 2.4 \cdot 10 \cdot 1 \cdot 366 \cdot 10^{-6} = 0.008784.
```

Максимально разовое выделение загрязняющих веществ G, г/с:

воздуходувка

 $\mathbf{G}_{301} = 0.272 \cdot 10 \cdot 1 / 3600 = 0.0007556$: $G_{304} = 0.0442 \cdot 10 \cdot 1 / 3600 = 0.0001228;$ $G_{330} = 0.097 \cdot 10 \cdot 1 / 3600 = 0.0002694;$ $G_{337} = 18.8 \cdot 10 \cdot 1 / 3600 = 0.0522222;$ $G_{2704} = 2.4 \cdot 10 \cdot 1 / 3600 = 0.0066667.$

Из результатов расчётов максимально разового выброса для каждого типа автотранспортных средств в итоговые результаты по источнику занесены наибольшие значения, полученные с учетом неодновременности и нестационарности во времени движения автотранспортных средств.

ИВ работы по перегрузке глинозема на ж/д фронте

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 1-й стороны (K_4 = 0,1). Высота падения материала при пересыпке составляет 1,0 м (B = 0,5). Залповый сброс при разгрузке автосамосвала отсутствует (K_9 = 1). Расчетные скорости ветра, м/с: 0,5 (K_3 = 1); 2 (K_3 = 1); 4 (K_3 = 1,2); 6 (K_3 = 1,4); 8 (K_3 = 1,7); 8,4 (K_3 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_3 = 1,2).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	агрязняющее вещество		лении загрязняющих веществ в		nazoniji nijihoo t/o	Годовой выб	Spac T/FOR
	· · · · · · · · · · · · · · · · · · ·	,	Пылеподавление, %	Максимально разовый выброс, г/с			
код	наименование			до	после	до	после
0101	i ·	оксид/в		0,1785	0,01785	1,3608	0,13608
	пересчете на алюмин	ий/	Технология пылеподавления:				
			Гранулирование пылящего				
			материала. Процесс				
			производства глинозема				
			гидрохимическим способом				
			Байера заключается в				
			разложении (гидролизе)				
			щелочно-алюминатных				
			растворов при высоких				
			температурах с последующим				
			выделением гидроксида				
			алюминия включает в себя				
			прокаливание и кальцинация				
			(обезвоживание) гидрооксида				
			алюминия, что по сути				
			связывает поверхность, поэтому				
			при перегрузке принято				
			снижение выбросов 90% как при				
			перегрузке гранулированного				
			материала.				

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Материал	Параметры	Одноврем енность
сдуваемости приняты по аналогу – клинкер)	Количество перерабатываемого материала: $G_4 = 400$ т/час; $G_{7} = 1200000$ т/год. Весовая доля пылевой фракции в материале: $K_{7} = 0,01$. Доля пыли, переходящая в аэрозоль: $K_{2} = 0,003$. Влажность до 1% ($K_{5} = 0,9$). Размер куска 5-3 мм ($K_{7} = 0,7$) ($K_{8} = 1$). Технология пылеподавления: Гранулирование пылящего материала.	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_4 \cdot 10^6 / 3600, \ e/c$$
 (1.1.1)

где K_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

К₂ - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

 K_7 - коэффициент, учитывающий крупность материала; K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств K_8 = 1;

 ${\it K}_{\it 9}$ - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_{4} - суммарное количество перерабатываемого материала в час, m/час.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{eod}, m/eod$$

$$\tag{1.1.2}$$

Лист

153

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

OBOC2.6						
	Дата	Подп.	№ док.	Лист	Кол.уч	Изм.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

```
 \frac{ \Gamma_{\text{ЛИНОЗЕМ}} }{ \textit{M}_{2908}^{0.5 \text{ M/C}} } = 0.01 \cdot 0.003 \cdot 1 \cdot 0.1 \cdot 0.9 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.5 \cdot 400 \cdot 10^6 \ / \ 3600 \ * \ (1-0.9) = 0.0105 \ \textit{e/c}; 
\mathbf{M}_{2908}^{4 \text{ M/c}} = 0.01 \cdot 0.003 \cdot 1.2 \cdot 0.1 \cdot 0.9 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.5 \cdot 400 \cdot 10^6 / 3600 * (1-0.9) = 0.0126 \ e/c;

\mathbf{M}_{2908}^{6 \text{ M/c}} = 0.01 \cdot 0.003 \cdot 1.4 \cdot 0.1 \cdot 0.9 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.5 \cdot 400 \cdot 10^6 / 3600 * (1-0.9) = 0.0147 \ e/c;
\textit{M}_{2908}^{8 \text{ M/c}} = 0.01 \cdot 0.003 \cdot 1.7 \cdot 0.1 \cdot 0.9 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.5 \cdot 400 \cdot 10^6 / 3600 * (1-0.9) = 0.01785 \ \textit{e/c}; \textit{M}_{2908}^{8.4 \text{ M/c}} = 0.01 \cdot 0.003 \cdot 1.7 \cdot 0.1 \cdot 0.9 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.5 \cdot 400 \cdot 10^6 / 3600 * (1-0.9) = 0.01785 \ \textit{e/c};
\Pi_{2908} = 0.01 \cdot 0.003 \cdot 1.2 \cdot 0.1 \cdot 0.9 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.5 \cdot 1200000 * (1-0.9) = 0.13608  m/sod.
```

ИВ работы по перегрузке нефтекокса /кокса электродного на ж/д фронте

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 4-х сторон (K₄ = 1). Высота падения материала при пересыпке составляет 2,0 м (В = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует ($K_9 = 1$). Расчетные скорости ветра, м/с: 0,5 ($K_3 = 1$); 2 ($K_3 = 1$); 4 ($K_3 = 1,2$); 6 ($K_3 = 1,4$); 8 ($K_3 = 1,4$); 9 ((K_3 = 1,7). Средняя годовая скорость ветра 3,8 м/с (K_3 = 1,2).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

Загрязняющее вещество		Пылеподавление, %	Максимально разовый выброс, г/с		Годовой выброс, т/год	
код	наименование		до	после	до	после
328		90 Технология пылеподавления: Гранулирование пылящего материала. Кокс подвергается прокаливанию. Прокаливание нефтяного кокса — это процесс нагрева сырого нефтяного кокса до 1250-1350°С. При этом его молекулярная структура принимает более организованную форму с четкой кристаллической решеткой. Благодаря физическим и химическим процессам, происходящим с сырьевым материалом, происходит улучшение потребительских свойств кокса, что по сути связывает поверхность кокса, поэтому при перегрузке гранулированного материала.		0,14875	0,252	0,0252

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - **Исходные данные для расчета**

ſ	Материал	Параметры	Одноврем
Материал		Параметры	енность
ĺ	Перегружаемый материал: Нефтекокс / кокс	Количество перерабатываемого материала: Gч = 750 т/час; Gгод = 50000	+
١	электродный	т/год. Весовая доля пылевой фракции в материале: K_1 = 0,03. Доля пыли,	
١	Эмпирические коэффициенты, зависящие от	переходящая в аэрозоль: K_2 = 0,04. Влажность свыше 10 до 20% (K_5 = 0,01).	
١	типа перегружаемого материала приняты по	Размер куска 50-10 мм (K_7 = 0,5). Технология пылеподавления:	
l	аналогу - графит	Гранулирование пылящего материала.	
	типа перегружаемого материала приняты по	Размер куска 50-10 мм (K_7 = 0,5). Технология пылеподавления:	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{PP} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_4 \cdot 10^6 / 3600, \, e/c$$
 (1.1.1)

где **К**₁ - весовая доля пылевой фракции (0 до 200 мкм) в материале;

К₂ - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

 $\textit{\textbf{K}}_{5}$ - коэффициент, учитывающий влажность материала;

 ${\it K}_{7}$ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств $K_8 = 1$;

 K_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 $G_{\text{ч}}$ - суммарное количество перерабатываемого материала в час, *m/час*.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{eod}, m/eod$$

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Взам.инв.

AHB.No

