Общество с ограниченной ответственностью «ТЕХНОЭКОС»

Ассоциация в области архитектурно-строительного проектирования СРО «СОВЕТ ПРОЕКТИРОВЩИКОВ», дата регистрации 24.11.2017, рег. №442

Заказчик: ООО «Комтранссервис»

Договор №: 01/20 от 01 марта 2020 г.

Строительство комплекса по сбору, обработке, обезвреживанию, утилизации, захоронению отходов III-V класса опасности.

1-5 этапы строительства

Оценка воздействия намеченной хозяйственной и иной деятельности на окружающую среду

Часть 12

0120-01032020-1-OBOC12

Tom 12

Общество с ограниченной ответственностью «ТЕХНОЭКОС»

Ассоциация в области архитектурно-строительного проектирования СРО «СОВЕТ ПРОЕКТИРОВЩИКОВ», дата регистрации 24.11.2017, рег. №442

Заказчик: ООО «Комтранссервис»

Договор №: 01/20 от 01 марта 2020 г.

Строительство комплекса по сбору, обработке, обезвреживанию, утилизации, захоронению отходов III-V класса опасности. 1-5 этапы строительства

Оценка воздействия намеченной хозяйственной и иной деятельности на окружающую среду

Часть 12

0120-01032020-1-OBOC12

Tom 12

Генеральный директор

OF ORTONOR AND SELECTED AND SEL

С.А. Можаров

Главный инженер проекта

Н.В. Каширских

Содержание тома

Обозначение	Наименование	Примечание
0120-01032020-1-OBOC12-C	Содержание тома	1
0120-01032020-1-OBOC12.T	Пояснительная записка	337

\parallel	1									
Взам. Инв. №										
Подп. и дата						Γ				
7/	Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата	0120-01032020-	1-0B0C1.	2	
подл.	ГИП Выпол	іни <i>л</i>		ских Н.В. ицеваС.А	Crosself	04/21 04/21	обработке, обезвреживанию, утилизации,	Стадия П	Лист 1	Λυстов
Инв. № подл.	Н.коні	пр.	Щербаі Можар	кова С.В. ов С.А.	Bey eff-	04/21 04/21	захоронению отходов III–V класса опас- ности. 1–5 этапы строительства	000) «TEXH	 ОЭКОС»

№ док. _____ Подпись Изм. Кол.уч. Лист Дата ГИП Каширских Н.В. 04/21 Выполнил СкопинцеваС.А 04/21 04/21 Щербакова С.В. 04/21 Можаров С.А. Н.контр.

Инв. №

и дата

подл.

≷

Строительство комплекса по сбору, обработке, обезвреживанию, утилизации, захоронению отходов III–V класса опасности. 1–5 этапы строительства Стадия Лист Листов П 1

000 «TEXH03K0C»

	: 28.10.20	021																									
																()											
((-		1			1	-	, ,	-			/	٠						
`)	`)						()						771	774	***	***								, ,	,		
								()	()	(/)	(3/)	(.)	X1	Y1	X2	Y2	()		(0/	(0/)			/	/ 3	/	(/)	
1	2	3	4 5	6	7	8	9	10	11	12	13	1.4	15	16	17	10	10	20	(%	22		24	25	26	27	20	20
1	2	3	L. L	0	/	8	9	10	11	12	15	14	15	16	17	18	19	20	21	22	25	24	25	20	21	28	29
_		1	:	11	1 .	T			1		1		11				_	Ī		1	1		1				
0					1	0055	1	0,5	0,08	2,98	0,014979	450	30	371,5	30	371,5)		0/0	0301	(;	0,0108889	726,93887	0,0082	0,0082	
																				0/0	0328	()	0,001	66,75962	0,00075	0,00075	
			+ +																	0/0	0320	,	0,0013333			0,00073	
																				+	_		+		0,00092		
																				0/0	0337	;	0,0095556	637,92826	0,0072	0,0072	
																				0/0	0703	//	0	0	0	0	
																				0/0	1325	(0,0002222	14,83399	0,00014	0,00014	
																				0,0	1323	, , ,	0,0002222	14,03377	0,00014	0,00014	
																				0/0	2732	(0,005	333,79812	0,00376	0,00376	
																						;		ŕ	, l	ŕ	
)					
0					1	6501	1	5	0	(0	0	-53,5	90	146,5	215	200)		0/0	0301	(;	0,0790213	0	0,015672	0,015672	
																				0/0	0204) (II)	0.012041	0	0.002547	0.002547	
																				0/0	0304	(II) ()	0,012841	0	0,002547	0,002547	
																				0/0	0328	()	0,0476398		0,007309	0,007309	
																				0/0	0330		0,0163948		0,003041	0,003041	
																				0/0	0337	(;	0,6296664	0	0,101719	0,101719	
																				0/0	2732	,)	0.1024292	0	0.016260	0.016260	
																				0/0	2/32	:	0,1024282	U	0,016369	0,016369	
																						,					
0					1	6502	1	5	0	(0 0	0	-53,5	90	146,5	215	200)		0/0	0301	(;	0,0017411	0	0,000298	0,000298	
)					
																				0/0	0304	(II) ()	0,0002829	0	0,000048	0,000048	
																				0/0	0328	()	0,000263	0	0,000045	0,000045	
																				0/0	0330		0,0003677	0	0,000059	0,000059	
																				0/0	0337	(;	0,008301	0	0,001278	0,001278	
																					\perp	;)					
																				0/0	2732	(0,0011003	0	0,000174	0,000174	
																						;					
0					1	6503	1	5	0	(0 0	0	-53,5	90	146,5	215	200			0/0	0301	(;	0,1136444	0	0,033514	0.033514	
												_		, ,						")	3,220		3,0000	3,3222	
																				0/0	0304	(II) ()	0,0184672	0	0,005446	0,005446	
																				0/0	0328	()	0,0090167	0	0,002429	0,002429	
																			1	0/0	0330	·	0,0093013	0	0,002991	0,002991	
																			1	0/0	0337	(:	0,5204694			0,144237	
																						; ,			,	,	
																				0/0	2732	(0,0699917	0	0,019589	0,019589	
																			1			;					
								_		_		-	5 0.5			400 -			1	0.70	0201)	0.02.550.11		0.004555	0.00.1222	
U					1	6504		5	0	(0	-78,5	164	-52	180,5	10)	1	0/0	0301	(;	0,0365844	0	0,004329	0,004329	
			 																1	0/0	0304	(II) ()	0,005945	0	0,000703	0,000703	
					1								+ +						1	0/0	0304	()	0,0028994		0,000703	0,000703	
			+ +																1	0/0	0328	,	0,0028994	-	0,000292		
					<u> </u>		<u> </u>											1		0/0	0550		0,0030144	U	0,000410	0,000410	1

	: 28.10.20	721			1		-	-					1					†	1	-			1			-	
	,															()	-										
((()													/							,
,	,		()				,	()	()	(/)	1 (3/)	(.)	X1	Y1	X2	Y2	()		(9	%) (9	%)		/	/ 3	/	(/)	
1	2	3	4 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	_	2 2	23 24	25	26	27	28	29
																				0/0	033	37 (;;)	0,1672617	0	0,017714	0,017714	
																				0/0	27.	32 (;	0,0225006	0	0,002418	0,002418	
0					1	6505	1	5	0		0 () (108,5	128	128,5	139	10			0/0	030	01 (;	0,0365844	0	0,004329	0,004329	
																				0/0	030	04 (II) ()	0,005945	0	0,000703	0,000703	
																				0/0	032	28 ()	0,0028994	0	0,000292	0,000292	1
																				0/0	033	30	0,0030144	0	0,000416	0,000416	
																				0/0	033	37 (;;)	0,1672617	0	0,017714	0,017714	
																				0/0	273	32 (;	0,0225006	0	0,002418	0,002418	
0					1	6506	1	5	0		0) (-35,5	120	-25	100,5	10			0/0	030	01 (;	0,0094039	0	0,001741	0,001741	
																				0/0	030		0,0015281	0	0,000283	0,000283	
																				0/0	032	28 ()	0,0056812	0	0,000853	0,000853	
																				0/0	033	30	0,0019474	0	0,000349	0,000349	
																				0/0	033	(;;)	0,0761832	0	0,01222	0,01222	1
																				0/0	273	32 (;	0,0123595	0	0,001946	0,001946	
0					1	6507	1	5	0		0) (-53,5	90	146,5	215	200			0/0	030	01 (;	0,0019049	0	0,000435	0,000435	
																				0/0	030	04 (II) ()	0,0003096	0	0,000071	0,000071	
																				0/0	032		0,0002855	0	0,000064	0,000064	,
																				0/0	033	30	0,0004019	0	0,000086	0,000086	
																				0/0	033	37 (;;)	0,0091346	0	0,001872	0,001872	
																				0/0	27.	32 (;	0,0012097	0	0,000255	0,000255	
0					1	6508	1	5	0		0		38,5	196	49,5	181	10			0/0	030	01 (;	0,0041598	0	0,000671	0,000671	
																				0/0	030	04 (II) ()	0,000676	0	0,000109	0,000109	
																				0/0	032	28 ()	0,0004136	0	0,000041	0,000041	
																				0/0	033	30	0,000586	0	0,000118	0,000118	
																				0/0	033	37 (; ;	0,0203175	0	0,003202	0,003202	
																				0/0	273	32 (;	0,0038165	0	0,00049	0,00049	
0					1	6509	1	5	0		0 () (2,5	35	28	51,5	10			0/0	030	01 (;	0,00028	0	0,000085	0,000085	
																				0/0	030	04 (II) ()	0,0000455	0	0,000014	0,000014	
																				0/0	033		0,000105	0	0,000028	0,000028	
			•		•			I				•						•				<u> </u>				I I	

	: 28.10.20																								
															()										
((-		/							
,							() ()	(/)	1 (3/)	(.)	X1	Y1	X2	Y2	()		(%)			/	/ 3	/	(/)	
1	2	3	4	5 6	7	8	9 1	0 11	12	13	14	15	16	17	18	19	20	21 22	23	24	25	26	27	28	29
																		0/0	0337	(;	0,0163333	0	0,004445	0,004445	
																		0/0	2704	(,)	0,0029167	0	0,00075	0,00075	
0					1	6510	1	5	0	0 (0	-53,5	90	146,5	215	200		0/0	0301	(;	0,0000783	0	0,000008	0,000008	
																		0/0	0304	(II) ()	0,0000127	0	0,000001	0,000001	
																		0/0	0330		0,0000353		0,000003		
																		0/0	0337	(;	0,0096922	0	0,000941		ł
																		0/0	2704	, ,)	0,0010306	0	0,000097	0,000097	
0				-	1	6511	1	5	0	0 (0	-53,5	90	146,5	215	200		0/0	0301	(;	0,0017885	0	0,000218	0,000218	
																		0/0	0304	(II) ()	0,0002906	6 0	0,000035	0,000035	
																		0/0	0304	(n) ()	0,0002700	+	0,000033		<u> </u>
																		0/0	0330	,	0,000339		0,000038		
																		0/0	0337	(;	0,0069932	+	0,00073		<u> </u>
																		0/0	2732	;)	0,0009823	0	0,000107	0,000107	
																				;				·	
0				-	1	6512	1	5	0	0 (0	-53,5	90	146,5	215	200		0/0	0301	(;	0,003996	0	0,00077	0,00077	
																		0/0	0304	(II) ()	0,0006493	0	0,000125	0,000125	
																		0/0	0328	()	0,0004414		0,000062		
																		0/0	0330		0,0005922		0,00012		
																		0/0	0337	; ;	0,0194336	0	0,003315	0,003315	
																		0/0	2732	;	0,0037406	0	0,000603	0,000603	
0					1	6513	1	5	0	0 (0	78	3 270	92	250,5	15		0/0	0333	(0,00001	0	0,000086	0,000086	
																				, ,					
																		0/0	2754	C12-19 ()	0,00179	1		0,030529	
0					1	6514	1	5	0	0	0	53,5	66,5	74,5	78	10		0/0	0337	; ;	0,0000162	0	0,000014	0,000014	
																		0/0	1317	()	0,0000109	1	0,00001	0,00001	
																		0/0	1325	, , ,)	0,0000152	0	0,000013	0,000013	
																		0/0	1555	(0,0000117	0	0,00001	0,00001	
0					1	6516	1	5	0	0 (0	48	141,5	73,5	156,5	15		0/0	0143	(IV))	0,000098	0	0,000667	0,000667	
																		0/0	0301	(;	0,0003993	0	0,002717	0,002717	
																		0/0	0337	(; ;	0,0035405	0	0,02409	0,02409	

((()	-									
)	()		()) ((/)	1 (3/)	(.)	X1	Y1	X2	Y2	()		(%)			/	/ 3	/	(/)	
1	2		3	4	5	6	7	8	9	10 11	12	13	14	15	16	17	18	19	20	21 22	23	24	25	26	27	28	29
																				0/0	0342	()	0,0001997	0	0,001358	0,001358	
																				0/0	0344	-()	0,0003514	0	0,002391	0,002391	
																				0/0	2908	, , %: - 70-20	0,0001491	0	0,001014	0,001014	
0							1	6517	1	2	0	0 0	0	109	219,5	152	154,5	20		0/0	0616)(-, -, -	0,0626786	0	0,321975	0,321975	
																				0/0	2752	-	0,0316406	0	0,127575	0,127575	
																				0/0	2902		0,0226286	0	0,065934	0,065934	
0							1	6518	1	2	0	0 0	0	-53,5	90	146,5	215	200		0/0	2908	, , %: - 70-20	0,0028576	0	0,02222	0,02222	
0							1	6519	1	2	0	0 0	0	-28,5	199	42	245	30		0/0	2908	, , %: - 70-20	0,0026557	0	0,00175	0,00175	
0							1	6520	1	2	0	0 0	0	-53,5	90	146,5	215	200		0/0	2908	, , %: - 70-20	0,014673	0	0,15213	0,15213	
0							1	6521	1	2	0	0 0	0	6,5	85	41,5	109	30		0/0	2908	, , %: - 70-20	0,0380952	0	0,02304	0,02304	
0							1	6522	1	2	0	0 0	0	82	117,5	99,5	91	10		0/0	0301	(;	0,0000014	0	0,000015	0,000015	
																				0/0	0304	(II) ()	0,0000002	0	0,000002	0,000002	
																				0/0	0337	(; ;	0,0000054	0	0,000058	0,000058	
																				0/0	0703	//	0	0	0	0	
																				0/0	2754	C12-19 ()	0,0030193	0	0,0015	0,0015	

Существующее по	рложение : 28.10.2	2021																										
Han (name o	V	Источники выделения веществ	_	яющих	Наименование источника	Количес тво		Номер		диамет	на выходо	ы газовоздуг е из источни	шной смеси ка выброса	Коор	динаты на	карте схеме	е (м)	Ширина площад-	Наименование	Коэффи циент	экспл.		Загрязняющее вещество	Выбросы	загрязняющих	к веществ	Валовый	
Цех (номер и наименование)	Участок (номер и наименование)	номер и наименование	количе ство (шт)	работы	выброса загрязняющих веществ	ков под одним	источни ка выброса		140	рустья		067 04 110	Температу ра (гр.С)	X1	Y1	X2	Y2	ного источник а (м)	газоочистных установок	обеспеченности газоочие ткой (%)	степень очистки	код	наименование	г/с	мг/м3	т/год	выброс по источнику (т/год)	Примечание
1	2	3	4	5	6	номером 7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
		-	Плоп	палка:	1 2 этап строительства	·													<u> </u>							·	_	
0					Дизельная мотопомпа	1	0055	1	0,5	0,08	2,98	0,014979	450	301	361	301	361	()		0/0		Азота диоксид (Двуокись азота; пероксид азота)	0,0108889	726,93887	0,0205	0,0205	
																					0/0	0328	Углерод (Пигмент черный)	0,001	66,75962	0,001875	0,001875	
																					0/0	0330	Сера диоксид	0,0013333	89,01061	0,0023	0,0023	
																					0/0		Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,0095556	637,92826	0,018	0,018	
																					0/0	0703	Бенз/а/пирен	0	0	0	0	
																					0/0		Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	0,0002222	14,83399	0,00035	0,00035	
																					0/0		Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,005	333,79812	0,0094	0,0094	
0					Земляные работы	1	6501	1	5	0	(0	0	284	439	382	289	120)		0/0		Азота диоксид (Двуокись азота; пероксид азота)	0,0410652	0	0,008547	0,008547	
																					0/0	0304	Азот (II) оксид (Азот монооксид)	0,0066731	0	0,001389	0,001389	
																					0/0	0328	Углерод (Пигмент черный)	0,0234543	0	0,003153	0,003153	
																					0/0	0330	Сера диоксид	0,0083866	0	0,001591	0,001591	
																					0/0		Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,3111829	0	0,047149	0,047149	
																					0/0		Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,0506099	0	0,007459	0,007459	
0					Каток грунтовый	1	6502	1	5	0	(0	0	453	343	658	479	50	0		0/0		Азота диоксид (Двуокись азота; пероксид азота)	0,0026116	0	0,000447	0,000447	
																							Азот (II) оксид (Азот монооксид)	0,0004244		0,000073	0,000073	
																							Углерод (Пигмент черный)	0,0003945	0	0,000067	0,000067	
																							Сера диоксид	0,0005515	0	0,000088	0,000088	
																					0/0		Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,0124515	0	0,001917	0,001917	
																					0/0		Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,0016505	0	0,000261	0,000261	
0					Привоз грунта	1	6503	1	5	0	(0	0	350	329	378	348	40	0		0/0		Азота диоксид (Двуокись азота; пероксид азота)	0,0558667	0	0,015123	0,015123	
																							Азот (II) оксид (Азот монооксид)	0,0090783	0	0,002457	0,002457	
			1									1											Углерод (Пигмент черный)	0,0043944	0	0,000986	0,000986	
												1									+		Сера диоксид	0,0046357	0	0,001463	0,001463	
																					0/0		Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,2539694	0	0,060779	0,060779	
																					0/0		Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,0342417	0	0,008331	0,008331	
0					Автокран	1	6504	1	5	0	(0	0	321	342	333	324	10	0		0/0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0268684	0	0,003271	0,003271	
																					+		Азот (II) оксид (Азот монооксид)	0,0043661	0	0,000532	0,000532	
																							Углерод (Пигмент черный)	0,0018776	0	0,000198	0,000198	
						1	1			1											0/0	0330	Сера диоксид	0,0029975	0	0,000417	0,000417	

