Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Пермский национальный исследовательский политехнический университет» «Научно-проектный институт обустройства нефтяных и газовых месторождений» Научно-проектный центр «Нефтегазовый инжиниринг»

Свидетельство № 0253-2016-5902291029-08 от 21 июня 2016 г.

ООО «ЛУКОЙЛ-ПЕРМЬ»

«Строительство и обустройство скважин Бугровского месторождения»

Проектная документация

Раздел 4 Здания, строения и сооружения, входящие в инфраструктуру линейного объекта

Часть 3 Сведения об инженерном оборудовании, о сетях инженернотехнического обеспечения, перечень инженерно-технических мероприятий, содержание технологических решений

> Книга 7 Технологические решения. Автоматизация технологических процессов

> > 2021/354/ДС5-PD-ILO.IOS3.7

Том 4.3.7

Договор № 2021/354/ДС5

Изм.	№ док.	Подп.	Дата

Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Пермский национальный исследовательский политехнический университет» «Научно-проектный институт обустройства нефтяных и газовых месторождений» Научно-проектный центр «Нефтегазовый инжиниринг»

Свидетельство № 0253-2016-5902291029-08 от 21 июня 2016 г.

ООО «ЛУКОЙЛ-ПЕРМЬ»

«Строительство и обустройство скважин Бугровского месторождения»

Проектная документация

Раздел 4 Здания, строения и сооружения, входящие в инфраструктуру линейного объекта

Часть 3 Сведения об инженерном оборудовании, о сетях инженерно-технического обеспечения, перечень инженерно-технических мероприятий, содержание технологических решений

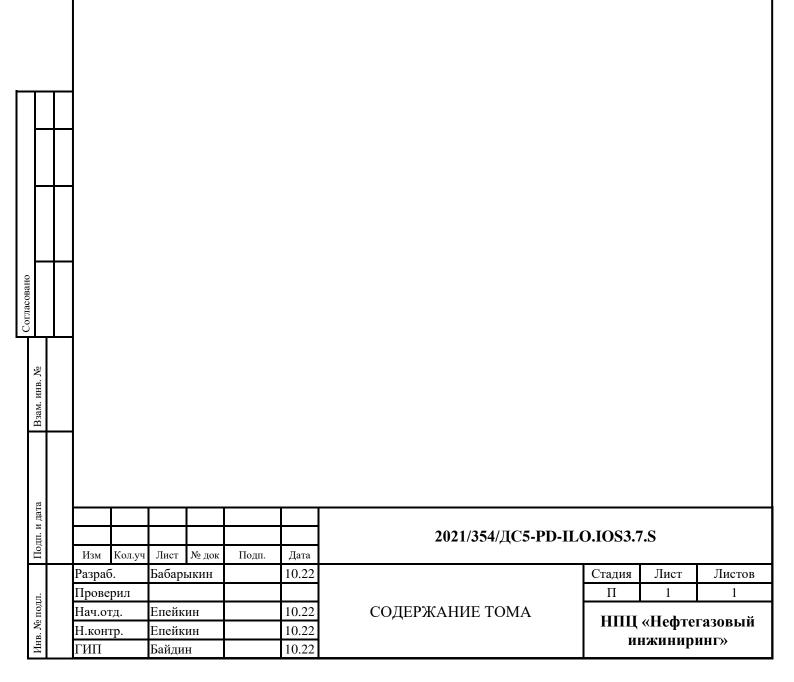
Книга 7 Технологические решения. Автоматизация технологических процессов

2021/354/ДС5-PD-ILO.IOS3.7

Том 4.3.7

2022

2021/354/ДС5


Главный инх	кенер		Д.Г. Малыхин
Главный инх	кенер про	екта	И.Ю. Байдин
Изм. № док.	Подп.	Дата	