```
 \frac{\text{Нефтекокс / кокс электродный}}{\textit{M}_{328}{}^{0.5 \text{ M/c}}} = 0.03 \cdot 0.04 \cdot 1 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 \, / \, 3600 \, * \, (1-0.9) = 0.0875 \, \text{ s/c}; 
M_{328}^{4 \text{ m/c}} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 * (1-0.9) = 0.105 \ e/c;
\mathbf{M}_{328}^{6 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1.4 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 * (1-0.9) = 0.1225 \ a/c;
\mathbf{M}_{328}^{6 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^{6} / 3600 * (1-0.9) = 0.14875 \ a/c;
M_{328}^{8.4 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 750 \cdot 10^6 / 3600 \times (1-0.9) = 0.14875 \ \text{e/c};
\Pi_{328} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 0.7 \cdot 50000 * (1-0.9) = 0.0252  m/zoð.
```

Изм	и. Ко	л.уч	Лист	№ док.	Подп.	Дата

(1.1.2)

ИВ работы по перегрузке окалины (шлака) на ж/д фронте

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 4-х сторон (K₄ = 1). Высота падения материала при пересыпке составляет 2,0 м (В = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует ($K_9 = 1$). Расчетные скорости ветра, м/с: 0,5 ($K_3 = 1$); 2 ($K_3 = 1$); 4 ($K_3 = 1,2$); 6 ($K_3 = 1,4$); 8 ($K_3 = 1,7$); 8,4 $(K_3 = 1,7)$. Средняя годовая скорость ветра 3,8 м/с $(K_3 = 1,2)$.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Пылеподавление, %	Максимально разовый выброс, г/с		Годовой выброс, т/год	
код	наименование		до	после	до	после
Всего п	ыли 100%, из них:	90	26,2395	2,62395	3,087	0,3087
0101	диАлюминий триоксид/в	Технология пылеподавления:	-	0,1446	-	0,01701
	пересчете на алюминий/ (5,51%)	Гранулирование пылящего материала.				
0123	диЖелезо триоксид, (железа		-	1,528	-	0,1798
	оксид)/в пересчете на	Прокаливание нефтяного кокса – это				
	железо/(Железо сесквиоксид)					
	(58,24%)	кокса до 1250-1350°С. При этом его				
2909	Пыль неорганическая,		-	0,951	-	0,1119
	содержащая двуокись кремния,	более организованную форму с четкой				
	в %: - менее 20 (доломит, пыль					
	цементного производства -	физическим и химическим процессам,				
	известняк, мел, огарки, сырьевая	происходящим с сырьевым материалом,				
	смесь, пыль вращающихся	происходит улучшение потребительских				
	печей, боксит и другие)	свойств кокса, что по сути связывает				
		поверхность кокса, поэтому при				
		перегрузке принято снижение выбросов				
		90% как при перегрузке				
		гранулированного материала.				

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Материал	Параметры	Одноврем енность
	Количество перерабатываемого материала: $G_4 = 1080$ т/час; $G_{100} = 50000$ т/год. Весовая доля пылевой фракции в материале: $\mathbf{K}_1 = 0,05$. Доля пыли, переходящая в аэрозоль: $\mathbf{K}_2 = 0,02$. Влажность до 5% ($\mathbf{K}_5 = 0,7$). Размер куска 5-3 мм ($\mathbf{K}_7 = 0,7$). Технология пылеподавления: Гранулирование пылящего материала.	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{\Gamma P} = \mathbf{K}_{1} \cdot \mathbf{K}_{2} \cdot \mathbf{K}_{3} \cdot \mathbf{K}_{4} \cdot \mathbf{K}_{5} \cdot \mathbf{K}_{7} \cdot \mathbf{K}_{8} \cdot \mathbf{K}_{9} \cdot \mathbf{B} \cdot \mathbf{G}_{4} \cdot 10^{6} / 3600, \, a/c$$
(1.1.1)

где K_1 - весовая доля пылевой фракции (0 до 200 мкм) в материале:

 K_2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К₃ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала;

 K_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств $K_8 = 1$;

 K_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_y - суммарное количество перерабатываемого материала в час. m/час.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{eo\partial}, m/eo\partial$$

$$\tag{1.1.2}$$

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Взам.инв.

윋

 $\frac{\text{Шлак}}{\textit{M}_{\textit{пыни}}} = 0.05 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^6 / 3600 * (1-0.9) = 1.5435 \, \textit{e/c};$

 $\begin{array}{l} \mathbf{\textit{M}}_{\textit{hibitu}} = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^6 / 3600 \cdot (1-0.9) = 1,8432 \, \textit{s/c}; \\ \mathbf{\textit{M}}_{\textit{hibitu}} \,^{4 \, \text{M/c}} = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^6 / 3600 \cdot (1-0.9) = 2,1609 \, \textit{s/c}; \\ \mathbf{\textit{M}}_{\textit{hibitu}} \,^{8 \, \text{M/c}} = 0.05 \cdot 0.02 \cdot 1.4 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^6 / 3600 \cdot (1-0.9) = 2,1609 \, \textit{s/c}; \\ \mathbf{\textit{M}}_{\textit{hibitu}} \,^{8 \, \text{M/c}} = 0.05 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^6 / 3600 \cdot (1-0.9) = 2,62395 \, \textit{s/c}; \\ \mathbf{\textit{M}}_{\textit{hibitu}} \,^{8.4 \, \text{M/c}} = 0.05 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^6 / 3600 \cdot (1-0.9) = 2,62395 \, \textit{s/c}; \\ \mathbf{\textit{M}}_{\textit{hibitu}} \,^{8.4 \, \text{M/c}} = 0.05 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 1080 \cdot 10^6 / 3600 \cdot (1-0.9) = 2,62395 \, \textit{s/c}; \\ \end{array}$

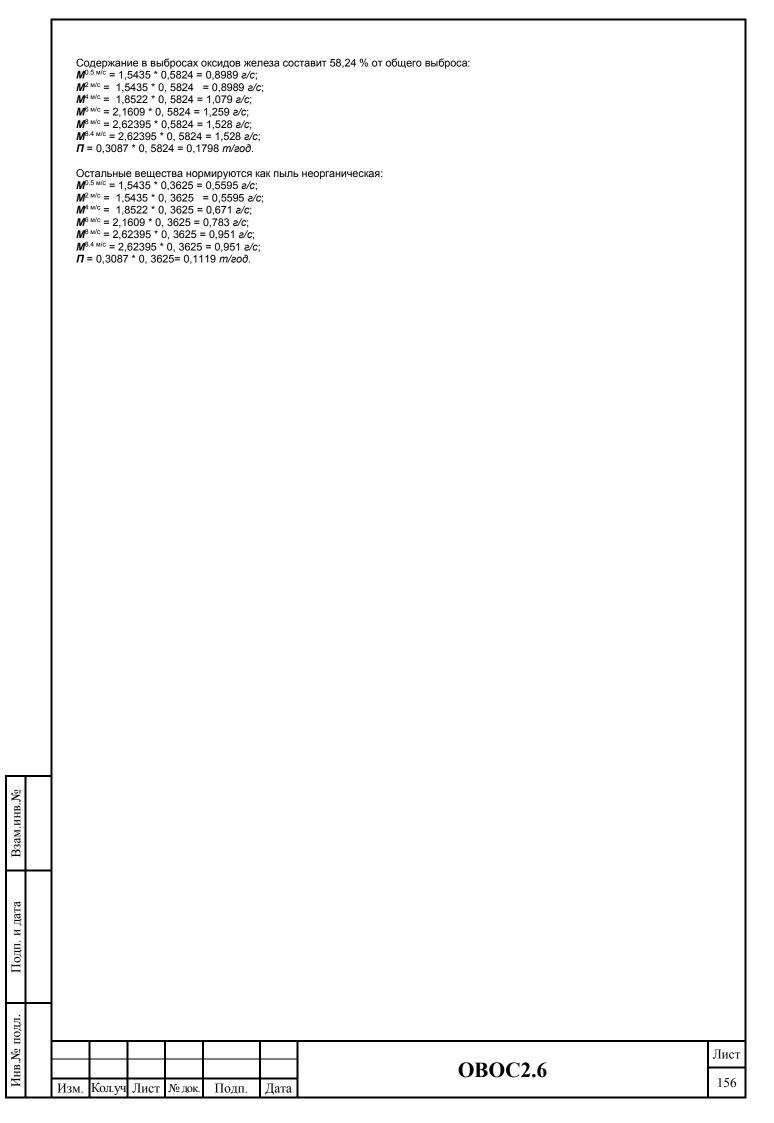
 $\Pi_{\text{пыпи}} = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.15 \cdot 1 \cdot 0.7 \cdot 50000 * (1-0.9) = 0.3087 \text{ m/sod.}$

Содержание в выбросах оксидов алюминия составит 5,51 % от общего выброса:

 $M^{0.5 \text{ M/c}} = 1,5435 * 0,0551 = 0,0850 \text{ e/c};$

 $M^{2 \text{ M/c}} = 1,5435 * 0,0551 = 0,0850 \text{ e/c};$

 $M^{4 \text{ M/c}} = 1,8522 * 0,0551 = 0,102 \text{ e/c};$


 $M^{6 \text{ M/C}} = 2,1609 * 0,0551 = 0,1191 \text{ e/c};$

 $M^{8 \text{ M/C}} = 2,62395 * 0,0551 = 0,1446 \text{ e/c};$

 $M^{8.4 \text{ M/C}} = 2,62395 * 0,0551 = 0,1446 \text{ e/c};$ $\Pi = 0.3087 * 0.0551 = 0.0170$ m/zod.

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

\mathbf{O}	P	\cap	C2.	6
\ /	.,	\ /		. ()

Источниками выделения являются:

- перегрузка угля;
- хранение угля.

Всего выбросов по источнику:

	Загрязняющее вещество	Максимально	Годовой выброс, т/год				
код	наименование	разовый выброс, г/с					
3749	Пыль каменного угля	0,003419	0,025866				
Максимально-разовый выброс с учетом ветра:							

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Количество ЗВ, г/с	G ₃₇₄₉ =	0,002011	0,002011	0,002413	0,002816	0,003419	0,003419

ИВ Разгрузка угля на склад нетоварного угля

Источником выделения пыли является перемещение масс угля (разгрузка и погрузка, ссыпание, перегрузка).

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами:

ООтраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

Загрязняющее вещество				Максимально разовый	Годовой	
код	код наименование					выброс, т/год
3749	49 Пыль		каменного угля		0,000106	0,000009

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельное выделение при разгрузке (перегрузке) материала, q_n [г/т]	0,32
Количество разгружаемого (перегружаемого) материала, П₂ [т/год]	3500
Количество разгружаемого (перегружаемого) материала, П, [т/час]	100
Влажность материала, %	11,00
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, w _s [м/с]	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, w_e [м/с]	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Высота разгрузки материала, [м]	2
Коэффициент, учитывающий высоту пересыпки материала (табл. 6.9), K_3	0,7
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), K_4	1
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0
V	

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_n = q_n \cdot \Pi_e \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot 10^{-6} \cdot (1-\eta), \text{ m/zoo}$$
 [1] $G_n = (q_n \cdot \Pi_n \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot (1-\eta))/3600, \text{ e/c}$ [2]

AHB.No

 q_n – удельное выделение при разгрузке (перегрузке) материала, z/m;

 Π_{e} – количество разгружаемого (перегружаемого) материала, m/zod;

 Π_{v} – максимальное количество перегружаемого материала за час, m/vас;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 K_3 – коэффициент, учитывающий высоту пересыпки материала (таб. 6.9 Методики);

 K_4 – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 η - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При разгрузочных (перегрузочных) работах: $M_{3749} =$ 0.000009

G 3749= 0.000106 s/c

Кол.уч Лист № док.

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,000062	0,000062	0,000075	0,000087	0,000106	0,000106

ИВ Открытый склад нетоварного угля

Подп

Источником выделения пыли является унос пыли с верхнего слоя штабеля при статическом хранении.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: Отраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой
код	наименование	выброс, г/с	выброс, т/год
3749	Пыль каменного угля	0,001972	0,025738

	3749		Γ	Іыль каменного угля	0,001972	0,025738	
				,	<u>.</u>		
			1				
				(OBOC2.6		

157

Таблица 2 - Исходные данные для расчета

Удельное количество сдуваемых твердых частиц с поверхности штабеля угля, q_{cd} [кг/кв.м*c]	0,000001
Площадь основания штабеля угля, S_{ω} [кв.м]	800
Влажность материала, %	11,00
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01
Скорость ветра 95% обеспеченности, <i>w</i> _e [м/с]	8,4
Коэффициент, учитывающий скорость ветра 95% обеспеченности (табл. 6.4), K_2	1,7
Максимальная среднегодовая скорость ветра, $w_{\rm e}$ [м/с]	3,8
Коэффициент, учитывающий среднегодовую скорость ветра (табл. 6.4), K_2	1,2
Коэффициент, учитывающий степень защищенности узла от внешних воздействий (табл. 6.10), К₄	1
Коэффициент, учитывающий профиль поверхности складируемого материала, K_6	1,45
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0
Коэффициент измельчения горной массы, $ ho$	0,1
Количество дней с устойчивым снежным покровом, T_{cn}	80
Количество дней с осадками в виде дождя, T_{∂}	71

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_{c\partial} = 86.4 \cdot q_{c\partial} \cdot S_{\omega} \cdot K_1 \cdot K_2 \cdot K_4 \cdot K_6 \cdot \rho \cdot (365 - (T_{cn} + T_{\partial})) \cdot (1 - \eta), \ m/eo\partial \quad [1]$$

$$G_{c\partial} = q_{c\partial} \cdot S_{\omega} \cdot K_1 \cdot K_2 \cdot K_4 \cdot K_6 \cdot \rho \cdot (1 - \eta) \cdot 1000, \ e/c \quad [2]$$

 $q_{c \hat{\sigma}}$ – удельное количество сдуваемых твердых частиц с поверхности штабеля угля, кг/кв.м*с;

 S_{w} – площадь основания штабеля угля, кв.м;

К₁ – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

К₂ – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 $extit{K}_4$ – коэффициент, учитывающий степень защищенности узла от внешних воздействий (таб. 6.10 Методики);

 \emph{K}_6 – коэффициент, учитывающий профиль поверхности складируемого материала;

р - коэффициент измельчения горной массы;

 T_{cn} - количество дней с устойчивым снежным покровом;

 T_{∂} - количество дней с осадками в виде дождя;

 $\pmb{\eta}$ - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

При статическом хранении угля:

0.025738 M₃₇₄₉= т/год G 3749= 0,001972

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,001160	0,001160	0,001392	0,001624	0,001972	0,001972

ИВ Отгрузка угля со склада нетоварного угля экскаватором

Источником выделения пыли является перемещение масс угля в пределах склада.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами:

ООтраслевая методика расчета количества отходящих, уловленных и выбрасываемых в атмосферу загрязняющих веществ при сжигании угля и технологических процессах горного производства на предприятиях угольной промышленности. Пермь, 2014 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р , позиция №108 в Перечне)

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - **Характеристика выделений загрязняющих веществ в атмосферу**

	•	Загрязняющее вещество	Максимально разовый	Годовой
код		наименование	выброс, г/с	выброс, т/год
2908		Пыль неорганическая SiO2 70-20%	0,00134	0,00012

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

Удельное выделение при разгрузке (перегрузке) материала, q_n [г/куб.м], (таб. 6.1-6.3)	2,84			
Количество разгружаемого (перегружаемого) материала, Л₂[т/год]	3500			
Количество разгружаемого (перегружаемого) материала, Пи [т/час]	100			
Влажность материала, %	11,00			
Коэффициент, учитывающий влажность перегружаемого материала (табл. 4.2), K_1	0,01			
Максимальная среднегодовая скорость ветра, w_{s} [м/с]	3,8			
Максимальная скорость ветра, $w_{\mathfrak{s}}[M/c]$	8,4			
Коэффициент, учитывающий максимальную скорость ветра (табл. 6.4), K_2	1,7			
Коэффициент, учитывающий максимальную среднегодовую скорость ветра (табл. 6.4), K_2				
Эффективность пылеподавления (таб 6.5), η [долл.ед]	0			

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2): $M_n = q_n \cdot \Pi_z \cdot K_1 \cdot K_2 \cdot 10^{-6} \cdot (1-\eta)$, m/z0 δ [1]

$$M_n = q_n \cdot \Pi_2 \cdot K_1 \cdot K_2 \cdot 10^{-6} \cdot (1-\eta), m/\text{sod}$$
 [1]
 $G_n = (q_n \cdot \Pi_4 \cdot K_1 \cdot K_2 \cdot (1-\eta))/3600, a/c$ [2]

Взам.инв.

THB.No

 $m{q}_n$ – удельное выделение при работе экскаватора материала, $m{a}/m{k}$ уб. $m{m}$ (таб. 6.1-6.3 Методики);

 Π_e – количество разгружаемого (перегружаемого) материала, *m/год*;

 $\Pi_{\rm v}$ – максимальное количество перегружаемого материала за час, $m/{\rm vac}$;

 K_1 – коэффициент, учитывающий влажность перегружаемого материала (таб. 4.2 Методики);

 K_2 – коэффициент, учитывающий скорость ветра (таб. 6.4 Методики);

 $\pmb{\eta}$ - эффективность применяемых средств пылеподавления, дол.ед (таб. 6.5 Методики).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

При формировании откосов:

 M_{3749} = 0,00012 m/eod G_{3749} = 0,001341 e/c

Согласно Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, АО «НИИ Атмосфера, 2012, при использовании расчетных формул, содержащих коэффициент, учитывающих местные условия (скорость ветра), значения максимальных разовых выбросов определяются при разных скоростях ветра:

Скорость ветра	м/с	0,5	2	4	6	8	8,4
Коэффициент (таб. 6.2)	K ₂	1	1	1,2	1,4	1,7	1,7
Количество ЗВ, г/с	G ₃₇₄₉ =	0,000789	0,000789	0,000947	0,001104	0,001341	0,001341

Взам.инв.№								
Подп. и дата								
Инв.№ подл.	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	Лист
				. , , , , , ,		D.114		

ИЗАВ №6295. склад глинозема, концентрата, руды (причал №78)

Источниками выделения являются:

- хранение на причале 78 железорудного концентрата;
- хранение на причале 78 ильменитовой руды.

В расчете выбросов учтена неодновременность перегрузочных работ с разными грузами. Максимально-разовый выброс принят максимальный по каждому грузу. Валовый выброс суммирован с учетом всех видов грузов.

Всего по источнику выбросов:

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
	При перегрузке железорудного ко	нцентрата	
123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,2905	0,2975
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,1483	0,1519
	При перегрузке ильменитовой	і руды	
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,0614	0,0629
123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,0702	0,0719
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,0439	0,0449

Расчет по каждому грузу выполнен на максимальную загруженность склада, поэтому в расчете рассеивания учтена неодновременность движения грузов, и по каждому веществу принят максимально-разовый выброс:

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год	
код	наименование	выброс, г/с		
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,0614	0,0629	
123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,2905	0,3694	
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,1483	0,1968	

Максима	Максимально-разовый выброс с учетом ветра принят:								
Скорост	ь ветра, м/с	0,5	2	4	6	8	8,4		
Количес	тво ЗВ, г/с								
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,00001	0,00084	0,00670	0,02248	0,05310	0,0614		
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе- зо/(Железо сесквиоксид)	0,00006	0,00399	0,03167	0,10632	0,25107	0,2905		
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,00003	0,00204	0,01617	0,05428	0,12819	0,1483		

ИВ Склад ильменитовой руды (пр 78)

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

код	Загрязняющее вещество наименование	Максимально разовый выброс, г/с	Годовой выброс, т/год
Всего пыли	и 100%, из них:	0,1755047	0,179776
0118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,0614	0,0629
0123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,0702	0,0719
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,0439	0,0449

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.1):

где К4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

 ${\it K}_{\rm 6}$ - коэффициент, учитывающий профиль поверхности складируемого материала;

К₇ - коэффициент, учитывающий крупность материала;

 ${\it F}_{\it pa6}$ - площадь в плане, на которой систематически производятся погрузочно-разгрузочные работы, $\it M^2$,

AHB.No

F_{nn} - поверхность пыления в плане, m^2 ; q - максимальная удельная сдуваемость пыли, $e/(m^2 \cdot c)$;								
							Лист	
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	160	

 $\pmb{\eta}$ - степень снижения выбросов при применении систем пылеподавления. Значение коэффициента K_6 определяется по формуле (1.1.2): $K_6 = F_{\text{MAKC}} / F_{\text{ПЛ}}$ (1.1.2)где $F_{\text{макс}}$ - фактическая площадь поверхности складируемого материала при максимальном заполнении склада, M^2 . Значение максимальной удельной сдуваемости пылящего материала определяется по формуле (1.1.3): $q = 10^{-3} \cdot a \cdot U^{0}, c/(M^{2} \cdot c)$ (1.1.3)где a и b – эмпирические коэффициенты, зависящие от типа перегружаемого материала; **U**^o - скорость ветра, *м/с*. Валовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.4): $\Pi_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot K_4 \cdot K_5 \cdot K_6 \cdot K_7 \cdot q \cdot F_{nn} \cdot (1 - \eta) \cdot (T - T_0 - T_c) \text{ m/eod}$ (1.1.4)где \emph{T} - общее время хранения материала за рассматриваемый период, в сутках; $T_∂$ - число дней с дождем; T_c - число дней с устойчивым снежным покровом. При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта. Расчетные параметры и их значения приведены в таблице 1.1.2. Таблица 1.1.2 - Расчетные параметры и их значения Расчетные параметры Значения Перегружаемый материал: Руда a = 0.0135b = 2,987Коэффициенты сдуваемости приняты для щебня Эмпирические коэффициенты, зависящие от типа перегружаемого материала Местные условия – склады, хранилища, открытые с 2-х сторон $K_4 = 0.2$ Влажность материала до 9% $K_5 = 0.2$ Профиль поверхности складируемого материала $K_6 = 15106 / 11620 = 1,3$ $K_7 = 0.2$ Крупность материала – куски размером 500-100 мм **U'** = 0,5; 2; 4; 6; 8; 8,4 Расчетные скорости ветра, м/с **U** = 3,8 Среднегодовая скорость ветра, м/с $F_{pa6} = 1000$ Площадь поверхности погрузочно-разгрузочных работы в плане, м² $F_{nn} = 11620$ Площадь поверхности пыления в плане, м² $F_{\text{MAKC}} = 15106$ Площадь фактической поверхности пыления, м² **T** = 366 Общее время хранения материала за рассматриваемый период, в сутках Число дней с дождем $T_{∂}$ = 71 Число дней с устойчивым снежным покровом $T_c = 80$ Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже. <u>Руда</u> $q_{nb,nu}$ ^{0.5 м/c} = 10⁻³ · 0,0135 · 0,5^{2.987} = 0,0000017 $a/(m^2 \cdot c)$; $\mathbf{M}_{\text{ПЫЛИ}}^{0.5 \text{ M/C}} = 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.2 \cdot 0.0000017 \cdot 1000 +$ $+0.2 \cdot 0.2 \cdot 1.3 \cdot 0.2 \cdot 0.11 \cdot 0.0000017 \cdot (11620 - 1000) = 0.0000384 \ e/c;$ $q_{n \bowtie n u^{2 \text{ m/c}}} = 10^{-3} \cdot 0.0135 \cdot 2^{2.987} = 0.000107 \ e/(m^2 c);$ + 0,2 · 0,2 · 1,3 · 0,2 · 0,11 · 0,000107 · (11620 - 1000) = 0,0024135 e/c; $\mathbf{q}_{nb,nu}^{4 \text{ M/C}} = 10^{-3} \cdot 0,0135 \cdot 4^{2.987} = 0,0008486 \text{ e/(M}^2 \cdot c);$ $\mathbf{M}_{\text{пыли}}^{4 \text{ м/c}} = 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.2 \cdot 0.0008486 \cdot 1000 + 0.0008486 + 0.$ $+0.2 \cdot 0.2 \cdot 1.3 \cdot 0.2 \cdot 0.11 \cdot 0.0008486 \cdot (11620 - 1000) = 0.0191346 \ e/c;$ $q_{n_{bln}u}^{6 \text{ M/C}} = 10^{-3} \cdot 0,0135 \cdot 6^{2.987} = 0,0028489 \text{ e/(M}^2\text{c});$ $M_{n_{bln}u}^{6 \text{ M/C}} = 0,2 \cdot 0,2 \cdot 1,3 \cdot 0,2 \cdot 0,0028489 \cdot 1000 +$ $+0,2 \cdot 0,2 \cdot 1,3 \cdot 0,2 \cdot 0,11 \cdot 0,0028489 \cdot (11620 - 1000) = 0,0642398 \ e/c;$ $q_{nыnu}^{B \ MiC} = 10^{-3} \cdot 0,0135 \cdot 8^{2.987} = 0,0067277 \ e/(M^2 \cdot c);$ $\mathbf{M}_{n_{\text{DIJ}}n_{\text{U}}}^{8 \text{ M/C}} = 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.2 \cdot 0.0067277 \cdot 1000 + 0.0067277 \cdot 10000 + 0.0067277 \cdot 10000 + 0.006727 \cdot 10000 + 0.006727 \cdot 10000 + 0.006727 \cdot 10000 + 0.$ $\begin{array}{ll} \mathbf{q}_{\text{пыли}} & = 0,2 \cdot 0,2 \cdot 1,3 \cdot 0,2 \cdot 0,11 \cdot 0,0067277 \cdot (11620 - 1000) = 0,1517037 \text{ e/c}; \\ \mathbf{q}_{\text{пыли}} & = 10^{-3} \cdot 0,0135 \cdot 8,4^{2.987} = 0,0077832 \text{ e/(m}^2 \cdot c); \end{array}$ $\mathbf{M}_{\text{пыли}}^{8.4 \text{ м/c}} = 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.2 \cdot 0.0077832 \cdot 1000 +$ $+ 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.2 \cdot 0.11 \cdot 0.0077832 \cdot (11620 - 1000) = 0.1755047 \ e/c;$ $\mathbf{q}_{nbinu} = 10^{-3} \cdot 0.0135 \cdot 3.8^{2.987} = 0.000728 \ e/(M^2 \cdot c);$ $\Pi_{n_{binu}} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot 0.2 \cdot 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.2 \cdot 0.000728 \cdot 11620 \cdot (366-71-80) = 0.179776$ m/sod. Ильменит (титанистый железняк) — <u>минерал</u> общей химической формулы FeO·TiO2 или FeTiO₃. В ильменитовых концентратах содержится 35% диоксида титана и 40% железа. Таким образом, 35% от общего выброса нормируется как диоксид титана, 40% как оксид железа, остальные соединения приняты по пыли неорганической. Выбросы диоксида титана: $M^{0.5 \text{ м/c}} = 0,0000384 * 0,35 = 0,00001 \text{ s/c};$ $M^{2 \text{ M/C}} = 0.0024135 * 0.35 = 0.00084 \text{ e/c};$ $M^{4 \text{ m/c}} = 0.0191346 * 0.35 = 0.00670 \text{ s/c};$ $M^{6 \text{ m/c}} = 0.0642398 * 0.35 = 0.00248 \text{ s/c};$ $M^{8 \text{ m/c}} = 0.1517037 * 0.35 = 0.05310 \text{ s/c};$ $M^{8 \text{ m/c}} = 0.1755047 * 0.35 = 0.06143 \text{ s/c};$ Π = 0,179776 * 0,35 = 0,0629 m/eod. Выбросы оксида железа: $M^{0.5 \text{ M/c}} = 0.0000384 * 0.4 = 0.00002 \text{ e/c};$ $M^{2 \text{ M/c}} = 0.0024135 * 0.4 = 0.00097 \text{ e/c};$ $M^{4 \text{ M/C}} = 0.0191346 * 0.4 = 0.00765 \text{ e/c};$ $M^{6 \text{ M/C}} = 0.0642398 * 0.4 = 0.02570 \text{ s/c};$ $M^{8 \text{ M/C}} = 0.1517037 * 0.4 = 0.06068 \text{ s/c};$ $M^{8 \text{ M/C}} = 0.1755047 * 0.4 = 0.07020 \text{ s/c};$ Π = 0,179776 * 0,4 = 0,07191 m/eod. Лист **OBOC2.6** 161 Кол.уч Лист № док. Подп Дата

Взам.инв.

№ подл.

ИHB.

Выбросы пыли неорганической: $\mathbf{M}^{0.5 \text{ м/c}} = 0,0000384 * 0,25 = 0,00001 \text{ s/c};$ $\mathbf{M}^{2 \text{ м/c}} = 0,0024135^* 0,25 = 0,00060 \text{ s/c};$ $\mathbf{M}^{4 \text{ м/c}} = 0,0191346 * 0,25 = 0,00478 \text{ s/c};$ $\mathbf{M}^{6 \text{ м/c}} = 0,0642398 * 0,25 = 0,01606 \text{ s/c};$ $\mathbf{M}^{6 \text{ м/c}} = 0,1517037 * 0,25 = 0,03793 \text{ s/c};$ $\mathbf{M}^{8 \text{ M/c}} = 0,1755047 * 0,25 = 0,0439 \text{ s/c};$ $\mathbf{\Pi} = 0,179776^* 0,25 = 0,0449 \text{ m/sod}.$

ИВ Склад железнорудного концентрата (пр 78)

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Окатыш железорудный имеет следующий состав:

Название	Процентный состав		
Железо общее	66%		
Оксид железа	0,2%		
Неорганические соединения	33,8%		

Суммарные выбросы железа нормируются по оксидам железа, неорганические соединения – по пыль неорганической.

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
Всего пыли	1 100%, из них:	0,4387617	0,44944
	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,2905	0,2975
	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,1483	0,1519

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{XP} = \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{pa6} + \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot 0,11 \cdot \mathbf{q} \cdot (\mathbf{F}_{nn} - \mathbf{F}_{pa6}) \cdot (1 - \eta), \ a/c$$

$$(1.1.1)$$

где K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

К₆ - коэффициент, учитывающий профиль поверхности складируемого материала;

К₇ - коэффициент, учитывающий крупность материала;

 ${\it F}_{
ho a 6}$ - площадь в плане, на которой систематически производятся погрузочно-разгрузочные работы, ${\it M}^2$,

 \mathbf{F}_{nn} - поверхность пыления в плане, M^2 ;

q - максимальная удельная сдуваемость пыли, $e/(M^2 \cdot c)$;

 η - степень снижения выбросов при применении систем пылеподавления.

Значение коэффициента K_6 определяется по формуле (1.1.2):

$$\mathbf{K}_{6} = \mathbf{F}_{\text{MAKC}} / \mathbf{F}_{\text{ПЛ}} \tag{1.1.2}$$

где $F_{\text{макс}}$ - фактическая площадь поверхности складируемого материала при максимальном заполнении склада, M^2 .

Значение максимальной удельной сдуваемости пылящего материала определяется по формуле (1.1.3):

$$q = 10^{-3} \cdot a \cdot U^{\circ}, \, c/(M^2 \cdot c)$$
 (1.1.3)

где a и b – эмпирические коэффициенты, зависящие от типа перегружаемого материала;

 U° - скорость ветра, M/c.

Валовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.4):

$$\Pi_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot K_4 \cdot K_5 \cdot K_6 \cdot K_7 \cdot q \cdot F_{nn} \cdot (1 - \eta) \cdot (T - T_0 - T_c) \, m/cod$$
(1.1.4)

где Т - общее время хранения материала за рассматриваемый период, в сутках;

 $T_{∂}$ - число дней с дождем;

Взам.инв.

윋

 T_c - число дней с устойчивым снежным покровом.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчетные параметры и их значения приведены в таблице 1.1.2.

Таблица 1.1.2 - Расчетные параметры и их значения

Расчетные параметры	Значения
Перегружаемый материал: Окатыш	a = 0,0135
Удельные показатели приняты по аналогу - щебень	b = 2,987
Эмпирические коэффициенты, зависящие от типа перегружаемого материала	
Местные условия – склады, хранилища, открытые с 2-х сторон	$K_4 = 0.2$
Влажность материала до 9%	$K_5 = 0.2$
Профиль поверхности складируемого материала	$K_6 = 15106 / 11620 = 1,3$
Крупность материала – куски размером 50-10 мм	$K_7 = 0.5$
Расчетные скорости ветра, м/с	U' = 0,5; 2; 4; 6; 8; 8,4
Среднегодовая скорость ветра, м/с	U = 3,8
Площадь поверхности погрузочно-разгрузочных работы в плане, м ²	$F_{pa6} = 1000$
Площадь поверхности пыления в плане, м ²	$F_{nn} = 11620$
Площадь фактической поверхности пыления, м ²	$F_{\text{MAKC}} = 15106$
Общее время хранения материала за рассматриваемый период, в сутках	T = 366
Число дней с дождем	$T_{\partial} = 71$
Число дней с устойчивым снежным покровом	T _c = 80