Существующее п	оложение : 28.10.2 					1	TC	1		<u> </u>	-			1					1		W 1 1 C			1				
Цех (номер и	Vuoctor (Homen H	Источники вы	ыделения за веществ	агрязняі	ющих	Наименование источника	Количес тво источни	Номер	Номер режима	ысота Ді	иамет	Тараметрі на выходе	ы газовоздуг с из источни	шной смеси ка выброса	Koo	одинаты на	карте схем	ме (м)	Ширина площад-	Наименование	Коэффи Сред циент эксп обеспече /мак	ΙЛ.	Загрязняющее вещество	Выбросы	загрязняюц	цих веществ	Валовый выброс по	.
наименование)	Участок (номер и наименование)	номер и наиме		количе ство (шт)	часов работы в год	выброса загрязняющих веществ	ков под	ка	(стадии) выброса	140	устья — рубы (м)	скорость (м/с)	Объем на 1 трубу (м3/c)	Температу ра (гр.С)	X1	Y1	X2	Y2	ного источник а (м)	газоочистных установок	нности степе	ень ски код	наименование	г/с	мг/м3	т/год	выорос по источнику (т/год)	
1	2	3		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21 22	23	24	25	26	27	28	29
																					0/0	0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,1092858	3	0 0,011935	0,011935	5
																					0/0	2732	Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,0211547	,	0 0,002493	0,002493	3
						Производство бетонных работ	1	6505	1	5	0	0	0	0	375	381	388	360	20		0/0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0137067		0 0,002532	0,002532	2
																					0/0	0304	Азот (II) оксид (Азот монооксид)	0,0022273		0,000411	0,000411	1
																					0/0	0328	Углерод (Пигмент черный)	0,0005683		0,000107	0,000107	7
																					0/0	0330	Сера диоксид	0,001811		0,000331	0,000331	1
																					0/0	0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,0454117	'	0 0,008289	0,008289)
																					0/0	2732	Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,0062667		0,001169	0,001169	,
						Виброплита	1	6506	1	5	0	0	0	0	292	336	314	351	10		0/0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0042839		0 0,000818	0,000818	3
																					0/0	0304	Азот (II) оксид (Азот монооксид)	0,0006961		0 0,000133	0,000133	3
																					0/0	0328	Углерод (Пигмент черный)	0,0024812		0 0,000322	0,000322	2
																					0/0	0330	Сера диоксид	0,0008807	,	0,00016	0,00016	6
																					0/0	0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,0335165	,	0 0,005025	0,005025	5
																					0/0	2732	Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,0054262	!	0,000782	0,000782	2
						Дорожные работы	1	6507	1	5	0	0	0	0	401	412	604	546	50		0/0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0022128	3	0 0,000505	0,000505	5
																					0/0	0304	Азот (II) оксид (Азот монооксид)	0,0003596		0 0,000082	0,000082	2
																					0/0		Углерод (Пигмент черный)	0,0003305	1	0 0,000075		
																					0/0	0330	Сера диоксид	0,0004665		0,0001	0,0001	1
																					0/0	0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,0105426	5	0 0,002163	0,002163	3
																					0/0	2732	Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,0014105		0,000297	0,000297	7
						Автогидроподъемник	1	6508	1	5	0	0	0	0	483	346	469	366	10		0/0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0041598	3	0 0,000671	0,000671	1
																					0/0	0304	Азот (II) оксид (Азот монооксид)	0,000676		0 0,000109	0,000109)
																					0/0	0328	Углерод (Пигмент черный)	0,0004136		0 0,000041	0,000041	1
																					0/0	0330	Сера диоксид	0,000586		0 0,000118	0,000118	8
																					0/0	0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,0203175		0 0,003202	0,003202	2
																					0/0	2732	Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,0038165	(0,00049	0,00049)
						Микроавтобус	1	6509	1	5	0	0	0	0	382	315	407	331	10		0/0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,00028	}	0 0,000064	0,000064	1
																					0/0	0304	Азот (II) оксид (Азот монооксид)	0,0000455		0,00001	0,00001	1
																					0/0	0330	Сера диоксид	0,000105		0,00002	0,00002	2

	оложение : 28.10.2	Источники выделения загрязняющих				Количес		р	LICOTO	l i	Параметр	ы газовозлу	шной смеси					,	Ширина		Коэффи (Средн.		T.,				
Цех (номер и	Участок (номер и	веществ Наименование		Наименование источника	тво источни і	Номер источни	помер	In	иамет ј	на выход	е из источни	ка выброса	Koo	рдинаты	на карте	схеме (м	1)	Ширина площад-	Наименование	циент	экспл. /макс ——	Загрязняющее вещество	Выбросы	загрязняющ	их веществ	Валовый выброс по		
наименование)	наименование)		количе ство (шт)	е часов работы в год	выброса загрязняющих веществ	ков под	ка	(стадии) выброса	тр	27.61.1	скорость (м/с)	Объем на 1 трубу (м3/c)	Температу ра (гр.С)	X1	Y1	X		Y2	ного источник а (м)	газоочистных установок	нности с	гепень нистки (%)	д наименование	г/с	мг/м3	т/год	источнику (т/год)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17		18	19	20	21	22 23	24	25	26	27	28	29
																					0/	0 033	7 Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,0163333	(0,00321	0,00321	
																					0/	0 270	4 Бензин (нефтяной, малосернистый) (в пересчете на углерод)	0,0029167	(0,000529	0,000529	
0					Бензопила	1	6510	1	5	0	() () (284	4 4	139	382	289	120		0/	030	1 Азота диоксид (Двуокись азота; пероксид азота)	0,0000783	(0,000008	0,000008	3
																					0,	0 030	4 Азот (II) оксид (Азот монооксид)	0,0000127	(0,000001	0,000001	
																					0/		0 Сера диоксид	0,0000353	(0,000003	0,000003	3
																					0/	0 033	7 Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,0096922	(0,000941	0,000941	
I																					0	270	4 Бензин (нефтяной, малосернистый) (в пересчете на углерод)	0,0010306	(0,000097	0,000097	7
0					Корчеватель-собиратель	1	6511	1	5	0	(0	284	4	139	382	289	120		0	030	1 Азота диоксид (Двуокись азота; пероксид азота)	0,0042152	(0,00031	0,00031	
																					0/	0 030	4 Азот (II) оксид (Азот монооксид)	0,000685	(0,00005	0,00005	5
																					0/		8 Углерод (Пигмент черный)	0,0019963	(0,000098	0,000098	3
																					0,		0 Сера диоксид	0,0007687	(0,000054	0,000054	1
																					0/		7 Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,0261077	(0,001452	0,001452	2
																					0	0 273	2 Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,0042607	(0,000231	0,000231	
0					Бурильно-крановая машина	1	6512	1	5	0	() () (296	6 4	139	350	358	30		0/	0 030	1 Азота диоксид (Двуокись азота; пероксид азота)	0,003996	(0,00077	0,00077	7
																					0/	0 030	4 Азот (II) оксид (Азот монооксид)	0,0006493	(0,000125	0,000125	5
																					0/	0 032	8 Углерод (Пигмент черный)	0,0004414	(0,000062	0,000062	2
																					0/	0 033	0 Сера диоксид	0,0005922	(0,00012	0,00012	2
																					0	033	7 Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,0194336	(0,003315	0,003315	5
																					0	0 273	2 Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,0037406	(0,000603	0,000603	3
0					Заправка техники	1	6513	1	5	0	(267	7 3	378	278	361	15		0/	0 033	3 Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	0,00001	(0,000097	0,000097	7
																					0,	0 275	4 Алканы С12-19 (в пересчете на С)	0,00179	(0,034518	0,034518	3
0					Сварка труб	1	6514	1	5	0	() (0	259	3	395	290	416	10		0/	0 033	7 Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,0000162	(0,000006	0,000006	5
																					0,	0 131	7 Ацетальдегид (Уксусный альдегид)	0,0000109	(0,000004	0,000004	1
																					0/	0 132	5 Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	0,0000152	(0,000005	0,000005	5
																					0/	155	5 Этановая кислота (Метанкарбоновая кислота)	я 0,0000117	(0,000004	0,000004	
0					Резка арматурной стали	1	6515	1	2	0	(501	1 3	392	517	367	10		0/	0 012	3 диЖелезо триоксид (железа оксид) (пересчете на железо)	(в 0,0406		0,0306936	0,0306936	5
0					Сварка металла	1	6516	1	5	0	(537	7 4	197	553	512	15		0/	0 012	3 диЖелезо триоксид (железа оксид) (п пересчете на железо)	(в 0,0011383		0,000861	0,000861	
																					0/	014	3 Марганец и его соединения (в пересчете на марганец (IV) оксид)	0,000098		0,000074	0,000074	

Цех (номер и	Участок (номер и	Источники выделения вещест	-	яющих	Наименование источника	Количес тво источни	Номер	номер ис	ысота точни Диаг	иет на вых		здушной сме чника выбро		Координ	наты на к	арте схеме	е (м)	Ширина площад-	Наименование	· ·	едн. спл. акс	Загрязняющее вещество	Выбросы	загрязняющі		Валовый выброс по	
наименование)	наименование)	номер и наименование	l l	е часов работы в год	выброса загрязняющих веществ	ков под	ка	(стадии) выброса	ка броса (м) р ус тру (м	бы скорос		by remilepa	ату Х	1	Y1	X2	Y2	ного источник а (м)	газоочистных с установок	нности сте	пень стки код	наименование	г/с	мг/м3	т/год	источнику (т/год)	т примечание і
1	2	3	4	5	6	7	8	9	10 1	12	13	14	15	5	16	17	18	19	20	21	22 23	24	25	26	27	28	29
																				0/0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0003993	0	0,000302	0,000302	
																				0/0	0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,0035405	0	0,002677	0,002677	
																				0/0	0342	Фтористые газообразные соединения (в пересчете на фтор)	0,0001997	0	0,000151	0,000151	
																				0/0	0344	Фториды неорганические плохо растворимые - (алюминия фторид)	0,0003514	0	0,000266	0,000266	
																				0/0	2908	В Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20	0,0001491	0	0,000113	0,000113	
0					Покрасочные работы	1	6517	1	2	0	0	0	0	329	450	364	396	20	0	0/0	0616	Диметилбензол (смесь о-, м-, п- изомеров) (Метилтолуол)	0,0696429	0	0,035775	0,035775	
																				0/0	2752	Уайт-спирит	0,0351563	0	0,014175	0,014175	1
																				0/0	2902	Взвешенные вещества	0,0251429	0	0,007326	0,007326	
0					Разработка грунта	1	6518	1	2	0	0	0	0	284	439	382	289	120	0	0/0	2908	В Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20	0,0062657	0	0,0341053	0,0341053	
0					Выгрузка грунта	1	6519	1	2	0	0	0	0	328	315	352	278	30	0	0/0	2908	В Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20	0,0040116	0	0,0073654	0,0073654	
0					Разработка грунта	1	6520	1	2	0	0	0	0	284	439	382	289	120	0	0/0	2908	В Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20	0,0368343	0	0,2004964	0,2004964	
0					Пересыпка щебня	1	6521	1	2	0	0	0	0	416	422	465	456	30	0	0/0	2908	В Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20	0,037575	0	0,0216432	0,0216432	
0					Подогрев битума	1	6522	1	2	0	0	0	0	586	428	598	436	10	0	0/0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0000001	0	0,000009	0,000009	
																				0/0	0304	Азот (II) оксид (Азот монооксид)	0,0000001	0	0,000001	0,000001	
																				0/0	0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,0000001	0	0,000036	0,000036	
																j				0/0	0703	Бенз/а/пирен	0	0	0	0	
																				0/0	2754	Алканы С12-19 (в пересчете на С)	0,0031019	0	0,001005	0,001005	

		: 28.10.2021																						
														()										
	((-							-		/							
))							1		X1	Y1	X2	Y2						/	/ 3	/	(/)	
			()					\ \	(3/)								` ' ` '							
1	1	2 3			6 7	8 9	9 10	11	12 13	14	15	16	17	18	19	20	21 22	23	24	25	26	27	28	29
				13		1				ī	1	T		· ·		T		_	1	T			<u> </u>	
Marchanness)				1	0055	1 0,5	0,08	2,98 0,01497	79 45	0 202	280	202	280	0		0/0	0301	(;	0,010889 726	5,94554	0,0123	0,0123	
Marchanness																	0/0	0328	()	0.001 66	5.75962	0.001125	0.001125	
Second Color Seco																	0/0		,					
																	0/0	0337	(;					
Marchan Marc																			;)					
																				0	0	0	0	
																	0/0	1325	(0,0002222 14	1,83399	0,00021	0,00021	
1 651 1 5 6 6 6 7 5 6 1 80 70 70 70 70 70 70 70			+ +														0/0	2732	1	0.005 333	70812	0.00564	0.00564	
																	0/0	2132	j,	0,003	5,79612	0,00304	0,00304	
)					
)				1	6501	1 5	0	0	0	0 1	5	1	6	1		0/0	0301	(;	0,0075203	0	0,002258	0,002258	
																	0/0	0304	(II) ()	0.001222	0	0.000367	0.000367	
Company																			(11)		0			
																		_	,		0	-		
																			(:		0			
																			; ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.,	.,	
																	0/0	2732	(0,0042657	0	0,001155	0,001155	
																			;					
)				1	6502	1 5	0	0	0	0 1	5	1	6	1		0/0	0301	(;	0,0026116	0	0,000447	0,000447	
)	,		ŕ	Í	
Company Comp																	0/0		<u> </u>		0			
																	0/0		· · · · · · · · · · · · · · · · · · ·		0			
																					0	-		
																	0/0	0337	;	0,0124515	0	0,001917	0,001917	
			+ +														0/0	2732	, ,	0.0016505	0	0.000261	0.000261	
																	0/0	2132	,	0,0010303		0,000201	0,000201	
)					
)				1	6503	1 5	0	0	0	0 1	5	1	6	1		0/0	0301	(;	0,0114222	0	0,00422	0,00422	
																	0/0	0304	(II) (0.0018561	0	0 000686	0.000686	
Company Comp											+ +							_	(11)		0			
											+ +								, ,		0			
						1					+ +							_	(:		0			
																	0,0		; ,	5,5570.01		5,515015	2,312312	
																	0/0	2732	(0,0052222	0	0,001949	0,001949	
																			;					
)				1	6504	1 5	0	0	0	0 1	5	1	6	1		0/0	0301	(:	0,0022922	0	0.00053	0.00053	
0/0 0328 () 0,0000967 0 0,000023 0,000023) ,	,		,	,	
																	0/0	0304	(II) ()	0,0003725	0	0,000086	0,000086	
0/0 0330 0,0003065 0 0,000071 0,000071																	0/0		()		0			
																	0/0	0330		0,0003065	0	0,000071	0,000071	Ó

