

Проектный институт "Союзхимпромпроект" ФГБОУ ВО "КНИТУ"

Инв.№ 33а-55522

СТРОИТЕЛЬСТВО УСТАНОВКИ ПРОИЗВОДСТВА ПОЛИМЕРНОГО БРОМСОДЕРЖАЩЕГО АНТИПИРЕНА НА ОСНОВЕ БУТАДИЕН-СТИРОЛЬНОГО ТЕРМОЭЛАСТОПЛАСТА МОЩНОСТЬЮ 3300 ТОНН В ГОД

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 6. Технологические решения

Часть 3. Автоматизация технологических процессов. Верхний уровень (АСУТП)

Книга 1. Текстовая часть

4600071592-02-TX3.1

Том 6.3.1

420032 г. Казань

Димитрова 11

Тел: (843) 294-94-50 Fax: (843) 294-92-80 http://www.cxpp.ru E-mail: cxpp@cxpp.ru

Проектный институт "Союзхимпромпроект" ФГБОУ ВО "КНИТУ"

СТРОИТЕЛЬСТВО УСТАНОВКИ ПРОИЗВОДСТВА ПОЛИМЕРНОГО БРОМСОДЕРЖАЩЕГО АНТИПИРЕНА НА ОСНОВЕ БУТАДИЕН-СТИРОЛЬНОГО ТЕРМОЭЛАСТОПЛАСТА МОЩНОСТЬЮ 3300 ТОНН В ГОД

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 6. Технологические решения

Часть 3. Автоматизация технологических процессов. Верхний уровень (АСУТП)

Книга 1. Текстовая часть

4600071592-02-TX3.1

Том 6.3.1

Взам.инв.№ Главный инженер проекта Л.А. Марданова

Подп.и дата Инв.№ подл.

СОДЕРЖАНИЕ ТОМА

Обозначение	Наименование	Примечание
4600071592-02-СП	Состав проектной документации	Выпускается отдельным томом
4600071592-02-TX3.1-C	Содержание тома 6.3.1	
	Раздел 6. Технологические решения	
	Часть 3. Автоматизация технологических процессов. Верхний уровень (АСУТП)	
4600071592-02-TX3.1	Книга 1. Текстовая часть	30 листов

Взам.инв.№											
Подп.и дата								4600071592-02-TX	×3.1-C		
		Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	+0000/13/2-02-12	10.1-0		
Т.		Разра	б.	Егоро	ва	DEN .	12.04.24		Стадия	Лист	Листов
цоп	522	Рук. 1	rp.	Косен	ков	Luci	12.04.24		П		1
Инв.№ подл.	33a-55522	Нач.	отд.	Исхан	ЮВ	Our	12.04.24	Содержание тома 6.3.1	ПИ "Со:	юзхимпром	проект"
Лнв	338	Н. ко	нтр.	Габду	ллин	25	12.04.24			У ВО ″КНІ	
		ГИП		Марда	анова	Jungel-	12.04.24			г. Казань	

СОДЕРЖАНИЕ

	O003	начения и сокращения	•••••	•••••	2						
	1	Общие положения	•••••		3						
	2	Объем автоматизации и информационная емкость системы	•••••	•••••	6						
	3	Основные технические решения	•••••		9						
	3.1	Решения по структуре АСУ ТП									
	3.2	Решения по режимам функционирования и диагностированию работы Системы 10									
	3.3	Решения по надежности	•••••		12						
	3.4	Решения по техническому обеспечению	•••••		13						
	3.5	Решения по размещению КТС АСУ ТП	•••••		16						
	3.6	Возможности по расширению систем	•••••		17						
	3.7	Решение по программному обеспечению									
	3.8	Решения по защите информации от несанкционированного д	оступа		20						
	3.9	Решение по информационному обеспечению	•••••		20						
	3.10	Решение по математическому обеспечению	•••••		21						
	3.11	Решение по лингвистическому обеспечению	•••••		21						
	3.12	Решение по метрологическому обеспечению	•••••		22						
	3.13	Решения по численности, квалификации и функциям персон									
	3.14	Техника безопасности и охрана труда									
	3.15	Решения по патентной чистоте	••••••		23						
	3.16	Решения по охране окружающей среды	•••••		23						
	3.17	Решения по защите оборудования от электромагнитных помо									
	4	Решение по электропитанию и заземлению оборудования АС	СУ ТП		25						
	4.1	Бесперебойное электропитание АСУ ТП									
	4.2	Системы заземления оборудования АСУ ТП	•••••		25						
	5	Мероприятия по подготовке Системы автоматизации к вводу									
	5.1	Подготовка информационной базы данных системы управле									
	5.2	Мероприятия по обучению и проверке квалификации персон									
	Ссыл	очная нормативная документация									
		ица регистрации изменений									
		4600071592-02-	TX3.1								
		л.уч Лист № док. Подп. Дата	Ta		П						
:22	Разраб. Рук. гр.	Егорова 12.04.24 Косенков 12.04.24 Раздел 6. Технологические решения	Стадия П	Лист 1	Листов 30						
33a-55522	Нач. отд	Исхаков 12.04.24 Часть 3. Автоматизация технологических процессов. Верхний уровень (АСУТП)	ПИ "Со	оюзхимпром	ипроект"						
33;	Н. контр ГИП	Габдуллин 12.04.24 Книга 1. Текстовая часть Марданова 12.04.24	ФГБО	ОУ ВО "КН г. Казань	ИТУ",						
	1 1111	11/1αμμαπυμα // // 12.04.24									

Взам.инв.№

Подп.и дата

Инв.№ подл.

ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

АІ – аналоговый входной сигнал;

АО – аналоговый выходной сигнал;

DI – дискретный входной сигнал;

DO – дискретный выходной сигнал;

Ехі – искробезопасная цепь;

пЕхі – искроопасная цепь;

KVM – оборудование для удаленного соединения системных блоков и рабочих станций;

АОВ – автоматизация систем отопления и вентиляции;

АРМ – автоматизированное рабочее место;

 $ACY T\Pi$ — автоматизированная система управления технологическим процессом;

ИБП – источник бесперебойного питания;

КИП – контрольно-измерительные приборы;

КТС – комплекс технических средств;

ЛСУ – локальная система управления;

ПАЗ – подсистема противоаварийной защиты;

ПЛК – программируемый логический контроллер;

ПО – программное обеспечение;

ПТК – программно-технический комплекс;

РСУ – распределенная система управления;

с.к. – дискретный беспотенциальный сигнал "сухой контакт".