```
q_{\text{пыли}}^{0.5 \text{ M/c}} = 10^{-3} \cdot 0.0135 \cdot 0.5^{2.987} = 0.0000017 \text{ s/(M}^2 \text{ c});
\mathbf{M}_{\text{пыли}}^{0.5 \text{ m/c}} = 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.0000017 \cdot 1000 +
                +0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.11 \cdot 0.0000017 \cdot (11620 - 1000) = 0.000096 \ e/c;
 q_{\text{пыли}^2}^{\text{м/c}} = 10^{-3} \cdot 0.0135 \cdot 2^{2.987} = 0.000107 \text{ s/(M}^2 \text{ c)};
M_{\text{пыли}}^{2 \text{ м/c}} = 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.000107 \cdot 1000 +
                +0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.11 \cdot 0.000107 \cdot (11620 - 1000) = 0.0060337 \ e/c;
 q_{\text{пыли}}^{4 \text{ м/c}} = 10^{-3} \cdot 0.0135 \cdot 4^{2.987} = 0.0008486 \text{ e/(}M^2 \cdot \text{c);}
\mathbf{M}_{\text{ПБ},\Pi_{\text{L}}}^{4 \text{ M/C}} = 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.0008486 \cdot 1000 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 0.0008486 + 
                + 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.11 \cdot 0.0008486 \cdot (11620 - 1000) = 0.0478365 e/c;
 \mathbf{q}_{\text{пыли}}^{6 \text{ м/c}} = 10^{-3} \cdot 0.0135 \cdot 6^{2.987} = 0.0028489 \ a/(m^2 c);
\mathbf{M}_{\text{пыли}}^{6 \text{ м/c}} = 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.0028489 \cdot 1000 +
                +0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.11 \cdot 0.0028489 \cdot (11620 - 1000) = 0.1605995 e/c;
\mathbf{q}_{\text{пыли}}^{8 \text{ м/c}} = 10^{-3} \cdot 0.0135 \cdot 8^{2.987} = 0.0067277 \text{ e/(}M^2\text{-c}\text{);}
M_{\text{пыли}}^{8 \text{ M/c}} = 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.0067277 \cdot 1000 +
+ 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.11 \cdot 0.0067277 \cdot (11620 - 1000) = 0.3792593 \ e/c;

\mathbf{q}_{nb,nu}^{8.4 \text{ M/C}} = 10^{-3} \cdot 0.0135 \cdot 8.4^{2.987} = 0.0077832 \ e/(\text{M}^2 c);
M_{\text{пыли}}^{8.4 \text{ м/c}} = 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.0077832 \cdot 1000 + 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.11 \cdot 0.0077832 \cdot (11620 - 1000) = 0.4387617 \text{ e/c};
 \mathbf{q}_{\text{пыли}} = 10^{-3} \cdot 0.0135 \cdot 3.8^{2.987} = 0.000728 \text{ c/(M}^2 \cdot \text{c)};

\mathbf{\Pi}_{\text{пыпи}} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot 0.2 \cdot 0.2 \cdot 0.2 \cdot 1.3 \cdot 0.5 \cdot 0.000728 \cdot 11620 \cdot (366-71-80) = 0.44944  m/sod.
Содержание в выбросах оксидов железа составит 66,2 % от общего выброса:
               a/c = 0.000096* 0.662 = 0.00006e/c;
\mathbf{M}^{2 \text{ M/c}} = 0.0060337^* \ 0.662 = 0.00399 \text{ s/c};
M^{4 \text{ M/C}} = 0.0478365 * 0.662 = 0.03167 \text{ a/c};
M^{6 \text{ M/c}} = 0,1605995 * 0,662 = 0,10632e/c;
M^{8 \text{ m/c}} = 0.3792593 * 0.662 = 0.25107 e/c;
M^{8.4 \text{ m/c}} = 0.4387617^* \ 0.662 = 0.2905 \ e/c;
\Pi = 0,44944 * 0,662 = 0,2975 m/sod.
Остальные вещества нормируются как пыль неорганическая:
M^{0.5 \text{ M/c}} = 0.000096 * 0.338 = 0.00003 e/c;
M^{2 \text{ m/c}} = 0.0060337^* \ 0.338 = 0.00204 \text{ e/c};