	1	10.2021																			1		1				
																	()	-								1	
(()						()																	1	
,		,		()				Ì	() ()	(/)	1 (3/)	(.)	X1	Y1	X2	Y2	()		(%)			/	/ 3	/	(/)	
1	2		3	4	5	6	7	8	9 1	10 11	12	13	14	15	16	17	18	19	20	21 22	23	24	25	26	27	28	29
																				0/0	0337	(; ;	0,0075958	0	0,001737	0,001737	
																				0/0	2732	(;	0,0010464	0	0,000244	0,000244	
0							1	6507	1	5	0	0	0 0	1	5		1 6	1		0/0	0301	(;	0,0004717	0	0,000081	0,000081	
																				0/0	0304	(II) ()	0,0000767	0	0,000013	0,000013	,
																				0/0	0328	()	0,0000675	0	0,000012	0,000012	
																				0/0	0330		0,0000988	0	0,000016	0,000016	
																				0/0	0337	(;	0,0022416	0	0,000345	0,000345	
																				0/0	2732	(;	0,0003102	0	0,000049	0,000049	
0							1	6509	1	5	0	0	0 0	210) 197	22	7 207	10		0/0	0301	(;	0,00014	0	0,000018	0,000018	
																				0/0	0304	(II) ()	0,0000228	0	0,000003	0,000003	
																				0/0	0330		0,0000408	0	0,000005	0,000005	
																				0/0	0337	(;	0,0065333	0	0,000823	0,000823	
																				0/0	2704	(,)	0,0009917	0	0,000125	0,000125	
0							1	6513	1	5	0	0	0 0	170	264	17'	7 254	10		0/0	0333	, , ,	0,00001	0	0,000053	0,000053	
																				0/0	2754	C12-19 ()	0,00179	0	0,018912	0,018912	
0							1	6514	1	5	0	0	0 0	185	5 229	210	247	10		0/0	0337	(;	0,0000162	.		0,000002	
																				0/0	1317	;)	0,0000109	0	0,000002	0,000002	
																				0/0	1325	(0,0000152			0,000002	
																				0/0	1555	, , ,	0,0000117	0	0,000002	0,000002	
0							1	6515	1	2	0	0	0 0	190	316	19:	5 316	5		0/0	0123	()(0,0406	0	0,0014616	0,0014616	
0							1	6518	1	2	0	0	0 0	164	354	26	4 208	120		0/0	2908	, %: - 70-20	0,0027529	0	0,0119717	0,0119717	
0							1	6519	1	2	0	0	0 0	422	2 503	44	2 476	30		0/0	2908	, , %: - 70-20	0,0067683	0	0,0138154	0,0138154	
0							1	6520	1	2	0	0	0 0	164	354	26	4 208	120		0/0	2908	, %: - 70-20	0,0151613	0	0,0340584	0,0340584	
0							1	6521	1	2	0	0	0 0	496	5 532	54:	5 566	30		0/0	2908	, , %: - 70-20	0,0378246	0	0,0413952	0,0413952	
0							1	6522	1	2	0	0	0 0	227	7 266	239	9 274	10		0/0	0301	(;	0,0000001	0	0,000001	0,000001	
																				0/0	0304	(II) ()	0,0000001	0	0,000001	0,000001	
																				0/0	0337	(; ;	0,0000001	0		0,000004	
																				0/0	0703	, ,	0	0	0	0	

	(()	-									1
						()	()	(/) 1 (3/)	(.)	X1	Y1	X2	Y2	()	(%	(%)			/	/ 3	/	(/)	
1	2	3	4 5	6	7 8 9	10	11	12 13	14	15	16	17	18	19	20 21	22	23 24		25	26	27	28	29
																0/0	2754 C12-19 () 0,0	020833	0	0,00009	0,00009	1

	: 28.10.2021																					
													()									
((1 1	_											-		/		1			-	
))				(1		X1	Y1	X2	Y2						/ / 3	/	(/)	
		()				()	() (/) (3/)	(.)					()		(%) (%)					,	
1	2 3	4 5	6	7	8 9	10	11 12	13	14	15	16	17	18	19	20	21 22	23	24	25 26	27	28	29
	i i	:	14													<u> </u>					_	1
0				1	0055	1 0,5	0,08	2,98 0,01497	9 450	0 158	451	158	451	0		0/0	0301	(;	0,010889 726,94	0,004	0,004	
																0/0	0328	()	0,001 66,75	962 0,000375	0,00037	5
																0/0	0330		0,0013333 89,01		-	+
																0/0	0337	(;	0,0098556 657,95	348 0,003	6 0,003	5
																		;)				
																0/0	0703	/ /	0	0 ())
																0/0	1325	, , ,)	0,0002222 14,83	399 0,0000°	0,0000	7
																0/0	2732	1	0,005 333,79	812 0,00188	3 0,0018	3
																		;	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
0				1	6501	1 5	0	0	0	0 120	385	204	. 441	50		0/0	0301	,	0,0279831	0 0,004228	3 0,00422	
0					0301		U	U		0 120	363	204	441	30		0/0	0301	(;	0,0279831	0,004226	0,00422	
																0/0	0304	(II) ()	0,0045472	0 0,00068	7 0,00068	7
																0/0	0328	()	0,0159629	0 0,001299	0,00129)
																0/0	0330		0,0057176	0 0,000773	0,00077	3
																0/0	0337	(;	0,2104503	0 0,020759	0,02075)
																0.0	0722	;)	0.0242710	0 0 002022	7 0 00222	7
																0/0	2732	(;	0,0342719	0 0,00323	0,00323	/
)				
0				1	6502	1 5	0	0	0	0 -24	323	294	539	120		0/0	0301	(;	0,0026116	0 0,000447	0,00044	7
																0/0	0304	(II) ()	0,0004244	0 0,000073	3 0,00007	3
																0/0	0328	<u> </u>	0,0003945	0 0,00006		
																0/0	0330	· · · · · · · · · · · · · · · · · · ·	0,0005515	0 0,00008		+
																0/0	0337	(:	0,0124515	0 0,00191	-	+
																		; ,	3,000	3,000	,,,,,,,,,	
																0/0	2732	(0,0016505	0 0,00026	0,00026	
																		;				
0				1	6503	1 5	0	0	0	0 229	561	259	520	50		0/0	0301	(;	0,0558667	0 0,00967	0,00967	1
)				
																0/0	0304	(II) ()	0,0090783	0 0,001572		
										1						0/0	0328	()	0,0043944	0 0,000583		+
										1						0/0	0330		0,0046357	0 0,001007		
																0/0	0337	(;;	0,2539694	0 0,03729	0,03729	7
																0/0	2732	, ,	0,0342417	0 0,00514	1 0,0051	1
																0,0	2,32	;	3,00.211	0,0031	,,,,,,,,	
									_)		_		_
0				1	6504	1 5	0	0	0	0 29	362	43	345	10		0/0	0301	(;	0,0164507	0 0,001866	0,00186	5
						1				1						0/0	0304	(II) ()	0,0026732	0 0,000303	0,00030	3
										1						0/0	0328	()	0,0011451	0 0,000104	-	
										1						0/0	0330		0,0018575	0 0,000258		
	1	1 1	1				l l			1			<u> </u>					I .	<u> </u>			12

	: 28.10.2	U21			1	ı	ĺ			1			1												1	1	1
	,															()	_										
()	(()													/							
	•		()					()	()	(/)	1 (3/)	(.)	X1	Y1	X2	Y2	()		(%	6) (%	%)		/	/ 3	/	(/)	
1	2	3	4 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	2	22 2	23 24	25	26	27	28	29
																				0/0	03	(;;)	0,0664858	0	0,006458	0,006458	
																				0/0	27	732 (0,0129147	0	0,001421	0,001421	
						5500		-	0		0 (215	10	200	1.0			0.10	0.2	,)	0.00014		0.000025	0.000025	
0					1	6509	1	5	0		0 () (6	315	18	299	10)		0/0	03)	0,00014	0	0,000025		
												1								0/0		004 (II) ()	0,0000228	0	0,000004	0,000004	-
																				0/0		330	0,0000408	0	0,000008	0,000008	-
																				0/0	03	(;;)	0,0065333	0	0,001214	0,001214	
																				0/0	27	704 (,)	0,0009917	0	0,000195	0,000195	
0					1	6510	1	5	0		0 () (-68	381	261	598	5	5		0/0	03	(;	0,0002916	0	0,000012	0,000012	
																				0/0	03	604 (II) ()	0,0000474	0	0,000002	0,000002	
																				0/0		330	0,0001159	0	0,000005	0,000005	-
																				0/0	03	(;	0,0482283	0	0,001927	0,001927	
																				0/0	27	704 (,)	0,0042739	0	0,000171	0,000171	
0				-	1	6511	1	5	0		0 () (-24	323	294	539	120)		0/0	03	001 (;	0,0073352	0	0,000519	0,000519	
																				0/0	03	04 (II) ()	0,001192	0	0,000084	0,000084	
																				0/0	03	()	0,0042119	0	0,000247	0,000247	
																				0/0	03	330	0,0015109	0	0,000098	0,000098	
																				0/0	03	(;;)	0,0547672	0	0,003258	0,003258	
																				0/0	27	(;	0,0089372	0	0,000532	0,000532	
)					
0					1	6513	1	5	0		0	0	66	433	81	445	10			0/0	03	, , , ,	0,00001	0	0,000066	0,000066	
					-							1							_	0./0	27)	0.00170	0	0.022400	0.022400	
0					1	6514	1	5	0		0 () (81	357	106	375	10)		0/0	27 03	754 C12-19 ()	0,00179	0	0,023499 0,000002		ļ
																				0/0	12	;)	0,0000109	0	0,000001	0,000001	
																				0/0		225 (0,0000109	0	0,000001	0,000001	
																						, ,)		0			
																				0/0)	0,0000117	0	0,000001	0,000001	
0					1	6518	1	2	0		0		367	507	528	612	45	5		0/0	29	, , %: - 70-20	0,0072445	0	0,0394331	0,0394331	
0					1	6519	1	2	0		0		216	475	236	448	30)		0/0	29	, , %: - 70-20	0,0074717	0	0,0406699	0,0406699	
0					1	6520	1	2	0		0		-24	323	294	539	120			0/0	29	, , %: - 70-20	0,0216683	0	0,065525	0,065525	
0					1	6521	1	2	0		0 () (-8	378	40	412	30)		0/0	29	, %: - 70-20	0,038058	0	0,0504192	0,0504192	
		I .			<u> </u>		<u> </u>	<u> </u>		<u> </u>			<u>. </u>					1			[, , , , , , , , , , , , , , , , , , , ,					<u> </u>

																	()	-											
))		()					()	()	()	(/)	1 (3/)	(.)	X1	Y1	X2	Y2	()		(%) (%)				/	/ 3	/	(/)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24		25	26	27	28	29
0						1	6522	1	2	2 0	C	0	C	136	476	148	484	10			0/0	0301	(;	0,0000001	0	0,000002	0,000002	2
																					0/0	0304	(II) ()	0,0000001	0	0,000001	0,000001	1
																					0/0	0337	(;	;	0,0000001	0	0,000006	0,000006	5
																					0/0	0703	/ /		0	0	0	(J
																					0/0	2754	C12-19 ()	0,0018519	0	0.00016	0.00016	5

	: 28.10.2021																					
													()									
((_						1		1		1	-		/		1				
))				(1		X1	Y1	X2	Y2						/ / 3	/	(/)	
		()				()	()	(3/)	(.)					()		(%) (%)					,	
1	2 3	4 5	6	7	8 9	10	11 1	2 13	14	15	16	17	18	19	20	21 22	23	24	25 26	27	28	29
		:	15		<u> </u>		-		_								_			-	-	
0				1	0055	1 0,5	0,08	2,98 0,01497	9 450	0 361	619	361	619	0		0/0	0301	(;	0,0108889 726,938	0,0082	0,0082	
																0/0	0328	()	0,001 66,759	62 0,00075	0,00075	
																0/0	0330		0,0013333 89,010		0,00092	
																0/0	0337	(;	0,0095556 637,928		0,0072	
																		;)			·	
																0/0	0703	/ /	0	0 0	0	
																0/0	1325	(0,0002222 14,833	99 0,00014	0,00014	
																0/0	2732	, , ,	0,005 333,798	12 0,00376	0,00376	
																		, ;	,,,,,,	,,,,,,,,,,	.,	
0					6501	1	0	0	0	0 224	5.60	407	67.5	100		0.40	0201)	0.0066407	0 001206	0.001206	
U				1	6501	5	٥	U	V (0 324	563	487	675	100		0/0	0301	(;	0,0066497	0 0,001206	0,001206	
																0/0	0304	(II) ()	0,0010806	0 0,000196	0,000196	
																0/0	0328	()	0,0010008	0 0,000179	0,000179	
																0/0	0330		0,0012738	0 0,000212	0,000212	
																0/0	0337	(;	0,0267389	0 0,004174	0,004174	
																		;)				
																0/0	2732	(0,0037155	0,000606	0,000606	
																		,				
0				1	6502	1 5	0	0	0	0 324	563	487	675	100		0/0	0301	(;	0,0017411	0 0,000298	0,000298	
																0/0	0204)	0.0002820	0 000048	0.000040	
																0/0	0304 0328		0,0002829	0 0,000048 0 0,000045		
																0/0	0328	· · · · · · · · · · · · · · · · · · ·	0,000263 0,0003677	0 0,000043		
																0/0	0330	(.	0,008301	0 0,000039		
																0,0	0337	; ,	0,000301	0,001278	0,001276	
																0/0	2732	(0,0011003	0 0,000174	0,000174	
																		;				
0				1	6503	1 5	0	0	0	0 324	563	487	675	100		0/0	0301	(:	0,0068533	0 0,001899	0,001899	
					0303				<u></u>) ,	3,0000333			
																0/0	0304	(II) ()	0,0011137	0 0,000309	0,000309	
																0/0	0328	()	0,0002842	0 0,000081	0,000081	
																0/0	0330		0,0009055	0 0,000248	0,000248	
																0/0	0337	(;	0,0227058	0 0,006217	0,006217	
										+ +						0/0	2732	;)	0,0031333	0 0,000877	0,000877	
																0/0	2/32	;	0,0031333	0,0008//	0,0008//	
)				
0				1	6504	1 5	0	0	0	0 343	617	357	627	10		0/0	0301	(;	0,0022922	0 0,000318	0,000318	
										+ +			 			0/0	0304	(II) ()	0,0003725	0 0,000052	0,000052	
						1 1			1	1						0/0	0328	()	0,0000967	0 0,000014	0,000014	
						1 1			1							0/0	0330		0,0003065	0 0,000042	0,000042	
	1		1							1			L					I .	· ·			15

	: 28.10.2021																									
																()										
((<u> </u>						-		/							
,	,							()) ((/)	1 (3/)	(.)	X1	Y1	X2	Y2	()		(%)			/	/ 3	/	(/)	
1	2	3	4	5 6	7	8	9	10 1	1	12	13	14	15	16	17	18	19	20	21 22	23	24	25	26	27	28	29
																			0/0	0337	(;;	0,0075958	0	0,001042	0,001042	2
																			0/0	2732	(0,0010464	0	0,000147	0,000147	,
																					,)					
0					1	6507	1	5	0	0	0	0	441	681	457	7 690	15	5	0/0	0301	(;	0,0004717	0	0,000063	0,000063	1
																			0/0	0304	(II) ()	0,0000767	0	0,00001	0,00001	
																			0/0	0328	()	0,0000675	0	0,000009		
																			0/0	0330		0,0000988	0	0,000012		1
																			0/0	0337	; ;	0,0022416	0	0,000272	0,000272	
																			0/0	2732	(;	0,0003102	0	0,000038	0,000038	
0					1	6509	1	5	0	0	0	0	327	609	339	9 593	10	0	0/0	0301	(;	0,00014	0	0,000011	0,000011	
						0307	1			Ů	· ·		327	007		3,3	10		0,0	0301	,	0,00011				
																			0/0	0304	(II) ()	0,0000228	0	0,000002		
																			0/0	0330		0,0000408	0	0,000003		
																			0/0	0337	; ;	0,0065333	0	0,000494	0,000494	
																			0/0	2704	(,)	0,0009917	0	0,000075	0,000075	
0					1	6513	1	5	0	0	0	0	439	620	454	4 632	10	0	0/0	0333	, , ,	0,00001	0	0,000048	0,000048	3
																			0/0	2754) C12-19 ()	0,00179	0	0.017067	0,017067	,
0					1	6514	1	5	0	0	0	0	368	564	393	3 582	10	0	0/0	0337		0,000179		0,000003		
						0011				Ů									0,0		;)					
																			0/0	1317	()	0,0000109			0,000002	
																			0/0	1325	, , ,)	0,0000152	0	0,000003	0,000003	
																			0/0	1555	(0,0000117	0	0,000002	0,000002	:
0					1	6518	1	2	0	0	0	0	337	550	498	8 655	45	5	0/0	2908	, , %: - 70-20	0,0028133	0	0,0070489	0,0070489	
0					1	6519	1	2	0	0	0	0	403	672	423	3 645	30	0	0/0	2908	, , %: - 70-20	0,0039101	0	0,0076013	0,0076013	
0					1	6520	1	2	0	0	0	0	324	563	487	7 675	100	0	0/0	2908	, %: - 70-20	0,0251939	0	0,0544189	0,0544189	
0					1	6521	1	2	0	0	0	0	354	555	402	2 589	30	0	0/0	2908	, , %: - 70-20	0,0391111	0	0,0067584	0,0067584	
0					1	6522	1	2	0	0	0	0	478	631	490	639	10	0	0/0	0301	(;	0,0000001	0	0,000002	0,000002	
																			0/0	0304	(II) ()	0,0000001	0	0,000001	0,000001	
																			0/0	0337	; ;	0,0000001	0	0,000007	0,000007	
																			0/0	0703	//	0	0	0	C)
																			0/0	2754	C12-19 ()	0,0018519	0	0,0002	0,0002	

