

Общество с ограниченной ответственностью «НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И ПРОЕКТНЫЙ ИНСТИТУТ НЕФТИ И ГАЗА УХТИНСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА»

(ООО «НИПИ нефти и газа УГТУ»)

ОБУСТРОЙСТВО ВЕРХНЕВОЗЕЙСКОГО НЕФТЯНОГО МЕСТОРОЖДЕНИЯ. 2 ОЧЕРЕДЬ СТРОИТЕЛЬСТВА

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 8 «Перечень мероприятий по охране окружающей среды»

Книга 4

«Радиопередающие средства.

Санитарно-защитные зоны и зоны ограничения застройки»

06-04-2НИПИ/2022-ООС2

Том 8.4

Заместитель директора — главный инженер

Главный инженер

Главный инженер проекта

К.В. Худяев

		2
Обозначение	Наименование	Примечание
06-04-2НИПИ/2022-ООС2.Т	Перечень мероприятий по охране окруж	кающей 16 листов
	среды. Радиопередающие средства.	
	Санитарно-защитные зоны и зоны огран	ничения
	застройки. Текстовая часть	
06-04-2НИПИ/2022-ООС2.Г	Графическая часть	4 листа
Изм. Кол.уч Лист №док. Подп. Д	06-04-2НИПИ/202	22-OOC2-C
113м. 110м.) 1 лист раздок. 110ди. Д	0.23	Стадия Лист Листов
Разраб. Сюткин 1	0.23	Стадия лист листов
*	0.23 Содержание тома 8.4	П 1

огласовано

Взам. инв. №

Подп. и дата

Инв. № подл.

УГТУ»

Содержание

Соде	ржание1
1	Общие сведения
2	Нормативные документы
3	Расчеты СЗЗ и ЗО
4	Выводы по результатам расчетов
5	Контрольные мероприятия по защите обслуживающего персонала и населения от
возде	ействия ЭМП
Прил	ожение А (обязательное) Сертификат соответствия программного комплекса «Зона
ПДУ	»14
Прил	пожение Б (обязательное) Табулированное значение коэффициента безопасности
ПРТ	О. Куст 480415
Прил	пожение В (обязательное) Табулированное значение коэффициента безопасности
ПРТ	О Скважина №357816

	$\overline{}$				ı
Согласовано					
гласс					
<u>ටි</u>	L,				
		,	Š.		
			м. инв №		
		ı	غا	ĺ	

Подп. и д							
Подп							
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	
ĮΠ.	Разра	б.	Сютк	ИН		10.23	
ТОП	Пров	ерил	Кона	нов		10.23	
9	Нач.с	тд.	Попко	В		10.23	
Инв. № подл.	Н. ко	нтр.	Салда	аева		10.23	
Иь	ГИП		Худяе	В		10.23	

06-04-2НИПИ/2022-1-ООС2.Т

Перечень мероприятий по охране окружающей среды. Радиопередающие средства. Санитарнозащитные зоны и зоны ограничения застройки. Текстовая часть

	Стадия	Лист	Листов
	П	1	15
ı			

ООО «НИПИ нефти и газа УГТУ»

1 Общие сведения

В данном томе выполнен расчет санитарно-защитных зон и зон ограничения застройки (СЗЗ и ЗОЗ), создаваемых радиоэлектронными средствами абонентских радиостанций, используемых при проектировании сети связи для СУ ТМ в составе проекта «Обустройство Верхне-Возейского нефтяного месторождения. 2 очередь строительства».

Структурная схема организации сети линий связи для АСУ ТП и ТМ приведена на листе 1 графической части настоящего тома проектной документации. Проектом предусматривается установка радиопередающего оборудования: абонентская станция (АС) «Куст 4804», «Скважина №3578», АС «Переход трассы через руч. б/н», АС «Переход трассы через руч. Шомэсъель», базовая станция (БС) LoRaWAN на кусте 4084.

В данном альбоме выполнен расчет санитарно-защитных зон и зон ограничения застройки, создаваемых радиопередающим оборудованием, которое устанавливается на территории площадки строительства.

В связи с тем, что площадки строительства абонентских станций вновь обустраиваемые, то на данных площадках отсутствуют существующие радиоэлектронные средства, и расчеты выполнены с учетом излучения только проектируемого радиопередающего оборудования.

Проектируемое оборудование связи является радиоэлектронным оборудованием последнего поколения и построено на современной микроэлектронной базе. Единственным фактором воздействия на окружающую среду и, в первую очередь, на человека, является электромагнитное излучение, создаваемое излучающими радиоэлектронными средствами (РЭС).

В соответствии с санитарными правилами и нормативами СанПиН 2.1.8/2.2.4.1190-03, утвержденными Главным государственным санитарным врачом Российской Федерации 30 января 2003 г., предельно допустимый уровень (ПДУ) электромагнитного излучения радиочастотного диапазона (ЭМП РЧ) для населения Российской Федерации составляет 3 В/м (в диапазоне частот от 30 МГц до 300 МГц) и 10 мкВт/см2 (в диапазоне от 300 МГц до 2400 МГц). Согласно СанПиН 2.1.8/2.2.4.1383-03, утвержденными Главным государственным санитарным врачом Российской Федерации 9 июня 2003 г., ПДУ для населения составляет 3 В/м (в диапазоне частот от 30 МГц до 300 МГц) и 10 мкВт/см2 (в диапазоне от 300 МГц до 300 ГГц).

Для интервалов AC «Переход трассы через руч. б/н»» – БС LoRaWAN, AC «Переход трассы через руч. Шомэсъель»» – БС LoRaWAN максимальная ЭИМ должна составлять не

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата
	Изм.	Изм. Кол.уч	Изм. Кол.уч Лист	Изм. Кол.уч Лист № док.	Изм. Кол.уч Лист № док. Подп.

Взам. инв №

Подп. и дата

06-04-2НИПИ/2022-1-ООС2.Т

более 100 мВт для полосы радиочастот (868,7 - 869,2 МГц) согласно приложению №12 к решению ГКРЧ от 11 сентября 2018 г. №18-46-03-1.

Для контроля уровня ЭМП, создаваемого ПРТО, используются расчетные и инструментальные методы. Расчетные методы используются для оценки электромагнитной обстановки вблизи проектируемых, действующих и реконструируемых ПРТО. На этапе экспертизы проектной документации используются только расчетные методы определения уровней ЭМП, создаваемых ПРТО.

Взам. инв №								
Подп. и дата								
Инв. № подл.	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	06-04-2НИПИ/2022-1-ООС2.Т	Лист 3
							Формат А4	

2 Нормативные документы

Проектируемое радиотехническое оборудование не оказывает вредного воздействия на окружающую среду, кроме воздействия электромагнитного поля, излучаемого передающими антеннами. В целях оценки экологической обстановки по электромагнитному излучению определены границы санитарно-защитной зоны (СЗЗ) и зоны ограничения (ЗО) – зон, в которых интенсивность электромагнитного излучения превышает предельно допустимый уровень (ПДУ), установленный санитарными нормами.

Поскольку на вновь устанавливаемых телескопических и прожекторных мачтах кроме антенных устройств широкополосного беспроводного доступа SkyMAN и всенаправленной антенны в системах передачи данных на 868 МГц другие антенны радиоизлучающих систем отсутствуют, определение уровней поля и границ СЗЗ и ЗО производится с учетом излучения только проектируемых антенн. Проектируемое оборудование предназначено для работы в СВЧ-диапазоне (ШБД SkyMAN) и УВЧ-диапазоне (технология LoRaWan).

Расчет уровней поля и определение границ C33 и 3О передающего радиотехнического объекта, работающего в диапазонах ОВЧ, УВЧ и СВЧ, производится по нормативным документам:

- «Гигиенические требования к размещению и эксплуатации передающих радиотехнических объектов. Санитарно-эпидемиологические правила и нормативы.
 СанПиН 2.1.8/2.2.4.1383-03». М.: Минздрав России, 2003.
- «Изменения №1 к СанПиН 2.1.8/2.2.4.1383-03. Санитарно-эпидемиологические правила и нормативы. СанПиН 2.1.8/2.2.4.2302-07».
 М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека, 2008.
- Методические указания. «Определение плотности потока энергии электромагнитного поля в местах размещения радиосредств, работающих в диапазоне частот 300 МГц-300 ГГц». МУК 4.3.1167-02. Минздрав России, М., 2002.
- Методические указания. «Определение уровней электромагнитного поля, создаваемого излучающими техническими средствами телевидения, ЧМ радиовещания и базовых станций сухопутной подвижной радиосвязи». МУК 4.3.1677-03. Минздрав России, М., 2003.