Договор №

Взам. инв. №

Подп. и дата

		2
Обозначение	Наименование	Примечание
2021/354/ДС5-PD- ILO.IOS3.7.S	Содержание тома 4.3.7	2
2021/354/ДС5-PD-SP	Состав проектной документации	3
2021/354/ДС5-PD- ILO.IOS3.7.TCH	Текстовая часть	4
2021/354/ДС5-PD- ILO.IOS3.7.GCH	Графическая часть	
	Лист 1 - Схема структурная автоматизации.	14
	Лист 2 - Схема функциональная автоматизации.	15

Изм Кол.уч Лист № док Подп. Дата 10.22 Разраб. Бабарыкин Проверил Нач.отд. Епейкин 10.22 Епейкин 10.22 Н.контр. ГИП Байлин 10.22

инв.

Подп. и дата

2021/354/ДС5-PD-ILO.IOS3.7.TCH

 Стадия
 Лист
 Листов

 П
 1
 10

ТЕКСТОВАЯ ЧАСТЬ НПЦ «Нефтегазовый инжиниринг»

Основанием для проектирования настоящего раздела послужили следующие документы:

- Задание на проектирование «Строительство и обустройство скважин Бугровского месторождения», утвержденное Первым Заместителем Генерального директора Главным инженером ООО «ЛУКОЙЛ-ПЕРМЬ» И.И.Мазеиным от 01.10.2021г.;
- Технические условия отдела автоматизации и метрологии ООО «ЛУКОЙЛ-ПЕРМЬ» от 01.09.2021г.

Исходными данными для разработки системы автоматизации технологических процессов послужили технологические схемы и планы расположения технологического оборудования, генеральные планы технологических площадок, технические требования и опросные листы на технологическое оборудование, в том числе блочно-комплектной поставки.

Технические решения по автоматизации соответствуют:

- СТО 1.22.1-2015 Стандарт ОАО «ЛУКОЙЛ» «Автоматизированная Система Управления Технологическими Процессами добычи нефти и газа»;
- СТО 1.14-2013 Стандарт ОАО «ЛУКОЙЛ» «Система обеспечения единства измерений. Метрологическое обеспечение в группе «ЛУКОЙЛ»»:
- PTM 36.22.13-90 «Системы автоматизации. Монтажнотехнологические требования к проектированию».

2 Объекты автоматизации и телемеханизации

К объектам автоматизации кустовой площадки №5а относятся:

- добывающие скважины 3 шт.;
- дренажная емкость $V=8 \text{ m}^3-1 \text{ шт.};$
- УБПР 1 шт.;
- нагнетательная скважина 1 шт.

К объектам автоматизации кустовой площадки №14 относятся:

– добывающие скважины – 1 шт.

3 Объём автоматизации и телемеханизации

Принятый в проекте объем автоматизации и телемеханизации по проектируемым объектам кустовых площадок №5а и №14 в условиях нормальной эксплуатации, позволяет работать без постоянного присутствия на них обслуживающего персонала.

Изм	Кол.уч	Лист	№ док	Подп.	Дата

Взам. инв. №

Подп. и дата

Лист

Вывод технологических процессов на заданный режим работы осуществляется вручную на месте с последующим подключением местных средств контроля, сигнализации и блокировок.

Объем автоматизации по каждому объекту рассматривается отдельно.

Объем автоматизации для добывающих скважин:

Проектируемые скважины эксплуатируются способом ШГН. Скважины оборудованы штанговым глубинным насосом с приводом от станка-качалки ПШСН80-3-40 в комплекте со станцией управления.

Оборудование, поставляемое комплектно с насосом, обеспечивает:

- работу в ручном и автоматическом режимах;
- защиту насоса, в том числе от недопустимого повышения и понижения давления (≤0,3МПа и ≥4,0МПа) на устье скважины (проектом предусмотрена установка электроконтактного манометра на выкидном трубопроводе скважины, по сигналам которого производится автоматическое отключение насоса);
- передачу данных в систему телемеханики ЦДНГ-7.