	: 12.11.202	1		T															_						
															()										l
((_									1 1				1		-		/						-	l
))							()	(/)	1	(.)	X1	Y1	X2	Y2						/	/ 3	/	(/)	l
			()				()		(, ,	(3/)						()		(%) (%)							
1	2	3	4	5 6	7	8	9 10	11	12	13	14	15	16	17	18	19	20	21 22	23	24	25	26	27	28	29
				: 11		 				1 1									_	1					
1					1	0001	1 10,1	15 0,3	0,3	4 0,033	24,4	119	118	119	118	0		0/0	0301	(;	0,0249512	756,09697	0,7868713	0,7868713	l
																		0/0	0304	(II) ()	0.0040546	5 122,86667	0.1278667	0.1278667	
																		0/0	0328	()		2 3686,97576			
																		0/0	0337	(;	_	3 5904,0303			
																				;)					
																		0/0	2902			2 354,03636			
1					1	0002	1 10,1	0,3	0,3	4 0,033	24,4	118	117	118	117	0		0/0	0301	(;	0,0249512	756,09697	0,7868713	0,7868713	l
						+ +							+ +					0/0	0304	(II) ()	0.0040546	5 122,86667	0,1278667	0.1278667	 I
																		0/0	0328	()		2 3686,97576			
																		0/0	0337	(;	_	3 5904,0303			
																				;)					
																		0/0	2902			2 354,03636			
1					1	0003	1 10,1	0,3	0,3	4 0,033	24,4	117	116	117	116	0		0/0	0301	(;	0,0249512	756,09697	0,7868713	0,7868713	l
																		0/0	0304	(II) ()	0.0040546	5 122,86667	0 1278667	0.1278667	
																		0/0	0304	(11)		2 3686,97576			
						+ +												0/0	0337	(:	_	3 5904,0303			
																				; ,					
																		0/0	2902		0,0116832	2 354,03636	0,3684456	0,3684456	
1					1	0004	1 9	,4 0,2	25 13,5	9 0,667	24,4	119	150	119	150	0		0/0	0301	(;	0,0002698	0,4045	0,000022	0,000022	l
																		0/0	0304	(II) ()	0,0000439	0.06574	0.0000025	0,0000035	
																		0/0	0304	(11)	0,0000439			0,0000035	<u> </u>
																		0/0	0330		0,0000509			0,0000035	
																		0/0	0337	(:	0,0010716			0,0001065	
																				; ,	.,	,	.,	.,	
																		0/0	2732	(0,0001489	0,22324	0,000028	0,000028	l
																				;					l
1					1	0005	1 9	,4 0,6	58 4,8	1 1,7472	24,4	119	149	119	149	0		0/0	0301	(;	0,0002698	0,15442	0,000022	0,000022	·
)					
																		0/0	0304	(II) ()	0,0000439			0,0000035	
																		0/0	0328		0,00004			0,0000035	
						+ +												0/0	0330		0,0000509			0,0000045	
																		0/0	0337	(;;)	0,0010716	0,61335	0,0001065	0,0001065	1
																		0/0	2732	, ,	0,0001489	0,08522	0,000028	0,000028	
																				;					1
1					1	6001	1	2	0	0 0	0	40	112	21	110	2		0/0	2002)	4 6600075		(7.5	77.5	<u> </u>
1					1 1	6001	1	2	0	0 0	0	-40 -30		-31 -20				0/0	2902 2902		4,6699875 4,6699875	+	67,5 67,5	.	
1					1	6002	1	2	0	0 0	0	-30 -77		-20 -68		3		0/0	2902		8,2932692		62,1	.	
1					1	6004	1	2	0	0 0	0	-57	<u> </u>	-08 -49		3		0/0	2902		3,6057692		27	 	
1					1	0004	1	4	٧	<u> </u>	U	-31	140	-49	140	٥		J 0/0	2902	1	3,003/092	-1 0		2/	

	: 12.11.20	<i>921</i> 1		ı	1			1		1			1					<u> </u>	i				1			-	
																()					•						
((1			1	. ,	-			/							
)	`)						()																				
								()	()	(/)	1 (3/)	(.)	X1	Y1	X2	Y2	()		(0/	(0/)			/	/ 3	/	(/)	
		2	()		 _ _	0			1.1			1.4	1.7	1.5	15	10	10	20	(%)					2.5	25	20	20
1	2	3	4 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	+	24	25	26	27	28	29
1					1	6005	1	2	0	0	0	0	167	120	167	119	0,1			0/0	0333	(0,000051	0	0,000002	0,000002	
																						, ,					
																				0/0	2754	C12-19 ()	0,018265	0	0,000678	0,000678	
1					1	6006	1	2	0) 0	0		1.67	110	1.67	117	0.1			+	0333	(12-17)	0,018203	0			
					1	6006	1	2	U		U		167	118	167	117	0,1			0/0	0333	(U	0,000672	0,000672	
																						, ,					
																				0/0	2754	C12-19 ()	0	0	0,000002	0,000002	
1					1	6007	1	2	0	0	0	0	108	139	109	139	0,1			0/0	0301	(;	0,0000024	0	0,000036	0,000036	
				-				_									-,-			-)	-,,,,,,,,,,		.,,,,,,,,,,	,,,,,,,,,,	
																				0/0	0303	()	0,0000145	0	0,000217	0,000217	
																				0/0	0304	(II) ()	0,0000041	0	0,000061	0,000061	
																				0/0	0333	()	0,0000285	0	0,000426		
																				0,0	0333	,	0,0000283	O	0,000420	0,000420	
)					
																				0/0	0410		0,0020486	0	0,030581	0,030581	
																				0/0	0416		0,0000914	0	0,001364	0,001364	
																						C6H14-C10H22					
																				0/0	1071	()	0,0000015	0	0,000023	0,000023	
																						(;)					
																				0/0	1325	(0,0000021	0	0,000031	0,000031	
																						, ,)	<u> </u>				
																				0/0	1716		0,0000001	0	0,0000016	0,0000016	
					<u> </u>			_	_	_		_								ļ							
1					1	6008	1	5	0	0	0	0	64	41	-23	179	1			0/0	0301	(;	0,0106667	0	0,035482	0,035482	
																				0/0	0204) (II)	0.0017222		0.005766	0.005766	
																				0/0	0304 0328	(II) ()	0,0017333	0	0,005766		
																				0/0		()	0,0013333	0		0,003899	
																				0/0	0330		0,0022333	0	0,006705		
																				0/0	0337	(;	0,0246667	0	0,074678	0,074678	
																						;		_			
																				0/0	2732		0,004	0	0,01216	0,01216	
																						,					
1					1	6009	1	5	0	0	0	0) 1	153	3	150	1			0/0	0301	(;	0,0282116	0	0,003483	0,003483	
					-		_				Ü			100		100				1)		Ü	.,	.,	
																				0/0	0304	(II) ()	0,0045844	0	0,000566	0,000566	
																				0/0	0328	()	0,0170435	0	0,001705		
			† †															<u> </u>		0/0	0330	, ,	0,0058422		0,000699		
			+ +															+		0/0	0337		0,2285495	0	0,024439		
																				0,0	0557	; ,	0,2203473	U	0,024439	0,027433	
																				0/0	2732	(0,0370785	n	0,003891	0,003891	
																				0,0	2,32	;	0,0070703	O	5,003071	5,505071	
)					
1					1	6010	1	5	0	0	0	0	-11	92	-70	180	30)		0/0	0301	(;	0,0141058	0	0,001741	0,001741	
)					
																				0/0	0304	(II) ()	0,0022922	0	0,000283	0,000283	
																	<u> </u>			0/0	0328	()	0,0085217	0	0,000853	0,000853	
																				0/0	0330		0,0029211	0	0,000349	0,000349	
L		1	1 1	1	<u>I</u>		<u> </u>	<u>ı</u>		1		1	1				1	L					<u> </u>		1		

	: 12.11.2	021		·																								
																()												
((-		1		,	-			/	•							
))						()				1		V.1	371	Wa	3/2									/ 2	,		
								()	()	(/)	(3/)	(.)	X1	Y1	X2	Y2	()		(%	(%)				/	/ 3	/	(/)	
1	2	3	4 5	6	7	8	9	10	11	12		14	15	16	17	18	19	20	21	22		24		25	26	27	28	29
1		3	1 3	0	,			10	11	12	13	17	13	10	17	10	17	20	21	0/0	0337	(0,1142747	0	0,01222	0,01222	
																				0/0	0337	;	,	0,1142747	U	0,01222	0,01222	
																				0/0	2732	(0,0185393	0	0,001946	0,001946	
																						;						
						5011		_			0		1.7	0.0	20	121	1.5			0.10	0201)		0.0141050	0	0.001541	0.001541	
1					1	6011	1	5	0)	0		-17	89	-38	121	15			0/0	0301	(;	0,0141058	0	0,001741	0,001741	
																				0/0	0304	(II) ()	0,0022922	0	0,000283	0,000283	
																				0/0	0328	(11))	0,0085217	0	0,000853	0,000853	
																				0/0	0330		,	0,0029211	0	0,000349	0,000349	
																				0/0	0337			0,1142747	0	0,01222	0,01222	
																				0,0	0337	;	,	0,1142/4/	O	0,01222	0,01222	
																				0/0	2732	(0,0185393	0	0,001946	0,001946	
																						;						
1					1	6012	1	_	0		0	0 0	10	252	0.0	20.4	10			0.70	0201)		0.0141050	0	0.001741	0.001741	
					1	6012	1	3	0	<u>'</u>	U		18	253	80	294	12			0/0	0301	(;	0,0141058	U	0,001741	0,001741	
																				0/0	0304	(II) ()	0,0022922	0	0,000283	0,000283	
																				0/0	0328	()	0,0085217	0	0,000853	0,000853	
																				0/0	0330		,	0,0029211	0	0,000349	0,000349	
					1															0/0	0337	(0,1142747	0	0,01222	0,01222	
																				0,0	0337	;	,	0,1142747	· ·	0,01222	0,01222	
																				0/0	2732	(0,0185393	0	0,001946	0,001946	
																						;						
1				/	1	6013	1	5	0		0	0 0	93	246	96	240	1			0/0	0301			0,0227367	0	0,004196	0,004196	
					1	6013	1	3	0	,	U		93	240	90	240	1			0/0	0301)	,	0,022/36/	U	0,004190	0,004190	
																				0/0	0304	(II) ()	0,0036947	0	0,000682	0,000682	
																				0/0	0328	()	0,0018053	0	0,000305	0,000305	
																				0/0	0330	·		0,0018661	0	0,000378	0,000378	
																				0/0	0337	(;	0,1041308	0	0,018057	0,018057	
																						;)	,		,	·	
																				0/0	2732	(0,0140003	0	0,00245	0,00245	
																						;						
1					1	6014	1	5	0)	0	0 0	-65	265	-59	270	1			0/0	0301	(;	0,0227367	0	0,004196	0,004196	
							_ '							203		2.3					0201)	,	2,522.507		2,001170	2,00.170	
																				0/0	0304	(II) ()	0,0036947	0	0,000682	0,000682	
																				0/0	0328	()	0,0018053	0	0,000305	0,000305	
																				0/0	0330			0,0018661	0	0,000378	0,000378	
																				0/0	0337	(;	0,1041308	0	0,018057	0,018057	
					 																	;)					
																				0/0	2732	(0,0140003	0	0,00245	0,00245	
																						;						
1					1	6015	1	5	0)	0	0 0	-42	172	-38	167	1			0/0	0301	(;	0,0227367	0	0,004196	0,004196	
)	•					
																				0/0	0304	(II) ()	0,0036947	0	0,000682		
																				0/0	0328	()	0,0018053	0	0,000305	0,000305	
																				0/0	0330			0,0018661	0	0,000378	0,000378	40
					_		•	•	•	_																•		19

	: 12.11.2	021			-															-								
																()												
((1		•		. ,				/	٠ ا			1				
))						()	,					37.1	371	W 2	1/2							,		2	,		
								()	()	(/)) 1 (3/)	(.)	X1	Y1	X2	Y2	()		(%)	(%)			/	/	3	/	(/)	
1	2	3	4 5	6	7	8	9	10	11	12		14	15	16	17	18	19	20	21	22		24	25	20	6	27	28	29
1		3	1 3	0	,			10	11	12	13	17	13	10	17	10	17	20	- 21	0/0	0337	(.	0,104				0,018057	
																				0/0	0337	; ,	0,104	308		0,010037	0,010037	
																				0/0	2732	(0,0140	003	0	0,00245	0,00245	
																						;						
4						5015		_			0	0	0 13	177	10	150				0.70	0201)	0.045	722	0	0.000202	0.000202	
					1	6016	1	5	0	<u>'</u>	0	0	-13	175	-10	170	1			0/0	0301	(;	0,0454	/33	o o	0,008393	0,008393	
																				0/0	0304	(II) ()	0,0073	894	0	0,001364	0,001364	
																				0/0	0328	()	0,0030				0,000611	
																				0/0	0330	,	0,003				0,000757	
										+										0/0	0337	(.	0,2082				0,036113	
																				0,0	0337	; ,	0,200	017		0,030113	0,030113	
																				0/0	2732	(0,0280	006	0	0,004901	0,004901	
																						;						
1					1	6017	1	-	0	\	0	0	0 26	174	103	225	45	,		0/0	0301		0.005	125	0	0.001061	0,001061	
					1	6017	1	3		<u>'</u>	U .		20	1/4	103	223	43			0/0	0301) ;	0,005	433	U	0,001061	0,001061	
										1										0/0	0304	(II) ()	0,000	333	0	0,000172	0,000172	
										1										0/0	0328	()	0,003				0,000567	
																				0/0	0330	,	0,001			0,00021	0,00021	
																				0/0	0337	(:	0,044			0,00715	0,00715	
																						; ,	.,,			.,	.,	
																				0/0	2732	(0,0074	473	0	0,001172	0,001172	
																						;						
1					1	6018	1	5	0)	0	0	0 24	186	49	203	15			0/0	0301	· · ·	0,0033	923	0	0,000625	0,000625	
					1	0010	1						24	100	47	203	13			0,0	0301)	0,003.)23		0,000023	0,000023	
																				0/0	0304	(II) ()	0,000	513	0	0,000102	0,000102	
																				0/0	0328	()	0,0018	953	0	0,000285	0,000285	
																				0/0	0330		0,000	682	0	0,000123	0,000123	
																				0/0	0337	(;	0,0254	197	0	0,004096	0,004096	
																						;)						
																				0/0	2732	(0,004	932	0	0,000721	0,000721	
																						;						
1					1	6019	1	5	0)	0	0	0 -39	190	88	271	20)		0/0	0301	(;	0,022	289	0	0,004189	0,004189	
)						
																				0/0	0304	(II) ()	0,003	934	0	0,000681	0,000681	
																				0/0	0328	()	0,0018	033	0	0,000304	0,000304	
																				0/0	0330		0,0018	603	0	0,000374	0,000374	
																				0/0	0337	(;	0,1040	939	0	0,01803	0,01803	
													1					-		0.72	0-0-	;)	0.5:	002		0.005	0.002	
													1							0/0	2732		0,0139	983	0	0,002449	0,002449	
																						,)						
1					1	6020	1	5	0)	0	0	0 67	51	76	58	3	1		0/0	0301	(;	0,0220	322	0	0,004102	0,004102	
													1								\perp)		\perp				
													1							0/0	0304	(II) ()	0,003				0,000667	
													1							0/0	0328	()	0,0018				0,000303	
													1							0/0	0330		0,0018	581	0	0,000372	0,000372	20