В соответствии с СанПиН 2.1.8/2.2.4.1383-03 граница СЗЗ определяется на высоте 2 м над уровнем земли, граница ЗО – на высоте более 2 м.

$N_{\overline{0}}$	
Взам. инв №	
Подп. и дата	
нв. № подл.	

Изм. Кол.уч Лист № док. Подп. Дата

06-04-2НИПИ/2022-1-ООС2.Т

Для расчёта СЗЗ и ЗО от нескольких источников радиоизлучений разных диапазонов вводится параметр: суммарная относительная интенсивность воздействия (СИВ). Границы СЗЗ и ЗО определяются при выполнении равенства СИВ=1, где СИВ рассчитывается по формуле:

СИВ = Σ (Е j / Епду)2 + Σ (ППЭ k / ППЭпду),

где Еj - напряженность электрического поля, создаваемая каждым из источников ОВЧ диапазона; Епду – предельно допустимый уровень (ПДУ) напряженности электрического поля; ППЭк - плотность потока энергии, создаваемая каждым из источников УВЧ и СВЧ диапазона; ППЭпду – предельно допустимый уровень плотности потока энергии.

Значения Епду и ППЭпду приведены в таблице 1.

Таблица 1 - Значения Епду и ППЭпду

Диапазон частот	Предельно допустимые уровни для населения
ОВЧ (30-300 МГц)	$E_{\pi J y} = 3 \text{ B/M}$
УВЧ, СВЧ (0,3-300 ГГц)	$\Pi\Pi \ni_{\text{пду}} = 10 \text{ мкBt/cm}^2$

Для персонала предельно допустимые уровни электромагнитного поля определяются в соответствии с нормами энергетической экспозиции и максимального значения Е или ППЭ, приведенных в таблице 2.

Таблица 2 - Предельно допустимые уровни электромагнитного поля

Диапазон частот	Предельно допустимые уровни для персонала
50-300 МГц	$ЭЭ_E = 800 (B/м)^2$ ч, Емакс = $80 B/м$
0,3-300 ГГц	$ЭЭ_{\Pi\Pi \ni} = 200 \text{ (мкВт/см}^2)$ ч, $\Pi\Pi \ni$ макс = 1000 мкВт/см^2

Расчет границ СЗЗ и ЗО выполнен с использованием программного комплекса анализа электромагнитной обстановки (ПК «Зона ПДУ»), разработанного специалистами АО «ИКЦ «Северная Корона» (Сертификат соответствия РОСС RU.НВ61.Н11460 от 06.08.2020г. приведен в Приложении А).

дата Взам. инв №	
Подп. и дата	
1нв. № подл.	

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

3 Расчеты С33 и 3О

3.1 Общие сведения о владельце и месте расположения ПРТО

Абонентская станция «Куст 4804»:

- Владелец ПРТО - ООО «ЛУКОЙЛ-Коми», Республика Коми, г. Усинск.

Адрес места расположения $\Pi PTO - B$ административном отношении участок работ расположен на территории МО ΓO «Усинск» Республики Коми на землях лесного фонда Усть-Усинского участкового лесничества ΓY «Усинское лесничество».

- Режим работы ПРТО на излучении круглосуточный.
- Интегрированная с блоком наружной установки ODU-CPE панельная антенна монтируется на прожекторной мачте, высотой H=18,0 м. Антенна устанавливаются на высотной отметке с центром излучения 20,0 м.
- Размещение проектируемого внутреннего оборудования: инжектор питания Injector of PoE IDU-CPE и управляемый Ethernet коммутатор выполняется в шкафу телемеханики, предусмотренном смежным подразделом на разработку системы телемеханики. Шкаф телемеханики размещается в аппаратурном блоке ИУ. План размещения оборудования в шкафу телемеханики представлен на листе 06-04-2НИПИ/2022-1-ИОС5.Г2.

Абонентская станция «Скважина №3578»:

- Владелец ПРТО - ООО «ЛУКОЙЛ-Коми», Республика Коми, г. Усинск.

Адрес места расположения $\Pi PTO - B$ административном отношении участок работ расположен на территории $MO\ \Gamma O$ «Усинск» Республики Коми на землях лесного фонда Усть-Усинского участкового лесничества ΓY «Усинское лесничество».

- Режим работы ПРТО на излучении круглосуточный.
- Интегрированная с блоком наружной установки ODU-CPE панельная антенна монтируется на прожекторной мачте, высотой H=18,0 м. Антенна устанавливаются на высотной отметке с центром излучения 18,0 м.
- Размещение проектируемого внутреннего оборудования: инжектор питания Injector of PoE IDU-CPE и управляемый Ethernet коммутатор выполняется в шкафу телемеханики, предусмотренном смежным подразделом на разработку системы телемеханики. Шкаф телемеханики размещается в аппаратурном блоке ИУ. План размещения оборудования в шкафу телемеханики представлен на листе 06-04-2НИПИ/2022-1-ИОС5.Г4.

Базовая станция LoRaWAN

- Владелец ПРТО - ООО «ЛУКОЙЛ-Коми», Республика Коми, г. Усинск.

зам. инв №

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Адрес места расположения $\Pi PTO - B$ административном отношении участок работ расположен на территории MO ΓO «Усинск» Республики Коми на землях лесного фонда Усть-Усинского участкового лесничества ΓY «Усинское лесничество».

- Режим работы ПРТО на излучении круглосуточный.
- Вертикальная всенаправленная антенна A10-868 монтируется на прожекторной мачте высотой H=18м. Антенна устанавливаются на высотной отметке основания - 10 м.
- Размещение проектируемого внутреннего оборудования: базовая станция Вега БС-1.2 выполняется в шкафу БС. Шкаф БС размещается на опоре кабельной эстакады. План размещения оборудования в шкафу БС представлен на листе 06-04-2НИПИ/2022-1-ИОС5.Г5 настоящей проектной документации.

3.2 Исходные данные для расчетов

Исходные данные для расчетов приставлены в таблице 3.1, 3.2, 3.3.

Таблица 3.1 – Исходные данные. Куст 4084

№ п/п	Исходные данные		
ПРТО, место расположения	Куст 4084		
	66N 41' 35,79"		
Географические координаты	57E 08' 07,50"		
Тип РЭС	ШБД SkyMAN		
Количество передатчиков	2		
Тип передатчика	Абонентский терминал MIMO		
Выходная мощность передатчика, Вт	2x0,025		
Полная мощность на входе антенны, Вт	2x0,025		
Диапазон частот, МГц	5665		
Модуляция	16QAM		
Режим работы	24ч		
Тип, марка антенны	Панельная антенна MA-WA56-DP25		
Высота подвеса,м	20,0		
Угол места/азимут установки/поляризация	-0,02° /240°/вертик.		
Коэффициент усиления, дБи	25		
ЭИМ, Вт	9,638		

E	1 ao.
1. И	№ п
Взам. инв	ПРТ
B	
	Геог
га	Тип
и дата	Колі
. и	Тип
одп.	Вых
∠ I ∣	п

욋

Таблица 3.2 – Исходные данные. Скважина №3578.

№ п/п	Исходные данные
ПРТО, место расположения	Скважина №3578
	N66° 43' 46"
Географические координаты	E57° 05' 08"
Тип РЭС	ШБД SkyMAN
Количество передатчиков	2
Тип передатчика	Абонентский терминал MIMO
Выходная мощность передатчика, Вт	2x0,025
Полная мощность на входе антенны, Вт	2x0,025
Диапазон частот, МГц	5665

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

06-04-2НИПИ/2022-1-ООС2.Т

	10
Модуляция	16QAM
Режим работы	24ч
Тип, марка антенны	Панельная антенна MA-WA56-DP25
Высота подвеса,м	4,0
Угол места/азимут установки/поляризация	0,05° /199°/вертик.
Коэффициент усиления, дБи	23
ЭИМ, Вт	9,638

Таблица 3.3 – Исходные данные. БС LoRaWAN на кусте 4084.

№ п/п	Исходные данные		
ПРТО, место расположения	БС LoRaWAN на кусте 4084		
	66N 41' 35,79"		
Географические координаты	57E 08' 07,50"		
Тип РЭС	Технология LoRaWAN		
Количество передатчиков	1		
Тип передатчика	Базовая станция Вега БС-1.2		
Выходная мощность передатчика, Вт	0,065		
Полная мощность на входе антенны, Вт	0,065		
Диапазон частот, МГц	864 – 876		
Модуляция	LoRa		
Режим работы	24ч		
Тип, марка антенны	Вертикальная всенаправленная антенна А10-868		
Высота подвеса,м	10,0		
Угол места/азимут установки/поляризация	- /0-360 °/вертик.		
Коэффициент усиления, дБи	10		
ЭИМ, Вт	0,065*		

* - согласно требованиям приложения №12 к решению ГКРЧ от 11 сентября 2018 г. №18-46-03-1 для полосы радиочастот 868,7-869,2 М Γ ц максимальная ЭИМ должна быть не более 0,1 Вт

Абонентский модуль ШБД SkyMAN с панельной антенной MA-WA56-DP25 (производства InfiNet Wireless Ltd.) разработан специально для эксплуатации в системах связи в районах с жесткими климатическими условиями.