M^{4 \text{ m/c}} = 0.0478365^* \ 0.338 = 0.01617 \text{ e/c};
M^{6 \text{ M/c}} = 0.1605995 * 0.338 = 0.05428 \text{ e/c};
M^{8 \text{ M/c}} = 0.3792593 * 0.338 = 0.12819 \text{ e/c}
M^{8.4 \text{ M/C}} = 0,4387617 * 0,338 = 0,1483 \text{ e/c};
\Pi = 0,44944 * 0,338 = 0,1519 m/zoð.
```

Подп. и дата								
Инв.№ подл.	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	Лист
	113		V-1.1-V-1	T - A	подш	7		

Взам.инв.

ИЗАВ №6296. склад концентрата, руды (причал №73)

Источниками выделения являются:

- хранение на причале 73 железорудного концентрата;
- хранение на причале 73 окалины (шлака);
- хранение на причале 73 нефтекокса / кокса электродного;
- хранение на причале 73 ильменитовой руды.

В расчете выбросов учтена неодновременность перегрузочных работ с разными грузами. Максимально-разовый выброс принят максимальный по каждому грузу. Валовый выброс суммирован с учетом всех видов грузов.

Всего по источнику выбросов:

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год	
код	наименование	выброс, г/с		
	При перегрузке железорудного ко	нцентрата		
123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,4015	0,3869	
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,2050	0,1976	
	При перегрузке ильменитовой	і руды		
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,0849	0,0818	
123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,0970	0,0935 0,0584	
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,0607		
	При перегрузке окалины (шл	така)		
0101	диАлюминий триоксид/в пересчете на алюминий/ (5,51%)	0,0649	0,00521	
0123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид) (58,24%)	0,686	0,0551	
2909	Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,427	0,0343	
	При перегрузке нефтекокса / кокса э	лектродного		
328	Углерод (пигмент черный)	0,0120199	0,000965	

Расчет по каждому грузу выполнен на максимальную загруженность склада, поэтому в расчете рассеивания учтена неодновременность движения грузов, и по каждому веществу принят максимально-разовый выброс:

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
0101	диАлюминий триоксид/в пересчете на алюминий/ (5,51%)	0,0649	0,00521
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,0849	0,0818
123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,686	0,5355
328	Углерод (пигмент черный)	0,0120199	0,000965
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,2050	0,256
2909	Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,427	0,0343

Максимально-разовый выброс с учетом ветра принят:								
Скорост	ь ветра, м/с	0,5	2	4	6	8	8,4	
Количес	тво ЗВ, г/с							
0101	диАлюминий триоксид/в пересчете на алюминий/ (5,51%)	0,000000887	0,000218	0,00341	0,0171	0,0535	0,0649	
118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,00002	0,00117	0,00926	0,03108	0,07340	0,08491	
123	диЖелезо триоксид, (железа оксид)/в пересчете на желе- зо/(Железо сесквиоксид)	0,00000938	0,00230	0,03607	0,180	0,565	0,686	
328	Углерод (пигмент черный)	0,0000002	0,0000403	0,000632	0,0031606	0,0099033	0,0120199	
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,00004	0,00282	0,02235	0,07504	0,17720	0,205	
2909	Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и другие)	0,00000584	0,00143	0,0225	0,112	0,352	0,427	

ИВ Склад железнорудного концентрата (пр 73)

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Железорудный концентрат железорудный имеет следующий состав:

— Название

пазвание	процентный состав

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

MHB.No

OBOC2.6

Лист

Железо общее	66%
Оксид железа	0.2%
Неорганические соединения	33,8%

Суммарные выбросы железа нормируются по оксидам железа, неорганические соединения – по пыль неорганической.

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
Всего пыли	и 100%, из них:	0,6065167	0,584486
	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,4015	0,3869
	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,2050	0,1976

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{XP} = \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{\rho a 6} + \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot 0,11 \cdot \mathbf{q} \cdot (\mathbf{F}_{nn} - \mathbf{F}_{\rho a 6}) \cdot (1 - \mathbf{\eta}), \ a/c$$

$$(1.1.1)$$

где К₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

 ${\it K}_{\it 5}$ - коэффициент, учитывающий влажность материала;

 ${\it K}_{\it 6}$ - коэффициент, учитывающий профиль поверхности складируемого материала;

К₇ - коэффициент, учитывающий крупность материала;

 $F_{\it pa6}$ - площадь в плане, на которой систематически производятся погрузочно-разгрузочные работы, $\it M^2$,

F $_{nn}$ - поверхность пыления в плане, M^2 ;

q - максимальная удельная сдуваемость пыли, $c/(m^2 \cdot c)$;

 η - степень снижения выбросов при применении систем пылеподавления.

Значение коэффициента K_6 определяется по формуле (1.1.2):

$$\mathbf{K}_6 = \mathbf{F}_{\text{MAKC}} / \mathbf{F}_{\text{ПЛ}} \tag{1.1.2}$$

(1.1.4)

где $F_{\text{макс}}$ - фактическая площадь поверхности складируемого материала при максимальном заполнении склада, M^2 . Значение максимальной удельной сдуваемости пылящего материала определяется по формуле (1.1.3):

$$q = 10^{-3} \cdot a \cdot U^{0}, \, a/(M^{2} \cdot c)$$
 (1.1.3)

где а и b – эмпирические коэффициенты, зависящие от типа перегружаемого материала;

 U° - скорость ветра, M/c.

Валовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.4):

$$\Pi_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{nn} \cdot (1 - \eta) \cdot (\mathbf{T} - \mathbf{T}_0 - \mathbf{T}_c) \text{ m/sod}$$

где Т - общее время хранения материала за рассматриваемый период, в сутках;

 $T_{∂}$ - число дней с дождем;

 T_c - число дней с устойчивым снежным покровом.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчетные параметры и их значения приведены в таблице 1 1 2

Таблица 1.1.2 - Расчетные параметры и их значения

Расчетные параметры	Значения
Перегружаемый материал: Железорудный концентрат	a = 0,0135
Удельные показатели приняты по аналогу - щебень	b = 2,987
Эмпирические коэффициенты, зависящие от типа перегружаемого материала	
Местные условия – склады, хранилища, открытые с 3-х сторон	$K_4 = 0.5$
Влажность материала до 9%	$K_5 = 0.2$
Профиль поверхности складируемого материала	$K_6 = 7858 / 6045 = 1,299917$
Крупность материала – куски размером 50-10 мм	$K_7 = 0.5$
Расчетные скорости ветра, м/с	U' = 0,5; 2; 4; 6; 8; 8,4
Среднегодовая скорость ветра, м/с	U = 3,8
Площадь поверхности погрузочно-разгрузочных работы в плане, м ²	$F_{pa6} = 600$
Площадь поверхности пыления в плане, м ²	$F_{nn} = 6045$
Площадь фактической поверхности пыления, м ²	F _{MAKC} = 7858
Общее время хранения материала за рассматриваемый период, в сутках	T = 366
Число дней с дождем	$T_{\partial} = 71$
Число дней с устойчивым снежным покровом	$T_c = 80$

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Железорудный концентрат

Взам.инв.

윋

 $q_{\text{пыли}}^{0.5 \text{ M/C}} = 10^{-3} \cdot 0.0135 \cdot 0.5^{2.987} = 0.0000017 \text{ s/(M}^2 \cdot c);$

 $\mathbf{M}_{\text{пыли}}^{0.5 \text{ м/c}} = 0.5 \cdot 0.2 \cdot 1,299917 \cdot 0.5 \cdot 0,0000017 \cdot 600 +$

+ 0.5 · 0.2 · 1.299917 · 0.5 · 0.11 · 0.0000017 · (6045 - 600) = 0.0001327 e/c; $q_{nb,ln}u^{2\,\text{mic}} = 10^{-3} \cdot 0.0135 \cdot 2^{2.987} = 0.000107 \, e/(m^2 c);$

 $M_{\Pi b \Pi u}^{2 \text{ m/c}} = 0.5 \cdot 0.2 \cdot 1.299917 \cdot 0.5 \cdot 0.000107 \cdot 600 + 0.000107 \cdot 0.0000107 \cdot 0.0000107 \cdot 0$

+ 0.5 · 0.2 · 1.299917 · 0.5 · 0.11 · 0.000107 · (6045 - 600) = 0.0083406 e/c; $q_{n \omega n u^{4 \text{ M/C}}} = 10^{-3} \cdot 0.0135 \cdot 4^{2.987} = 0.0008486 e/(m^{2} c);$

 $\mathbf{M}_{\text{Пыли}}^{4 \text{ M/c}} = 0.5 \cdot 0.2 \cdot 1.299917 \cdot 0.5 \cdot 0.0008486 \cdot 600 + 0.0008486 \cdot 0.000866 \cdot 0.0008$

+ 0.5 · 0.2 · 1.299917 · 0.5 · 0.11 · 0.0008486 · (6045 - 600) = 0.0661262 e/c; $\mathbf{q}_{n_{bin}u}^{6\ M/c}$ = 10⁻³ · 0.0135 · 6^{2.987} = 0.0028489 $e/(M^2c)$;

 $\mathbf{M}_{\text{ПЫЛИ}}^{6 \text{ M/c}} = 0.5 \cdot 0.2 \cdot 1.299917 \cdot 0.5 \cdot 0.0028489 \cdot 600 +$

 $+0.5 \cdot 0.2 \cdot 1.299917 \cdot 0.5 \cdot 0.11 \cdot 0.0028489 \cdot (6045 - 600) = 0.2220027 \ a/c;$

$ \mathbf{q}_{n_{bl}n_{ll}}^{8 \text{ M/C}} = 10^{-3} \cdot 0.0135 \cdot 8^{2.987} = 0.0067277 \text{ z/(M}^{2}\text{c}); $ $ \mathbf{M}_{n_{bl}n_{ll}}^{8 \text{ M/C}} = 0.5 \cdot 0.2 \cdot 1.299917 \cdot 0.5 \cdot 0.0067277 \cdot 600 + 0.5 \cdot 0.2 \cdot 1.299917 \cdot 0.5 \cdot 0.11 \cdot 0.0067277 \cdot (6045 - 600) = 0.5242644 \text{ z/c}; $ $ \mathbf{q}_{n_{bl}n_{ll}}^{8.4 \text{ M/C}} = 10^{-3} \cdot 0.0135 \cdot 8.4^{2.987} = 0.0077832 \text{ z/(M}^{2}\text{c}); $										
ОВОС2.6 165										
Изм. Кол.уч Лист № док. Подп. Дата										

ИВ Склад ильменитовой руды (пр 73)

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
Всего пыли	1 100%, из них:	0,2426067	0,2337945
0118	Титан диоксид (Титан пероксид; титан (IV) оксид)	0,0849	0,0818
	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,0970	0,0935
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,0607	0,0584

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Максимально разовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.1):

 $\mathbf{M}_{XP} = \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{pa6} + \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot 0,11 \cdot \mathbf{q} \cdot (\mathbf{F}_{nn} - \mathbf{F}_{pa6}) \cdot (1 - \mathbf{\eta}), \ e/c$ (1.1.1)

где K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

 ${\it K}_{\it 5}$ - коэффициент, учитывающий влажность материала;

 K_6 - коэффициент, учитывающий профиль поверхности складируемого материала;

 ${\it K}_7$ - коэффициент, учитывающий крупность материала;

 F_{pa6} - площадь в плане, на которой систематически производятся погрузочно-разгрузочные работы, M^2 ,

F $_{nn}$ - поверхность пыления в плане, M^2 ;

 ${m q}$ - максимальная удельная сдуваемость пыли, ${\it e}/({\it m}^2\cdot {\it c})$;

 η - степень снижения выбросов при применении систем пылеподавления.

Значение коэффициента K_6 определяется по формуле (1.1.2):

$$\mathbf{K}_6 = \mathbf{F}_{\text{MAKC}} / \mathbf{F}_{\text{RII}} \tag{1.1.2}$$

где **F**_{макс} - фактическая площадь поверхности складируемого материала при максимальном заполнении склада, *м*². Значение максимальной удельной сдуваемости пылящего материала определяется по формуле (1.1.3):

$$q = 10^{-3} \cdot a \cdot U^0, \ a/(M^2 \cdot c)$$
 (1.1.3)

где **a** и **b** – эмпирические коэффициенты, зависящие от типа перегружаемого материала;

 U° - скорость ветра, M/c.

Валовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.4):

$$\mathbf{\Pi}_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{nn} \cdot (1 - \mathbf{\eta}) \cdot (\mathbf{T} - \mathbf{T}_0 - \mathbf{T}_c) \, m/cod \tag{1.1.4}$$

где \emph{T} - общее время хранения материала за рассматриваемый период, в сутках;

 T_{∂} - число дней с дождем;

Взам.инв.

윋

 T_c - число дней с устойчивым снежным покровом.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчетные параметры и их значения приведены в таблице 1.1.2.

Таблица 1.1.2 - Расчетные параметры и их значения

Расчетные параметры	Значения
Перегружаемый материал: Руда	a = 0,0135
Коэффициенты сдуваемости приняты для щебня	b = 2,987
Эмпирические коэффициенты, зависящие от типа перегружаемого материала	
Местные условия – склады, хранилища, открытые с 3-х сторон	$K_4 = 0.5$
Влажность материала до 9%	$K_5 = 0.2$
Профиль поверхности складируемого материала	K ₆ = 7858 / 6045 = 1,299917
Крупность материала – куски размером 500-100 мм	$K_7 = 0.2$
Расчетные скорости ветра, м/с	U' = 0,5; 2; 4; 6; 8; 8,4

			иала – к ости ветр	уски разме ра, м/с	ером 500	C C C C C C C C C C	
						OBOC2.6	Лист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	ODOC2.0	166

B35	
Подп. и дата	
Инв.№ подл.	

Расчетные параметры	Значения
Среднегодовая скорость ветра, м/с	U = 3,8
Площадь поверхности погрузочно-разгрузочных работы в плане, м ²	$F_{pa6} = 600$
Площадь поверхности пыления в плане, м ²	$F_{nn} = 6045$
Площадь фактической поверхности пыления, м ²	$F_{\text{макс}} = 7858$
Общее время хранения материала за рассматриваемый период, в сутках	T = 366
Число дней с дождем	$T_{\partial} = 71$
Число дней с устойчивым снежным покровом	$T_c = 80$

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

```
\frac{\text{Руда}}{q_{\text{nb,IU}}}^{0.5 \text{ m/c}} = 10^{-3} \cdot 0.0135 \cdot 0.5^{2.987} = 0.0000017 \text{ e/(m^2 \cdot c)};
     + 0.5 \cdot 0.2 \cdot 1.299917 \cdot 0.2 \cdot 0.11 \cdot 0.0000017 \cdot (6045 - 600) = 0.0000531 e/c;
     q_{\text{пыли}^2}^{\text{м/c}} = 10^{-3} \cdot 0.0135 \cdot 2^{2.987} = 0.000107 \text{ s/(M²·c)};
     \mathbf{M}_{nbinu}^{2 \text{ M/C}} = 0.5 \cdot 0.2 \cdot 1.299917 \cdot 0.2 \cdot 0.000107 \cdot 600 + 0.000107 \cdot 0.0000107 \cdot 0.0000107 \cdot 
  + 0.5 · 0.2 · 1.299917 · 0.2 · 0.11 · 0.000107 · (6045 - 600) = 0.0033362 e/c; \mathbf{q}_{n \bowtie n u}^{4 \bmod C} = 10^{-3} \cdot 0.0135 \cdot 4^{2.987} = 0.0008486 e/(m^2 c);
\mathbf{M}_{nb,nu}^{4 \text{ m/c}} = 0,5 \cdot 0,2 \cdot 1,299917 \cdot 0,2 \cdot 0,0008486 \cdot 600 + 0,5 \cdot 0,2 \cdot 1,299917 \cdot 0,2 \cdot 0,11 \cdot 0,0008486 \cdot (6045 - 600) = 0,0264505 \text{ s/c};
\mathbf{q}_{nb,nu}^{6 \text{ m/c}} = 10^{-3} \cdot 0,0135 \cdot 6^{2.987} = 0,0028489 \text{ s/(M}^2 \text{ c)};
  \dot{\mathbf{M}}_{nbinu}^{6 \text{ M/c}} = 0.5 \cdot 0.2 \cdot 1.299917 \cdot 0.2 \cdot 0.0028489 \cdot 600 + 0.0028489 \cdot 0.0028489 \cdot
  + 0,5 · 0,2 · 1,299917 · 0,2 · 0,11 · 0,0028489 · (6045 - 600) = 0,0888011 e/c; \mathbf{q}_{n_{bnu}}^{8 \text{ M/c}} = 10^{-3} \cdot 0,0135 \cdot 8^{2.987} = 0,0067277 \ e/(m^2 \cdot c);
\begin{array}{l} \mathbf{M}_{n_{bi}nu}^{8 \text{ M/c}} = 0.5 \cdot 0.2 \cdot 1.299917 \cdot 0.2 \cdot 0.0067277 \cdot 600 + \\ + 0.5 \cdot 0.2 \cdot 1.299917 \cdot 0.2 \cdot 0.11 \cdot 0.0067277 \cdot (6045 - 600) = 0.2097058 \text{ e/c}; \\ \mathbf{q}_{n_{bi}nu}^{8.4 \text{ M/c}} = 10^{-3} \cdot 0.0135 \cdot 8.4^{2.987} = 0.0077832 \text{ e/(M}^2\text{c}); \end{array}
  \mathbf{M}_{\text{ПБИЛИ}}^{8.4 \text{ M/C}} = 0.5 \cdot 0.2 \cdot 1.299917 \cdot 0.2 \cdot 0.0077832 \cdot 600 + 0.0077832 \cdot 0.007782 \cdot
 \begin{array}{l} \textbf{\textit{q}}_{\textit{nbiniu}} = 0.5 \cdot 0.2 \cdot 1.299917 \cdot 0.2 \cdot 0.11 \cdot 0.00077832 \cdot (6045 - 600) = 0.2426067 \ \textit{e/c}; \\ \textbf{\textit{q}}_{\textit{nbiniu}} = 10^{-3} \cdot 0.0135 \cdot 3.8^{2.987} = 0.000728 \ \textit{e/(m^2 \cdot c)}; \\ \textbf{\textit{\Pi}}_{\textit{nbiniu}} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot 0.5 \cdot 0.2 \cdot 1.299917 \cdot 0.2 \cdot 0.000728 \cdot 6045 \cdot (366 - 71 - 80) = 0.2337945 \ \textit{m/eod}. \end{array}
```

Ильменит (титанистый железняк) — минерал общей химической формулы FeO·TiO2 или FeTiO3. В ильменитовых концентратах содержится 35% диоксида титана и 40% железа. Таким образом, 35% от общего выброса нормируется как диоксид титана, 40% как оксид железа, остальные соединения приняты по пыли неорганической.