Для контроля и управления технологическим процессом оператором ЦДНГ-7 для проектируемых скважин предусмотрено:

- измерение линейного давления;
- мониторинг параметров СУ ШГН по RS-485:
 - ток электродвигателя насоса;
 - напряжение;
 - сигнализация состояния «Работа»/«Отключен»;
 - общая «Авария»;
- дистанционное управление насосом «Пуск»/«Останов» с APMa оператора ЦДНГ-7.

Замер дебита жидкости на проектируемых скважинах №600, 601, 809 куста №5а осуществляется с помощью счётчика жидкости СКЖ со встроенным вычислителем БСКЖ (моноблок).

Замер дебита жидкости на проектируемой скважине №808 куста №14 осуществляется на существующем АГЗУ-6714 с передачей данных в систему телемеханики ЦДНГ-7 по существующим каналам связи.

Для дренажной емкости предусмотрен уровнемер с индикацией уровня жидкости по месту.

Для постоянного контроля герметичности промыслового трубопровода, транспортирующего жидкие углеводороды от проектируемых скважин кустовой площадки №5а до точки врезки, предусмотрено:

- контроль параметров трубопровода (достигается установкой датчика давления на нефтегазосборном коллекторе на выходе с кустовой площадки);
- передачу контролируемых параметров трубопровода в систему АСУ ТП ЦДНГ-7 и далее на APM оператора с выводом соответствующих трендов;

нв. № подл.	Подп. и дата	Взам. инв. №

Изм	Кол.уч	Лист	№ док	Подп.	Дата

отключение насосов скважин в автоматическом режиме (из системы АСУ ТП ЦДНГ-7) или оператором ЦДНГ-7 с АРМа.

На узле подключения, проектируемого нефтепровода в существующий трубопровод в точке врезки предусмотрен местный контроль давления до и после задвижки.

Для УБПР предусмотрено:

- местный визуальный контроль уровня реагента в емкости с дистанционной сигнализацией минимального уровня;
- дистанционная сигнализация повышения и понижения давления в нагнетательной линии относительно заданного значения;
- дистанционная сигнализация повышения и понижения температуры в емкости относительно заданного значения;
- включения/отключения дистанционная сигнализация насосадозатора;
- обогревом – управление емкости ПО заданным значениям дистанционной сигнализацией включения/отключения обогрева;
- насоса-дозатора – повторное включение после пропадания электропитания;
- отключение насоса-дозатора при недопустимом отклонении давления в линии нагнетания и при минимальном уровне реагента в емкости.
- передача данных в систему телемеханики ЦДНГ-7.

контроля загазованности воздушной среды рабочей своевременного обнаружения возможных утечек углеводородов, при обслуживании оборудования и проведении ремонтных работ, обслуживающий персонал использует переносные газоанализаторы со встроенной светозвуковой сигнализацией и ЖК-индикатором, имеющиеся в ЦДНГ-7.

4 Основные технические решения

Основные технические решения приняты в соответствии с требованиями действующих нормативных документов по проектированию, технической информации на приборы и средства автоматизации отечественного производства.

оборудование укомплектовано контрольно-измерительными приборами и системой управления в соответствии с утвержденными Заказчиком техническими требованиями или опросными листами.

4.1 Решения по структуре

централизованного телемеханического работой контроля проектируемых технологических объектов проектом предлагается следующая архитектура:

> – нижний (нулевой) уровень – датчики, исполнительные механизмы, средства автоматики, встроенные в технологическое оборудование и другие КИП и А;

Изм	Кол.уч	Лист	№ док	Подп.	Дата

Взам. инв. №

- второй уровень существующие APM оператора ЦДНГ-7 и сервер в ЦДНГ-7;
- третий уровень АСОДУ.