3.3 Результаты расчетов

Куст 4084.

Взам. инв №

Подп. и дата

Результаты расчетов БОЗ на высоте подвеса антенн -10 м, 20,0 м (таблица Б.4, Б.6), на промежуточной высоте 3 м 9 м, 15 м - высота 1-го, 3-го, 5-го этажа здания возможной перспективной застройки (Б.2, Б.3, Б.5), а также на высоте определения санитарно-защитной зоны -2 м (таблица Б.1) в табличном виде приведены в приложении Б.

Результаты расчетов биологически опасных зон, создаваемых передатчиками РЭС (горизонтальные и вертикальные разрезы) на ситуационных планах приведены на листах 2 и 3 графической части настоящего тома проектной документации.

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Скважина №3578

Результаты расчетов БОЗ на высоте подвеса антенны -18,0 м (таблица В.4), на промежуточной высоте 3 м 9 м, 15 м - высота 1-го, 3-го, 5-го этажа здания возможной перспективной застройки (таблица В.2, В.3, В.5), а также на высоте определения санитарно-защитной зоны -2 м (таблица В.1) в табличном виде приведены в приложении В.

Результаты расчетов биологически опасных зон, создаваемых передатчиками РЭС (горизонтальные и вертикальные разрезы) на ситуационных планах приведены на листах 2 и 4 графической части настоящего тома проектной документации.

| 100 | 100

4 Выводы по результатам расчетов

Куст 4084

По результатам расчетов ПДУ ЭМП в соответствии с приведенными значениями критерия безопасности в расчетных точках ПРТО (приложение Б, таблицы Б.1) на территории, прилегающей к ПРТО абонентской станции санитарно-защитные зоны, границы которых определяются на высоте 2 м от поверхности земли по ПДУ, отсутствуют (расчетные значения критерия безопасности на высоте 2 м равны нулю или меньше единицы). Критерий безопасности определяется как отношение плотности потока энергии ПРТО к предельно допустимому уровню плотности потока энергии (10 мкВт/см2).

Выполненный расчет значений критерия безопасности на промежуточных высотах 3 м, 9 м, 15 м — высота 1-го, 3-го, 5-го этажей здания возможной перспективной застройки (таблицы Б.2, Б.3, Б.5), показал, что значения уровней ЭМП в десятки и сотни раз ниже ПДУ.

Для антенны MA-WA56-DP23

Нижняя граница зоны ограничения по азимуту 240° – 19,5 м

Рассчитанный размер высоты зоны ограничения и ее максимальную протяженность принимаем на высоте 20 м по азимуту $240^{\circ} - 2,87 \text{ м}$.

Для антенны А10-868

Нижняя граница зоны ограничения по азимуту 0° -360° - 9,9 м.

Рассчитанный размер высоты зоны ограничения и ее максимальную протяженность принимаем на высоте 10 м по азимуту $0^{\circ}\text{-}360^{\circ} - 0{,}882 \text{ м}$.

На территории площадки постоянный обслуживающий персонал отсутствует, какиелибо здания и сооружения для постоянного пребывания людей также отсутствуют.

Дополнительного строительства на площадке ПРТО и прилегающей к ней территории не планируется.

Минимальное расстояние от проектируемого ПРТО до ближайших объектов жилой застройки и других нормируемых объектов составляет в 85 км к юго-востоку и 8,5 км к югу – г. Усинск и вахтовый поселок Верхнеколвинск соответственно.

Ситуационные планы площадок ПРТО в горизонтальной и вертикальной плоскостях с нанесёнными рассчитанными биологически опасными зонами приведены на листах 2 и 3 графической части настоящего тома проектной документации.

На проектируемой площадке отсутствуют существующие передающие радиоэлектронные средства. В связи с этим эффективная излучающая мощность проектируемого передающего радиотехнического объекта: интегрированная с блоком наружной установки ODU-CPE панельная антенна (установленная мощность передатчика –

	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Скважина №3578

По результатам расчетов ПДУ ЭМП в соответствии с приведенными значениями критерия безопасности в расчетных точках ПРТО (приложение Б, таблицы Б.1) на территории, прилегающей к ПРТО абонентской станции санитарно-защитные зоны, границы которых определяются на высоте 2 м от поверхности земли по ПДУ, отсутствуют (расчетные значения критерия безопасности на высоте 2 м равны нулю или меньше единицы). Критерий безопасности определяется как отношение плотности потока энергии ПРТО к предельно допустимому уровню плотности потока энергии (10 мкВт/см2).

Выполненный расчет значений критерия безопасности на промежуточных высотах 3 м, 9 м, 15 м – высота 1-го, 3-го, 5-го этажей здания возможной перспективной застройки (таблицы В.2, В.3, В.5), показал, что значения уровней ЭМП в десятки и сотни раз ниже ПДУ.

Нижняя граница зоны ограничения по азимуту 199° – 17,5 м

Рассчитанный размер высоты зоны ограничения и ее максимальную протяженность принимаем на высоте 18 м по азимуту $199^{\circ} - 2,87 \text{ м}$.

На территории площадки постоянный обслуживающий персонал отсутствует, какиелибо здания и сооружения для постоянного пребывания людей также отсутствуют.

Дополнительного строительства на площадке ПРТО и прилегающей к ней территории не планируется.

Минимальное расстояние от проектируемого ПРТО до ближайших объектов жилой застройки и других нормируемых объектов составляет в 85 км к юго-востоку и 8,5 км к югу – г. Усинск и вахтовый поселок Верхнеколвинск соответственно.

Ситуационные планы площадок ПРТО в горизонтальной и вертикальной плоскостях с нанесёнными рассчитанными биологически опасными зонами приведены на листах 2 и 4 графической части настоящего тома проектной документации.

Ha проектируемой отсутствуют существующие передающие площадке излучающая радиоэлектронные средства. связи с ЭТИМ эффективная мощность едающего радиотехнического объекта: интегрированная ODU-СРЕ панельная антенна (установленная мощность передатчика – нны 25 дБи) составляет 9,638 Вт. Согласно п.п. 3.11 и 3.13 СанПиН

Дата

одп	нај	ружно	ой уст	ганові	ки
	2x0	0,025	Bt, 1	Ку ан	теі
юдл.					
№ I					
HB.					
И	Изм.	Кол.уч	Лист	№ док.	Γ

Взам. инв №

2.1.8/2.2.4.1383-03, для ПРТО с эффективной излучаемой мощностью не более 10 Вт в диапазоне частот 30 МГц-300 ГГц, при условии размещения антенны вне здания, не требуется получение санитарно-эпидемиологического заключения на размещение, ввод в эксплуатацию и эксплуатацию ПРТО.

Взам. инв № Подп. и дата

Изм.	Кол.уч	Лист	№ лок.	Полп.	Лата		

06-04-2НИПИ/2022-1-ООС2.Т

5 Контрольные мероприятия по защите обслуживающего персонала и населения от воздействия ЭМП

Ремонтные и профилактические работы на оборудовании, размещаемом на уровне земли и на прилегающей территории, допускается производить без дополнительных защитных мероприятий ввиду отсутствия опасных уровней ЭМП, а проведение ремонтных и настроечных работ на антенном и приемо-передающем оборудовании абонентской станции допускается только при выключенных передатчиках РЭС.

Контроль за соблюдением параметров предельно допустимых уровней ЭМП осуществляется специалистами органов и учреждений санитарно-эпидемиологической службы на стадии проектирования и эксплуатации ПРТО.

Планировка и застройка в зоне действующих и проектируемых ПРТО должна осуществляться с учетом границ C33 и 3O3.

В санитарно-защитной зоне и зоне ограниченной застройки запрещается строительство жилых зданий всех видов, стационарных лечебно-профилактических и санитарно-курортных учреждений, средних учебных заведений всех видов, интернатов всех видов и других зданий, предназначенных для круглосуточного пребывания людей.

Настоящая книга направляется в соответствующие органы санитарно- эпидемиологической службы на согласование.

При приемке радиотехнического оборудования проектируемого объекта в эксплуатацию необходимо провести измерения уровней электромагнитного поля в аппаратных и на прилегающей территории.

Измерения проводятся специально подготовленными представителями санитарноэпидемиологической службы в присутствии лиц из числа инженерно-технического состава Заказчика.