```
Выбросы диоксида титана: M^{0.5~\text{M/C}} = 0,0000531 * 0,35 = 0,00002~\text{e/c}; M^{2~\text{M/C}} = 0,0033362 * 0,35 = 0,00117~\text{e/c};
M^{4 \text{ M/C}} = 0.0264505 * 0.35 = 0.00926 \ s/c;
M^{6 \text{ M/C}} = 0.0888011 * 0.35 = 0.03108 \ s/c;
M^{8 \text{ M/c}} = 0.2097058 * 0.35 = 0.07340 \text{ s/c};

M^{8.4 \text{ M/c}} = 0.2426067 * 0.35 = 0.08491 \text{ s/c};
\Pi = 0,2337945 * 0,35 = 0,08183 m/zod.
```

Выбросы оксида железа:

```
M^{0.5 \text{ M/c}} = 0.0000531 * 0.4 = 0.00002 \text{ s/c};
M^{2 \text{ M/c}} = 0.0033362 * 0.4 = 0.00133 \text{ e/c};
M^{4 \text{ M/C}} = 0.0264505 * 0.4 = 0.01058 \text{ s/c};

M^{6 \text{ M/C}} = 0.0888011 * 0.4 = 0.03552 \text{ s/c};
M^{8 \text{ M/c}} = 0.2097058 * 0.4 = 0.08388 \text{ a/c};
M^{8.4 \text{ m/c}} = 0.2426067 \times 0.4 = 0.0970 \text{ s/c};
\Pi = 0,2337945 * 0,4 = 0,0935 m/sod.
```

Кол.уч Лист № док

```
Выбросы пыли неорганической: M^{0.5\,\mathrm{M/C}}=0,0000531 * 0,25=0,00001 e/c; M^{2\,\mathrm{M/C}}=0,0033362 * 0,25=0,00083 e/c; M^{4\,\mathrm{M/C}}=0,0264505 * 0,25=0,00661 e/c;
M^{6 \text{ M/c}} = 0.0888011 * 0.25 = 0.02220 \text{ e/c};

M^{8 \text{ M/c}} = 0.2097058 * 0.25 = 0.05243 \text{ e/c};
M^{8.4 \text{ m/c}} = 0.2426067 * 0.25 = 0.0607 \text{ e/c};
 \Pi = 0,2337945 * 0,25 = 0,05845 m/eod.
```

ИВ склад окалины (шлака) (ГУТ-12 причалы 73)

Расчет выделения пыли при хранении пылящих материалов выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне); «Временные методические указания по расчету выбросов загрязняющих веществ (пыли) в атмосферу при складировании и перегрузке сыпучих материалов на предприятиях речного флота. Белгород, 1992 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р, позиция №102).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

Дата

	Загрязняющее вещество	Максимально разовый	Forence pulsage T/sor
код наименование		выброс, г/с	Годовой выброс, т/год
Всего пыли	ı 100%, из них:	1,1779494	0,0945682
0101	диАлюминий триоксид/в пересчете на алюминий/ (5,51%)	0,0649	0,00521

Всего пыли 100%, из них:		1,1779494	0,0945682
0101 диАлюминий триоксид/в пересчете на ал	юминий/ (5,51%)	0,0649	0,00521
			_

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выороо, птод
0123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид) (58,24%)	0,686	0,0551
2909	Пыль неорганическая, содержащая двуокись кремния, в %: - менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей. боксит и другие)	0.427	0,0343

Технология пылеподавления: Гранулирование пылящего материала.

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{XP} = \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot \mathbf{q} \cdot \mathbf{F}_{pa6} + \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_6 \cdot \mathbf{K}_7 \cdot 0,11 \cdot \mathbf{q} \cdot (\mathbf{F}_{nn} - \mathbf{F}_{pa6}) \cdot (1 - \mathbf{\eta}), \ a/c$$

 $\pmb{M}_{XP} = \pmb{K}_4 \cdot \pmb{K}_5 \cdot \pmb{K}_6 \cdot \pmb{K}_7 \cdot \pmb{q} \cdot \pmb{F}_{pa6} + \pmb{K}_4 \cdot \pmb{K}_5 \cdot \pmb{K}_6 \cdot \pmb{K}_7 \cdot 0,11 \cdot \pmb{q} \cdot (\pmb{F}_{nn} - \pmb{F}_{pa6}) \cdot (1 - \pmb{\eta}), \textit{a/c}$ (1.1.1) где \pmb{K}_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования

 ${\it K}_{\it 5}$ - коэффициент, учитывающий влажность материала;

 $\emph{\textbf{K}}_{6}$ - коэффициент, учитывающий профиль поверхности складируемого материала;

 ${\it K}_7$ - коэффициент, учитывающий крупность материала;

 $\emph{\textbf{F}}_{
ho a 6}$ - площадь в плане, на которой систематически производятся погрузочно-разгрузочные работы, \emph{M}^2 ,

F_{nn} - поверхность пыления в плане, M^2 ;

 ${m q}$ - максимальная удельная сдуваемость пыли, ${\it e}/({\it m}^2\cdot {\it c})$;

 $\pmb{\eta}$ - степень снижения выбросов при применении систем пылеподавления.

Значение коэффициента K_6 определяется по формуле (1.1.2):

$$\mathbf{K}_{6} = \mathbf{F}_{\text{MAKC}} / \mathbf{F}_{\Pi\Pi} \tag{1.1.2}$$

где **F**_{макс} - фактическая площадь поверхности складируемого материала при максимальном заполнении склада, м². Значение максимальной удельной сдуваемости пылящего материала определяется по формуле (1.1.3):

$$q = 10^{-3} \cdot a \cdot U^{\circ}, \ e/(M^2 \cdot c)$$
 (1.1.3)

где а и b – эмпирические коэффициенты, зависящие от типа перегружаемого материала;

U^o - скорость ветра, *м/с*.

Валовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.4):

$$\mathbf{\Pi}_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot \mathbf{K}_{4} \cdot \mathbf{K}_{5} \cdot \mathbf{K}_{6} \cdot \mathbf{K}_{7} \cdot \mathbf{q} \cdot \mathbf{F}_{nn} \cdot (1 - \mathbf{\eta}) \cdot (\mathbf{T} - \mathbf{T}_{0} - \mathbf{T}_{c}) \, m/\text{200}$$
(1.1.4)

где T - общее время хранения материала за рассматриваемый период, в сутках;

 $T_∂$ - число дней с дождем;

 T_c - число дней с устойчивым снежным покровом.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчетные параметры и их значения приведены в таблице 1.1.2.

Таблица 1.1.2 - Расчетные параметры и их значения

Расчетные параметры	Значения
Перегружаемый материал: Шлак	a = 0,0012
Эмпирические коэффициенты, зависящие от типа перегружаемого материала	b = 3,97
Местные условия – склады, хранилища, открытые с 3-х сторон	$K_4 = 0.5$
Влажность материала до 5%	$K_5 = 0.7$
Профиль поверхности складируемого материала	$K_6 = 7858 / 6045 = 1,299917$
Крупность материала – куски размером 5-3 мм	$K_7 = 0.7$
Расчетные скорости ветра, м/с	U' = 0,5; 2; 4; 6; 8; 8,4
Среднегодовая скорость ветра, м/с	U = 3,8
Площадь поверхности погрузочно-разгрузочных работы в плане, м ²	$F_{pa6} = 600$
Площадь поверхности пыления в плане, м ²	$F_{nn} = 6045$
Площадь фактической поверхности пыления, м ²	F _{макс} = 7858
Общее время хранения материала за рассматриваемый период, в сутках	T = 366
Число дней с дождем	T ∂ = 71
Число дней с устойчивым снежным покровом	T _c = 80

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Взам.инв.

AHB.No

 $\frac{\omega_{100}}{q_{nb_{11}u}}^{0.5} = 10^{-3} \cdot 0,0012 \cdot 0,5^{3.97} = 0,0000001 \, a/(m^2 c);$ $M_{nb_{11}u}^{0.5 \, \text{M/c}} = 0,5 \cdot 0,7 \cdot 1,299917 \cdot 0,7 \cdot 0,0000001 \cdot 600 + 0,5 \cdot 0,7 \cdot 1,299917 \cdot 0,7 \cdot 0,11 \cdot 0,0000001 \cdot (6045 - 600) \cdot (1-0,9) = 0,0000161 \, a/c;$

 $\begin{aligned} & \mathbf{q}_{nb,lnu}^{2 \text{ M/c}} = 10^{-3} \cdot 0,0012 \cdot 2^{3.97} = 0,0000188 \text{ s}/(\text{M}^2\text{c}); \\ & \mathbf{M}_{nb,lnu}^{2 \text{ M/c}} = 0,5 \cdot 0,7 \cdot 1,299917 \cdot 0,7 \cdot 0,0000188 \cdot 600 + \\ & + 0,5 \cdot 0,7 \cdot 1,299917 \cdot 0,7 \cdot 0,11 \cdot 0,0000188 \cdot (6045 - 600) \cdot (1-0,9) = 0,0039521 \text{ s/c}; \\ & \mathbf{q}_{nb,lnu}^{4 \text{ M/c}} = 10^{-3} \cdot 0,0012 \cdot 4^{3.97} = 0,000247 \text{ s}/(\text{M}^2\text{c}); \end{aligned}$

 $M_{\text{Thirth}}^{4 \,\text{M/C}} = 0.5 \cdot 0.7 \cdot 1,299917 \cdot 0.7 \cdot 0.0002947 \cdot 600 + 0.5 \cdot 0.7 \cdot 1,299917 \cdot 0.7 \cdot 0.11 \cdot 0.0002947 \cdot (6045 - 600) \cdot (1-0.9) = 0.0619321 \,\text{e/c};$

 $q_{n \omega n u^6} = 10^{-3} \cdot 0.0012 \cdot 6^{3.97} = 0.0014738 \ e/(M^2 \cdot c);$

 $\dot{\mathbf{M}}_{\text{ПЫЛU}}^{6 \text{ M/C}} = 0.5 \cdot 0.7 \cdot 1,299917 \cdot 0.7 \cdot 0,0014738 \cdot 600 +$

 $+ 0.5 \cdot 0.7 \cdot 1.299917 \cdot 0.7 \cdot 0.11 \cdot 0.0014738 \cdot (6045 - 600) \cdot (1 - 0.9) = 0.3097408 \ e/c;$ $q_{nbinu}^{8 \ M/C} = 10^{-3} \cdot 0.0012 \cdot 8^{3.97} = 0.0046179 \ e/(m^2 \cdot c);$

 $M_{nbinu}^{8 \text{ m/c}} = 0.5 \cdot 0.7 \cdot 1.299917 \cdot 0.7 \cdot 0.0046179 \cdot 600 + 0.0046179 \cdot 0.004$

+ 0.5 · 0.7 · 1.299917 · 0.7 · 0.11 · 0.0046179 · (6045 - 600)·(1-0.9) = 0.9705214 e/c; $\mathbf{q}_{\text{пыли}}^{8.4 \text{ M/c}} = 10^{-3} \cdot 0.0012 \cdot 8.4^{3.97} = 0.0056049 \text{ e/(m²c)};$

 $\mathbf{M}_{\text{ПЫЛИ}}^{8.4 \text{ M/C}} = 0.5 \cdot 0.7 \cdot 1,299917 \cdot 0.7 \cdot 0.0056049 \cdot 600 +$

+ 0,5 · 0,7 · 1,299917 · 0,7 · 0,11 · 0,0056049 · (6045 - 600)·(1-0,9) = 1,1779494 e/c; $q_{\text{пыли}} = 10^{-3} \cdot 0,0012 \cdot 3,8^{3.97} = 0,0002404 e/(m^2 c)$;

 $\vec{\Pi}_{\text{Tinhinity}} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot 0.5 \cdot 0.7 \cdot 1.299917 \cdot 0.7 \cdot 0.0002404 \cdot 6045 \cdot (366-71-80) \cdot (1-0.9) = 0.0945682 \text{ m/eod.}$

Содержание в выбросах оксидов алюминия составит 5,51 % от общего выброса:

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

```
M^{0.5 \text{ M/C}} = 0,0000161 * 0,0551 = 0,000000887  e/c;
M^{2 \text{ M/C}} = 0.0039521 * 0.0551 = 0.000218 \text{ s/c};

M^{4 \text{ M/C}} = 0.0619321 * 0.0551 = 0.00341 \text{ s/c};
M^{6 \text{ M/c}} = 0.3097408 * 0.0551 = 0.0171 \text{ e/c};
M^{8 \text{ M/c}} = 0.9705214 * 0.0551 = 0.0535 \text{ e/c};
M^{8.4 \text{ m/c}} = 1,1779494 * 0,0551 = 0,0649 \text{ e/c};
\Pi = 0,0945682 * 0,0551 = 0,00521 m/sod.
Содержание в выбросах оксидов железа составит 58,24 % от общего выброса:
M^{0.5 \text{ m/c}} = 0,0000161 * 0,5824 = 0,00000938 \text{ a/c};
M^{2 \text{ M/c}} = 0.0039521 * 0.5824 = 0.00230 \text{ s/c};

M^{4 \text{ M/c}} = 0.0619321 * 0.5824 = 0.03607 \text{ s/c};
M^{6 \text{ M/c}} = 0.3097408 * 0.5824 = 0.180 \text{ e/c};
M^{8 \text{ M/C}} = 0.9705214 * 0.5824 = 0.565 \text{ e/c};
M^{8.4 \text{ M/C}} = 1,1779494 * 0,5824 = 0,686 e/c;
\Pi = 0,0945682 * 0, 5824 = 0,0551 m/eod.
Остальные вещества нормируются как пыль неорганическая:
M^{0.5 \text{ M/C}} = 0.0000161 * 0.3625 = 0.00000584 \text{ e/c};

M^{2 \text{ M/C}} = 0.0039521 * 0.3625 = 0.00143 \text{ e/c};

M^{4 \text{ M/C}} = 0.0619321 * 0.3625 = 0.0225 \text{ e/c};
M^{6 \text{ M/c}} = 0.3097408 * 0, 3625 = 0.112 \text{ e/c};