Нв.№ подп.
Подп.и дата
Взам.инв.№
33a-55522

Изм.	Кол.уч	Лист	№ док	Подп.	Дата

4600071592-02-TX3.1

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 Полное наименование системы

Автоматизированная система управления технологическим процессом производства полимерного бромсодержащего антипирена на основе бутадиенстирольного термоэластопласта мощностью 3300 тонн в год на ПАО "Нижнекамскнефтехим".

Условное обозначение – АСУ ТП АП.

Далее по тексту – Система.

1.2 Заказчик и пользователь системы

Публичное акционерное общество (ПАО) "Нижнекамскнефтехим".

1.3 Участники создания системы

Генпроектировщик – ПИ "Союзхимпромпроект" ФГБОУ ВО "КНИТУ", 420032, г. Казань, ул. Дмитрова, 11.

Поставщик оборудования

Поставщик оборудования определяется Заказчиком.

Монтажно-наладочная организация

Монтажно-наладочная организация определяется Заказчиком.

1.4 Плановые сроки начала и окончания разработки проектной документации (стадия ПД)

Начало – 2024 г. при транический при траниче

Окончание – 2024 г.

1.5 Основание для проектирования

Основанием для проектирования АСУ ТП является задание на разработку проектной документации по объекту "Строительство установки производства полимерного бромсодержащего антипирена на основе бутадиен-стирольного термоэластопласта мощностью 3300 тонн в год".

подл.	55522						
№ī							
Инв.№	33a						
I		Изм.	Кол.уч	Лист	№ док	Подп.	Дата

4600071592-02-TX3.1

Лист

3

Взам.инв.№

Подп.и дата

1.6 Назначение и функции разрабатываемой системы

АСУ ТП предназначается для контроля и управления в режиме реального времени и противоаварийной автоматической защиты технологических процессов установки производства полимерного бромсодержащего антипирена на основе бутадиен-стирольного термоэластопласта мощностью 3300 тонн в год.

Система обеспечивает:

- визуализацию технологического процесса и централизованный контроль состояния технологического оборудования;
- управление периодическими и непрерывными процессами в автоматизированном режиме и стабилизация заданных режимов технологического процесса путем выдачи управляющих воздействий на исполнительные механизмы, как в автоматическом режиме, так и по инициативе оператора;
- автоматический контроль всех необходимых технологических параметров;
- реализацию функций противоаварийной автоматической защиты (ПАЗ) путем опроса подключенных к Системе датчиков в автоматическом режиме, анализа измеренных значений, и переключения технологических узлов в безопасное состояние путем выдачи управляющих воздействий на исполнительные механизмы в автоматическом режиме, или по инициативе оперативного персонала;
- реализацию функций системы обнаружения загазованности (в составе ПАЗ) путем опроса подключенных к Системе датчиков обнаружения загазованности в автоматическом режиме, анализа измеренных значений, и выдачи управляющих воздействий на исполнительные механизмы (световые и звуковые извещатели, вентоборудование и пр.);
- программное управление и поддержание заданного режима работы технологического оборудования и расчетных условий технологического процесса;
- ручное дистанционное управление оборудованием по командам оператора;
 - обнаружение отказов в работе оборудования;

Инв. № подл. Подп. и дата 33а-55522

Взам.инв.№

Изм. Кол.уч Лист № док Подп. Дата

4600071592-02-TX3.1

- отображение и регистрацию основных контролируемых технологических параметров, характеризующих состояние оборудования и технологического процесса;
 - синхронизацию времени по GPS;
- сохранение истории хода технологического процесса и предоставление архивных данных технологическому персоналу в удобной форме;
- выдачу отчетных документов о ходе технологических процессов, работе системы, действиях оперативного персонала;
 - формирование журнала аварийных сообщений;
 - формирование журнала действий эксплуатационного персонала;
- учет наработки оборудования (насосы, вентиляторы, компрессоры и пр.);
- интеграцию со смежными системами для обмена данными, включая системы управления установками комплектной поставки;
- обеспечение возможности передачи необходимых технологических параметров в корпоративную сеть.

Взам.инв.№									
Подп.и дата									
Инв.№ подл.	33a-55522								Лист
Инв.	33a-	Изм.	Кол.уч	Лист	№ док	Подп.	Дата	4600071592-02-TX3.1	5
		460007			A.docn	n			Формат А4

2 ОБЪЕМ АВТОМАТИЗАЦИИ И ИНФОРМАЦИОННАЯ ЕМКОСТЬ СИСТЕМЫ

Перечень подключаемых в АСУ ТП АП технологических объектов и количество сигналов с разделением по типам представлены в таблицах 1 и 2 соответственно.

Наименование объекта

Таблица 1 – Технологические объекты, подключаемые в АСУ ТП АП

п/п	Наименование объекта						
Здание п	роизводства бромсодержащего антипирена в составе:						
Блок 100	Сырьевой блок и блок получения брома:						
	Узел приема и дозирования соляной кислоты						
	Узел приготовления раствора щелочи						
	Узел приготовления раствора сульфита натрия						
	Узел приготовления раствора бромида натрия						
	Узел приема и подачи хлора						
	Узел получения брома						
	Узел приема и дозирования брома						
	Узел приема и дозирования бромной воды						
	Узел аварийного опорожнения						
	Узел очистки сдувок						
	Узел очистки аварийных сдувок						
Блок 200	Блок бромирования и нейтрализации полимера с узлами подготовки						
DJIOK 200	растворителей:						
	Узел приема дихлорметана						
	Узел дозирования дихлорметана						
	Узел приема н-бутанола						
	Узел дозирования н-бутанола						
	Узел загрузки ТЭП						
	Узел бромирования и нейтрализации полимера						
Блок 300	Блок промывки полимера:						
	Реакторный узел						
	Узел улавливания полимера						
Блок 400	Блок осаждения, сушки и фильтрации полимера:						
	Узел хранения изопропилового спирта (ИПС)						
	Реакторный узел						
	Узел фильтрации						
	Узел осушки и фасовки порошка						
	Узел охлаждения воздуха						
	Склад сырья и готовой продукции с зарядной станцией						
Наружна	я установка производства бромсодержащего антипирена в составе:						
Блок 500	Блок ректификации растворителей:						

Подп.и дата	
Инв.№ подл.	33a-55522

Взам.инв.№

4600071592-02-TX3.1

Лист

Подп.