Измерения должны проводиться в местах возможного нахождения обслуживающего персонала и населения при тех реальных режимах эксплуатации ПРТО, при которых возможно наибольшее неблагоприятное воздействие ЭМП (при максимальной мощности и минимальных углах места).

В порядке текущего санитарного надзора измерения должны проводиться не реже одного раза в три года.

Взам. инв №	
Подп. и дата	
нв. № подл.	

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Приложение А

(обязательное)

Сертификат соответствия программного комплекса «Зона ПДУ»

СИСТЕМА СЕРТИФИКАЦИИ ГОСТ Р

ФЕДЕРАЛЬНОЕ АГЕПТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СЕРТИФИКАТ СООТВЕТСТВИЯ

Nº POCC RU.HB61.H11460

Срок действия с 06.08.2020

по 05.08.2023

№ 0510250

ОРГАН ПО СЕРТИФИКАЦИИ RA.RU.11НВ61 Орган по сертификации ООО "ЦЕТРИМ". Адрес: 153000, РОССИЯ, Ивановская область, город Иваново, улица Богдана Хмельницкого, дом 36B. Телефон +7 4932773165. Адрес электронной почты info@cetrim.ru

ПРОДУКЦИЯ Программный комплекс "Зона ПДУ" (расчет санитарно-защитных зон и зон ограничения). Серийный выпуск.

код ОК 71.12.18

СООТВЕТСТВУЕТ ТРЕБОВАНИЯМ НОРМАТИВНЫХ ДОКУМЕНТОВ Согласно приложению бланк №0098020-0098021.

код ТН ВЭД

ИЗГОТОВИТЕЛЬ Акционерное общество «Информационный Космический Центр «Северная Корона». ОГРН: 1147847321874, ИНН: 7801638334, КПП: 780101001. Адрес: 199034, РОССИЯ, г. Санкт-Петербург, 17-я линия В.О., д.4-6, Литер Е, помещение Т-224-5, телефон: +7 (812) 922-36-21, адрес электронной почты: org@spacecenter.ru.

СЕРТИФИКАТ ВЫДАН Акциоперное общество «Информационный Космический Центр «Северная Корона». ОГРН: 1147847321874, ИНН: 7801638334, КПП: 780101001. Адрес: 199034, РОССИЯ, г. Санкт-Петербург, 17-я линия В.О., д.4-6, Литер Е, помещение Т-224-5, телефон: +7 (812) 922-36-21, адрес электронной почты: org@spacecenter.ru.

на основании

Протокола испытаний № 0114-351-SVN/2020 от 06.08.2020 года, выданного Испытательной лабораторией Общество с ограниченной ответственностью "С-ПОИНТ" (регистрационный номер аттестата аккредитации МСК RU.31734.ИЛ0620) Срок действия с 09 июля 2020г. по 08 июля 2023г.

ΚυμΑΜΟΦΗΝ ΚΑΗΔΑΙΤΝΗΛΟΠΟΔ

Схема-сертификации: 3с

ИНВ

Взам.

дата

Подп. и

подл ષ્ટ્ર

Руководитель органа

Эксперт

П.Г. Рухлядев

В.П. Широков

Сертификат не применяется при обязательной сертификации

Дата Кол.уч № док Подп.

06-04-2НИПИ/2022-1-ООС2.Т

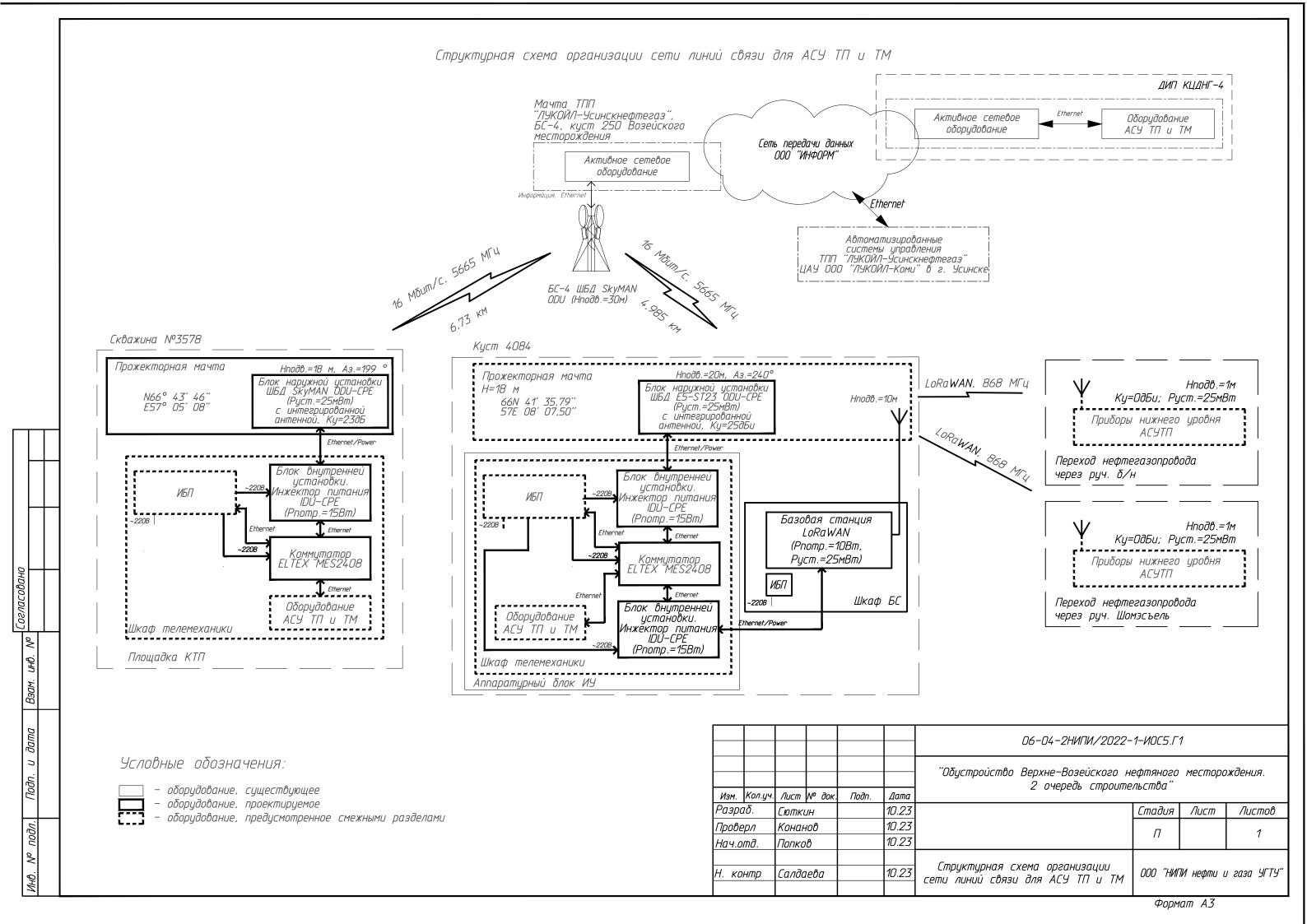
Приложение Б . (обязательное)