Для сбора данных с проектируемых технологических объектов кустовой площадки №5а проектом предлагается использовать контроллер в составе проектируемого обогреваемого шкафа телемеханики с передачей данных по GSM-каналу в существующую систему телемеханики ЦДНГ-7, на APM оператора ЦДНГ-7 и в АСОДУ. Данные с проектируемой скважины №808 передаются на существующий шкаф телемеханики кустовой площадки №14 и далее по существующему УКВ-каналу в систему телемеханики ЦДНГ-7, на APM оператора ЦДНГ-7 и в АСОДУ.

Проектом обеспечивается интеграция проектируемых объектов в общую систему АСУ ТП ЦДНГ-7, экспорт данных в информационную систему OIS+ и АСОДУ.

Прикладное ПО для проектируемого контроллера, разрабатывается заводом-изготовителем шкафа телемеханики и входит в комплект поставки шкафа.

На верхнем уровне для системы АСУ ТП ЦДНГ-7 и АСОДУ в ходе ПНР предусмотрена доработка программного и информационного обеспечений.

Работа объектов автоматизации обеспечивается в круглосуточном режиме.

Структурная схема автоматизации приведена в графической части проекта 2021/354/ДС5-PD-ILO.IOS3.7.GCH л.1.

4.2 Приборы и средства автоматизации

Для осуществления вышеперечисленных объемов автоматизации и контроля используется оборудование, серийно выпускаемое на территории РФ. Все средства автоматизации имеют необходимые сертификаты РФ.

Датчики, устанавливаемые во взрывоопасных зонах, имеют взрывозащищенное исполнение вида «взрывонепроницаемая оболочка» или «искробезопасная цепь» и сертификат соответствия Техническому регламенту Таможенного Союза ТР ТС 012/2011 «О безопасности оборудования для работ во взрывоопасной среде».

Кроме того, все датчики имеют сертификат соответствия Техническому регламенту Таможенного Союза ТР ТС 020/2011 «Электромагнитная совместимость технических средств».

Все контрольно-измерительные приборы, монтируемые непосредственно на открытых технологических площадках, имеют климатическое исполнение У1 по ГОСТ 15150-69. Степень защиты оболочки КИП по ГОСТ 14254-96 не менее IP65.

Перечень средств автоматизации приведен на схеме функциональной автоматизации (см. 2021/354/ДС5-PD-ILO.IOS3.7.GCH л.2).

	1
Взам. инв. №	
Подп. и дата	
1нв. № подл.	

Изм	Кол.уч	Лист	№ док	Подп.	Дата

Местные приборы, датчики, отборные и исполнительные устройства устанавливаются непосредственно на технологическом оборудовании с помощью закладных монтажных деталей и изделий, которые предусматриваются и учитываются в технологической части проекта.

Все контрольно-измерительные приборы должны иметь надписи указанием измеряемых параметров.

Присоединительные размеры приборов давления к процессу должны быть M20x1,5.

показывающих манометров, ЭКМ датчиков давления выполняется на отсекающих 2-х вентильных блоках, через мембранные разделители.

Монтаж контрольно-измерительных приборов и средств автоматизации выполнен в удобном для обслуживания и снятия показаний месте в соответствии с действующими нормами, и требованиями инструкции по монтажу и эксплуатации приборов.

приборы, коммутационная Вторичные аппаратура контроллер устанавливаются в обогреваемом шкафу телемеханики уличного исполнения, который устанавливается вне взрывоопасной зоны.

Все электрические проводки выполняются экранированным контрольным кабелем с медными жилами сечением не менее 1,0мм² в изоляции марки КВВГЭнг(А), не распространяющим горение при групповой прокладке. Для последовательной передачи данных используется кабель для промышленного интерфейса КИПЭВнг(A)-LS.

От приборов до площадки блока аппаратурного АГЗУ, где размещается шкаф телемеханики кабельная продукция, прокладывается:

- по площадке скважин в защитном коробе, металлорукавах в ПВХоболочке, трубах;
- по территории куста кабели прокладываются в траншее (на глубине 1,0м) в защитной пластиковой трубе.