Дата

Номер

Номер п/п	Наименование объекта
	Узел разделения углеводородов и воды
	Узел выделения дихлорметана (ДХМ)
	Узел разделения бутилового спирта (БС) и ИПС
Γ (00	Блок регенерации водного раствора, узла антифриза и пароконденса-
Блок 600	та:
	Узел регенерации водного раствора
	Узел циркуляции, сбора и охлаждения антифриза
	Узел пароконденсата и захолаживания
Блок 700	Блок вспомогательных узлов
	Узел воздуха КИПиА
	Факельная система
	Система утилизации ДХМ
	Дренажная система
	Тактовый ленточный фильтр блочной поставки со своей ЛСУ. Шкаф
	системы управления установлен по месту. Интерфейс связи – Modbus
	ТСР/ІР, физическая среда передача данных – оптоволокно.
	Фасовочно-упаковочный комплекс блочной поставки со своей ЛСУ.
Блок 400	Шкаф системы управления установлен по месту. Интерфейс связи –
Diok 400	Ethernet, обмен данными по стандарту OPC UA, физическая среда пе-
	редача данных – оптоволокно.
	Распылительная сушилка блочной поставки со своей ЛСУ. Шкаф
	системы управления установлен по месту. Интерфейс связи – Modbus
	ТСР/ІР, физическая среда передача данных – оптоволокно.
	Установка получения деминерализованной воды со своей ЛСУ.
Блок 600	Шкаф системы управления установлен по месту. Интерфейс связи –
Bilon 000	резервированная линия Modbus TCP/IP, физическая среда передача
	данных — оптоволокно.

Взам.инв.№					
Подп.и дата					
Инв.№ подл. 33a-55522					Лист
Инв. 33а	Кол.уч 1592-02	№ док	Дата	4600071592-02-TX3.1	7 Формат А4

Таблица 2 – Количество входных/выходных сигналов АСУ ТП АП

АСУ ТП		вх ные/вы	оговые од- ходные налы	Дискретные входные/выходные сигналы				
производства антипиренов		АІ 4-20 мА 2-х пров.сх.	АО 4-20 мА 2-х пров.сх.	DI =24 В с.к.	DO ~220 B 4,5A	DO =24 B 4,5A	Итого	
РСУ	nExi	32	32	24	96	-	184	
С резервом	20%	39	39	29	116	-	223	
	Exi	652	165	217	-	179	1213	
С резервом	20%	783	198	261	-	215	1457	
Итого без резерва		684	197	241	96	197	1397	
Итого с резервом	20%	822	237	290	116	215	1680	
ПАЗ	nExi	133	-	368	120	52	673	
С резервом	20%	160	-	442	144	63	809	
	Exi	388	-	350	-	125	863	
С резервом	20%	466	-	420	-	150	1036	
Итого без резерва		521	-	718	120	177	1536	
Итого с резервом	20%	626	-	862	144	213	1845	
ИТОГО с резервом		1448	237	1152	260	428	3525	
ИТОГО с резервом		1448	237	1152	260	428	3525	

Таблица 2 не учитывает интерфейсные сигналы от систем блочно-комплектной поставки, их количество и тип будут уточнены на стадии разработки рабочей документации.

Типы подключаемых в Систему входных/выходных сигналов показаны в Таблице 2.

В АСУ ТП АП предусмотрен резерв 20 % по количеству каналов ввода-вывода от общего количества каналов для возможной адаптации к изменениям технологического процесса, вызванным модернизацией, реконструкцией или ремонтом технологического оборудования.

Попозиционный перечень сигналов представлен в разделе 4600071592-02-

Взам.инв.№ TX2.2. Подп.и дата 33a-55522 Лист 4600071592-02-TX3.1 Изм. Кол.уч Лист № док Подп. Дата 4600071592-02-TX3.1 A.docm Формат А4

3 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ РЕШЕНИЯ

3.1 Решения по структуре АСУ ТП

Проектируемая АСУ ТП АП функционально делится на следующие подсистемы:

- Распределенная Система Управления (РСУ), предназначенная для управления технологическим процессом совместно с оперативным персоналом в режиме реального времени;
- Противоаварийная Автоматическая Защита (ПАЗ), предназначенная для автоматического перевода технологического процесса в безопасное состояние при возникновении аварийных ситуаций в режиме реального времени. Подсистема ПАЗ включает в себя контроль загазованности и обеспечивает информирование персонала об обнаружении в воздухе рабочих зон предельных концентраций опасных химических веществ путем подачи управляющих сигналов на устройства оповещения.

По способу информационного обмена структура АСУТП является иерархической, 3-х уровневой:

- Нулевой (нижний) уровень полевые датчики и измерительные преобразователи технологических параметров, исполнительные механизмы и электрооборудование, оборудование, управляемое локальными АСУ в объем данного комплекта не входит;
- Первый уровень средства контроля и автоматического управления, включающие в свой состав программируемые логические контроллеры (ПЛК) подсистем РСУ и ПАЗ;
- Второй уровень уровень автоматизированного управления и визуализации состояния технологического процесса включает в себя сервера, автоматизированные рабочие места (APM) операторов, рабочие станции инженера АСУ ТП и инженера КИП с предустановленным специализированным программным обеспечением.

 Инв.№ подл.
 Подп.и дата
 Взам.инв.№

 33a-55522
 33a-55522

Изм. Кол.уч Лист № док Подп. Дата

4600071592-02-TX3.1

Связь между компонентами первого и второго уровней осуществляется электрическими линиями связи посредством резервированных промышленных информационных сетей стандарта Industrial Ethernet.

Отказ второго уровня системы не влияет на работу подсистем РСУ и ПАЗ.

Функционирование РСУ не влияет на работу ПАЗ как в нормальном режиме работы, так и в случае нарушения своей работоспособности.

Сети обмена информацией между элементами системы ПАЗ отделены от сетей обмена информацией между элементами других систем АСУ ТП.

Локальные системы управления подключаются в АСУ ТП АП по стандартизированным интерфейсам – Modbus TCP/IP, OPC UA, физическая среда передача данных – оптоволоконный кабель.

По требованию п. 34.12 Задания на проектирование данным проектом предусмотрена передача информации от технических средств автоматического контроля выбросов вредных (загрязняющих) веществ в систему экологического мониторинга в соответствии с требованиями природоохранного законодательства (Федерального закона №96-ФЗ «Об охране атмосферного воздуха»). Для передачи предусмотрены ОРС-сервер и сетевое оборудование с использованием протоколов ОРС, а также межсетевой экран.