Табулированное значение коэффициента безопасности ПРТО

Куст 4084

Таблица Б.1-	Табулированные значения	я коэффициента	а безопасности ПРТС) к	Контрольная высота	а 2 м																				
Расстоя-										Азимут																
ние, м 0 1 4,919E-07	10 20 30 07 6,481E-07 3,702E-08 8,215		50 60 6,991E-07 1,893E-07	70 7 2,329E-07 8	80 90 8,177E-07 2,64E-08	100 8,096E-07 1	110 120 1,63E-05 1,631E-05	130 146 5 8,106E-07 2,804	0 150 E-08 8,202E-07 2,3	160 170 62E-07 1,923E-07	180 1 7,141E-07 4,13	190 20 1,499			220 230 05E-07 5,078E-0	240 07 5,463E-06	250 2,198E-07	260 6,86E-07 1	270 ,446E-07 4	280 1,883E-07 2	290 2,681E-05 2,	300 3 68E-05 4,23	10 320 2E-07 1,354			350 -07 2,937E-07
	06 1,837E-06 1,032E-07 2,317 06 1,611E-06 9,092E-08 2,034		_,	+ '	2,32E-06 7,339E-08	+ ' + '	·	+ ' + ' -	E-08 2,323E-06 6,0	- + ' - +	· · ·				4E-06 1,412E-0	_ <u> </u>	-				· ·					
4 4,103E-07	07 5,395E-07 3,206E-08 6,928	E-08 3,215E-07	5,81E-07 1,578E-07	7 1,941E-07 6	6,796E-07 2,3E-08	6,733E-07 1,	,353E-05 1,354E-05	6,752E-07 2,631	E-08 6,846E-07 2,0	006E-07 1,639E-07	6,111E-07 3,76	55E-07 2,052	E-07 5,598	3E-08 5,44	5E-07 4,422E-0	07 1,063E-05	2,031E-07	5,739E-07 1	,354E-07 4	1,861E-07 2	2,229E-05 2,2	226E-05 3,55	5E-07 1,169E	-07 5,727E-	07 1,73E-0	07 2,462E-07
5 2,48E-08	08 2,767E-08 7,767E-09 7,907	E-09 1,607E-08	2,469E-08 9E-09	1,064E-08 2	2,908E-08 6,227E-09) 3,105E-08 4,	,995E-07 5,013E-07	7 3,664E-08 1,591I	E-08 4,377E-08 2,9	71E-08 2,678E-08	1,129E-07 1,77	72E-07 4,062	E-07 7,784	IE-08 4,21	.4E-08 1,183E-0	07 3,043E-05	1,096E-07	4,321E-08 8	,072E-08 4	1,164E-07 9	9,728E-07 8,	.99E-07 3,37	4E-08 2,667	E-08 3,97E-0	8 2,123E-	-08 2,106E-08
Таблица Б.2 -	Табулированные значения	я коэффициента	а безопасности ПРТС	о к	Контрольная высота	a 3 m																				
Расстоя- ние, м 0	10 20 30	0 40	50 60	70	80 90	100	110 120	130 140	0 150	Азимут 160 170		190 20	n 2°	10 2	20 230	240	250	260	270	280	290	300 3	10 320	330	340	350
1 8,057E-07	07 1,062E-06 6,011E-08 1,342	E-07 6,329E-07	1,146E-06 3,101E-07	7 3,816E-07 :	1,34E-06 4,28E-08	1,327E-06 2,	,673E-05 2,673E-05	1,328E-06 4,465I	E-08 1,343E-06 3,8	3,135E-07	1,163E-06 6,63	36E-07 2,102	E-07 7,349	9E-08 1,06	5E-06 8,235E-0	07 6,284E-06	3,512E-07	1,123E-06 2	,303E-07 7	7,651E-07 4	,395E-05 4,3	394E-05 6,92	1E-07 2,2E-	07 1,122E-	06 3,344E-	-07 4,805E-07
	06 2,792E-06 1,563E-07 3,517 06 1,398E-06 7,933E-08 1,768				3,525E-06	+ ' + '	· · · · · · · · · · · · · · · · · · ·	+ ' + ' -	E-07 3,529E-06 1,0 E-08 1,768E-06 5,0	- '				_	95E-06 2,139E-0 92E-06 1,087E-0		-									-07 1,261E-06 -07 6,328E-07
 	08				3,197E-08 3,665E-09 4,271E-07 2,116E-08	+			E-09 3,934E-08 1,9 E-08 4,488E-07 1,5								_	·		-						
Таблица Б.3 -	Табулированные значени:				Контрольная высота		, 1032 00 0, 1032 00	7 1,5 152 07 5,5 151	2 00 1) 1002 07 2)3	312 07 1,2032 07	1,552 07 1,712	102 07 0,072	. 07 2,520	,	32 07 1,032 0	, 1, 1352 05	2,5072 07	3,0102 07 12	,0032 07 0	,,1122 07 1	1, 1002 00 2,0	5522 65 2, 17	11 07 1,011.	- 07 3,73 12	57 2,2012	07 2,0022 0
	таоулированные значения	ж коэффициента	о оезопасности петс		Онтрольная высота	1 5,0 M				A																
Расстоя- ние, м 0	10 20 30		50 60	70	80 90	100	110 120	130 140		Азимут 160 170		190 20	0 2:	10 2	20 230	240	250	260	270	280	290	300 3	10 320	330	340	350
	05				5,5E-05 1,717E-06 9,895E-07 3,452E-08		.0010977 0,0010977 .969E-05 1,969E-05		E-06 5,501E-05 1,5 E-08 9,996E-07 2,9		4,708E-05 2,60 9,069E-07 5,79				5E-05 3,306E-0 5E-07 6,635E-0									E-06 4,594E-0 E-07 8,369E-0		-05 1,964E-05
3 2,302E-05	05 3,036E-05 1,7E-06 3,824	E-06 1,81E-05	3,278E-05 8,863E-06	1,091E-05 3	3,834E-05 1,208E-06	3,795E-05 0,	0007649 0,0007649	3,796E-05 1,232I	E-06 3,837E-05 1,0	95E-05 8,907E-06	3,3E-05 1,84	19E-05 4,794	E-06 1,87	E-06 3,03	9E-05 2,325E-0	05 8,776E-05	9,737E-06	3,206E-05 6	,357E-06 2	2,067E-05 (0,001257 0,0	0012569 1,97	4E-05 6,226	E-06 3,205E-	05 9,521E-	-06 1,371E-05
	06 1,199E-05 7,247E-07 1,548 05 1,464E-05 9,725E-07 1,952			+' +	1,509E-05	1 '			E-07 1,523E-05 4,4 E-07 1,872E-05 5,7											-						
Таблица Б.4 -	Табулированные значения	я коэффициента	а безопасности ПРТС	о к	Контрольная высота	э 10,0 м																				
Расстоя-										Азимут	, град															
ние, м 0 1 0.0033924	10 20 30 24 0.0044751 0.0002483 0.0005		50 60 0,004834 0,0013062	70	80 90 0.0056533 0.0001762	100	110 120 .1128245 0.1128245	130 140	0 150 1762 0.0056533 0.0	160 170		190 20			20 230 44751 0,00339	240	250	260 0,0047207 0	270	280		300 3 1853547 0,00	10 320			350 99 0.002017
2 0,0008482	81 0,0011188 6,208E-05 0,000	1405 0,0006669	0,0012085 0,0003265	0,0004019 0	0,0014133 4,406E-05	0,0013988 0,	0282061 0,0282061	0,0013988 4,407	E-05 0,0014133 0,0	004019 0,0003266	0,0012086 0,0	0,000	1409 6,215	E-05 0,00	11188 0,00084	32 0,0005312	0,0003498	0,0011802 0	.0002276	,0007264 0	,0463388 0,0	0,00	0,0002	276 0,00118	02 0,00034	198 0,0005045
	77 0,0004973 2,762E-05 6,248 22 0,0002798 1,564E-05 3,522		0,0005371 0,0001451 0,0003022 8,169E-05	+	0,0006282	+		+ ' + '	E-05 0,0006282 0,0 E-05 0,0003537 0,0		· · · ·				04973 0,00037 02801 0,00021											
5 0,0001363	61 0,0001794 1,023E-05 2,272	E-05 0,0001069	0,0001935 5,239E-05	6,447E-05 0	0,0002263 7,29E-06	0,0002241 0,	.0045133 0,0045134	0,0002243 7,715	E-06 0,000227 6,5	31E-05 5,317E-05	0,0001974 0,0	00114 4,024	E-05 1,331	LE-05 0,0	0,00014	0,0014183	6,051E-05	0,0001898 3	,978E-05 0	0,0001339	0,0074215 0,0	0,00	01171 3,74E	-05 0,00018	97 5,662E-	-05 8,126E-05
Таблица Б.5 -	Табулированные значения	я коэффициента	а безопасности ПРТО	о к	Контрольная высота	a 15,0 M																				
Расстоя-						1			-	Азимут															1	
ние, м 0 1 1,228E-06	10 20 30 06 1,603E-06 1,108E-07 2,169		50 60 1,713E-06 4,711E-07	70 7 5,783E-07 2	80 90 2,004E-06 8,114E-08	100 3 1,991E-06 3,	110 120 ,971E-05 3,972E-05	130 140 5 2,011E-06 1,151	0 150 E-07 2,056E-06 6,4	160 170 51E-07 5,334E-07		190 20 19E-06 1,614			220 230 4E-06 1,556E-0	240 06 0,0001074	250 8,552E-07	260 5. 1,74E-06 5.	270 ,893E-07 2	280 2,438E-06	290 5,578E-05 6,5	300 3 552E-05 1,09	10 320 5E-06 3,998			350 -07 7,529E-07
	06 3,565E-06 6,279E-07 7,536 06 4.132E-06 2.302E-06 1.993				,	+ ' '		 	E-06 5,112E-06 2,6 E-06 8.15E-06 8.0						54E-06 9,421E-0 5E-06 3,551E-0											
	06 3,731E-06 2,383E-06 2,016 06 1,15E-06 4,43E-07 4,141			<u> </u>	· · · · · · · · · · · · · · · · · · ·	+		+		44E-06 7,622E-06	3,303E-05 5,83	37E-05 0,000	1411 2,686	6E-05 8,78	4E-06 3,683E-0	05 0,0106247	3,644E-05	8,832E-06 2	,699E-05 0	0,0001416	,396E-05 6,8	819E-05 7,93	3E-06 8,108E	-06 7,608E-	06 5,561E-	-06 4,682E-06
	1		, ,				,094E-03 1,703E-03	5 1,302E-00 3,403	E-07 1,383E-00 1,0	1,4746-00	0,294E-00 1,04	+7E-03 2,403	E-03 4,70 <i>i</i>	/E-00 2,0:	3E-00 0,793E-1	0,0016311	0,304E-00	2,000E-00 4	,803E-00 2	2,499E-03 3	5,70 9 E-03 3,	202-03 1,70	72-00 1,314		JO 1,123E-	-00 1,041E-00
Таблица Б.6 -	Табулированные значени:	я коэффициента	в безопасности ПРТС	э к	Контрольная высота	a 20,0 M																				
Расстоя- ние, м 0	10 20 30	0 40	50 60	70	80 90	100	110 120	130 140	0 150	Азимут 160 170		190 20	0 22	10 2	220 230	240	250	260	270	280	290	300 3	10 320	330	340	350
	79 0,0030278 0,0024724 0,0020 72 0,0007573 0,0006181 0,0005																									
3 0,0004124	24 0,0003369 0,0002747 0,0002	2244 0,0001835	0,0001502 0,0001363	0,0001498 0	0,0001838 0,0002243	0,0002754 0,	.0003498 0,0004254	1 0,0005052 0,0006	5221 0,0007875 0,0	009332 0,0008669	0,0037752 0,0	06806 0,016	5911 0,003	1541 0,00	09314 0,00425	1,2498943	0,0042549	0,0009314 0,	.0031542 0	,0165914 0	,0068277 0,0	0,00	08671 0,0009	331 0,00078	74 0,00062	223 0,0005048
	23 0,00019 0,0001546 0,000 89 0,0001219 9,894E-05 8,085														05243 0,00239 03359 0,00153											
\dashv																										
																										Лисп
																			D.	6-04-2	2НИПИ/	′2022-0	10C2.T			<u> </u>
											Изм	Кол.уч.	Лист	№.док.	Подп.	Дата										15