При совместной прокладке контрольного и силового кабелей в одной траншее расстояние между ними должно составлять не менее 0,1м.

Электропроводки системы автоматизации напряжением ~220B и ±24B выполняются в отдельных коробах и трубах.

Прокладка кабельной продукции осуществляется с учётом технических характеристик кабелей и регламентированных радиусов поворотов.

План сетей автоматизации приведён на сводном плане инженерных сетей в томе 4.1 «Схема планировочной организации земельного участка».

Питание системы автоматизации осуществляется переменным током промышленной частоты 50Гц, напряжением ~220В, соответствует первой категории надёжности электроснабжения и требованиям ГОСТ 32144-2013 по качеству электроэнергии. Подвод электропитания и установка распределительных

Взам. инв. №	
Подп. и дата	

Изм	Кол.уч	Лист	№ док	Подп.	Дата

щитков предусматривается в томе 4.3.2 «Система электроснабжения на период обустройства месторождения».

Питание шкафа телемеханики осуществляется с использованием ИБП типа «on-line», гарантирующего работоспособность системы автоматизации при аварийных ситуациях в системе электроснабжения.

Все технические средства должны быть заземлены в соответствии с требованиями ПУЭ и инструкциями заводов-изготовителей.

Электрооборудование, размещённое во взрывоопасных зонах и не включённое в искробезопасные цепи, должно быть заземлено отдельной жилой, независимо от напряжения.

Экраны кабелей заземляются только со стороны шкафов управления.

Приборы и средства автоматизации обслуживаются и ремонтируются существующей службой по обслуживанию и профилактическому ремонту средств КИП и A.

4.4 Решения по метрологическому обеспечению

Применяемые в проекте средства измерения (СИ) утверждённого типа включены в Госреестр как средства измерения и имеют свидетельство (сертификат) Федерального агентства по техническому регулированию и метрологии.

Измерений, входящих в сферу государственного регулирования обеспечения единства измерений (ГРОЕИ) нет.

Пределы допустимой относительной погрешности СИ, применяемых в проекте и не входящих в СГРОЕИ:

- масса нефтегазоводяной смеси (скважинной жидкости) $\pm 2,5\%$;
- давление среды добывающей скважины (линейное) $\pm 0.5\%$;
- манометры избыточного давления (при рабочем давлении свыше 2,5МПа) 1,5 (класс точности).

Дополнительная метрологическая поверка измерительных каналов по окончании наладки не требуется.

В объём документации, поставляемой со СИ входят:

- действующий сертификат соответствия требованиям технических регламентов (если иная форма оценки соответствия не установлена законодательством о техническом регулировании): ТР ТС 012/2011 «О безопасности оборудования для работ во взрывоопасной среде», ТР ТС 020/2011 «Электромагнитная совместимость технических средств»;
- паспорт и/или формуляр (оригинал), заполненный надлежащим образом;
- эксплуатационная документация, содержащая все необходимые указания по монтажу, вводу в действие, эксплуатации, техническому обслуживанию, ремонту, консервации и утилизации на русском языке;