	: 12.11.20	021				1	i			i								i	1	1			•				1
																()	_										
()	(()													/							
,	,						,	()	()	(/)	1 (3/)	(.)	X1	Y1	X2	Y2	()		(%)	(%)			/	/ 3	/	(/)	
1	2	3	4 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	-	24	25	26	27	28	29
																				0/0	0337	(;;)	0,1043706	0	0,018888	0,018888	
																				0/0	2732	(0,0139714	0	0,002443	0,002443	
1					1	6021	1	5	0)	0) (76	59	118	87	5			0/0	0301	(;	0,0006332	0	0,000582	0,000582	
																				0/0	0304	(II) ()	0,0001029	0	0,000095	0,000095	
																				0/0	0330		0,0002505	0	0,000234	0,000234	
																				0/0	0337	(;;	0,0860522	0	0,064026	0,064026	
																				0/0	2704	(,)	0,0073231	0	0,005794	0,005794	
1					1	6022	1	5	0		0) (127	241	152	203	10			0/0	0301	(;	0,2295734	0	0,037978	0,037978	
																				0/0	0304	(II) ()	0,0373057	0	0,006172	0,006172	
																				0/0	0328	()	0,0552408	0	0,006396		
																				0/0	0330		0,0276542	0	0,004385	0,004385	
																				0/0	0337	(;	1,3004923	0	0,188299		
																				0/0	2732	;)	0,1906673	0	0,026872	0,026872	
																						;					
			:	2 2-5		_				_			_						_								
1					1	0006	1	2	0,24	2,	34 0,10585	24,4	457	325	457	325	0			0/0	0301	()	0,000111	1,04856	0,0029171	0,0029171	
																				0/0	0303	()	0,0011084	10,47052	0,029129	0,029129	
																				0/0	0304	(II) ()	0,0002771		0,007282		
																				0/0	0333	, , ,	0,0005542	5,23526	0,0145644	0,0145644	
																				0/0	0410	,	0.38794	3664.68237	10,1950632	10.1950632	
																				0/0	1071	();)	0,0000166				
																				0/0	1325	(0,0000277	0,26176	0,0007282	0,0007282	
																				0/0	1716	, ,)	0,000006	0,05668	0,000158	0,000158	
1					1	0007	1	2	0,24	2,	34 0,10585	24,4	458	321	458	321	0			0/0	0301	(;	0,000111	1,04856	0,0029171	0,0029171	
																				0/0	0303	()	0,0011084	10,47052	0,029129	0,029129	
												†								0/0	0304	(II) ()	0,0002771		0,007282		
																				0/0	0333	, , ,	0,0005542		0,0145644		
												1								0/0	0410	J	0.38794	3664.68237	10,1950632	10.1950632	
																				0/0	1071	();	0,0000166				
																				0/0	1325	(0,0000277	0,26176	0,0007282	0,0007282	
																				1		, ,)					1

	: 12.11.20)21																							-
															()										
((_		/						-	
,			()					()	(/)	1 (3/)	(.)	X1	Y1	X2	Y2	()		(%) (%)			/	/ 3	/	(/)	
1	2	3	4	5 6	7	8	9	10 11	12	13	14	15	16	17	18	19	20	21 22	23	24	25	26	27	28	29
																		0/0	1716		0,000006	0,05668	0,000158	0,000158	,
1					1	0008	1	6,7 0,	25 2,2	26 0,110937	7 24,4	4 467	7 349	467	7 349	0)	0/0	0150	()	0,0000066	0,05949	0,0000085	0,0000085	7
																		0/0	0316	(HC1)	0,000066	0,59493	0,0000855	0,0000855	,
																		0/0	0322	(H2SO4)	0,0000134	0,12079	0,0000173	0,0000173	;
1					1	6023	1	2	0	0 (0 (378	8 661	520	0 456	200		0/0	2908	,	0,0003135	0	0,0032959	0,0032959	,
1					1	6025	1	2	0	0 (0 (0 -3	3 277	8	8 259	3	1	0/0	1328	, %: - 70-20 (,	0,0017666	0	0,0279324	0,0279324	<u> </u>
																		0/0	2729	" -52"(0,0017843			0,0282115	
1				_	1	6026	1	2.	0	0 (0 (0 487	7 363	574	4 422	2 45		0/0	0301)	0,0011838			0,038651	
						0020				Ŭ .		107	, 303	3,				6, 0	0301)	0,0011030	Ü	0,030031	0,030031	
																		0/0	0303	()	0,0072183	0	0,235679	+	
																		0/0	0304	(II) ()	0,0020211	0	0,06599		
																		0/0	0333	, , ,	0,0141478	0	0,461931	0,461931	
																		0/0	0410	,	1,01633	0	33,18358	33,18358	3
																		0/0	0416	C6H14-C10H22	0,0453306		1,480063	+	
																		0/0	1071	()	0,0007507	0	0,024511	0,024511	
																		0/0	1325	, , ,)	0,0010394	0	0,033938	0,033938	j
																		0/0	1716		0,000052	0	0,001697	0,001697	
1				-	1	6027	1	2	0	0 (0 () 450	372	451	1 373	0,1		0/0	0301	(;	0,0000003	0	0,000004	0,000004	,
																		0/0	0303	()	0,0000015	0	0,000023	0,000023	3
																		0/0	0304	(II) ()	0,0000001	0		0,000006	
																		0/0	0333	, , ,	0,000003	0	0,000045	0,000045	
															1		<u> </u>	0/0	0410)	0,0002168		0.002227	0,003237	7
																		0/0	0410		0,0002168			0,003237	
																				C6H14-C10H22					
																		0/0	1071	()	0,0000002			0,000002	
																		0/0	1325	, ,)	0,0000002			0,000003	
																		0/0	1716		0,0000001			0,000001	
1					1	6028	1	2	0	0	0 (0 489	9 345	490	0 345	0,1		0/0	0301	(;	0,0000007	0	0,00001		
																		0/0	0303	()	0,000004	ļ	0,000059		
																		0/0	0304	(II) ()	0,0000011	0	0,000017	0,000017	<u>1</u>

	: 12.11.2	021																-					+				
																()					•						
((1 1						_		1	1					-			/							
))						()	()	()	(/)	1 (3/)	(.)	X1	Y1	X2	Y2	()		(0/	(0/)			/	/ 3	/	(/)	
1	2	3	4 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	(%)		24	25	26	27	28	29
1		3	7 3	U U	,	0		10	11	12	13	17	13	10	17	10	17	20	21	0/0	0333	(0,0000078	0	0,000116		2)
																				0,0		, ,	0,0000070	Ü	0,000110	0,000110	
																				0/0	0410)	0.0005596	0	0.008330	0,008339	
											+									0/0	0410		0,0005586	0	0,008339 0,000372	0,008339	
																				0/0		C6H14-C10H22	0,0000247	O	0,000372	0,000372	
																				0/0	1071	()	0,0000004	0	0,000006	0,000006	
																				0/0	1325	(0,0000006	0	0,000009	0,000009	
																				0/0	1716	, ,)	0,0000001	0	0,000001	0,000001	
																				0/0	1710			0			
1					1	6029	1	5	0	(0	-122	243	-103	256	10			0/0	0301	(;	0,0141058	0	0,001741	0,001741	
																				0/0	0304	(II) ()	0,0022922	0	0,000283	0,000283	
																				0/0	0328	()	0,0085217	0	0,000853	0,000853	
																				0/0	0330		0,0029211	0	0,000349	0,000349	
																				0/0	0337	(;	0,1142747	0	0,01222	0,01222	
																				0/0	2732	(0,0185393	0	0,001946	0,001946	
																						;					
1					1	6030	1	5	0	(0	0	-28	330	293	543	130			0/0	0301	(;	0,0766232	0	0,010316	0,010316	
																				0/0	0304	(II) ()	0,0124513	0	0,001676	0,001676	
																				0/0	0328	()	0,0486393	0	0,004992	0,004992	
																				0/0	0330		0,0153243	0	0,001924	0,001924	
																				0/0	0337	;	0,6013937	0	0,064912	0,064912	
																				0/0	2732	(0,0979423	0	0,010485	0,010485	
																						;					
1					1	6031	1	5	0	(0	0	164	243	395	401	180			0/0	0301	(;	0,0374058	0	0,00461	0,00461	
											1									0/0	0304	(II) ()	0,0060784	0	0,000749	0,000749	
											†									0/0	0328	()	0,0241307	0	0,00241		
																				0/0	0330		0,0075519	0	0,000905	0,000905	
																				0/0	0337	(;;	0,2999776	0	0,03208	0,03208	
											1									0/0	2732	(0,0487314	0	0,005116	0,005116	
																						;					
1					1	6032	1	5	0	(0	0	36	301	0	354	30			0/0	0301	(;	0,0340933	0	0,004189	0,004189	
																				0/0	0304	(II) ()	0,0055402	0	0,000681	0,000681	
											1									0/0	0328	()	0,002705	0	0,000304		
																				0/0	0330		0,0027904	0	0,000374		
																				0/0	0337	;	0,1561408	0	0,01803	0,01803	
																						;)					

	: 12.11.20)21											i					i					1				
																()											
((ı				,	-			/	·						
)	`)						()													'							
								()	()	(/)	1 (3/)	(.)	X1	Y1	X2	Y2	()		(0)	(0/)			/	/ 3	/	(/)	
			, ,	_	_											10	` '		(%	<u> </u>						•	
1	2	3	4 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	-	24	25	26	27	28	29
																				0/0	2732	(0,0209975	0	0,002449	0,002449	
																						;					
1					1	6033	1	42	0	() 0	0	392	660	532	446	216			0/0	0301	,	0,1576802	0	2 7004305	2,7094305	
					1	0033	1	42	U				392	000	332	440	210			0/0	0301	(;	0,1370802	U	2,7094303	2,7094303	
																				0/0	0303	()	0,7571489	0	13 0101484	13,0101484	
																				0/0	0330	,	0,0994379			1,7086499	
																				0/0		(
																				0/0	0333	(0,0369341	U	0,6346414	0,6346414	
																						, ,					
																				0/0	0337	(;	0,3579766	0	6,1511396	6,1511396	
																						;)			,	,	
																				0/0	0410		75,1679847	0	1291,61726	1291,61726	
																									4	4	
																				0/0	0616	(-, -, -	0,6293001	0	10,8133128	10,8133128	
)()					
																				0/0	0621	()	1,0270519	0	17,6479123	17,6479123	
																				0/0	0627	()	0,1349515	0	2,318882	2,318882	
																				0/0	1325	(0,136372	0	2,3432913	2,3432913	
																						, ,)					
1					1	6034	1	5	0	(0	0	1	2	1	10	10			0/0	0301	(;	0,0001927	0	0,002025	0,002025	
)					
																				0/0	0304	(II) ()	0,0000313	0	0,000329	0,000329	
																				0/0	0328	()	0,000008	0	0,000084	0,000084	
																				0/0	0330		0,0000435	0	0,000458	0,000458	
																				0/0	0337	(;	0,0005433	0	0,005712	0,005712	
																						;)					
																				0/0	2732	(0,0002271	0	0,002387	0,002387	
																						;					
						4007		_								1.0	10			0.70	0.001)	0.4440.50		0.04.40.5	0.04.4025	
					1	6035	1	5	0	(0	1	2	1	10	10			0/0	0301	(;	0,114029	0	0,014927	0,014927	
																				0/0	0204) (II)	0.0195207	0	0.002426	0.002426	
											1									0/0	0304	(II) ()	0,0185297	0	0,002426		
											1									0/0	0328	()	0,07277	0	0,007402		
																				0/0	0330		0,0228763	0	0,002829		
																				0/0	0337	(;	0,9013712	0	0,096992	0,096992	
											1			-		-				1	1.	;)					
																				0/0	2732	(0,1466737	0	0,015602	0,015602	
																				1		,					
1			 		1	6036	1	2	n	() 0	0	-115	359	-93	328	45			0/0	2908	,	0,0160782	0	0.1056336	0,1056336	
					1	0030	1	_	o o				113	337	,,,	320	13			0,0	2,00	, %: - 70-20	0,0100702		0,1030330	0,1030330	
2					1	0009	1	10	0,5	10,59	2,078753	24,4	-44	264	-44	264	0			0/0	0304	(II) ()	0,036103	17,36763	0,24189	0,24189	
										<u> </u>										<u> </u>						·	
																				0/0	0328	()	0,004559	2,19314	0,030545	0,030545	
																				0/0	0330		0,022518	10,83246		0,150871	
											1									0/0	0337	(:	2,046493			13,7115	
																						; ,	, , , , , ,	,	- ,	- , 0	
																				0/0	0501	(-	0,000194	0,09333	0	0	
)					
																											

((()	-			,							
)		()					()	()	()	(/)	1 (3/)	(.)	X1	Y1	X2	Y2	()			%) (%)			/	/ 3	/	(/)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
																					0/0	0616	(-, -, -	0,000476	0,22898	0,003189	0,003189	
																					0/0	0703	//	0	0	0	0	
																					0/0	2754	C12-19 ()	0,004142	1,99254	0,027751	0,027751	
																					0/0	2902		1,545375	743,41459	10,35401	10,35401	
2						1	6024	1	2	0	0	0	0	-102	209	-37	252	50			0/0	0337	(;)	0,0010225	0	0,0264	0,0264	
																					0/0	0415	C1H4-C5H12	0,0157304	0	0,396	0,396	
																					0/0	0602	;	0,0084158	0	0,21	0,21	
																					0/0	0616	(-, -, -	0,0210001	0	0,528	0,528	
																					0/0	0621	()	0,0210001	0	0,528	0,528	
																					0/0	1401	-2- (;	0,0314609	0	0,792	0,792	
																					0/0	2902		0,0003146	0	0,0078	0,0078	

" C . 01011591

Приложение 67

										()	-										
)	()	(/)	1 (3/)	(.)	X1	Y1	X2	Y2	()		(%)	(%)			/	/ 3	/	(/)	
1 2 3 4 5 6 7	8	9	10 11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
: 3																					
0 0652301 1 0 , , 1	6523	1	5 0	(0	132	517	314	237	300			0/0	0301	() ;	0,03947	0	0,010162	0,010162	
0652302 1 0														0/0	0304	(II) ()	0,0064138	0	0,001651	0,001651	
														0/0	0328	()	0,0033469	0	0,000904	0,000904	
														0/0	0330		0,0035384	0	0,001081	0,001081	
														0/0	0337	; ;	0,1784797	0	0,041578	0,041578	
														0/0	2732	;	0,0240794	0	0,005727	0,005727	

" C . 01011591

Приложение 68

						()								
	((/) 1	(3/) X1	Y1 X2	Y2 ()		(%)	(%)		/	/ 3	/	(/)
1 2 3 4 5 6 7	8 9	10 11	12	13 14 15	16 17	18 19	20	21	22	23 24	25	26	27	28 29
: 3														
0 0652401 1 0 , 1	6524	1 5 0	0	0 0 132	517 314	237 300			0/0 03	(;	0,0380671	0	0,148597	0,148597
0652402 1 0									0/0 03	04 (II) ()	0,0061859	0	0,024147	0,024147
									0/0 03	28 ()	0,0055728	0	0,026385	0,026385
									0/0 03	30	0,0040708	0	0,017458	0,017458
									0/0 03	(; ;	0,1156147	0	0,152419	0,152419
									0/0 2	(;	0,0167255	0	0,04016	0,04016
)				

1 этап строительства

Эколог-Шум. Модуль печати результатов расчета

Copyright © 2006-2020 ФИРМА "ИНТЕГРАЛ"

Источник данных: Эколог-Шум, версия 2.4.6.6023 (от 25.06.2020) [3D] Серийный номер 01-01-1591, ООО "Техноэкос"