Приложение В (обязательное)


Табулированное значение коэффициента безопасности ПРТО

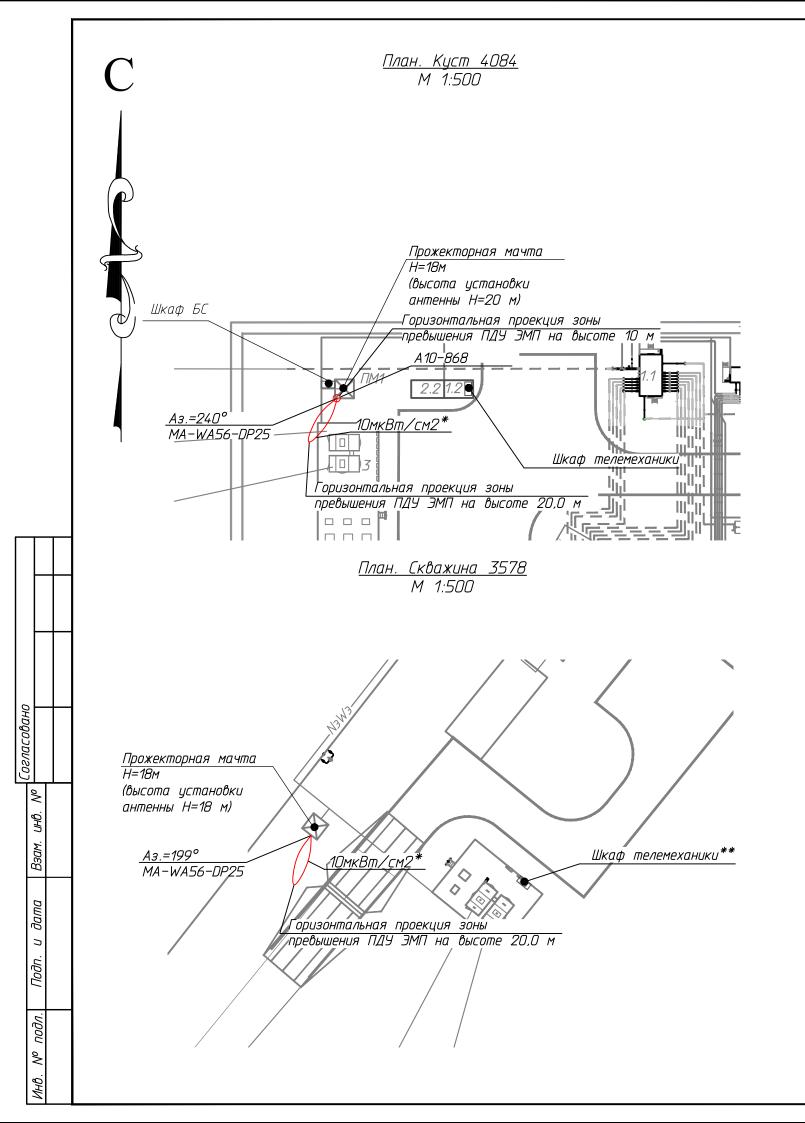
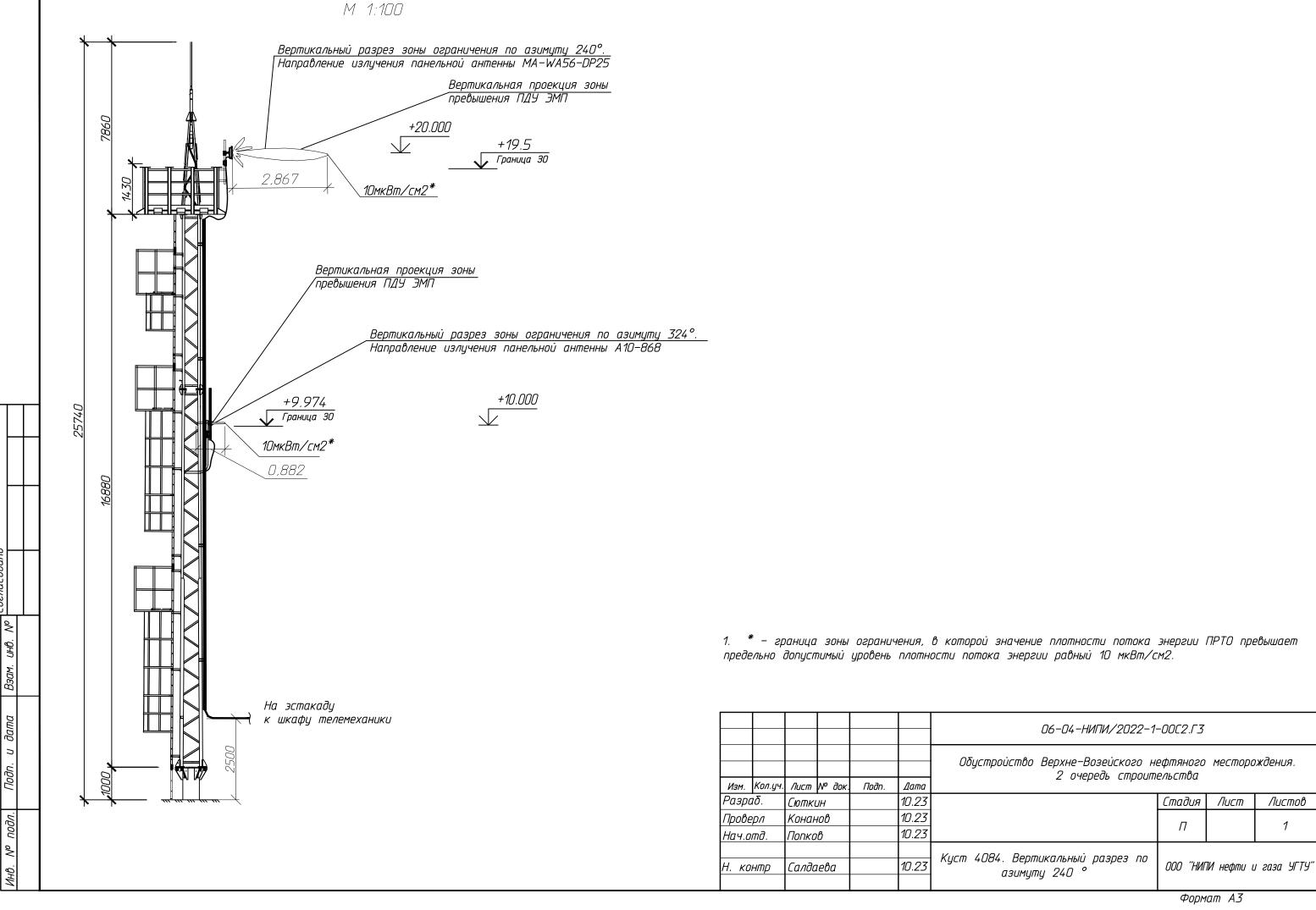