Структурная схема комплекса технических средств АСУ ТП производства антипирена представлена в графической части 4600071592-02-ТХЗ.2-АП-1-А.С1-0001.

3.2 Решения по режимам функционирования и диагностированию работы Системы

Система обеспечивает работу объектов автоматизации в круглосуточном режиме.

Выделяются следующие режимы функционирования технологического оборудования:

- автоматический режим;
- дистанционный режим;
- ручной режим;

Подп.и дата аварийный режим; Инв.№ подл. 33a-55522 Подп. Кол.уч Лист Дата

Взам.инв.№

4600071592-02-TX3.1

Лист

10

В автоматическом режиме работы система производит автоматический сбор и обработку технологической информации с полевого оборудования, вычисляет управляющее воздействие в соответствии с заданным алгоритмом, производит выдачу управляющего воздействия на исполнительные механизмы.

В дистанционном режиме работы система производит автоматический сбор и обработку технологической информации с полевого оборудования, вычисляет управляющее воздействие в соответствии с заданным алгоритмом, принимает управляющие команды от оперативного персонала. Выдача управляющего воздействия на исполнительные механизмы производится в соответствии с управляющими командами оперативного персонала с АРМ.

В ручном режиме работы система производит автоматический сбор и обработку технологической информации с полевого оборудования, вычисляет управляющее воздействие в соответствии с заданным алгоритмом, выдача управляющего воздействия на исполнительные механизмы не производится. Управление технологическим оборудованием производится по месту оперативным персоналом.

Аварийный режим включает в себя период времени с момента выявления аварийной ситуации до момента ее локализации и перехода к восстановлению работоспособности АСУ ТП и автоматизируемых технологических объектов.

Аварийными ситуациями для самой АСУ ТП являются:

- выход из строя отдельных компонентов РСУ и ПАЗ;
- неисправности в сетях обеспечения функционирования системы.

При возникновении нештатной ситуации: сбой электропитания, отказ одного из процессоров контроллера, блока питания контроллера, отказ модуля связи или линии связи, отказе рабочей станции, функционирование АСУ ТП продолжается за счет резервного оборудования и источников бесперебойного питания. При отказе резервного оборудования возможен аварийный останов установки.

В случае аварийной ситуации технологического процесса осуществляется отработка алгоритмов ПАЗ, обеспечивающих перевод исполнительных механизмов, агрегатов в безопасный режим работы.

Инв. № подл. Подп. и дата 33а-55522

Взам.инв.№

Изм. Кол.уч Лист № док Подп. Дата

4600071592-02-TX3.1

Воздух КИП для питания пневматических средств управления и ПАЗ предусматривается от системы сжатого воздуха КИП, включающей в себя воздушную компрессорную станцию и буферные емкости (ресиверы). Ресиверы имеют расчетный объём воздуха, позволяющий обеспечить питание воздухом систем контроля, управления и ПАЗ при останове компрессора сжатого воздуха в течение времени, достаточного для безаварийной остановки производства.

В случае отключения электроэнергии или прекращения подачи воздуха КИП или управляющего сигнала все исполнительные механизмы перейдут в безопасное положение, что приведет к безаварийному останову.

Диагностическая информация комплекса технических средств автоматически поступает на рабочие станции инженера/оператора, и выводится на специально разработанные видеокадры, а также в виде сигнализации с цветовым и звуковым решениями, что обеспечивает привлечение внимания персонала. Диагностику функционирования аппаратных средств и линий связи также можно проводить визуально, с помощью световых индикаторов контроллеров и модулей ввода-вывода. В случае необходимости имеется возможность перевода оборудования в ручной режим управления.

Плановое обслуживание технических средств во время штатной работы технологического объекта управления проводится без полного отключения электропитания технических средств.

Внеплановые работы по восстановлению работоспособности при возникновении отказов технических и программных средств осуществляются путем замены типового элемента (модуля) из состава ЗИП без дополнительной регулировки.

3.3 Решения по надежности

Взам.инв.№

Надежность системы АСУ ТП АП обеспечиваться:

резервированием серверов, коммутаторов, процессора ПЛК и источников питания;

Система АСУ ТП имеет в своем составе аппаратно-программные средства самодиагностики, позволяющие фиксировать отказы оборудования Системы с точностью до модуля, и передавать о них сообщения на рабочие станции.

Показатели надежности проектируемой системы отвечают требованиям ГОСТ 24.701-86.

Средний срок службы системы – не менее 15 лет с учетом проведения восстановительных работ.

Система ПАЗ использует собственные датчики и исполнительные механизмы в соответствии с требованиями п. 234 и п. 235 ФНП "Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств», утвержденные приказом Ростехнадзора от 15.12.2020 № 533."

В технологических блоках II категории взрывоопасности центробежные компрессоры и насосы с торцевыми уплотнениями оснащаются системами контроля за состоянием подшипников по температуре с сигнализацией, срабатывающей при достижении предельных значений, и блокировками, входящими в систему ПАЗ, которые срабатывают при превышении этих значений.

Для насосов и компрессоров, перемещающих горючие продукты, предусмотрено их дистанционное отключение и отключение по месту (для насосов установлены местные кнопки отключения, компрессора отключаются по месту кнопками, расположенными на панели комплектных шкафов управления).

Во взрывоопасных помещениях и вне их перед входными дверями предусматривается устройство световой и звуковой сигнализации загазованности воздушной среды в соответствии с требованиями п. 222 ФНП «Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств», утвержденные приказом Ростехнадзора от 15.12.2020 № 533, и п. 164 ФНП «Правила безопасности химически опасных производственных объектов», утвержденные приказом Ростехнадзора от 07.12.2020 № 500.

3.4 Решения по техническому обеспечению

Программно-технический комплекс АСУ ТП АП построен на базе ПТК REGUL, разработанного ООО "Прософт-Системы".

Инв.№ подп. Подп.и дата 33а-55522 Подп.и дата

Взам.инв.№

Изм. Кол.уч Лист № док Подп. Дата

4600071592-02-TX3.1

Лист

13

Для подключения полевых кабелей к АСУ использованы кроссовые клеммы.

Для гальванической развязки дискретных сигналов используются разделительные реле.

Все искробезопасные сигналы подключаются в АСУ через барьеры искрозащиты.

Для удобства подключения внутрисистемных кабелей барьеры и реле устанавливаются на терминальные панели.

Кабельные проводки для сигналов с низким уровнем напряжения физически отделены от силовой или другой проводки высокого напряжения и прокладывается в отдельных кабель-каналах.