M^{8 \text{ M/c}} = 0.9705214 * 0, 3625 = 0.352 \text{ e/c};
M^{8.4 \text{ M/c}} = 1,1779494 * 0,3625 = 0,427 \text{ e/c};
\Pi = 0,0945682 * 0, 3625= 0,0343 m/sod.
```

ИВ склад нефтекокса / кокса электродного (пр №73)

Расчет выделения пыли при хранении пылящих материалов выполнен в соответствии с Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск, 2001 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №38 в Перечне); «Временные методические указания по расчету выбросов загрязняющих веществ (пыли) в атмосферу при складировании и перегрузке сыпучих материалов на предприятиях речного флота. Белгород, 1992 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р, позиция №102).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

Загрязняющее вещество			Максимально разовый	Forebox pulpos Tiron
код	наименование)	выброс, г/с	Годовой выброс, т/год
328	Углерод (пигмент черный)		0.0120199	0.000965

Технология пылеподавления: Гранулирование пылящего материала. Кокс подвергается прокаливанию. Прокаливание нефтяного кокса – это процесс нагрева сырого нефтяного кокса до 1250-1350°С. При этом его молекулярная структура принимает более организованную форму с четкой кристаллической решеткой. Благодаря физическим и химическим процессам, происходящим с сырьевым материалом, происходит улучшение потребительских свойств кокса, что по сути связывает поверхность кокса, поэтому при перегрузке принято снижение выбросов 90% как при перегрузке гранулированного материала.

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.1):

 $\textbf{\textit{M}}_{XP} = \textbf{\textit{K}}_4 \cdot \textbf{\textit{K}}_5 \cdot \textbf{\textit{K}}_6 \cdot \textbf{\textit{K}}_7 \cdot \textbf{\textit{q}} \cdot \textbf{\textit{F}}_{\textit{pa6}} + \textbf{\textit{K}}_4 \cdot \textbf{\textit{K}}_5 \cdot \textbf{\textit{K}}_6 \cdot \textbf{\textit{K}}_7 \cdot 0,11 \cdot \textbf{\textit{q}} \cdot (\textbf{\textit{F}}_{\textit{nn}} - \textbf{\textit{F}}_{\textit{pa6}}) \cdot (1 - \boldsymbol{\eta}), \textit{\textit{a/c}}$ (1.1.1)где К₄ - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия

пылеобразования; **К**₅ - коэффициент, учитывающий влажность материала;

 $\emph{\textbf{K}}_{6}$ - коэффициент, учитывающий профиль поверхности складируемого материала;

К₇ - коэффициент, учитывающий крупность материала;

 $\emph{\emph{F}}_{\it pa6}$ - площадь в плане, на которой систематически производятся погрузочно-разгрузочные работы, $\emph{\emph{M}}^{\it 2}$,

F_{nn} - поверхность пыления в плане, M^2 ;

q - максимальная удельная сдуваемость пыли, $c/(m^2 \cdot c)$;

 η - степень снижения выбросов при применении систем пылеподавления.

Значение коэффициента K_6 определяется по формуле (1.1.2):

$$\mathbf{K}_6 = \mathbf{F}_{\text{Make}} / \mathbf{F}_{\text{fin}} \tag{1.1.2}$$

где *F*_{макс} - фактическая площадь поверхности складируемого материала при максимальном заполнении склада, м². Значение максимальной удельной сдуваемости пылящего материала определяется по формуле (1.1.3):

$$q = 10^{-3} \cdot a \cdot U^0, \, a/(M^2 \cdot c)$$
 (1.1.3)

где a и b – эмпирические коэффициенты, зависящие от типа перегружаемого материала;

U^о - скорость ветра, *м/с*.

Взам.инв.

AHB.№

Валовый выброс пыли при хранении пылящих материалов, рассчитывается по формуле (1.1.4): $\boldsymbol{\Pi}_{\mathcal{XP}} = 0,11\cdot 8,64\cdot 10^{-2}\cdot \boldsymbol{K}_4\cdot \boldsymbol{K}_5\cdot \boldsymbol{K}_6\cdot \boldsymbol{K}_7\cdot \boldsymbol{q}\cdot \boldsymbol{F}_{nn}\cdot (1-\boldsymbol{\eta})\cdot (\boldsymbol{T}-\boldsymbol{T}_{\partial}-\boldsymbol{T}_{c})$ m/zod

$$\Pi_{XP} = 0.11 \cdot 8.64 \cdot 10^{-2} \cdot K_4 \cdot K_5 \cdot K_6 \cdot K_7 \cdot \mathbf{q} \cdot F_{nn} \cdot (1 - \eta) \cdot (T - T_{\partial} - T_c) \, m/eod$$

где Т - общее время хранения материала за рассматриваемый период, в сутках;

 $T_∂$ - число дней с дождем;

 T_c - число дней с устойчивым снежным покровом.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчетные параметры и их значения приведены в таблице 1.1.2.

Таблица 1.1.2 - Расчетные параметры и их значения

Расчетные параметры	Значения
Перегружаемый материал: Нефтекокс / кокс электродный	a = 0,0012
Эмпирические коэффициенты, зависящие от типа перегружаемого материала приняты по аналогу	b = 3,97
- шлак	

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

OBOC2.6

Лист

(1.1.4)

Расчетные параметры	Значения
Местные условия – склады, хранилища, открытые с 3-х сторон	$K_4 = 0.5$
Влажность материала свыше 10 до 20%	$K_5 = 0.01$
Профиль поверхности складируемого материала	K ₆ = 7858 / 6045 = 1,299917
Крупность материала – куски размером 50-10 мм	$K_7 = 0.5$
Расчетные скорости ветра, м/с	U' = 0,5; 2; 4; 6; 8; 8,4
Среднегодовая скорость ветра, м/с	U = 3,8
Площадь поверхности погрузочно-разгрузочных работы в плане, м ²	$F_{pa6} = 600$
Площадь поверхности пыления в плане, м ²	$F_{nn} = 6045$
Площадь фактической поверхности пыления, м ²	F _{MAKC} = 7858
Общее время хранения материала за рассматриваемый период, в сутках	T = 366
Число дней с дождем	$T_{\partial} = 71$
Число дней с устойчивым снежным покровом	$T_c = 80$

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