1. Исходные данные

1.1. Источники постоянного шума

N	Объект	Коор	динаты то		Простран ственный угол	Уровни зву 1					и, в слу ескими				вных	L a.экв	в В расчете
		X (M)	Y (m)	Высота подъема (м)	•	Дистанция замера (расчета) R (м)	31.5	63	125	250	500	1000	2000	4000	8000		
025	Глубинный вибратор	277.00	389.00	0.00	12.57		62.0	62.0	70.0	70.0	64.0	62.0	61.0	59.0	56.0	69.0	Да
026	Глубинный вибратор	519.50	504.00	0.00	12.57		62.0	62.0	70.0	70.0	64.0	62.0	61.0	59.0	56.0	69.0	Да
027	Глубинный вибратор	308.00	404.50	0.00	12.57		62.0	62.0	70.0	70.0	64.0	62.0	61.0	59.0	56.0	69.0	Да
028	Глубинный вибратор	352.50	391.00	0.00	12.57		62.0	62.0	70.0	70.0	64.0	62.0	61.0	59.0	56.0	69.0	Да
029	Глубинный вибратор	373.50	322.00	0.00	12.57		62.0	62.0	70.0	70.0	64.0	62.0	61.0	59.0	56.0	69.0	Да
030	Виброрейка	452.50	455.50	0.00	12.57		97.0	97.0	92.0	82.0	89.0	87.0	82.0	80.0	78.0	91.3	Да
031	Виброрейка	275.50	443.50	0.00	12.57		97.0	97.0	92.0	82.0	89.0	87.0	82.0	80.0	78.0	91.3	Да
032	Виброрейка	300.00	380.50	0.00	12.57		97.0	97.0	92.0	82.0	89.0	87.0	82.0	80.0	78.0	91.3	Да
033	Виброплита	321.50	300.50	0.00	12.57		89.0	89.0	90.0	81.0	73.0	74.0	70.0	68.0	64.0	80.0	Да
034	Вибротрамбовка	311.00	343.50	0.00	12.57		80.0	80.0	83.0	76.0	73.0	72.0	70.0	69.0	66.0	78.0	Да
035	Вибротрамбовка	347.00	317.50	0.00	12.57		80.0	80.0	83.0	76.0	73.0	72.0	70.0	69.0	66.0	78.0	Да
037	Станок для резки арматуры	370.00	380.50	0.00	12.57		63.0	63.0	66.0	69.0	72.0	73.0	72.0	69.0	63.0	78.0	Да
038	Сварочный выпрямитель	489.50	456.50	0.00	12.57		105.0	105.0	98.0	92.0	89.0	86.0	84.0	82.0	80.0	93.0	Да
039	Сварочный выпрямитель	576.50	512.50	0.00	12.57		105.0	105.0	98.0	92.0	89.0	86.0	84.0	82.0	80.0	93.0	Да
041	Бензопила	296.50	415.00	0.00	12.57		78.0	78.0	74.0	68.0	71.0	68.0	64.0	59.0	52.0	73.0	Да
042	Бензопила	345.50	376.00	0.00	12.57		78.0	78.0	74.0	68.0	71.0	68.0	64.0	59.0	52.0	73.0	Да
043	Окрасочный аппарат	497.50	492.00	0.00	12.57		59.0	59.0	61.0	64.0	67.0	68.0	67.0	64.0	59.0	73.0	Да
046	Гудронатор	336.00	438.00	0.00	12.57		87.0	87.0	90.0	78.0	76.0	72.0	67.0	61.0	56.0	79.0	Да
049	Сварочный аппарат	384.50	389.50	0.00	12.57		75.0	75.0	72.0	67.0	68.0	70.0	66.0	62.0	60.0	73.0	Да
050	Дизельная мотопомпа	338.50	463.00	0.00	12.57		81.8	81.8	84.7	87.6	90.0	91.6	89.9	87.0	81.6	96.0	Да
051	Сварочный аппарат	297.50	333.00	0.00	12.57		75.0	75.0	72.0	67.0	68.0	70.0	66.0	62.0	60.0	73.0	Да
052	Установка для мойки колес	527.50	481.50	0.00	12.57		56.0	56.0	59.0	62.0	65.0	66.0	65.0	62.0	56.0	71.0	Да
058	Дробильная установка	-49.00	153.50	0.00	12.57		72.8	72.8	75.7	78.6	81.0	82.6	80.9	78.0	72.6	87.0	Да
059	Дробильная установка	-67.50	178.00	0.00	12.57		72.8	72.8	75.7	78.6	81.0	82.6	80.9	78.0	72.6	87.0	Да
060	Дробильная установка	-12.50	104.00	0.00	12.57		72.8	72.8	75.7	78.6	81.0	82.6	80.9	78.0	72.6	87.0	Да
061	Дробильная установка	-16.00	110.00	0.00	12.57		72.8	72.8	75.7	78.6	81.0	82.6	80.9	78.0	72.6	87.0	Да
062	Грохот	80.50	200.00	0.00	12.57		44.3	44.3	46.5	49.2	53.5	56.5	57.8	56.0	51.6	63.0	Да
063	Инсинератор	-52.50	312.50	0.00	12.57		58.8	58.8	61.7	64.6	67.0	68.6	66.9	64.0	58.6	73.0	Да
064	Шредер	-12.00	94.50	0.00	12.57		46.3	46.3	48.5	51.2	55.5	58.5	59.8	58.0	53.6	65.0	Да
065	Шредер	-18.50	100.00	0.00	12.57		46.3	46.3	48.5	51.2	55.5	58.5	59.8	58.0	53.6	65.0	Да
066	Шредер	-24.50	113.50	0.00	12.57		46.3	46.3	48.5	51.2	55.5	58.5	59.8	58.0	53.6	65.0	Да
067	Котел	93.50	118.00	0.00	12.57		44.8	44.8	47.7	50.6	53.0	54.6	52.9	50.0	44.6	59.0	Да
068	Котел	90.00	115.50	0.00	12.57		44.8	44.8	47.7	50.6	53.0	54.6	52.9	50.0	44.6	59.0	Да
069	Котел	85.50	113.50	0.00	12.57		44.8	44.8	47.7	50.6	53.0	54.6	52.9	50.0	44.6	59.0	Да
070	Пресс	4.00	168.50	0.00	12.57		60.8	60.8	63.7	66.6	69.0	70.6	68.9	66.0	60.6	75.0	Да

071	Пресс	-4.50	173.50	0.00	12.57	60.8	60.8	63.7	66.6	69.0	70.6	68.9	66.0	60.6	75.0	Да
072-	Конвейеры	75.00	183.00	0.00	12.57	44.8	44.8	47.7	50.6	53.0	54.6	52.9	50.0	44.6	59.0	Да
171																
172-	Сепараторы	62.00	202.00	0.00	12.57	50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	65.0	Да
189																
204	КТП №2	64.50	164.50	0.00	12.57	50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	65.0	Да
205	КТП №1	136.50	101.00	0.00	12.57	50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	65.0	Да

1.2. Источники непостоянного шума

N	Объект	Коор	одинаты то	Р	Простран ственный угол	Уровни зву 1			,			чае R = частота	,,,,,,		вных	t	Т	La.экв	La.ma ĸc	В расчете
		Х (м)	Y (M)	Высота подъема (м)	, , , , , ,	Дистанция замера (расчета) R (м)	31.5	63	125	250	500	1000	2000	4000	8000					
01	Экскаватор ЭО-3322	430.50	419.00	0.00	12.57	7.5	81.0	81.0	72.0	68.0	68.0	66.0	64.0	60.0	55.0	1.	4.	71.0	74.0	Да
010	Бортовой автомобиль	393.50	349.00	0.00	12.57	7.5	87.0	87.0	82.0	78.0	74.0	71.0	67.0	60.0	52.0	1.	4.	76.0	81.0	Да
011	Бортовой автомобиль	513.50	487.50	0.00	12.57	7.5	87.0	87.0	82.0	78.0	74.0	71.0	67.0	60.0	52.0	1.	4.	76.0	81.0	Да
012	Автосамосвалы	324.50	398.50		12.57	7.5	87.0	87.0	82.0	7.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
013	Автосамосвалы	258.00	377.00	0.00	12.57	7.5	87.0	87.0	82.0	7.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
014	Автосамосвалы	351.00	348.50	0.00	12.57	7.5	87.0	87.0	82.0	7.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
015	Автосамосвалы	333.50	275.00	0.00	12.57	7.5	87.0	87.0	82.0	7.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
016	Автосамосвалы	248.00	400.00	0.00	12.57	7.5	87.0	87.0	82.0	7.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
017	Автосамосвалы	384.00	363.00	0.00	12.57	7.5	87.0	87.0	82.0	7.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
018	Автокран	385.00	305.00	0.00	12.57	7.5	80.0	80.0	76.0	71.0	63.0	64.0	63.0	56.0	50.0	1.	4.	70.0	72.0	Да
019	Автокран	312.00	314.50	0.00	12.57	7.5	80.0	80.0	76.0	71.0	63.0	64.0	63.0	56.0	50.0	1.	4.	70.0	72.0	Да
0194	Камаз 6520	0.00	153.50	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
02	Экскаватор ЭО-5122	474.00	469.00	0.00	12.57	7.5	95.0	95.0	84.0	79.0	73.0	70.0	68.0	64.0	57.0	1.	4.	77.5	82.0	Да
020	Автобетоносмеситель	332.50	295.00	0.00	12.57	7.5	82.0	82.0	82.0	72.0	71.0	69.0	68.0	62.0	54.0	1.	4.	74.9	78.0	Да
021	Автобетоносмеситель	348.00	334.00	0.00	12.57	7.5	82.0	82.0	82.0	72.0	71.0	69.0	68.0	62.0	54.0	1.	4.	74.9	78.0	Да
022	Автобетоносмеситель	403.50	331.50	0.00	12.57	7.5	82.0	82.0	82.0	72.0	71.0	69.0	68.0	62.0	54.0	1.	4.	74.9	78.0	Да
023	Автобетоносмеситель	316.50	369.50	0.00	12.57	7.5	82.0	82.0	82.0	72.0	71.0	69.0	68.0	62.0	54.0	1.	4.	74.9	78.0	Да
024	Автобетоносмеситель	260.50	418.50		12.57	7.5	82.0	82.0	82.0	72.0	71.0	69.0	68.0	62.0	54.0	1.	4.	74.9	78.0	Да
03	Экскаватор ЭО-5122	493.00	470.00		12.57	7.5	95.0	95.0	84.0	79.0	73.0	70.0	68.0	64.0	57.0	1.	4.	77.5	82.0	Да
036	Автопогрузчик	357.50	401.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
04	Экскватор траншейный	447.00	428.00	0.00	12.57	7.5	78.0	78.0	70.0	72.0	68.0	67.0	66.0	73.0	65.0	1.	4.	76.0	82.0	Да
040	Корчеватель-собиратель	269.50	361.00	0.00	12.57	7.5	78.0	78.0	70.0	72.0	68.0	67.0	66.0	73.0	65.0	1.	4.	76.0	82.0	Да
044	Каток дорожный	430.50	438.50		12.57	7.5	90.0	90.0	82.0	73.0	72.0	70.0	65.0	59.0	54.0	1.	4.	75.1	79.0	Да
045	Асфальтоукладчик	331.00	354.50	0.00	12.57	7.5	82.0	82.0	82.0	78.0	72.0	69.0	67.0	61.0	54.0	1.	4.	75.0	76.0	Да
047	Автогидроподъемник	306.50	449.00		12.57	7.5	61.0	61.0	65.0	58.0	58.0	57.0	53.0	51.0	49.0	1.	4.	62.0	65.0	Да
048	Бурильно-крановая машина	351.50	429.00		12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
05	Бульдозер ДЗ-42	361.50	293.50			7.5	74.0	74.0	83.0	78.0	74.0	74.0	70.0	67.0	62.0	1.	4.	78.0	83.0	Да
053	Микроавтобус	314.50	436.00	0.00	12.57	7.5	60.0	60.0	63.0	65.0	68.0	70.0	68.0	65.0	60.0	1.	1.	74.0	77.0	Да
054	Микроавтобус	538.00	499.50	0.00	12.57	7.5	60.0	60.0	63.0	65.0	68.0	70.0	68.0	65.0	60.0	1.	1.	74.0	77.0	Да
055	Автогрейдер ДЗ-180	254.00	385.00		12.57	7.5	81.0	81.0	72.0	68.0	68.0	66.0	64.0	60.0	55.0	1.	4.	71.0	74.0	Да
056	Автобетононасос	279.50	340.00		12.57	7.5	87.0	87.0	82.0	7.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
06	Бульдозер ДЗ-42	464.00	444.00		12.57	7.5	74.0	74.0	83.0	78.0	74.0	74.0	70.0	67.0	62.0	1.	4.	78.0	83.0	Да
07	Каток грунтовый	547.00	527.50		12.57	7.5	90.0	90.0	82.0	73.0	72.0	70.0	65.0	59.0	54.0	1.	4.	75.1	79.0	Да
08	Каток грунтовый	555.00	495.50			7.5	90.0	90.0	82.0	73.0	72.0	70.0	65.0	59.0	54.0	1.	4.	75.1	79.0	Да
09	Каток дорожный	560.00	518.50	0.00	12.57	7.5	90.0	90.0	82.0	73.0	72.0	70.0	65.0	59.0	54.0	1.	4.	75.1	79.0	Да

191	Поливомоечная машина	12.00	233.50	0.00	12.57	7.5	82.0	82.0	77.0	80.0	76.0	66.0	66.0	56.0	50.0	1.	4.	76.0	82.0	Да
192	Погрузчик ковшовый Bobcat	42.00	162.50	0.00	12.57	7.5	50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	1.	4.	65.0	67.0	Да
193	Погрузчик Polar Badgen	33.50	185.50	0.00	12.57	7.5	50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	1.	4.	65.0	67.0	Да
195	Камаз 6520	10.00	143.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
196	Камаз 6520	-38.00	178.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
197	Камаз 6520	-75.50	239.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
198	Камаз 6520	94.00	257.50	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
199	Амкодор 332В	60.00	283.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
200	Амкодор 332В	-45.00	127.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
201	Амкодор 332В	-39.50	138.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
202	Амкодор 332В	-1.50	183.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
203	Амкодор 332В	52.00	189.00	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
207	Бульдозер ДЗ-110	-108.50	-44.50	0.00	12.57	7.5	74.0	74.0	83.0	78.0	74.0	74.0	70.0	67.0	62.0	1.	4.	78.0	83.0	Да
208	Трактор Т-130	-148.00	19.00	0.00	12.57	7.5	83.0	83.0	74.0	66.0	69.0	70.0	78.0	60.0	55.0	1.	4.	80.0	83.0	Да
209	Трактор МТЗ-82	-169.50	69.50	0.00	12.57	7.5	83.0	83.0	74.0	66.0	69.0	70.0	78.0	60.0	55.0	1.	4.	80.0	83.0	Да
210	Мусоровоз	44.50	232.50	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
211	Мусоровоз	48.50	238.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
212	Мусоровоз	56.00	241.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
213	Мусоровоз	72.50	252.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
214	Мусоровоз	67.50	249.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
215	Мусоровоз	60.00	244.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да

N	Объект	Координаты точек (Х, Ү,	Ширина	Высота	Простран						-				вных	t	T	La. экв	L a.ма	В
		Высота подъема)	(M)	(M)	ственный	I	полосах	co cpe,	днегеом	1 етриче	ескими	частота	ами в Г	`ц					кс	расчете
					угол															
						Дистанция	31.5	63	125	250	500	1000	2000	4000	8000					
						замера														
						(расчета) R														
						(M)														
057	Стоянка	(128.5, 242, 0),	10.00		12.57	7.5	52.8	52.8	55.7	58.6	61.0	62.6	60.9	58.0	52.6	1.	4.	67.0	71.0	Да
	спецтехники	(155.5, 203.5, 0)																		
206	Стоянка легкового	(78.5, 59, 0),	7.00		12.57	7.5	48.8	48.8	51.7	54.6	57.0	58.6	56.9	54.0	48.6	1.	4.	63.0	65.0	Да
	автотранспорта	(121, 88.5, 0)																		

1.3. Препятствия

N	Объект	Координаты точек (Х, Ү)	Высота	Высота	Коэс	ффицис	ент звуг	сопогло	ощения	а, в ок	тавных	полоса	ax co	В
			(M)	подъема		сp	еднегео	метрич	іескимі	и часто	гами в	Гц		расчете
				(M)									•	
					31.5	63	125	250	500	1000	2000	4000	8000	
001	АБК	(52.5, 82),	3.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	Да
		(89, 107.5),												
		(97.5, 94.5),												
		(61, 70)												
002	Производственный корпус	(8.5, 204),	3.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	Да
		(88.5, 256.5),												
		(122.5, 206.5),												
		(42, 151.5)												