Искробезопасные и неискробезопасные сигналы прокладываются в раздельных кабель-каналах и не пересекаются в пределах одного шкафа.

Для электропроводок систем автоматизации применяются кабели, не распространяющие горение при групповой прокладке по категории А (нг-(А)), с пониженным дымогазовыделением (-LS) согласно ГОСТ 31565-2012 "Кабельные изделия. Требования пожарной безопасности".

Для системы ПАЗ применяются огнестойкие кабели, не распространяющие горение при групповой прокладке, с пониженным дымогазовыделением "нг(A)-FRLS" согласно требований СП 423.1325800.2018.

После прокладки всех кабельных линий проходы кабельных лотков (коробов, труб) через перегородки/перекрытия/стены заделываются легкоудаляемым огнезащитным составом. Степень огнестойкости проходки принимается в соответствии со степенью огнестойкости строительных конструкций.

Прокладка волоконно-оптических кабелей от ЛСУ осуществляется в лотках с крышками, изготовленных из оцинкованной углеродистой стали. В лотках предусматривается запас места минимум 20 %.

В лотках дополнительно устанавливается внутреннее уплотнение проводок (огнезащитный пояс) — на горизонтальных участках через 30 м, на вертикальных участках — через 20 м.

В состав проектируемой АСУ ТП входят следующие основные компоненты:

Инв.№ подп. Подп.и дата 33a-55522

Взам.инв.№

4600071592-02-TX3.1

Лист

№ док

Подп.

Дата

Изм. Кол.уч Лист

- резервированные контроллеры РСУ (ПЛК серии REGUL R500 ООО "Прософт-Системы");
- резервированные контроллеры ПАЗ в отказобезопасном исполнении (ПЛК серии REGUL R500S OOO "Прософт-Системы");
- система децентрализованной периферии на базе модулей ввода/вывода для
 РСУ (серии R500);
- система децентрализованной периферии на базе модулей ввода/вывода в отказобезопасном исполнении для ПАЗ (серии R500S);
 - барьеры искробезопасности для Ехі-сигналов;
 - разделительные реле;
 - терминальные панели;
 - блоки питания $\sim 230 \text{ B}$, =24 B;
 - модули резервирования питания ~230 B, =24 B;
 - коммутирующее оборудование для оптоволоконных линий связи;
- коммутирующее оборудование для линий связи на основе медной витой пары;
 - клеммы проходные;
 - клеммы с предохранителями со штекерными держателями;
 - автоматические выключатели;
 - серверы, системные блоки и мониторы для рабочих станций;
 - шкафное оборудование.

По функциональному наполнению шкафы АСУ ТП АП классифицированы следующим образом:

- системные шкафы (шасси контроллеров и модулей ввода/вывода);
- кроссовые шкафы для искробезопасных Exi и искроопасных nExi сигналов (барьеры, реле, терминальные панели);
 - сетевой/серверный шкаф;
 - шкафы АРМ (системных блоков);
 - шкафы распределения питания.

Внешние габариты серверных шкафов приняты 2000Bx800Шх 1000Γ мм, всех остальных типов шкафов – 2000Bx800Шх 800Γ мм, доступ в шкафы двусторонний. В

Инв.№ подл. Подп.и дата 33a-55522

Взам.инв.№

Изм. Кол.уч Лист № док Подп. Дата

4600071592-02-TX3.1

шкафах предусмотрена система терморегулирования, включающая в себя систему принудительной вентиляции.

3.5 Решения по размещению КТС АСУ ТП

Аппаратная и операторная АСУ ТП производства антипирена размещаются во вновь проектируемом блоке вспомогательных помещений здания производства бромсодержащего антипирена АП-1.

Общее количество шкафного оборудования АСУ ТП производства антипирена приведено в таблице 3.

Таблица 3 – Шкафное оборудование АСУ ТП производства антипирена

, , , , , , , , , , , , , , , , , , , ,	1 7 1	1			
Тип	АСУ ТП производства анти-				
оборудования	ПИ	рена			
оборудования	РСУ	ПАЗ			
Шкаф системный	2	3			
Шкаф кроссовый Ехі	10	6			
Шкаф кроссовый пЕхі	2	4			
Шкаф распределения	1				
электропитания	J	L			
Шкаф серверный	1				
Шкаф АРМ	1	1			
Итого:	30 шь	30 шкафов			

В соответствии с решением, принятым протоколом 1800/НКНХ от 20.11.2023 г., в проектируемой аппаратной предусматривается 20 резервных мест для размещения шкафов систем управления МТБЭ и ДБ-3/5.

Планировкой предусмотрен резерв дополнительного свободного места в 6 шкафов.

Все коммуникационные связи между средствами управления, внешние информационные каналы, питание для средств автоматизации заводятся в шкафы управления через фальшпол аппаратной высотой 1200 мм.

Размещение шкафов в аппаратной выполнено с учетом требований п. 5.1.14 ПУЭ.

В проектируемом помещении операторной размещается 3 проектируемых АРМ операторов, 1 АРМ начальника смены, 1 АРМ инженера.

Для соблюдения требований Приказа 533 "Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатываю-

Оператор
Для
33a-2525

Для взрь

Для взрь

Для кол.уч Ль

Взам.инв.№

4600071592-02-TX3.1

Лист

Подп.

Дата

щих производств" п. 13 предусмотрена установка станции тренажера операторов (APM KTK).

На АРМ операторов предусмотрена световая и звуковая сигнализация о загазованности производственных помещений и территории управляемого объекта в соответствии с п. 276 ФНП «Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств», утвержденные приказом Ростехнадзора от 15.12.2020 № 533.

Для печати отчетов, сводок, аварийных сообщений и пр. используется цветной лазерный принтер, также расположенный в операторной.

Связь оборудования АСУ ТП, находящегося в аппаратной и операторной, осуществляется при помощи установленного в сетевом шкафу коммутирующего оборудования по резервированным линиям на основе витой пары. Сетевое оборудование и каналы связи поддерживают скорость передачи данных не менее 100 Мбит/с.

Высота фальшпола в операторной составляет 600 мм.

Размещение указанного оборудования приведено в графической части 4600071592-02-TX3.2-AΠ-1-A.C8-0001.

3.6 Возможности по расширению систем

АСУ ТП АП является открытой в плане масштабирования и предполагают расширение ее возможностей по мере необходимости и возникновения новых задач на производстве.

Конфигурацией шкафов гарантируется как минимум 20 % резерв на подключение дополнительной периферии к модулям ввода-вывода, также в аппаратной предусмотрен резерв площади под установку дополнительных шкафов управления.