```
 \begin{array}{l} {\color{red} \textbf{Нефтекокс } \backslash \text{ кокс } 3\text{лектродный}} \\ {\color{red} \textbf{q}_{0328}^{0.5 \text{ M/c}} = 10^{-3} \cdot 0,0012 \cdot 0,5^{3.97} = 0,0000001 \text{ } \textit{z}/(\textit{M}^2\textit{c});} \\ {\color{red} \textbf{M}_{0328}^{0.5 \text{ M/c}} = 0,5 \cdot 0,01 \cdot 1,299917 \cdot 0,5 \cdot 0,0000001 \cdot 600 + \\ & + 0,5 \cdot 0,01 \cdot 1,299917 \cdot 0,5 \cdot 0,11 \cdot 0,0000001 \cdot (6045 - 600) \cdot (1-0,9) = 0,0000002 \text{ } \textit{z}/c;} \\ {\color{red} \textbf{q}_{0328}^{2 \text{ M/c}} = 10^{-3} \cdot 0,0012 \cdot 2^{3.97} = 0,0000188 \text{ } \textit{z}/(\textit{M}^2\textit{c});} \\ {\color{red} \textbf{M}_{0328}^{2 \text{ M/c}} = 0,5 \cdot 0,01 \cdot 1,299917 \cdot 0,5 \cdot 0,0000188 \cdot 600 + \\ & + 0,5 \cdot 0,01 \cdot 1,299917 \cdot 0,5 \cdot 0,011 \cdot 0,0000188 \cdot (6045 - 600) \cdot (1-0,9) = 0,0000403 \text{ } \textit{z}/c;} \\ {\color{red} \textbf{M}_{0328}^{4 \text{ M/c}} = 10^{-3} \cdot 0,0012 \cdot 4^{3.97} = 0,0002947 \text{ } \textit{z}/(\textit{M}^2\textit{c});} \\ {\color{red} \textbf{M}_{0328}^{4 \text{ M/c}} = 0,5 \cdot 0,01 \cdot 1,299917 \cdot 0,5 \cdot 0,0002947 \cdot 600 + \\ & + 0,5 \cdot 0,01 \cdot 1,299917 \cdot 0,5 \cdot 0,11 \cdot 0,0002947 \cdot (6045 - 600) \cdot (1-0,9) = 0,000632 \text{ } \textit{z}/c;} \\ {\color{red} \textbf{q}_{0328}^{6 \text{ M/c}} = 10^{-3} \cdot 0,0012 \cdot 6^{3.97} = 0,0014738 \text{ } \textit{z}/(\textit{M}^2\textit{c});} \\ {\color{red} \textbf{M}_{0328}^{6 \text{ M/c}} = 0,5 \cdot 0,01 \cdot 1,299917 \cdot 0,5 \cdot 0,0114738 \cdot 600 + \\ & + 0,5 \cdot 0,01 \cdot 1,299917 \cdot 0,5 \cdot 0,11 \cdot 0,0014738 \cdot (6045 - 600) \cdot (1-0,9) = 0,0031606 \text{ } \textit{z}/c;} \\ {\color{red} \textbf{q}_{0328}^{8 \text{ M/c}} = 10^{-3} \cdot 0,0012 \cdot 8^{3.97} = 0,0046179 \text{ } \textit{z}/(\textit{M}^2\textit{c});} \\ {\color{red} \textbf{M}_{0328}^{8 \text{ M/c}} = 10^{-3} \cdot 0,0012 \cdot 8^{3.97} = 0,0046179 \text{ } \textit{z}/(\textit{M}^2\textit{c});} \\ {\color{red} \textbf{M}_{0328}^{8 \text{ M/c}} = 10^{-3} \cdot 0,0012 \cdot 8^{3.97} = 0,0046179 \text{ } \textit{z}/(\textit{M}^2\textit{c});} \\ {\color{red} \textbf{M}_{0328}^{8 \text{ M/c}} = 10^{-3} \cdot 0,0012 \cdot 8^{3.97} = 0,0056049 \text{ } \textit{z}/(\textit{M}^2\textit{c});} \\ {\color{red} \textbf{M}_{0328}^{8 \text{ M/c}} = 0,5 \cdot 0,01 \cdot 1,299917 \cdot 0,5 \cdot 0,11 \cdot 0,0046179 \cdot (6045 - 600) \cdot (1-0,9) = 0,0099033 \text{ } \textit{z}/c;} \\ {\color{red} \textbf{M}_{0328}^{8 \text{ M/c}} = 10^{-3} \cdot 0,0012 \cdot 8,4^{3.97} = 0,0056049 \text{ } \textit{z}/(\textit{M}^2\textit{c});} \\ {\color{red} \textbf{M}_{0328}^{8 \text{ M/c}} = 10^{-3} \cdot 0,0012 \cdot 3,8^{3.97} = 0,0056049 \text{ } \textit{z}/(\textit{M}^2\textit{c});} \\ {\color{red} \textbf{M}_{0328}^{8 \text{ M/c}} = 0,5 \cdot 0,01 \cdot 1,299917 \cdot 0,5 \cdot 0,0156049 \text{ }
```

Взам.			
Подп. и дата			
Инв.№ подл.	Изм. Кол.уч Лист № док. Подп. Дата	OBOC2.6	Лист 170

ИЗАВ №6297. Пыление при проезде автотранспорта (пр 71-75)

ИВ Пыление при проезде автотранспорта (пр 71-75)

Источником выделения пыли являются пыление в результате уноса пыли при движении транспортных средств на автодорогах Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: раздел 1.6.4 Методического пособия по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух ОАО "НИИ Атмосфера", 2012 г

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
-	Пыль от проезда а/т	0,01063	0,33559

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

таолица 2 - исходные данные для расчета	
Количество работающих автомашин (или техники), <i>n</i> [ед]	50
Суммарная грузоподъемность автомашин (или техники), [тонн]	1100
Средняя грузоподъемность 1 ед. транспорта, [тонн]	22
Коэффициент, учитывающий среднюю грузоподъемность единицы автотранспорта, С₁ (принимается по ближайшему значению из табл. 1.6.1)	1,6
Средняя скорость транспортирования, [км/ч]	2,75
Число ходок (туда и обратно) всего транспорта в час, <i>N (принято что каждая ед.а/т делает в час 1 ходку)</i>	50
Средняя протяженность одной ходки, L [км]	2,75
Коэффициент, учитывающий среднюю скорость передвижения транспорта, C_2 (принимается по ближайшему значению из табл. 1.6.2)	0,6
Покрытие дорог	Асфальт, бетон
Коэффициент, учитывающий состояние дорог, С₃	0,1
Коэффициент, учитывающий профиль поверхности материала в кузове автотранспорта, C_4	0
Средняя площадь кузова, F_0 [кв.м]	0
Коэффициент, учитывающий скорость обдува материала, C_5	0
Влажность материала, % (принята минимальная влажность груза до 9%)	до 9%
Коэффициент, учитывающий влажность поверхностного слоя материала, C_6	0,2
Пылевыделение в атмосферу на 1 км пробега, q₁[гр/км]	1450
Пылевыделение с единицы фактической поверхности материала в кузове, q_2 [гр/кв.м*сек,]	0
Коэффициент, учитывающий долю пыли, уносимой в атмосферу, C_7	0,01

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

где

С₁ – коэффициент, учитывающий среднюю грузоподъемность единицы автотранспорта и принимаемый в соответствии с табл. 1.6.1 Методики;

Определяется как частное от деления суммарной грузоподъемности всех действующих машин на общее число машин C_2 – коэффициент, учитывающий среднюю скорость передвижения транспорта и принимаемый в соответствии с табл. 1.6.2 Методики:

 C_3 – коэффициент, учитывающий состояние дорог и принимаемый в соответствии с табл. 1.6.6 Методики;

С₄ – коэффициент, учитывающий профиль поверхности материала в кузове автотранспорта. Значение принимается в пределах 1,3-1,6;

 F_0 – средняя площадь кузова [кв.м];

C₅ – коэффициент, учитывающий скорость обдува материала, которая определяется как геометрическая сумма скорости ветра и обратного вектора скорости движения автотранспорта, принимается по табл. 1.6.7 Методики

 ${m C}_6$ – коэффициент, учитывающий влажность поверхностного слоя материала, принимается по табл. 1.6.3 Методики;

N – число ходок (туда и обратно) всего транспорта в час;

L – средняя протяженность одной ходки, км;

 q_1 – пылевыделение в атмосферу на 1 км пробега, принимается 1450 гр;

q₂ – пылевыделение с единицы фактической поверхности материала в кузове, гр/кв.м*сек. Принимается по табл. 1.6.4 Методики:

п – число работающих автомашин;

 C_7 – коэффициент, учитывающий долю пыли, уносимой в атмосферу, принимается 0,01;

Транспортирование груза самосвалами на территории не осуществляется, поэтому пыление рассчитано только от контакта колес с проездами

Количество пыли, выделяемой при контакте колеса с дорожной поверхностью рассчитано исходя из общего грузооборота и производственной программы. Разделение общего выброса пыли по составляющим принято в зависимости от груза в

процентном соотношении к общему грузообороту.

	Количество в год (причалы	% от	
Груз	71-75)	грузооборота	Загрязняющие вещества
Каменный уголь	2400000	23,5%	Пыль каменного угля (3749)
Кокс	240000	2,4%	Пыль каменного угля (3749)
Глинозем	1200000 (без складского хранения, поэтому не учитывается)	11,8%	-
Ванадиевый шлак	60000	0,6%	Ванадия оксид (0110) Пыль неорганическая (2907)
Железорудный концентрат	600000	16,8%	Оксид железа (0123) Пыль неорганическая (2908)
Ильменитовая руда	120000	1,2%	Оксид титана (0118)

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	

подл.

THB.Nº

[1] [2]

10210000	100,0%	_
выбросов нет)	7,8%	-
300000 (непылящий груз, выбросов нет)	2,9%	-
300000 (непылящий груз, выбросов нет)	2,9%	-
3400000 (непылящий груз, выбросов нет)	33,3%	-
50000 (тарированый, выбросов нет)	0,5%	-
50000 (тарированый, выбросов нет)	0,5%	-
240000 (тарированый, выбросов нет)	2,4%	-
300000 (тарированый, выбросов нет)	2,9%	-
50000	0,5%	Оксид алюминия (0101) Оксид железа (0123) Пыль неорганическая (2909)
50000	0,5%	Медь оксид (0146) Пыль неорганическая (2908)
50000	0,5%	Углерод (пигмент черный) (0328)
		Оксид железа (0123) Пыль неорганическая (2908)
	50000 30000 (тарированый, выбросов нет) 240000 (тарированый, выбросов нет) 50000 (тарированый, выбросов нет) 50000 (тарированый, выбросов нет) 3400000 (непылящий груз, выбросов нет) 300000 (непылящий груз, выбросов нет) 300000 (непылящий груз, выбросов нет) 800000 (непылящий груз, выбросов нет)	50000 0,5% 50000 0,5% 300000 (тарированый, выбросов нет) 2,9% 240000 (тарированый, выбросов нет) 50000 (тарированый, выбросов нет) 0,5% 50000 (тарированый, выбросов нет) 0,5% 3400000 (непылящий груз, выбросов нет) 33,3% 300000 (непылящий груз, выбросов нет) 2,9% 300000 (непылящий груз, выбросов нет) 2,9% 800000 (непылящий груз, выбросов нет) 7,8%

Согласно ТУ 14-11-178-86 «Шлак ванадиевый. Технические условия» содержание оксида ванадия (V) не менее 18%. Железорудный концентрат в составе содержит 66,2% железа и 33,8% остальных примесей

Ильменит (титанистый железняк) — минерал общей химической формулы FeO·TiO2 или FeTiO3 . В ильменитовых концентратах содержится 35% диоксида титана и 40% железа. Таким образом, 35% от общего выброса нормируется как диоксид титана, 40% как оксид железа, остальные соединения приняты по пыли неорганической

Медный штейн содержит медь в концентрате до 40%. Остальное – смесь пород

Окалина (шлак) представляет собой сложную многокомпонентную пыль, из суммарного выброса ЗВ доля оксидов железа (код 0123) составляет 58,24%, доля оксидов алюминия (код 0101) 5,51%, остальное – пыль неорганическая (код 2909) Всего по источнику выбросов:

Загрязняющее вещество		Максимально-разовый выброс,	Годовой выброс, т/год					
Код	Наименование	г/сек	тодовой выорос, тлод					
От угля								
3749	Пыль каменного угля	0,00250	0,0789					
		От кокса						
3749	Пыль каменного угля	0,000250	0,00789					
	<u></u>	т ванадиевого шлака						
110	Ванадия оксид	0,0000112	0,00035					
2907	Пыль неорганическая SiO2 >70%	0,000051	0,00162					
		пезорудного концентрата						
123	Железа оксид	0,00118	0,0373					
2908	Пыль неорганическая SiO2 20-70%	0,000604	0,0191					
	От	ильменитовой руды						
118	Титана оксид	0,000044	0,00138					
123	Железа оксид	0,000050	0,00158					
2908	Пыль неорганическая SiO2 20-70%	0,0000312	0,00099					
		екокса/кокса электродного						
328	Углерод	0,0000521	0,0016434					
		От медного штейна						
146	Медь оксид	0,0000208	0,0006574					
2908	Пыль неорганическая SiO2 20-70%	0,0000312	0,0009861					
		От окалины (шлака)						
101	Алюминия оксид	0,0000029	0,0000906					
123	Железа оксид	0,0000303	0,0009571					
2909	Пыль неорганическая SiO2 <20%	0,0000189	0,0005957					

Расчет по каждому грузу выполнен на максимальную загруженность складов, поэтому в расчете рассеивания учтена неодновременность движения грузов, и по каждому веществу принят максимально-разовый выброс:

	Загрязняющее вещество	Максимально-разовый выброс,	·
Код	Наименование	г/сек	Годовой выброс, т/год
3749	Пыль каменного угля	0,00250	0,0868
110	Ванадия оксид	0,0000112	0,00035
118	Титана оксид	0,000044	0,00138
123	Железа оксид	0,00118	0,0399
146	Медь оксид	0,0000208	0,00066
328	Углерод	0,00005	0,00164
2907	Пыль неорганическая SiO2 >70%	0,000051	0,00162
2908	Пыль неорганическая SiO2 20-70%	0,000604	0,0210
2909	Пыль неорганическая SiO2 <20%	0,000019	0,000596

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	

NHB.№

Лист

ИЗАВ №6298. Пыление при проезде автотранспорта (пр 76-78)

ИВ Пыление при проезде автотранспорта (пр 76-78)

Источником выделения пыли являются пыление в результате уноса пыли при движении транспортных средств на автодорогах Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами: раздел 1.6.4 Методического пособия по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух ОАО "НИИ Атмосфера", 2012 г

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
-	Пыль от проезда а/т	0,00437	0,13804

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже. Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 2.

Таблица 2 - Исходные данные для расчета

таолица 2 - исходные данные для расчета	
Количество работающих автомашин (или техники), л [ед]	28
Суммарная грузоподъемность автомашин (или техники), [тонн]	550
Средняя грузоподъемность 1 ед. транспорта, [тонн]	20
Коэффициент, учитывающий среднюю грузоподъемность единицы автотранспорта, C_1 (принимается по ближайшему значению из табл. 1.6.1)	1,6
Средняя скорость транспортирования, [км/ч]	2
Число ходок (туда и обратно) всего транспорта в час, <i>N (принято что каждая ед.а/т делает в час 1 ходку)</i>	28
Средняя протяженность одной ходки, L [км]	2,02
Коэффициент, учитывающий среднюю скорость передвижения транспорта, C_2 (принимается по ближайшему значению из табл. 1.6.2)	0,6
Покрытие дорог	Асфальт, бетон
Коэффициент, учитывающий состояние дорог, С₃	0,1
Коэффициент, учитывающий профиль поверхности материала в кузове автотранспорта, C_4	0
Средняя площадь кузова, F_0 [кв.м]	0
Коэффициент, учитывающий скорость обдува материала, C_5	0
Влажность материала, % (принята минимальная влажность груза до 9%)	до 9%
Коэффициент, учитывающий влажность поверхностного слоя материала, C_6	0,2
Пылевыделение в атмосферу на 1 км пробега, q₁[гр/км]	1450
Пылевыделение с единицы фактической поверхности материала в кузове, q_2 [гр/кв.м*сек,]	0
Коэффициент, учитывающий долю пыли, уносимой в атмосферу, C_7	0,01

Количество пыли, выбрасываемой в атмосферу, рассчитывается по формулам (1, 2):

$$M_{n=} (C_1 \cdot C_2 \cdot C_3 \cdot C_6 \cdot N \cdot L \cdot C_7 \cdot q_1/3600) + C_4 \cdot C_5 \cdot C_6 \cdot q_2 \cdot F_0 \cdot n$$

$$G_n = ((C_1 \cdot C_2 \cdot C_3 \cdot C_6 \cdot N \cdot L \cdot C_7 \cdot q_1/3600) + C_4 \cdot C_5 \cdot C_6 \cdot q_2 \cdot F_0 \cdot n) \cdot 31,56$$

где

С₁ – коэффициент, учитывающий среднюю грузоподъемность единицы автотранспорта и принимаемый в соответствии с табл. 1.6.1 Методики;

Определяется как частное от деления суммарной грузоподъемности всех действующих машин на общее число машин C_2 – коэффициент, учитывающий среднюю скорость передвижения транспорта и принимаемый в соответствии с табл. 1.6.2 Методики:

 C_3 – коэффициент, учитывающий состояние дорог и принимаемый в соответствии с табл. 1.6.6 Методики;

С₄ — коэффициент, учитывающий профиль поверхности материала в кузове автотранспорта. Значение принимается в пределах 1.3.1.6:

 F_0 – средняя площадь кузова [кв.м];

C₅ – коэффициент, учитывающий скорость обдува материала, которая определяется как геометрическая сумма скорости ветра и обратного вектора скорости движения автотранспорта, принимается по табл. 1.6.7 Методики

 c_{6} – коэффициент, учитывающий влажность поверхностного слоя материала, принимается по табл. 1.6.3 Методики;

N – число ходок (туда и обратно) всего транспорта в час;

L – средняя протяженность одной ходки, км;

 q_1 – пылевыделение в атмосферу на 1 км пробега, принимается 1450 гр;

q₂ – пылевыделение с единицы фактической поверхности материала в кузове, гр/кв.м*сек. Принимается по табл. 1.6.4 Методики:

п – число работающих автомашин;

 C_7 – коэффициент, учитывающий долю пыли, уносимой в атмосферу, принимается 0,01;

Транспортирование груза самосвалами на территории не осуществляется, поэтому пыление рассчитано только от контакта колес с проездами

Количество пыли, выделяемой при контакте колеса с дорожной поверхностью рассчитано исходя из общего грузооборота и производственной программы. Разделение общего выброса пыли по составляющим принято в зависимости от груза в процентном соотношении к общему грузообороту.

Груз	Количество в год (причалы 76-78)	% от грузооборота	Загрязняющие вещества		
Каменный уголь	3500000	32%	Пыль каменного угля (3749)		
Глинозем	1200000 (без хранения, не учитывается)	11%	-		
Железорудный	600000	6%	Оксид железа (0123)		
концентрат	800000	0 70	Пыль неорганическая (2908)		
			Оксид титана (0118)		
Ильменитовая руда	120000	1%	Оксид железа (0123)		
			Пыль неорганическая (2908)		
Черный металл, их них: заготовка сталь листовая слябы	3400000 (непылящий груз, выбросов нет)	31,4%	-		

-	1		1			т
						l
						1
						ı
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	

MHB.No

OBOC2.6

s/c

m/200

[1] [2]

Лист

балка, катанка, чугун и проч.			
Пиломатериалы	300000 (непылящий груз, выбросов нет)	2,8%	-
Прочие грузы (шины авто мобильные, автомобили и спецтехника,)	300000 (непылящий груз, выбросов нет)	2,8%	-
Круглый лес	1400000 (непылящий груз, выбросов нет)	12,9%	-
общий грузооборот	10820000	100,0%	-

Железорудный концентрат в составе содержит 66,2% железа и 33,8% остальных примесей Ильменит (титанистый железняк) — минерал общей химической формулы FeO·TiO2 или FeTiO3 . В ильменитовых концентратах содержится 35% диоксида титана и 40% железа. Таким образом, 35% от общего выброса нормируется как диоксид титана, 40% как оксид железа, остальные соединения приняты по пыли неорганической

Всего по источнику выбросов:

	Загрязняющее вещество	Максимально-разовый выброс,	Годовой выброс, т/год					
Код	Наименование	г/сек	годовой выорос, глод					
		От угля						
3749	Пыль каменного угля	0,00141	0,045					
	От железорудного концентрата							
123	Железа оксид	0,000161	0,0051					
2908	Пыль неорганическая SiO2 20-70%	0,000082	0,0026					
	От иль	менитовой руды						
118	Титана оксид	0,0000170	0,00054					
123	Железа оксид	0,000019	0,00061					
2908	Пыль неорганическая SiO2 20-70%	0,0000121	0,00038					

Расчет по каждому грузу выполнен на максимальную загруженность складов, поэтому в расчете рассеивания учтена

неодновременность движения грузов, и по каждому веществу принят максимально-разовый выброс:

	Загрязняющее вещество	Максимально-разовый выброс,	Годовой выброс, т/год
Код	Наименование	г/сек	годовой выорос, глод
3749	Пыль каменного угля	0,00141	0,0447
118	Титана оксид	0,0000170	0,00054
123	Железа оксид	0,000161	0,0057
2908	Пыль неорганическая SiO2 20-70%	0,000082	0,00297

Взам								
Подп. и дата								
Инв.№ подл.	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	Лист 174

ИЗАВ №6309. топливная емкость для котла фитосанитарной камеры

ИВ топливная емкость для котла фитосанитарной камеры

Источниками загрязнения атмосферного воздуха являются дыхательные клапаны резервуаров в процессе хранения (малое дыхание) и слива (большое дыхание) жидкостей. Климатическая зона – 2.

Расчет выделений загрязняющих веществ выполнен в соответствии с « Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров (утверждены приказом Госкомэкологии России от 08.04.1998 № 199) (Сведения внесены распоряжением Минприроды России от 14.12.2020 № 35-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №5 в Перечне); Дополнение к «Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров (Новополоцк,1997)». Санкт-Петербург, 1999 (Сведения внесены распоряжением Минприроды России от 28.06.2021 № 22-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №39).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
333	Дигидросульфид (Сероводород)	0,0000317	0,0000045
2754	Алканы С12-С19 (Углеводороды предельные С12-С19)	0,0113071	0,0016045

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Продукт	Количество за год, т/год		Voluctovićina pozobovana	Производите льность	Объем одного	Количеств о	Однов
Продукт	Воз	Ввл	Конструкция резервуара	насоса, м³/час	резервуар а, м³	резервуар ов	ость
Дизельное топливо. А. температура жидкости близка к температуре воздуха		74	Наземный горизонтальный. Режим эксплуатации - "мерник". Система снижения выбросов - отсутствует		0,6	2	+

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимальные выбросы паров нефтепродуктов рассчитываются по формуле (1.1.1):

$$\mathbf{M} = (\mathbf{C}_1 \cdot \mathbf{K}^{\text{max}}_{p} \cdot \mathbf{V}^{\text{max}}_{q}) / 3600, \ e/c$$
 (1.1.1)

Годовые выбросы паров нефтепродуктов рассчитываются по формуле (1.1.2):

$$\mathbf{G} = (\mathbf{Y}_2 \cdot \mathbf{B}_{03} + \mathbf{Y}_3 \cdot \mathbf{B}_{en}) \cdot \mathbf{K}^{\max}_{\rho} \cdot 10^{-6} + \mathbf{G}_{x\rho} \cdot \mathbf{K}_{Hn} \cdot \mathbf{N}, m/2000$$
 (1.1.2)

где $\mathbf{Y}_2, \mathbf{Y}_3$ – средние удельные выбросы из резервуара соответственно в осенне-зимний и весенне-летний периоды года, a/m, принимаются по Приложению 12;

 \mathbf{B}_{os} , \mathbf{B}_{en} – количество жидкости, закачиваемое в резервуар соответственно в осенне-зимний и весенне-летний периоды года, m;

 ${\pmb K}^{\max}_{\ \ \ \ \ }$ - значение опытного коэффициента, принимаемое по Приложению 8;

 G_{xp} - выбросы паров нефтепродуктов при хранении нефтепродуктов в одном резервуаре, m/20д, принимаются по Приложению 13; K_{hn} - опытный коэффициент, принимается по Приложению 12;

N - количество резервуаров.

Значение коэффициента $\mathbf{K}^{\text{гор}}_{p}$ для газовой обвязки группы одноцелевых резервуаров определяется в зависимости от одновременности закачки и откачки жидкости из резервуаров по формуле (1.1.4):

$$\mathbf{K}^{\mathsf{TOP}}_{\rho} = 1, 1 \cdot \mathbf{K}_{\rho} \cdot (\mathbf{Q}^{\mathsf{3aK}} - \mathbf{Q}^{\mathsf{OTK}}) / \mathbf{Q}^{\mathsf{3aK}}$$

$$\tag{1.1.4}$$

где (Q^{зак} - Q^{отк}) - абсолютная средняя разность объемов закачиваемой и откачиваемой из резервуаров жидкости.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя в формулах учитывается массовая доля данного вещества в составе нефтепродукта.

Расчет максимально разового и годового выделения загрязняющих веществ в атмосферу приведен ниже.

Дизельное топливо

 $M = 3,14 \cdot 1 \cdot 13 / 3600 = 0,0113389 \ e/c;$

 $\mathbf{G} = (1.9 \cdot 74 + 2.6 \cdot 74) \cdot 1 \cdot 10^{-6} + 0.22 \cdot 0.0029 \cdot 2 = 0.001609 \, \text{m/sod}.$

333 Дигидросульфид (Сероводород)

 $M = 0.0113389 \cdot 0.0028 = 0.0000317 \text{ e/c};$

 $G = 0.001609 \cdot 0.0028 = 0.0000045 \, \text{m/sod}.$

2754 Алканы С12-С19 (Углеводороды предельные С12-С19)

 $M = 0.0113389 \cdot 0.9972 = 0.0113071 \ e/c$;

 $G = 0.001609 \cdot 0.9972 = 0.0016045 \text{ m/sod}.$

B3a								
Подп. и дата								
Инв.№ подл.							ODOCA (Лист
Инв	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.6	175

ИЗАВ №6310. Буксирное сопровождение

ИВ Силовые установки буксиров

В процессе эксплуатации стационарных дизельных установок в атмосферу с отработавшими газами выделяются вредные (загрязняющие) вещества.

В качестве исходных данных для расчета максимальных разовых выбросов используются сведения из технической документации дизельной установки об эксплуатационной мощности (если сведения об эксплуатационной мощности не приводятся, - то номинальной мощности), а для расчета валовых выбросов в атмосферу, - результаты учетных сведений о годовом расходе топлива дизельного двигателя.

Расчет выделений загрязняющих веществ выполнен в соответствии с Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок (утверждена Минприроды России 14.02.2001) (Сведения внесены распоряжением Минприроды России от 14.12.2020 № 35-р (с изменениями, внесенными распоряжением Минприроды России от 26.12.2022 № 38-р), позиция №4 в Перечне).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, глод
301	Азота диоксид (Азот (IV) оксид)	5,4357333	7,44016
304	Азот (II) оксид (Азота оксид)	0,8833067	1,209026
328	Углерод (Сажа)	0,2022222	0,2849847
330	Сера диоксид (Ангидрид сернистый)	2,8311111	3,9858
337	Углерод оксид	5,3588889	7,3073
703	Бенз/а/пирен (3,4-Бензпирен)	0,000063	0,000086
1325	Формальдегид	0,0586444	0,0757302
2732	Керосин	1,3872444	1,897905

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Данные	Мощность , кВт	Расход топлива, т/год	Удельный расход, г/кВт·ч	Однов ременн ость
Буксир «Петр». Группа В. Изготовитель ЕС, США, Япония. Мощные, средней	2600	237,25	250	+
быстроходности (Ne = 736-7360 кВт; n = 500-1000 об/мин). До ремонта.				
Азимутальный буксир «Ермак» . Группа В. Изготовитель ЕС, США, Япония. Мощные,	2100	191,625	250	+
средней быстроходности (Ne = 736-7360 кВт; n = 500-1000 об/мин). До ремонта.				
Буксир «Гелий» . Группа В. Изготовитель ЕС, США, Япония. Мощные, средней	2580	235,425	250	+
быстроходности (Ne = 736-7360 кВт; n = 500-1000 об/мин). До ремонта.				

Максимальный выброс і-го вещества стационарной дизельной установкой определяется по формуле (1.1.1):

$$\mathbf{M}_{i} = (1 / 3600) \cdot \mathbf{e}_{Mi} \cdot \mathbf{P}_{3}, \, a/c$$
 (1.1.1)

где **е**мі - выброс *i*-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, $e/\kappa Bm \cdot ч$;

Р_Э - эксплуатационная мощность стационарной дизельной установки, кВт;

(1 / 3600) - коэффициент пересчета из часов в секунды.

Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле (1.1.2):

$$\mathbf{W}_{3i} = (1 / 1000) \cdot \mathbf{q}_{3i} \cdot \mathbf{G}_{T}, \, m/\text{sod}$$
 (1.1.2)

где q_{3i} - выброс *i*-го вредного вещества, приходящегося на 1 кг топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, г/кг;

 ${m G}_T$ - расход топлива стационарной дизельной установкой за год, m;

(1 / 1000) - коэффициент пересчета килограмм в тонны.

Расход отработавших газов от стационарной дизельной установки определяется по формуле (1.1.3):

$$\mathbf{G}_{O\Gamma} = 8.72 \cdot 10^{-6} \cdot \mathbf{b}_{3} \cdot \mathbf{P}_{3}, \, \kappa e/c$$
 (1.1.3)

где b_{3} - удельный расход топлива на эксплуатационном (или номинальном) режиме работы двигателя, $a/\kappa Bm \cdot v$.

Объемный расход отработавших газов определяется по формуле (1.1.4):

$$\mathbf{Q}_{O\Gamma} = \mathbf{G}_{O\Gamma} / \mathbf{y}_{O\Gamma}, \, \mathbf{M}^{3} / \mathbf{c} \tag{1.1.4}$$

где **у**ог - удельный вес отработавших газов, рассчитываемый по формуле (1.1.5):

$$\mathbf{\gamma}_{O\Gamma} = \mathbf{\gamma}_{O\Gamma(npu\ t=0^{\circ}C)} / (1 + \mathbf{T}_{O\Gamma} / 273), \ \kappa e/M^{3}$$
 (1.1.5)

где $\gamma_{O\Gamma(npu\;t=0^{\circ}C)}$ - удельный вес отработавших газов при температуре 0°C, $\gamma_{O\Gamma(npu\;t=0^{\circ}C)}$ = 1,31 ка/м³,

 T_{OF} - температура отработавших газов, K.

При организованном выбросе отработавших газов в атмосферу, на удалении от стационарной дизельной установки (высоте) до 5 м, значение их температуры можно принимать равным $450\,^{\circ}$ C, на удалении от 5 до $10\,^{\circ}$ С $10\,^{\circ}$ С

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Буксир «Петр»

Взам.инв.

윋

Азота диоксид (Азот (IV) оксид)

 $\mathbf{M} = (1/3600) \cdot 2,688 \cdot 2600 = 1,941333 \text{ e/c};$ $\mathbf{W}_{3} = (1/1000) \cdot 11,2 \cdot 237,25 = 2,6572 \text{ m/eod}.$

Азот (II) оксид (Азота оксид)

 $M = (1/3600) \cdot 0.4368 \cdot 2600 = 0.3154667 \ e/c;$

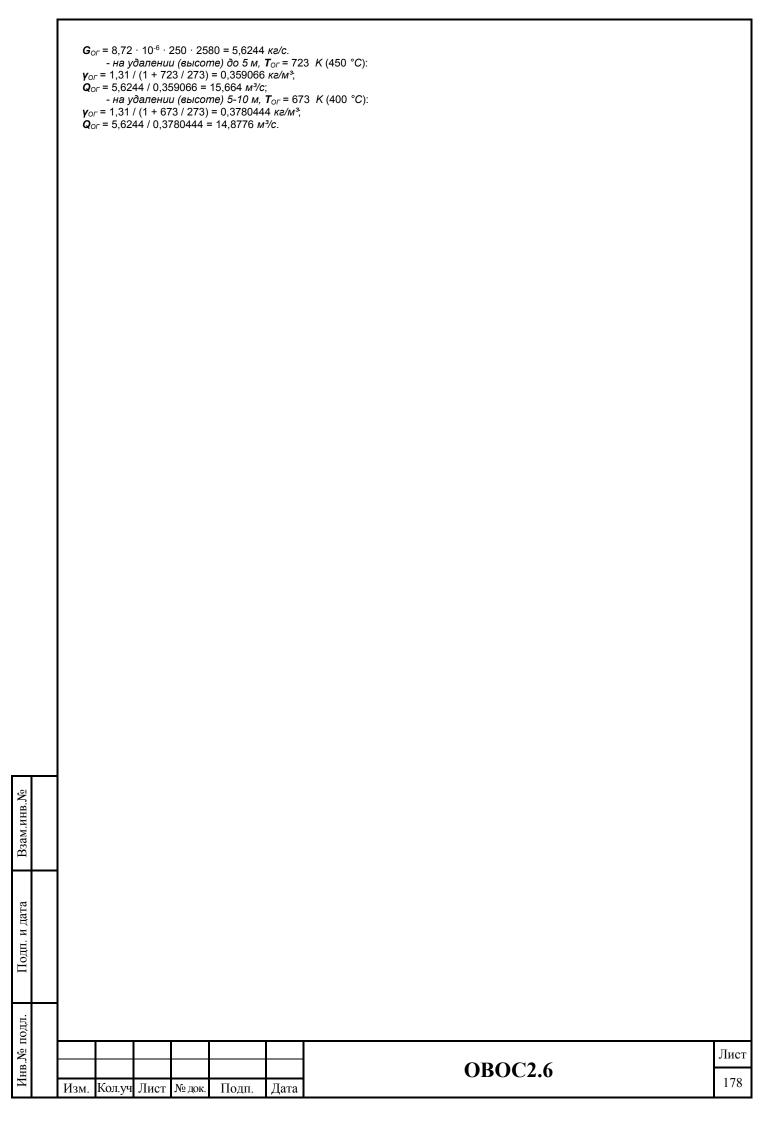
 $W_9 = (1 / 1000) \cdot 1,82 \cdot 237,25 = 0,431795 \text{ m/eod.}$

Углерод (Сажа)

 $\mathbf{M} = (1/3600) \cdot 0.1 \cdot 2600 = 0.0722222 \, e/c;$

 $W_9 = (1/1000) \cdot 0,429 \cdot 237,25 = 0,1017803 \text{ m/sod}.$

Сера диоксид (Ангидрид сернистый)


W;	= (1 / ̀36 = (1 / 1 Углеµ	600) · 1,4 000) · 6 род окс	4 · 2600 · 237,25 นฮิ	= 1,011111 5 = 1,4235 <i>r</i>) = 1,91388	г/с; n/год.		
						OBOC2.6	Лист
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	OBOC2.0	176
113M.	1031.y 1	лист	ла док.	тюди.	дата		