2. Условия расчета

2.1. Расчетные точки

N	Объект	Коој	одинаты то	очки	Тип точки	В
						расчете
	l l	X (m)	Y (m)	Высота		
				подъема		
				(M)		
001	Расчетная точка	192.00	1716.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
002	Расчетная точка	1354.00	1240.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
003	Расчетная точка	1680.00	301.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
004	Расчетная точка	983.00	-557.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
005	Расчетная точка	203.00	-969.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
006	Расчетная точка	-1193.00	323.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
007	Расчетная точка	-661.00	1216.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
800	Расчетная точка	-723.00	-577.00	1.50	Расчетная точка на границе жилой зоны	Да
009	Расчетная точка	-688.00	712.00	1.50	Расчетная точка на границе жилой зоны	Да
010	Расчетная точка	-327.00	1217.00	1.50	Расчетная точка на границе жилой зоны	Да
011	Расчетная точка	150.00	548.00	1.50	Расчетная точка на границе производственной зоны	Да
012	Расчетная точка	591.00	586.00	1.50	Расчетная точка на границе производственной зоны	Да
013	Расчетная точка	358.00	231.00	1.50	Расчетная точка на границе производственной зоны	Да
014	Расчетная точка	-83.00	137.00	1.50	Расчетная точка на границе производственной зоны	Да

2.2. Расчетные площадки

N	Объект	Координат	ы точки 1	Координат	ы точки 2	Ширина	Высота	Шаг сет	ки (м)	В
						(M)	подъема			расчете
							(M)			
		X (m)	Y (m)	Х (м)	Y (M)			X	Y	
001	Расчетная площадка	-1849.00	388.00	2287.00	388.00	3819.00	1.50	100.00	100.00	Да

Вариант расчета: "Эколог-Шум. Вариант расчета по умолчанию" 3. Результаты расчета (расчетный параметр "Звуковое давление")

3.1. Результаты в расчетных точках Точки типа: Расчетная точка на границе производственной зоны

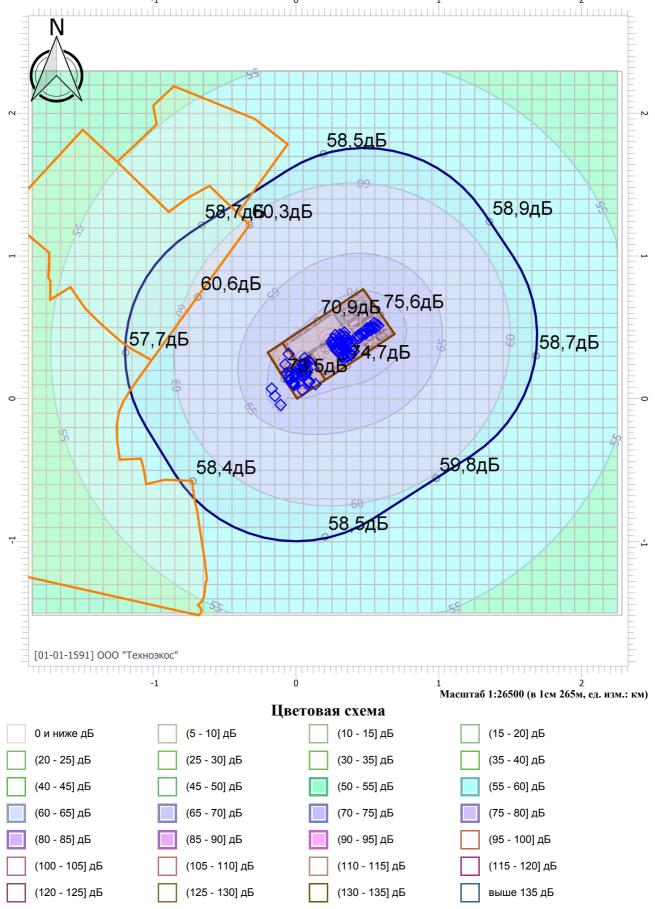
1041	точки типа. гасчетная точка на границе производственной зоны														
	Расчетная точка Координаты точки Высота			31.5	63	125	250	500	1000	2000	4000	8000	La.экв	La.макс	
	(M)		(M)												
N	Название	Х (м)	Y (M)												
011	Расчетная точка	150.00	548.00	1.50	70.9	70.8	65.6	58.6	59.6	55.6	51.5	42.2	18.1	60.90	70.80
012	Расчетная точка	591.00	586.00	1.50	75.6	75.6	68	61.1	59.7	57.5	53.5	47	33.9	62.50	72.00
013	Расчетная точка	358.00	231.00	1.50	74.7	74.7	70.8	63.1	64.2	60.5	57.1	50.3	37.7	65.90	75.80
014	Расчетная точка	-83.00	137.00	1.50	73.5	73.5	69.1	64.4	64.2	59.8	58.5	48.8	36.5	65.90	75.60

Точки типа: Расчетная точка на границе санитарно-защитной зоны

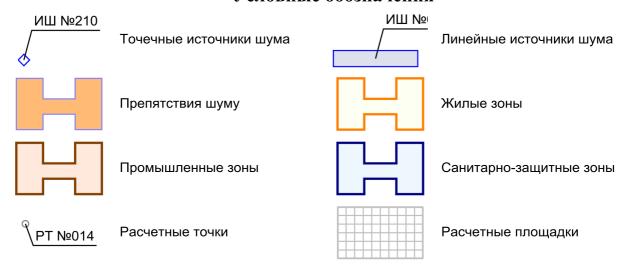
	Расчетная точка Координаты точки Выс				31.5	63	125	250	500	1000	2000	4000	8000	La.экв	La.макс
	T			(M)											
N	Название	X (M)	Y (m)												
001	Расчетная точка	192.00	1716.00	1.50	58.5	58.4	52.2	45.1	44.1	38.3	27.6	0	0	44.80	55.60
002	Расчетная точка	1354.00	1240.00	1.50	58.9	58.8	52.3	45.1	43.9	38.4	27.9	0	0	44.80	55.60
003	Расчетная точка	1680.00	301.00	1.50	58.7	58.5	52.2	45	43.8	38.3	27.6	0	0	44.70	55.50
004	Расчетная точка	983.00	-557.00	1.50	59.8	59.7	53.8	46.9	46.1	40.7	31.6	0	0	46.80	57.70

005	Расчетная точка	203.00	-969.00	1.50	58.5	58.4	52.8	46.1	45.2	39.5	31.3	0	0	45.90	56.90
006	Расчетная точка	-1193.00	323.00	1.50	57.7	57.6	52	45.3	44.5	38.4	30.4	0	0	45.00	56.10
007	Расчетная точка	-661.00	1216.00	1.50	58.7	58.6	52.8	46	45.3	39.4	30.1	0	0	45.80	56.70

Точки типа: Расчетная точка на границе жилой зоны


	Расчетная точка Координаты точки		Высота	31.5	63	125	250	500	1000	2000	4000	8000	L а.экв	La.макс	
				(M)											
N	Название	Х (м)	Y (m)												
008	Расчетная точка	-723.00	-577.00	1.50	58.4	58.3	53	46.5	45.7	40	33.9	0	0	46.40	57.50
009	Расчетная точка	-688.00	712.00	1.50	60.6	60.5	55	48.6	48.1	42.7	35.9	0	0	48.80	59.60
010	Расчетная точка	-327.00	1217.00	1.50	60.3	60.2	54.4	47.6	47.1	41.6	33.2	0	0	47.70	58.50

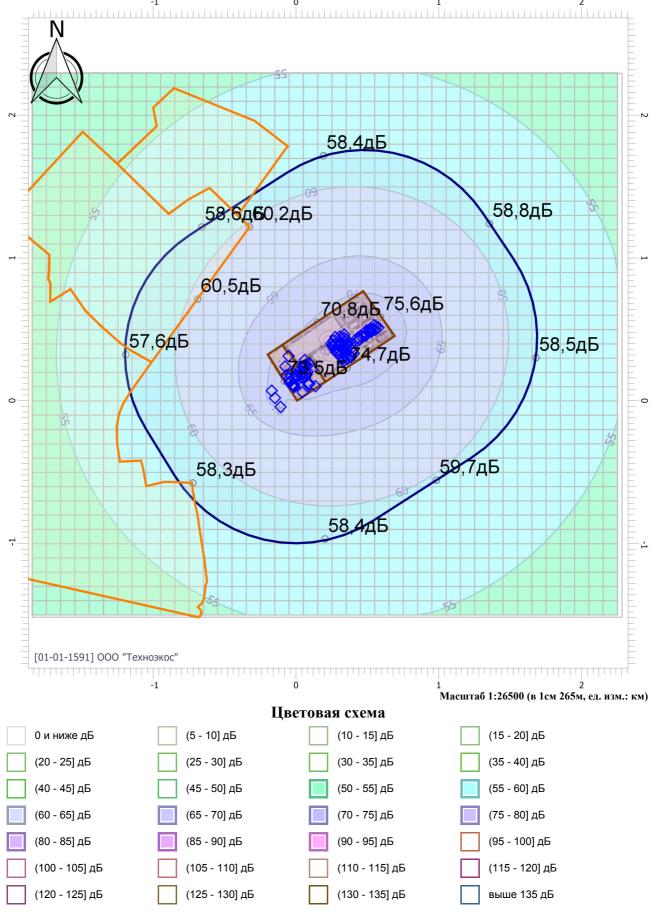
Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию


Тип расчета: Уровни шума

Код расчета: 31.5Гц (УЗД в октавной полосе со среднегеометрической частотой 31.5Гц)

Параметр: Звуковое давление

Условные обозначения

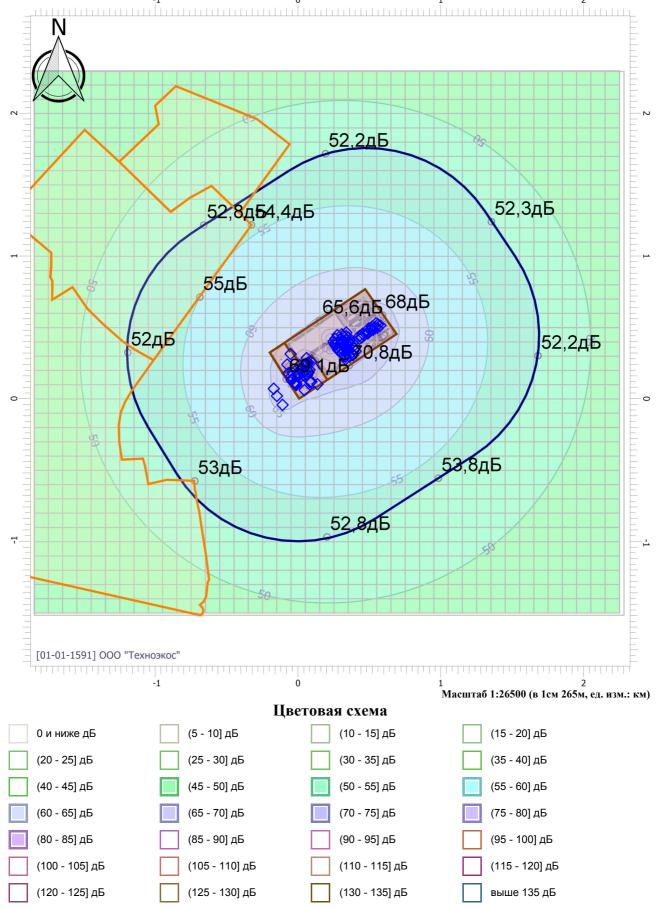


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 63Гц (УЗД в октавной полосе со среднегеометрической частотой 63Гц)

Параметр: Звуковое давление

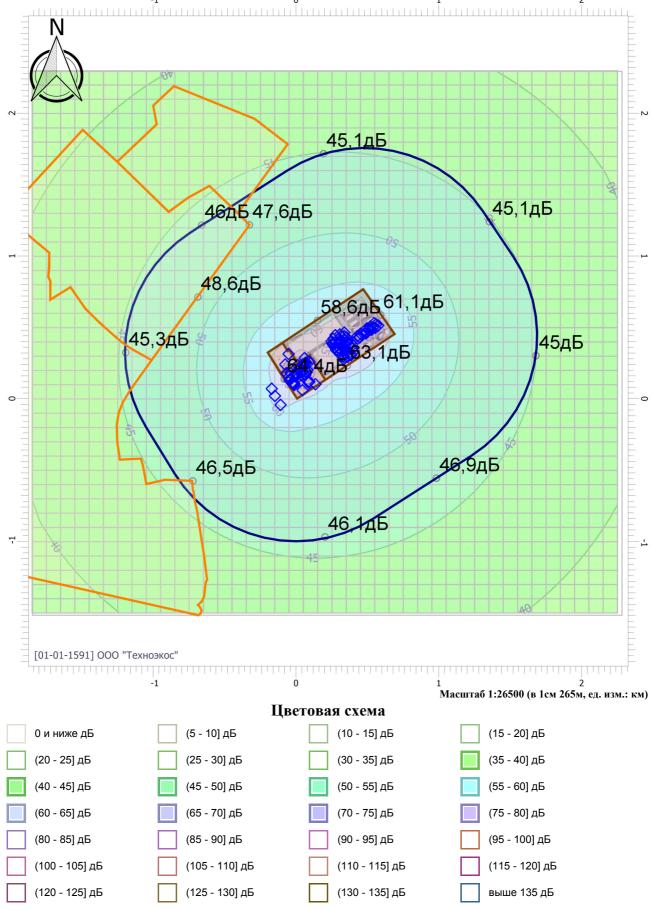


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 125Гц (УЗД в октавной полосе со среднегеометрической частотой 125Гц)

Параметр: Звуковое давление

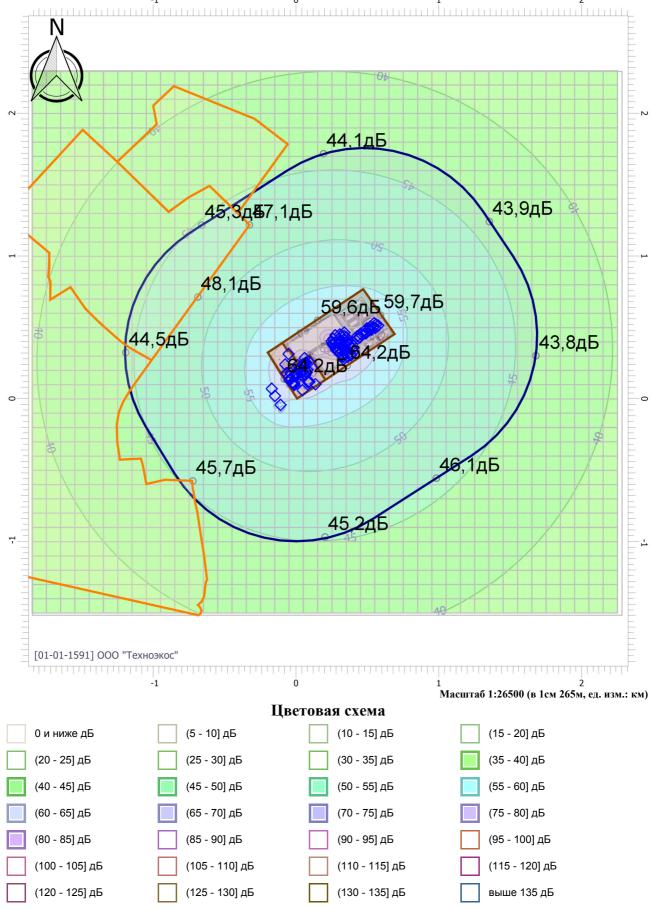


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 250Гц (УЗД в октавной полосе со среднегеометрической частотой 250Гц)