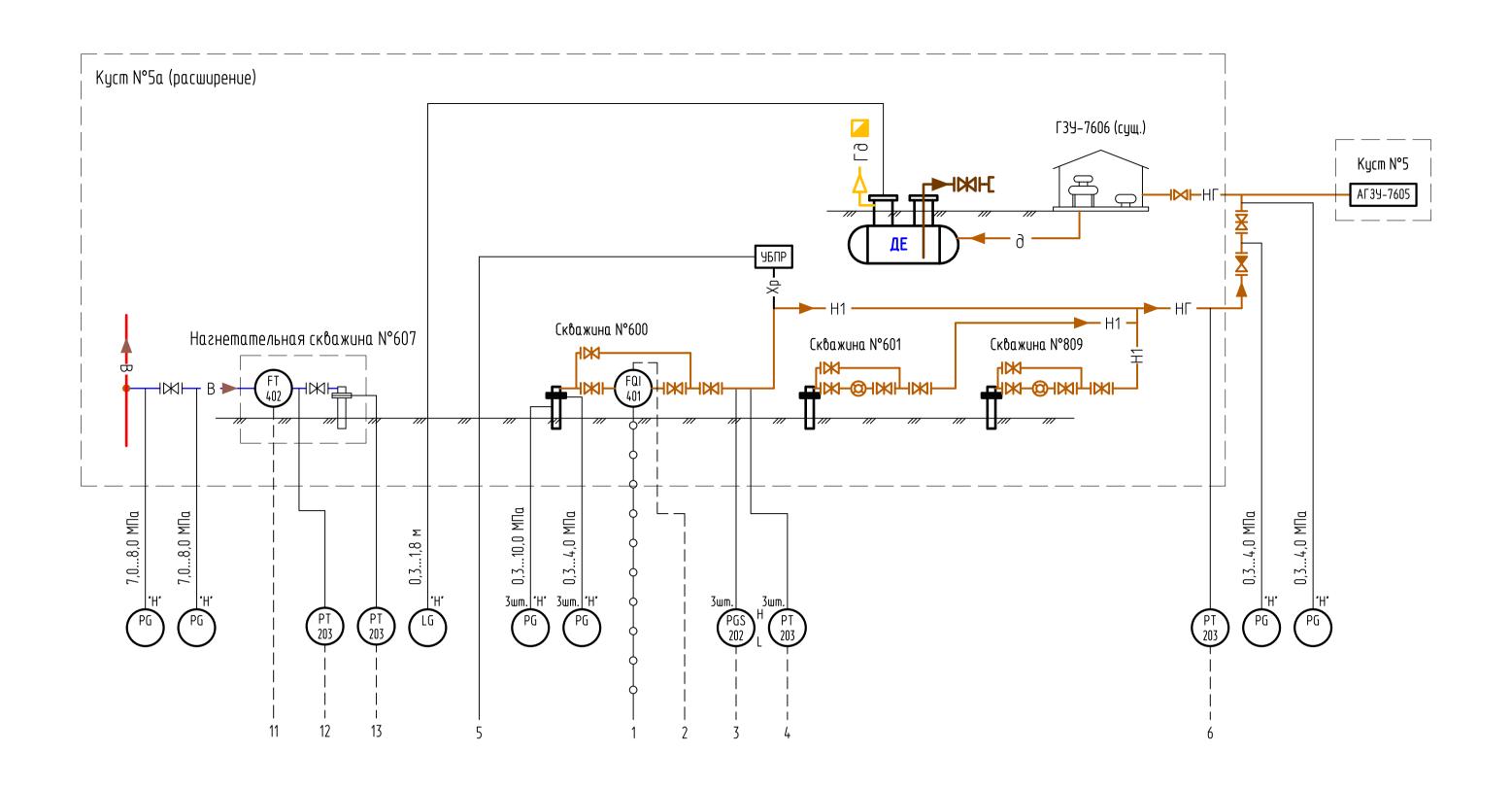
Инв. № подл.	Подп. и дата	Взам. инв. №

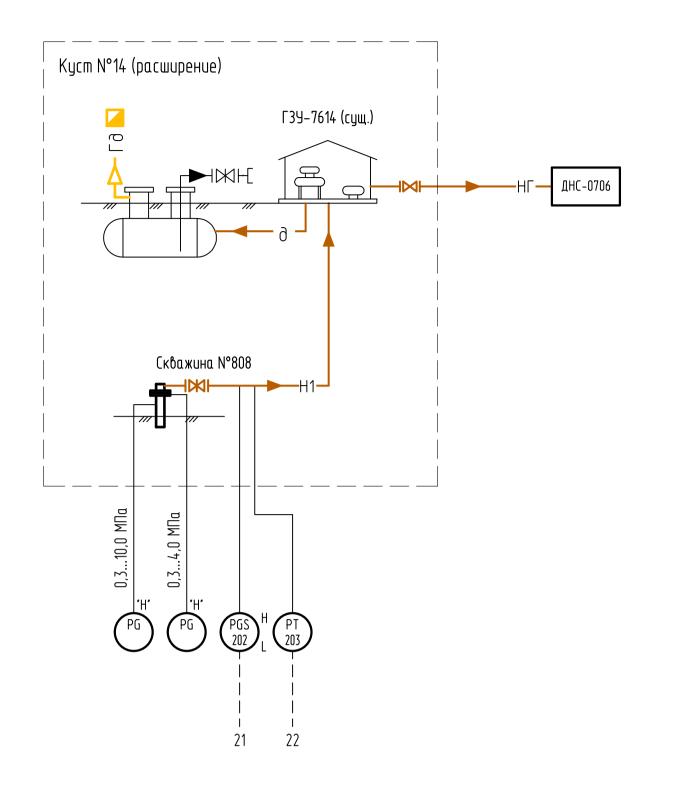
Изм	Кол.уч	Лист	№ док	Подп.	Дата

- действующее на дату выпуска свидетельство (сертификат) об утверждении типа СИ с описанием типа.
- утвержденная в установленном порядке методика поверки;
- аттестованная в установленном порядке методика измерений (для СИ, выполняющих непрямые измерения, измерительных систем/комплексов);
- свидетельства о поверке с протоколом поверки (оригинал), срок действия поверки на территории РФ не должен превышать 90 дней на момент отгрузки СИ Заказчику.

Единицы измерения применяемых СИ соответствуют требованиям ГОСТ 8.417-02. Единицы измерения давления – МПа (кПа).

Взам. инв. №								
Подп. и дата								
Инв. № подл.	Изм	Кол.уч	Лист	№ док	Подп.	Дата	2021/354/IIC5-PD-II O IOS3 7 TCH	ист 8
	Y13M	кол.уч	лист	л⊻док	тюди.	дата		


5 Список литературы


- 1. Постановление Правительства РФ от 16.02.2008г. №87 «О составе разделов проектной документации и требованиях к их содержанию».
- 2. Федеральные нормы и правила «Правила безопасности в нефтяной и газовой промышленности», утвержденные приказом Ростехнадзора РФ №534 от 15.12.2020г.