```
W_9 = (1 / 1000) · 11 · 237,25 = 2,60975 m/eod.
      Бенз/а/пирен (3,4-Бензпирен)
M = (1/3600) \cdot 0.0000031 \cdot 2600 = 0.0000022 \ e/c;
W_9 = (1 / 1000) \cdot 0,000013 \cdot 237,25 = 0,0000031 \text{ m/sod.}
      Формальдегид
M = (1/3600) \cdot 0.029 \cdot 2600 = 0.0209444 \ e/c;
W_3 = (1 / 1000) \cdot 0.114 \cdot 237.25 = 0.0270465  m/zod.
      Керосин
M = (1/3600) \cdot 0,686 \cdot 2600 = 0,495444 \ e/c;
W_9 = (1 / 1000) \cdot 2,857 \cdot 237,25 = 0,677823 \text{ m/sod.}
      Расчет объемного расхода отработавших газов приведен ниже.
G_{OF} = 8.72 \cdot 10^{-6} \cdot 250 \cdot 2600 = 5.668 \text{ ke/c}.
      - на удалении (высоте) до 5 м, Т<sub>ОГ</sub> = 723 K (450 °C):
\gamma_{O\Gamma} = 1.31 / (1 + 723 / 273) = 0.359066 \ \kappa e/m^3
Q_{O\Gamma} = 5,668 / 0,359066 = 15,7854 \text{ m}^3/c;
      - на удалении (высоте) 5-10 м, Т<sub>ОГ</sub> = 673 K (400 °C):
\mathbf{y}_{O\Gamma} = 1.31 / (1 + 673 / 273) = 0.3780444 \, \kappa e/m^3
\mathbf{Q}_{OF} = 5,668 / 0,3780444 = 14,9929 \, \text{m}^3/\text{c}.
Азимутальный буксир «Ермак»
      Азота диоксид (Азот (IV) оксид)
\mathbf{M} = (1/3600) \cdot 2,688 \cdot 2100 = 1,568 \text{ e/c};

\mathbf{W}_{9} = (1/1000) \cdot 11,2 \cdot 191,625 = 2,1462 \text{ m/eod}.
      Азот (II) оксид (Азота оксид)
\mathbf{M} = (1/3600) \cdot 0,4368 \cdot 2100 = 0,2548 \ e/c;
W_9 = (1 / 1000) \cdot 1,82 \cdot 191,625 = 0,3487575  m/20d.
      Углерод (Сажа)
M = (1/3600) \cdot 0.1 \cdot 2100 = 0.0583333  e/c;
W_3 = (1/1000) \cdot 0,429 \cdot 191,625 = 0,0822071 \text{ m/sod.}
      Сера диоксид (Ангидрид сернистый)
M = (1/3600) \cdot 1.4 \cdot 2100 = 0.816667 \ e/c;
W_9 = (1/1000) \cdot 6 \cdot 191,625 = 1,14975 \text{ m/sod.}
      Углерод оксид
M = (1/3600) \cdot 2,65 \cdot 2100 = 1,545833 \ e/c;
W_{3} = (1 / 1000) \cdot 11 \cdot 191,625 = 2,107875 \text{ m/sod}.
      Бенз/а/пирен (3,4-Бензпирен)
M = (1/3600) \cdot 0,0000031 \cdot 2100 = 0,0000018 e/c;
W_3 = (1/1000) \cdot 0,000013 \cdot 191,625 = 0,0000025 \, \text{m/sod}
      Формальдегид
M = (1/3600) \cdot 0,029 \cdot 2100 = 0,0169167 \ e/c;
W_3 = (1 / 1000) \cdot 0,114 \cdot 191,625 = 0,0218453 \text{ m/sod}.
      Керосин
\mathbf{M} = (1/3600) \cdot 0,686 \cdot 2100 = 0,400167 \ \text{e/c};
W_9 = (1/1000) \cdot 2,857 \cdot 191,625 = 0,547473 \text{ m/sod.}
      Расчет объемного расхода отработавших газов приведен ниже.
G_{OF} = 8,72 \cdot 10^{-6} \cdot 250 \cdot 2100 = 4,578 \text{ ke/c}.
      - на удалении (высоте) до 5 м, T_{O\Gamma} = 723 \, K (450 \, °C):
\gamma_{O\Gamma} = 1.31 / (1 + 723 / 273) = 0.359066 \ \kappa e/m^3;
\mathbf{Q}_{OF} = 4,578 / 0,359066 = 12,7497 \, \text{m}^3/c;
      - на удалении (высоте) 5-10 м, Тог = 673 K (400 °C):
\gamma_{O\Gamma} = 1.31 / (1 + 673 / 273) = 0.3780444 \text{ ke/m}^3
Q_{OF} = 4,578 / 0,3780444 = 12,1097 \text{ } \text{m}^3\text{/c}.
Буксир «Гелий»
      Азота диоксид (Азот (IV) оксид)
M = (1/3600) \cdot 2,688 \cdot 2580 = 1,9264 \ e/c;
W_3 = (1 / 1000) \cdot 11,2 \cdot 235,425 = 2,63676 \text{ m/sod.}
      Àзот (II) оксид (Азота оксид)
M = (1/3600) \cdot 0,4368 \cdot 2580 = 0,31304 \ e/c;
W_9 = (1 / 1000) \cdot 1,82 \cdot 235,425 = 0,4284735 \text{ m/sod}.
Углерод (Сажа)
M = (1/3600) \cdot 0, 1 \cdot 2580 = 0,0716667 e/c;
W_9 = (1 / 1000) \cdot 0,429 \cdot 235,425 = 0,1009973 \text{ m/eod.}
Сера диоксид (Ангидрид сернистый)
М = (1 / 3600) · 1,4 · 2580 = 1,003333 г/с;
W_3 = (1/1000) \cdot 6 \cdot 235,425 = 1,41255 \text{ m/sod}.
      Углерод оксид
M = (1/3600) \cdot 2,65 \cdot 2580 = 1,899167 \ e/c;
W_9 = (1/1000) \cdot 11 \cdot 235,425 = 2,589675 \text{ m/sod}.
      Бенз/а/пирен (3,4-Бензпирен)
M = (1/3600) \cdot 0,0000031 \cdot 2580 = 0,0000022 \ a/c;
W_3 = (1 / 1000) \cdot 0,000013 \cdot 235,425 = 0,0000031 \, m/eod.
      Формальдегид
M = (1/3600) \cdot 0,029 \cdot 2580 = 0,0207833 \ e/c;
W_3 = (1/1000) \cdot 0,114 \cdot 235,425 = 0,0268385 \text{ m/sod.}
      Керосин
M = (1/3600) \cdot 0,686 \cdot 2580 = 0,491633 \ e/c;
W_9 = (1 / 1000) \cdot 2,857 \cdot 235,425 = 0,672609 \text{ m/sod}.
      Расчет объемного расхода отработавших газов приведен ниже.
                                                                                                                                                                     Лист
                                                                                                   OBOC2.6
                                                                                                                                                                      177
   Кол.уч Лист № док.
                                    Подп
                                                 Дата
```

Взам.инв.

윋

	 		регистраці	1	ши		
Изм.	омера листон замененных	в (страниц	аннулиро- ванных	Всего листов (страниц) в док.	Номер док.	Подп.	Дат
Τ		T T					

Взам.инв.№

Подп. и дата

Инв.№ подл.