C Q	107570
Скважина	№3578

Табл	тица В.1 -	Табу	лированн	ые значен	іия коэф	фициента	безопасн	ости ПРТО		Контрол	ьная высота	2 м																									
	стоя- е, м	0 1) 2	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	Азиму 170	ут, град 180	190	200	210	220	230	240	250	260	270	280	290	300	310	320	330	340	350
			E-10 7,04 E-10 8,71				,				9 2,708E-09 9 3,35E-09	3,347E-09	4,232E-09	4,871E-09	4,514E-09			7,899E-08		2,063E-08	6,436E-08	5,992E-06	2,04E-07	1,155E-0	8 8,642E-09 8 1,069E-08	7,827E-08	3,529E-08	1,681E-08	4,588E-09	4,95E-09	4,033E-09		-09 2,598E-	09 2,121E-C	9 1,732E-09	9 1,414E-09 1,1 9 1,75E-09 1,4	55E-09
	3 1,4	455E-09 1,188	E-09 1,08	6E-09 1,2	35E-09	1,516E-09	1,857E-09	2,274E-09	2,785E-09	3,41E-09	9 4,176E-09	5,161E-09	6,528E-09	7,512E-09	6,963E-09	3,604E-08	5,595E-08	1,218E-07	4,94E-08	3,182E-08	9,926E-08	9,242E-06	3,146E-07	1,781E-0	8 1,333E-08	1,207E-07	5,442E-08	2,593E-08	7,076E-09	7,634E-09	6,22E-09	9 4,929E-	-09 4,007E-	09 3,272E-C	9 2,672E-09	2,182E-09 1,7	81E-09
			E-09 2,443 E-09 7,089								9,397E-09 8 2,727E-08		,												8 2,999E-08 7 8,702E-08				_							9 4,909E-09 4,0 3 1,424E-08 1,1	
To 6 a	P. 2	, i											,				,					,	,				•	. ,	,		1 '				,	· · · · · ·	
	тица B.2 -	laby	лированн	ые значен	іия коэф	фициента	безопасн	ости ПРТО		контрол	ьная высота	3 M																									
	стоя- е, м	0 1) 2	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	Азиму 170	ут, град 180	190	200	210	220	230	240	250	260	270	280	290	300		320	330	340	350
			E-10 8,04 E-09 1,02				•		-		9 3,094E-09 9 3,924E-09		•	1 -						+			+		9,876E-09 8 1.252E-08		-				+		-09 2,969E-			1,616E-09 1,3 2,05E-09 1,6	
			E-09 1,27 E-09 3,80				,		3,257E-09			6,037E-09	7,636E-09	8,787E-09	8,144E-09	4,216E-08	6,544E-08	1,425E-07	5,779E-08	3,723E-08	1,161E-07	1,081E-05	3,68E-07	2,084E-0	8 1,559E-08	1,412E-07	6,366E-08	3,033E-08	8,277E-09	8,93E-09	7,275E-09	9 5,766E-	-09 4,687E-	09 3,827E-C	9 3,125E-09	2,552E-09 2,0	84E-09
			E-09 3,804 E-08 1,093			· +	,		9,754E-09 2,801E-08		1,463E-08 4,2E-08	_				_						-			7 1,341E-07	_							-08 1,403E-0		 	7,642E-09 6,2 3 2,194E-08 1,7	
Табл	тица B.3 -	Табу	лированн	ые значен	іия коэф	фициента	безопасн	ости ПРТО		Контрол	ьная высота	9,0 м																									
Parr	стоя-																		Азиму	ут, град																	
ние	е, м	0 10			30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300		320	330		350
		962E-09 4,868		E-09 5,06	53E-09 6	· -	7,61E-09	9,319E-09		1,398E-C	9 1,006E-08 1,712E-08	2,115E-08	2,675E-08	3,079E-08	2,854E-08	-	2,293E-07	4,993E-07	2,025E-07	1,304E-07	4,068E-07	3,788E-05	1,289E-06	7,301E-0		4,948E-07		1,063E-07	2,9E-08	3,129E-08	2,549E-08	8 2,02E-0	-08 9,656E- 08 1,642E-	08 1,341E-C	08 1,095E-08	9 5,258E-09 4,2 3 8,941E-09 7,3	01E-09
								6,353E-08	,		08 1,167E-07		,	! '				<u> </u>		+ '	-	•	<u> </u>		7 3,724E-07 6 1 375E-06		-				+ '		-07 1,119E-		- '	3 6,095E-08 4,9 7 2,25E-07 1,8	
												_						_			_	_				_			_							7 5,114E-07 4,1	
Табл	тица В.4 -	Табу	лированн	ые значен	іия коэф	фициента	безопасн	ости ПРТО		Контрол	ьная высота	15,0 м																									
Paco	стоя-																		Азиму	ут, град																	
		0 10 558E-07 2,987	E-07 2,73		30 06E-07	40 3.812E-07	50 4.669E-07	60 5,718E-07	70 7.002E-07	80 8.574E-0	90 07 1,05E-06	100 1,298E-06	110 1.641E-06	120 1.889E-06	130 1.751E-06	140 9.062E-06	150 1.407E-05	160 3.063E-05	170 1.242E-05	180 8.002E-06	190 2.496E-05	200 0.0023238	210 7.911E-05	220 4.479E-0	230 6 3,351E-06	240 3.035E-05	250 1.368E-05	260 6.519E-06	270 1,779E-06	280 1,92E-06	290 1.564E-06	300 6 1.239E-	310 -06 1,007E-	320 06 8.226E-0	330 7 6.717E-07	340 7 5,485E-07 4,4	350 79E-07
	2 4,9	95E-06 4,042	E-06 3,69	5E-06 4,20	03E-06 5	5,159E-06	6,318E-06	7,737E-06	9,475E-06	1,16E-0	5 1,421E-05	1,756E-05	2,221E-05	2,556E-05	2,369E-05	0,0001226	0,0001904	0,0004145	0,0001681	0,0001083	0,0003377	0,0314462	0,0010705	6,061E-0	5 4,535E-05	0,0004107	0,0001852	8,822E-05	2,408E-05	2,598E-05	2,116E-05	5 1,677E-	-05 1,363E-	05 1,113E-C	9,09E-06	7,423E-06 6,0	61E-06
			E-07 5,509 E-07 1,75		_		•	•		•	6 2,119E-06 7 6,741E-07		•	1 '	<u> </u>		-	<u> </u>		+	-	•	<u> </u>				-			-	<u> </u>					5 1,107E-06 9,0 7 3,521E-07 2,8	
!	5 2,3	363E-07 1,929	E-07 1,76	4E-07 2,00	06E-07 2	2,463E-07	3,016E-07	3,693E-07	4,523E-07	5,538E-0	07 6,782E-07	8,383E-07	1,06E-06	1,22E-06	1,131E-06	5,853E-06	9,086E-06	1,979E-05	8,024E-06	5,169E-06	1,612E-05	0,001501	5,11E-05	2,893E-0	6 2,165E-06	1,961E-05	8,839E-06	4,211E-06	1,149E-06	1,24E-06	1,01E-06	8,005E-	-07 6,507E-	07 5,314E-0	7 4,339E-07	7 3,543E-07 2,8	3E-07
Табл	тица B.5 -	Табу	лированн	ые значен	ия коэф	фициента	безопасн	ости ПРТО		Контрол	ьная высота	18,0 м																									
	стоя-													1	1					ут, град								1									
	٠,	0 10016148 0,001			30 013712 (40 0,0016831	50 0,0020612	60 0,0025242	70 0,0030911	80 0,003785	90 54 0,0046357	100 0,0057295	110 0,0072463	120 0,008339	130 0,0077289	140 0,0400051	150 0,0621034	160 0,1352433	170 0,0548423	180 0,0353277	190 0,1101833	200 10,259252	210	220 0,019775	230 5 0,014795	240 0,1340034	250 0,0604109	260 0,0287817	270 0,0078544	280 0,0084745	290	300 2 0,00547			330 17 0,0029656	340 6 0,0024217 0,0	350 019775
l			3297 0,000 1465 0,000				0,0005153 0,000229				0,0011589 06 0,0005151	 	•	0,0020848	<u> </u>			0,0338108 0,015027	-		0,0275458		+		7 0,0036988 2 0,0016439	_	-	0,0071954	-	0,0021186	<u> </u>	 	679 0,00111 608 0.00049	-,	,	4 0,0006054 0,0 5 0.0002691 0.0	
	4 0,0	0001009 8,241	E-05 7,53	3E-05 8,5	7E-05 C	,0001052	0,0001288	0,0001578	0,0001932	0,000236	6 0,0002897	0,0003581	0,0004529	0,0005212	0,0004831	0,0025003	0,0038815	0,0084527	0,0034276	0,002208	0,0068865	0,6412033	0,0218271	0,001235	9 0,0009247	0,0083752	0,0037757	0,0017989	0,0004909	0,0005297	0,000431	.5 0,0003	342 0,00027	78 0,00022	7 0,0001854	4 0,0001514 0,0	001236
<u> </u>	5 6,4	459E-05 5,274	E-05 4,82	1E-05 5,48	35E-05 6	5,732E-05	8,245E-05	0,000101	0,0001236	0,000151	14 0,0001854	0,0002292	0,0002899	0,0003336	0,0003092	0,0016002	0,0024841	0,0054097	0,0021937	' 0,0014131	0,0044073	0,4103701	. 0,0139693	0,000791	1 0,0005918	0,0053601	0,0024164	0,0011513	0,0003142	0,000339	0,0002762	62 0,00021	189 0,00017	79 0,000145	53 0,0001186	6 9,687E-05 7,9	1E-05
																				Г		<u> </u>	<u> </u>	<u> </u>		<u> </u>											
																				-		-+		-+						Ω6-Ω	/. – 2HIA	1 <i>ПИ /</i> 2	2022-00	7C2 T			Лисп
																				-	Изм. Ко	חת נוע /	711000 110	dor	Подп.	Лата				<i>50 0</i> 2	+ ∠IIVII	1111/2	UZZ UL	JCZ.1			16
																					VI314. 11C	JII.Y7. /	וטבווו וייי	UUK.	TIUUIT.	дини								#	мат АЗ		