3.7 Решение по программному обеспечению

Дата

Программное обеспечение АСУ ТП АП обеспечивает конфигурирование требуемых алгоритмов контроля, регулирования и защиты, отображения информации, сигнализации и архивирования данных.

Прикладное программное обеспечение поставляется с открытым для дальнейшей модернизации и расширения Системы в процессе ее эксплуатации и снабжено

Инв.№ подл. 33a-55522 Подп. Кол.уч Лист

Взам.инв.№

Подп.и дата

4600071592-02-TX3.1

Лист

17

подробными комментариями с описанием используемых процедур, функций и переменных.

Все программные средства, используемые в АСУ ТП, лицензированы.

В качестве программного комплекса АСУ ТП применен AstraRegul.

Разработка проектов и конфигурирование IO Server и Historian выполняется на программном обеспечении A.Studio. Разработка проектов и конфигурирование ПЛК – на Astra.IDE.

Для соответствия структуре информационной безопасности обмен данными с внешними подключениями (OPC) производится через демилитаризованную зону DMZ.

Перечень лицензионного ПО, которое установлено на рабочих станциях и серверах АСУ ТП, приведен в таблице 4.

Таблица 4 – Лицензионное ПО

Назначение	Наименование			
Операционная система Astra Linux Spe-	OS2101X8617BOXSKTSR01-SO36			
cial Edition 1.7 "Смоленск"	(ГК Астра)			
Клиентская лицензия на подключение 1 устройства к Программному комплексу "ALD Pro" РДЦП.10101-01	AD0100X8610DIG000DV01-SO36 (ΓΚ Αстра)			
Лицензия на Программный комплекс "ALD Pro" РДЦП.10101-01 на 1 устройстве и операционную систему специального назначения «Astra Linux Special Edition»	AD2100X8610DIG000SR01-SO36 (ΓΚ Αстра)			
Лицензии Astra.Plant для клиент- серверной архитектуры Plant.Server, Plant.Enterprise.Client Full	PLN-SRV1xxk, A-CL-F (РегЛаб)			
Лицензия для сервера хранения истории данных и событий Astra. Historian	HIST-5k (РегЛаб)			
Лицензия Regul HART Communication для организации "сквозного" доступа к	DRV-HART-COM			

Инв. № подл. Подп. и дата 33a-55522

Взам.инв.№

4600071592-02-TX3.1

Лист 18

Подп.

Дата

"пАлевым" устройствам, подключенным				
к модулям ПЛК Regul				
Коммуникационные протоколы. ОРС	DRV-OPCDA-CL / DRV-OPCDA-			
DA Client/ OPC DA Server	SRV			
Платформа для сбора, обработки и				
предоставления доступа к данным. ОРС	Master OPC			
DA/HDA/UA Server				
Лицензия для межсетевого экрана	UG-BL-5-F			
UserGate C100	(UserGate)			
Антивирусная защита для серверов и				
APM Kaspersky Industrial CyberSecurity	KL4943RAKTS			
for Nodes, Server, Enterprise Russian Edi-	(Kaspersky)			
tion				
Серверное ПО для резервного копиро-	FRCPPPSNL			
вания Кибер Бэкап Расширенная редак-	(Киберпротект)			
ция для физического сервера	(киосрпротект)			
ПО для резервного копирования Кибер	FRCPPPCLANL			
Бэкап Расширенная редакция для рабо-	(Киберпротект)			
чей станции Linux	(киосрпротект)			
Пакет офисных программ МойОфис	X2-PRO-NG-U2NL-A			
"Профессиональный"	(МойОфис)			
Master PDF Editor	Code5734240			
Wiaster I DI Editor	(Code Industry)			

Взам.инв.№									
Подп.и дата									
Инв.№ подл.	33a-55522		I				I		Лист
Инв.№	33a-5	Изм.	Кол.уч	Лист	№ док	Подп.	Дата	4600071592-02-TX3.1	19
	4600071592-02-TX3.1_A.docm								

3.8 Решения по защите информации от несанкционированного доступа

Для обеспечения информационной безопасности Системы и защиты данных от несанкционированного доступа предусматривается:

- межсетевой экран для защиты информационной сети АСУ ТП от внешних воздействий;
 - антивирусное программное обеспечение на серверах и АРМ Системы;
- применение аутентификации пользователей (ограничение доступа посредством паролей).

Во избежание нарушения работоспособности АСУТП ПМ через интерфейс со смежными системами проектными решениями предусмотрено:

- использование стандартных технологий сопряжения: Industrial Ethernet, Ethernet, OPC;
 - использование стандартных сетевых протоколов: TCP/IP, Modbus TCP.

ПТК Системы автоматически ведет учет пользователей с регистрацией информации о начале и окончании работы, а также о действиях операторов в процессе работы. Эти данные защищены от возможного вмешательства и изменения после их регистрации.

3.9 Решение по информационному обеспечению

Информационное обеспечение АСУ ТП АП представляет собой совокупность всех информационных баз данных и наборов данных, используемых для реализации функций оперативного контроля и управления, и является составной частью АСУ ТП.

Информационное обеспечение включает в себя следующие типы данных:

- оперативную информацию, поступающую с оборудования и отображающую текущие значения переменных процесса, параметры сигнализаций и текущее состояние исполнительных механизмов и оборудования;
 - конфигурации операторской станции.

Мнемосхемы имеют иерархическую структуру, обеспечивающую постепенное раскрытие деталей в соответствии с уровнями:

1. Оперативный;

Инв. № подл. Подп. и дата 33а-55522

Взам.инв.№

Изм. Кол.уч Лист № док Подп. Дата

4600071592-02-TX3.1

- 2. Управление блоками оборудования;
- 3. Управление единицами оборудования;
- 4. Мнемосхемы поддержки и диагностики.

Все настроечные константы (уставки), информация привязки, алгоритмы и тесты программ хранятся в энергонезависимой памяти контроллера и обновляются при внесении изменений в Систему.

3.10 Решение по математическому обеспечению

Алгоритмы АСУ ТП АП разрабатываются на основании следующих исходных данных:

- описание технологического процесса;
- технологические схемы и схемы автоматизации;
- таблицы входных/выходных сигналов с указанием типа сигнала, диапазона значений контролируемых параметров, уставок срабатывания сигнализаций и воздействий (блокировок), отнесением сигналов к подсистеме ПАЗ или РСУ;
- документация на ЛСУ (в части количества и объема передаваемой информации).