- 3. СТО ЛУКОЙЛ 1.22.1-2015 Стандарт ОАО «ЛУКОЙЛ» «Автоматизированные системы управления технологическими процессами добычи нефти и газа».
- 4. СТО 1.14-2013 Стандарт ОАО «ЛУКОЙЛ» «Система обеспечения единства измерений. Метрологическое обеспечение в группе «ЛУКОЙЛ»»
- 5. СП 77.13330.2016 «Системы автоматизации».
- 6. РТМ 36.22.13-90 «Системы автоматизации. Монтажно-технологические требования к проектированию».
- 7. ПУЭ «Правила устройства электроустановок» (7 издание).
- 8. ГОСТ 34.201-2020 «Информационная технология. Комплекс стандартов на автоматизированные системы. Виды, комплектность и обозначение документов при создании автоматизированных систем».
- 9. ГОСТ 21.208-2013 «СПДС. Автоматизация технологических процессов. Обозначения условные приборов и средств автоматизации в схемах».
- 10. ГОСТ 21.408-2013 «СПДС. Правила выполнения рабочей документации технологических процессов».
- 11. СНиП 23-01-99 «Строительная климатология» (с Изменением №1).
- 12. ГОСТ 15150-69 «Исполнение для различных климатических районов».
- 13. ГОСТ 14254-2015 «Степени защиты, обеспечиваемые оболочками (Код IP)».