Ведомость документов графической части											
Обозначение	Наименование	Примечание									
06-04-2НИПИ/2022-ООС2.Г1	Структурная схема организации сетей связи										
06-04-2НИПИ/2022-ООС2.Г2	Куст 4084, Скважина №3578. ПРТО. Зона										
	ограничения										
06-04-2НИПИ/2022-ООС2.Г3	Куст 4084. Вертикальный разрез по азимуту 240°										
06-04-2НИПИ/2022-ООС2.Г4	Скважина №3578. Вертикальный разрез										
	по азимуту 199°										

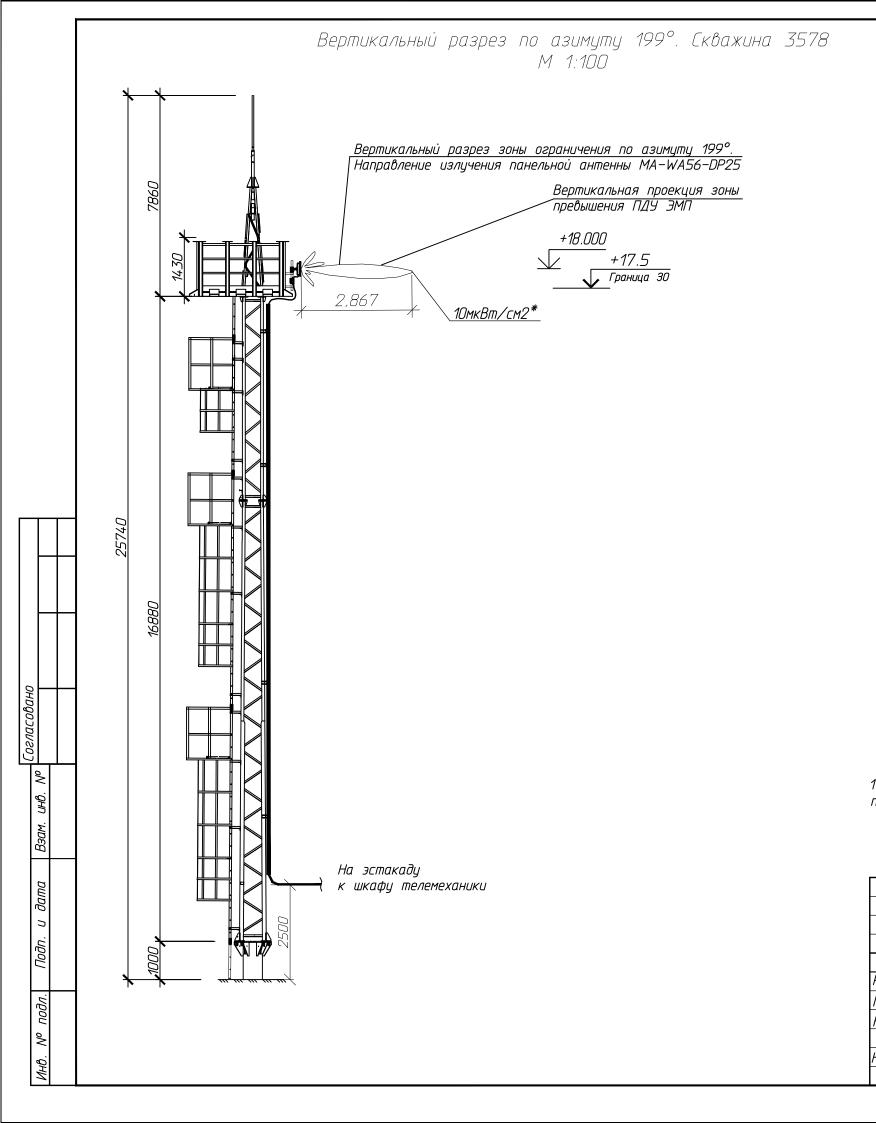
П									
Согласовано									
C. C. C.									
r	1								
Поше	подп. и дага	Изм.	Кол.уч	Лист	№док.	Подп.	Дата	06-04-2НИПИ/20	22-ООС2.Г
H 0 H	110ДUI.	Разра Прове	б.	Сютк Конан	ИН		10.23 10.23	Ведомость документов	Стадия Лист Листов П 1 1
M. erri		Н. коі ГИП	нтр.	Салд Худя			10.23 10.23	графической части	ООО «НИПИ нефти и газа УГТУ»
	-						•		Формат А4



Экспликация зданий и сооружений

Номер по ген- плану	Наименование	Координаты
	Автоматизированная измерительная	
	установка на единой раме:	
1.1	Технологический блок 1 шт	
1.2	Аппаратурный блок 1 шт	
	Блок дозирования реагентов	
2.1	Технологический блок 1 шт.	
2.2	Аппаратурный блок 1 шт.	
3	KTN 1 wm	
ПМ	Прожекторная мачта 1 шт	

- 1. Вертикальный разрез зоны ограничения см. 06-04-2НИПИ/2022-00С2.ГЗ, Г4.
- 2. * граница зоны ограничения, в которой значение плотности потока энергии ПРТО превышает предельно допустимый уровень плотности потока энергии равный 10 мкВт/см2.


						06-04-2НИПИ/2022-	-1-00C2.F2	2					
							до Верхне-Возейского нефтяного месторождения. 2 очередь строительства						
Изм.	Кол.уч.	Лист	№ док.	Подп.	Дата	2 очервов строит	тельстиой						
Разра	ιδ.	Сютки	ΙΗ		10.23		Стадия	Лист	Листов				
Прове	рил	Конан	ιοβ		10.23		П		1				
Нач.ог	тд.	Ποηκο	δ		10.23				,				
						Vucm /00/ Cubayuna NOZE70 FDTO							
Н. ко	контр Салдаева				10.23	Куст 4084, Скважина №3578. ПРТО. Зона ограничения	^{7.} 000 "НИПИ нефти и газа УГТУ"						

Вертикальный разрез по азимуту 240°/324°. Куст 4084

Листов

1

1. *— граница зоны ограничения, в которой значение плотности потока энергии ПРТО превышает предельно допустимый уровень плотности потока энергии равный 10 мкВт/см2.

						06-04-НИПИ/2022-1-00С2.Г4								
							о Верхне-Возейского нефтяного месторождения. 2 очередь строительства							
Изм.	Кол.уч.	Лист	№ док.	Подп.	Дата	Z O ICPCOD CHIPOUITI								
Разра	ιδ.	Сютки	JH		10.23		Стадия	Лист	Листов					
Трове	ерл	Конанов		Конанов		Конағ	Конан	Юв		10.23				1
Нач.о	тд.	Попков 10.23			10.23		Π		,					
						Cuhawuna 7578 Ropmunaanuni paspos								
1. ко	нтр	Салдаева		Салдаева 10.2			10.23	Скважина 3578. Вертикальный разрез по азимиту 199°.	000 "НИПИ нефти и газа УГТУ					
						The dealigning 177 .								