3.11 Решение по лингвистическому обеспечению

При разработке прикладного программного обеспечения в системе используются языки высокого уровня, обеспечивающие решение всех задач по реализации функции системы.

При организации диалога между пользователями системы и аппаратными средствами АСУ ТП АП обеспечиваются:

- уменьшение вероятности совершения оператором случайных ошибочных действий;
 - логический контроль ввода данных.

Работа с системой происходит в интерактивном режиме путем работы с экранными формами с использованием встроенных меню.

Вся представленная на экранах мониторов и в печатных отчетах смысловая и текстовая информация для технологического и эксплуатационного персонал — описатели технологических переменных, сообщения и инструкции оператору, диалоги,

Инв.№ подл. Подп.и дата 33а-55522

Взам.инв.№

Изм. Кол.уч Лист № док Подп. Дата

4600071592-02-TX3.1

названия полей в меню и т. д. – выполняется на кириллице. Исключением могут быть шифры позиционных обозначений средств КИПиА, коды ошибок, служебные сообщения, при этом интерфейс должен содержать систему всплывающих подсказок с описанием применяемых позиционных обозначений/кодировок/сообщений.

3.12 Решение по метрологическому обеспечению

Перед вводом в эксплуатацию АСУ ТП проходит испытание в целях утверждения типа измерительной системы с отражением погрешности всей системы и каждого элемента системы в отдельности.

Используемые в АСУ ТП средства измерения (датчики, преобразователи) имеют унифицированный тип входных и выходных сигналов. В спецификацию оборудования АСУ ТП включены специальные технические и программные средства для поверки и калибровки измерительных каналов.

Все метрологические характеристики измерительных модулей представлены фирмой-изготовителем в документации на технические и программные средства.

Пределы допускаемых значений погрешности измерительных каналов не должны превышать 0,1 % диапазона измерения.

3.13 Решения по численности, квалификации и функциям персонала системы

Необходимым условием функционирования АСУ ТП является наличие в штатной структуре подготовленных кадров в следующих категориях:

- оперативно-технологический персонал (пользователи системы);
- специалисты по технической эксплуатации и обслуживанию системы управления (аппаратная часть);
- специалисты по администрированию системы (программная и информационная часть).

Режим работы и численность персонала определяется штатным расписанием-Порядок взаимодействия персонала определяется соответствующими должностными инструкциями.

3.14 Техника безопасности и охрана труда

						I
						l
						l
Изм.	Кол.уч	Лист	№ док	Подп.	Дата	l

4600071592-02-TX3.1

Лист

Взам.инв.№

Подп.и дата

33a-55522

Все внешние элементы технических средств АСУ ТП, находящиеся под напряжением, должны иметь защиту от случайного прикосновения, а сами технические средства должны быть занулены (заземлены) в соответствии с ГОСТ 12.1.030-81, "Правилами по охране труда при эксплуатации электроустановок" и "Правилами устройства электроустановок" (ПУЭ), 7 изд.

Требования по безопасности средств вычислительной техники должны соответствовать ГОСТ 25861-83.

Технические средства АСУТП должны быть установлены таким образом, что-бы обеспечивалась их безопасная эксплуатация и технические обслуживание.

Все работы по монтажу Системы и наладке оборудования должны проводиться аттестованным персоналом.

3.15 Решения по патентной чистоте

При разработке АСУ ТП АП не были незаконно использованы права других лиц, защищенных патентом в России и странах СНГ.

3.16 Решения по охране окружающей среды

Компоненты, входящие в АСУ ТП АП, и материалы, из которых они изготовлены, не оказывают химическое, биологическое, радиационное, механическое, электромагнитное и термическое воздействие на окружающую среду в значениях, превышающих действующие нормы.

Компоненты, входящие в АСУ ТП АП, при хранении или использовании по назначению не выделяют в окружающую среду вредные, загрязняющие или ядовитые вещества в концентрациях, превышающих действующие нормы.

Компоненты, входящие в АСУ ТП АП, после окончания срока годности подлежат уничтожению и захоронению в соответствии с требованиями ГОСТ 3.1603-91, ГОСТ Р 51769-2001, ГОСТ Р 52108-2003.

3.17 Решения по защите оборудования от электромагнитных помех

Для исключения влияния на АСУ ТП возможных электромагнитных помех предусмотрены следующие меры:

Для исн смотрены сле; 33a-25252 33a-25252 Изм. Кол.уч Лист

Взам.инв.№

4600071592-02-TX3.1

Лист 23

Подп.

Дата

- организован контур системы выравнивания потенциалов (функциональное заземление); - тип применяемых контрольных и системных кабелей - экранированная «витая пара»; - электропитание электротехнического оборудования и оборудования систем АСУ ТП выполнено от разных источников; - слаботочные контрольные кабели проложены отдельно от силовых. Лист 4600071592-02-TX3.1 Изм. Кол.уч Лист № док Подп. Дата

Взам.инв.№

Подп.и дата

Инв.№ подл. 33а-55522

4 РЕШЕНИЕ ПО ЭЛЕКТРОПИТАНИЮ И ЗАЗЕМЛЕНИЮ ОБОРУДОВАНИЯ АСУ ТП

4.1 Бесперебойное электропитание АСУ ТП

Оборудование АСУ ТП относится к особой группе I категории электроприемников и в соответствии с требованиями ПУЭ п.1.2.1 его электропитание обеспечивается от двух независимых взаимно резервирующих источников питания, в качестве третьего независимого источника питания предусматривается источники бесперебойного питания на аккумуляторных батареях, работающие в режиме "онлайн".

Гарантированное время удержания электропитания при пропадании внешнего напряжения — не менее 60 минут при нагрузке в 80 % или больше, если это будет определено требованиями к безопасному останову конкретных технологических процессов (уточняется на стадии РД).

Для реализации функции диагностики состояния ИБП оснащены встроенными интерфейсами (релейные контакты) с выводом информации в АСУ ТП и отображением на АРМ операторов основных параметров работы ИБП.

ИБП располагаются в помещении ИБП Блока вспомогательных помещений, не входят в объем поставки системы АСУ ТП антипирена и разрабатываются в объеме электротехнической части проекта.

Для ответственных потребителей в шкафах предусмотрены два ввода (основной/резервный) через ИБП и третий ввод для сервисных нужд (питание вентиляторов, светильников, сервисных розеток и пр.) не через ИБП. Напряжение на вводах \sim 220 В. 50 Гц.