Взам. инв. №								
Подп. и дата								
Инв. № подл.	Изм	Кол.уч	Лист	№ док	Подп.	Дата	2021/354/ДС5-PD-ILO.IOS3.7.TCH	Лист 9

Взам. инв. №

Инв. № подл.

				~		Управление — — — — — — — — — — — — — — — — — — —	0,34,0 MNa 		Управление 	0.34.0 MNa	6	11 ———————————————————————————————————	7,08,0 MNa 	7,08,0 MNa 	5						Tot /NR-IoT	петчерски ЦДНГ-
	По мест	y		, 	31 	um. i 'H' NS,H,K		Ę	СА АРШЬ СН.				 	 								
Шкаф телемеханики 5а		Расход жидкости ——————————————————	Расход жидкости — — — — — — — — — — — — — —	Мониторинг/Управление	Состояние насоса ШГН	Давление линейное — — — — — — — — — — — — — — —	Мониторинг УБПР 	Состояние УБПР	"Работа"/"Авария" Давление в выходном нефтегазосборном	- de	MUCXOU XUUKOLIIIU 	Давление до отключающей задвижки	на нагнетательном водоводе <u>Давление после отключающей задвижки</u>	Низкая температура в шкафу	"Ш" ZSA	'Paðoma om ðamapeu'	ðamapeū'	'Abapuя ИБП' 	"Требуется замена батарей" ————————————————————————————————————		"W" symusamop Pap) NB-loT	
	Входные	Аналоговые		• 3	, j		• 3	Í			•		•	•	ı							Ĭ
	спѕналя	Дискретные				• 3				2		•				•	•	•	•	•		Ĭ
ПЛК	Выходные	Аналоговые						Ĭ														
/	спѕналы	Дискретные																				Ĭ
	- F	RS485	↓ :	3	Ŷ	3		¥														•
		RS232																				

					Управление L=0,3 МПа, H=4,0 МПа	0,34,0 MNa 	пунк	етчерский т ЦДНГ-7
		По месп	у		'H' NS,H,K			
		ратурный б эмплектно		Ċ) }			
Куст N°14 (расширение)		Шкаф теле (комплект		Мониторинг/Управление		Давление линейное	Oδopyd cbs	Пование 13и*
		Входные	Аналоговые			•)	
		спѕналя	Дискретные			<u> </u>	(
	* XI/U	Выходные	Аналоговые		<u></u>		(
		спѕналя	Дискретные					
			RS485				()
			RS232				Модем	ı V.23*

	15		
Поз. обознач.	Наименование	Кол.	Примечание
202	Манометр электроконтактный взрывозащищенный	4	
203	Датчик избыточного давления	7	
401	Счетчик количества жидкости (СКЖ) взрывозащищиенный	3	
402	Счетчик расхода воды взрывозащищиенный	1	

- 1. Условные обозначения и изображения приборов КИП и А выполнены в соответствии с ГОСТ 21.208–2013.
- 2. Объекты управления (установки, агрегаты, аппараты) и относящиеся к ним средства автоматизации, не связанные между собой и имеющие одинаковое оснащение средствами автоматизации, изображаются на схемах один раз (п.5.1.3 ГОСТ 21.408–2013).
- 3. "Н"— оборудование входит в комплект поставки технологического оборудования.
- 4. "Ш" оборудование входит в комплект поставки шкафа телемеханики.
- 5. "*" существующее оборудование.

						2021/354/ДС5-PD-IL0.I0S3.7.GCH									
Изм.	Кол.	/lucm	Nдок.	Подпись	Дата	Строительство и обустройство скважин Бугровского месторождения									
Разраб.		Бабарыкин Епейкин			11.22		Стадия	/lucm	Листов						
					11.22		П	2							
		Eneūĸ	UH		11.22	Схема функциональная автоматизации	НПЦ	"Нефтег Інжинирі	азовый 						

опмат А1