4.2 Системы заземления оборудования АСУ ТП

Для организации защиты персонала и технологического оборудования и установок предусмотрены следующие системы заземления:

- система защитного заземления (PE) для защиты обслуживающего персонала от поражения электрическим током при возникновении неисправностей в электрооборудовании и проводниках. Предназначена для заземления шкафных конструктивов, рабочих мест операторов.

. Пив. № подп. Дата

Изм. Кол.уч Лист № док Подп. Дата

4600071592-02-TX3.1

Лист 25

Взам.инв.№

Подп.и дата

система функционального заземления (SG/ISSG) предназначена для заземления экранов контрольных кабелей, защищает измерительные и другие сигналы низкого уровня напряжения от внешних электрических наводок.

Сопротивление защитного и функционального заземлений в любое время года не должно превышать 4 Ом.

Экраны кабелей КИП, в том числе для интерфейсных линий связи, подключаются к шине функционального заземления только со стороны системы управления (кроссовых шкафов). Экраны тех же кабелей на стороне полевых датчиков должны быть заизолированы посредством термоусадочных трубок.

Взаимное соединение заземляющих проводников выполняется в соответствии с требованиями ГОСТ Р 50571.4.44-2019 (п. 444.5.1).

Провода заземления изолированные, с медными жилами, площадью поперечного сечения не менее 6 мм². Изоляция проводов имеет желто-зеленый цвет для защитного заземления и серый цвет для функционального заземления. Не допускается последовательное соединение проводников заземления и присоединять под один болт более двух проводников.

Шины обоих типов заземления располагаются по периметру проектируемых помещений в подфальшпольном пространстве. Шины заземления не входят в объем проекта АСУ ТП.

Взам.инв.№									
Подп.и дата									
Инв.№ подл.	33a-55522		I				1		Лист
Инв.М	33a-:	Изм.	Кол.уч	Лист	№ док	Подп.	Дата	4600071592-02-TX3.1	26
		460007			A.docn				Формат А4

5 МЕРОПРИЯТИЯ ПО ПОДГОТОВКЕ СИСТЕМЫ АВТОМАТИЗАЦИИ К ВВОДУ В ДЕЙСТВИЕ

5.1 Подготовка информационной базы данных системы управления

При подготовке информационной базы данных системы производится получение необходимых исходных данных, с помощью которых осуществляется конфигурирование системы управления.

С этой целью проводится следующий ряд мероприятий:

1 Производится подготовка перечней входных и выходных сигналов.

Каждый сигнал сопровождается всей необходимой информацией, а именно:

- тип параметра, соответствующего этому сигналу (температура, давление и др.);
- позиция подключения датчика к модулю ввода/вывода (адреса каналов ввода/вывода модулей полевой шины);
 - единицы измерения;
- диапазон шкалы и значения, при которых срабатывает предупредительная и предаварийная сигнализация (для аналоговых параметров);
- состояние исполнительных механизмов, которое должно быть зафиксировано в случае выхода из строя ПЛК (для выходных параметров);
 - объемы диспетчеризации:
 - а) измерение параметров;
 - б) сигнализация состояния оборудования;
 - в) сигнализация отклонения параметров;
 - г) управление;
 - д) контроль и блокировка.

Каждый сигнал кодируется в соответствии с принятой в проекте системой классификации и кодирования и записывается в базу данных управления с использованием программного обеспечения.

2 Подготавливаются данные, необходимые для конфигурирования пользовательского интерфейса.

Изм.	Кол.уч	Лист	№ док	Подп.	Дата	

4600071592-02-TX3.1

Лист 27

Взам.инв.№

Подп.и дата

33a-55522

Мероприятия по обучению и проверке квалификации персонала 5.2

До ввода системы В действие должно быть проведено обучение технологического персонала навыкам работы с системой управления, а также обучение обслуживающего персонала навыкам обслуживания программных и технических средств системы.

Должны быть разработаны и утверждены инструкции, содержащие правила работы технологического персонала в условиях функционирования системы управления, а также инструкции, регламентирующие действия технологического персонала в предаварийных и аварийных ситуациях.

Взам.инв.№ Подп.и дата Инв.№ подл. 33a-55522 Лист 4600071592-02-TX3.1 28 Подп. Дата Кол.уч Лист № док

ССЫЛОЧНАЯ НОРМАТИВНАЯ ДОКУМЕНТАЦИЯ

- Федеральные нормы и правила в области промышленной безопасности
 "Общие правила взрывобезопасности для взрывопожароопасных химических,
 нефтехимических и нефтеперерабатывающих производств". Утверждены приказом
 Федеральной службы по экологическому, технологическому и атомному надзору
 от 15 декабря 2020 г. № 533;
- ГОСТ 34.201-2020 Информационная технология. Комплекс стандартов на автоматизированные системы. Виды, комплектность и обозначение документов при создании автоматизированных систем;
- ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания;
- РД 50-682-89 Методические указания. Информационная технология. Комплекс стандартов и руководящих документов на автоматизированные системы. Общие положения;
- ПУЭ Правила устройства электроустановок. Седьмое издание;
- ГОСТ 12.1.030-81 Система стандартов безопасности труда. Электробезопасность. Защитное заземление, зануление;
- СП 77.13330.2016 Системы автоматизации;
- СК-46 Технические требования к системам бесперебойного электроснабжения (ИБП);
- СК-51 Основные принципы молниезащиты и заземления;
- CK-60 Шаблон требований на проектирование и поставку систем автоматизации технологических процессов;
- CK-61 Шаблон требований на проектирование и поставку шкафов систем автоматизации;
- CK-63 Шаблон требований на проектирование локальных систем автоматизации (ЛСА);
- СК-64 Технические требования на кабели систем автоматизации;
- -СТП СР_05-03-01_МУ09 Процедура функции по проектированию и эксплуатации КИПиА и АСУ ТП на предприятиях ПАО «СИБУР Холдинг».

Взам.инв.№

і. Кол.уч Лист № док Подп. Дата

4600071592-02-TX3.1

							Та	блица	а регистраг	ции измене	ний			
					Номе	ера лист	ов (ст	грани	ц)	Всего				
		Изм.		зме-		заме- енных	НОЕ	зых	аннули- рованных	листов (страниц) в док.	Номер док.	Подпись	Дат	a
Взам.инв.№														
Подп.и дата														
э подл.	33a-55522				ı	Ι	<u> </u>							Лист
Инв.№ подл.	33a-£	Изм. К	ол.уч	Лист	№ док	Подп.	Дата			460007159	92-02-TX3	.1		30