Параметр: Звуковое давление

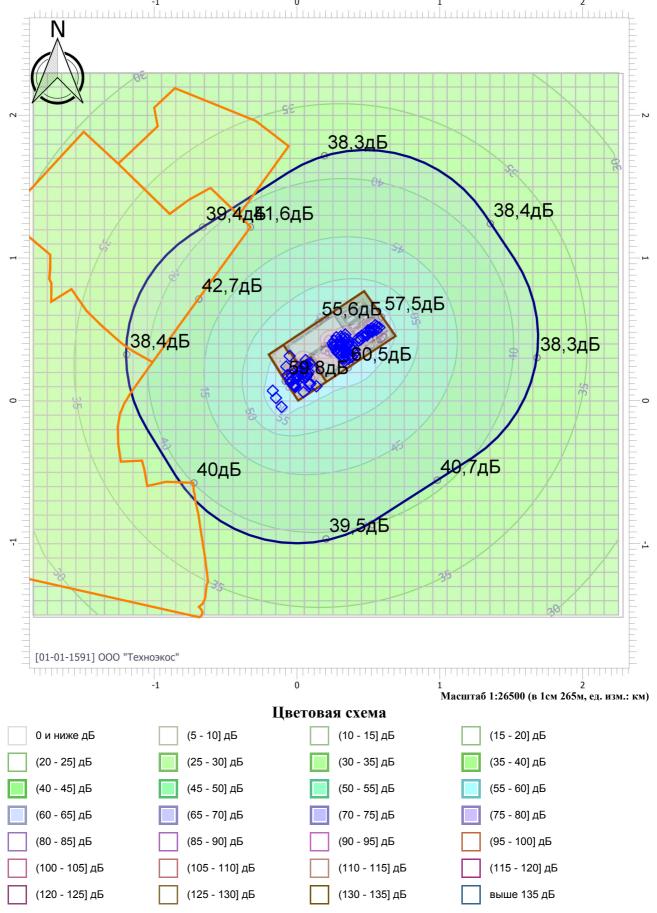


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 500Гц (УЗД в октавной полосе со среднегеометрической частотой 500Гц)

Параметр: Звуковое давление

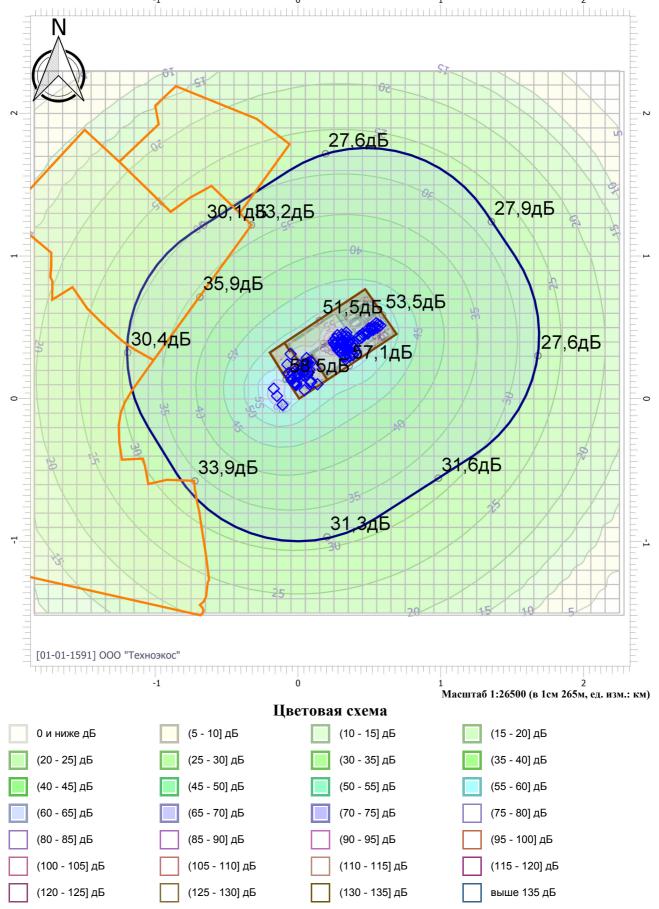


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 1000Гц (УЗД в октавной полосе со среднегеометрической частотой 1000Гц)

Параметр: Звуковое давление

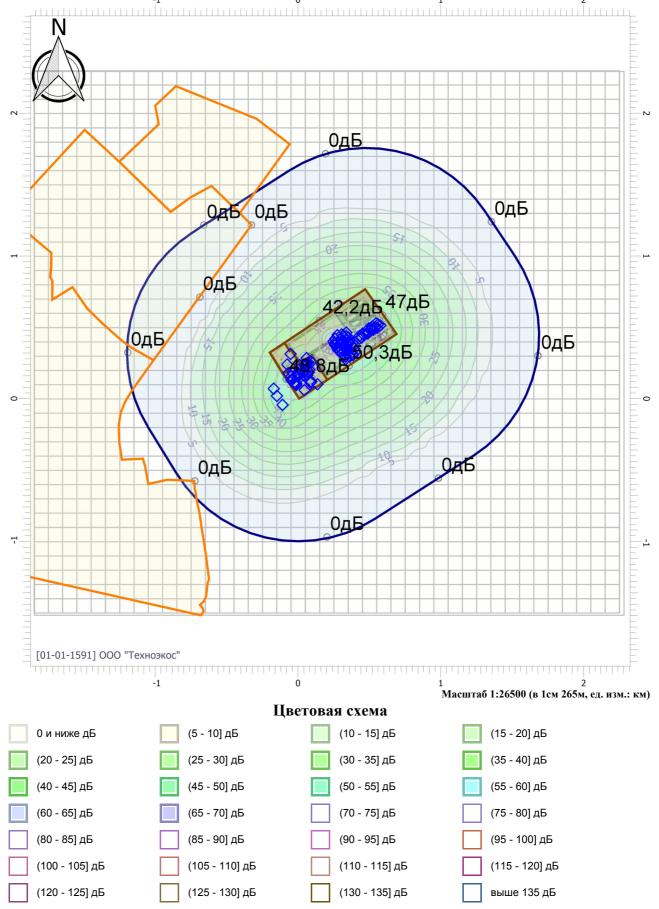


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 2000Гц (УЗД в октавной полосе со среднегеометрической частотой 2000Гц)

Параметр: Звуковое давление

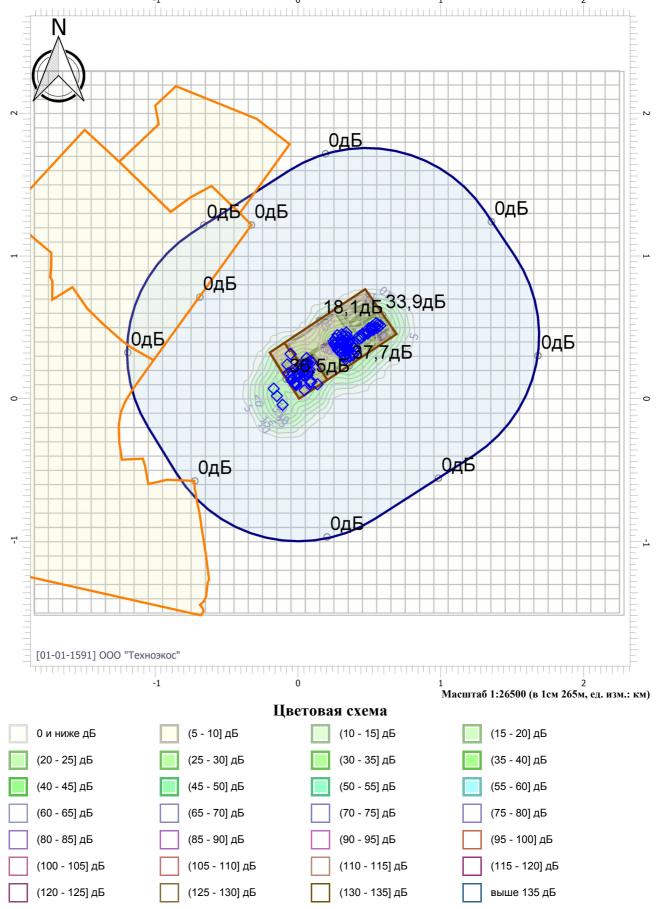


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

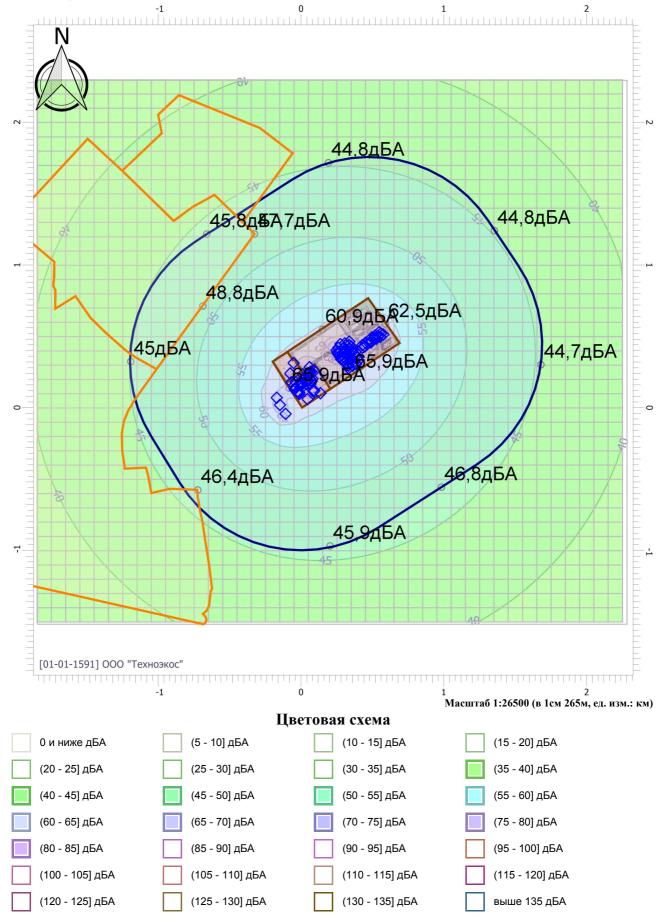
Код расчета: 4000Гц (УЗД в октавной полосе со среднегеометрической частотой 4000Гц)

Параметр: Звуковое давление



Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

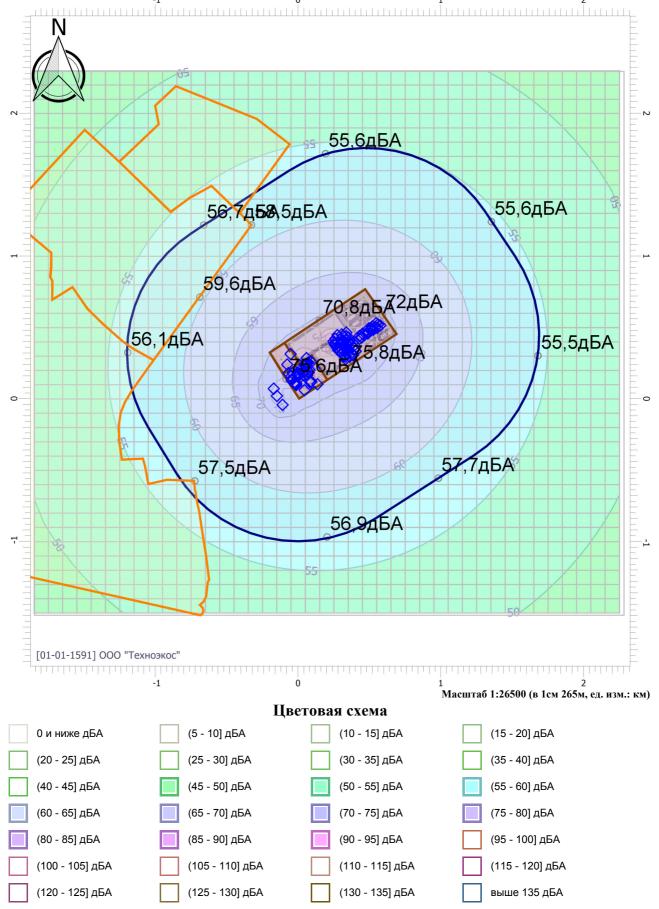
Тип расчета: Уровни шума


Код расчета: 8000Гц (УЗД в октавной полосе со среднегеометрической частотой 8000Гц)

Параметр: Звуковое давление

Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума Код расчета: La (Уровень звука) Параметр: Уровень звука



Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: La.max (Максимальный уровень звука)

Параметр: Максимальный уровень звука

2 этап строительства

Эколог-Шум. Модуль печати результатов расчета

Copyright © 2006-2020 ФИРМА "ИНТЕГРАЛ"

Источник данных: Эколог-Шум, версия 2.4.6.6023 (от 25.06.2020) [3D] Серийный номер 01-01-1591, ООО "Техноэкос"

1. Исходные данные

1.1. Источники постоянного шума

N	Объект	Коор	динаты то		Простран ственный угол	Уровни зву 1					и, в слу ескими				вных	L a.экв	в В расчете
		X (M)	Y (m)	Высота подъема (м)	•	Дистанция замера (расчета) R (м)	31.5	63	125	250	500	1000	2000	4000	8000		
025	Глубинный вибратор	277.00	389.00	0.00	12.57		62.0	62.0	70.0	70.0	64.0	62.0	61.0	59.0	56.0	69.0	Да
026	Глубинный вибратор	519.50	504.00	0.00	12.57		62.0	62.0	70.0	70.0	64.0	62.0	61.0	59.0	56.0	69.0	Да
027	Глубинный вибратор	308.00	404.50	0.00	12.57		62.0	62.0	70.0	70.0	64.0	62.0	61.0	59.0	56.0	69.0	Да
028	Глубинный вибратор	352.50	391.00	0.00	12.57		62.0	62.0	70.0	70.0	64.0	62.0	61.0	59.0	56.0	69.0	Да
029	Глубинный вибратор	373.50	322.00	0.00	12.57		62.0	62.0	70.0	70.0	64.0	62.0	61.0	59.0	56.0	69.0	Да
030	Виброрейка	452.50	455.50	0.00	12.57		97.0	97.0	92.0	82.0	89.0	87.0	82.0	80.0	78.0	91.3	Да
031	Виброрейка	275.50	443.50	0.00	12.57		97.0	97.0	92.0	82.0	89.0	87.0	82.0	80.0	78.0	91.3	Да
032	Виброрейка	300.00	380.50	0.00	12.57		97.0	97.0	92.0	82.0	89.0	87.0	82.0	80.0	78.0	91.3	Да
033	Виброплита	321.50	300.50	0.00	12.57		89.0	89.0	90.0	81.0	73.0	74.0	70.0	68.0	64.0	80.0	Да
034	Вибротрамбовка	311.00	343.50	0.00	12.57		80.0	80.0	83.0	76.0	73.0	72.0	70.0	69.0	66.0	78.0	Да
035	Вибротрамбовка	347.00	317.50	0.00	12.57		80.0	80.0	83.0	76.0	73.0	72.0	70.0	69.0	66.0	78.0	Да
037	Станок для резки арматуры	370.00	380.50	0.00	12.57		63.0	63.0	66.0	69.0	72.0	73.0	72.0	69.0	63.0	78.0	Да
038	Сварочный выпрямитель	489.50	456.50	0.00	12.57		105.0	105.0	98.0	92.0	89.0	86.0	84.0	82.0	80.0	93.0	Да
039	Сварочный выпрямитель	576.50	512.50	0.00	12.57		105.0	105.0	98.0	92.0	89.0	86.0	84.0	82.0	80.0	93.0	Да
041	Бензопила	296.50	415.00	0.00	12.57		78.0	78.0	74.0	68.0	71.0	68.0	64.0	59.0	52.0	73.0	Да
042	Бензопила	345.50	376.00	0.00	12.57		78.0	78.0	74.0	68.0	71.0	68.0	64.0	59.0	52.0	73.0	Да
043	Окрасочный аппарат	497.50	492.00	0.00	12.57		59.0	59.0	61.0	64.0	67.0	68.0	67.0	64.0	59.0	73.0	Да
046	Гудронатор	336.00	438.00	0.00	12.57		87.0	87.0	90.0	78.0	76.0	72.0	67.0	61.0	56.0	79.0	Да
049	Сварочный аппарат	384.50	389.50	0.00	12.57		75.0	75.0	72.0	67.0	68.0	70.0	66.0	62.0	60.0	73.0	Да
050	Дизельная мотопомпа	338.50	463.00	0.00	12.57		81.8	81.8	84.7	87.6	90.0	91.6	89.9	87.0	81.6	96.0	Да
051	Сварочный аппарат	297.50	333.00	0.00	12.57		75.0	75.0	72.0	67.0	68.0	70.0	66.0	62.0	60.0	73.0	Да
052	Установка для мойки колес	527.50	481.50	0.00	12.57		56.0	56.0	59.0	62.0	65.0	66.0	65.0	62.0	56.0	71.0	Да
058	Дробильная установка	-49.00	153.50	0.00	12.57		72.8	72.8	75.7	78.6	81.0	82.6	80.9	78.0	72.6	87.0	Да
059	Дробильная установка	-67.50	178.00	0.00	12.57		72.8	72.8	75.7	78.6	81.0	82.6	80.9	78.0	72.6	87.0	Да
060	Дробильная установка	-12.50	104.00	0.00	12.57		72.8	72.8	75.7	78.6	81.0	82.6	80.9	78.0	72.6	87.0	Да
061	Дробильная установка	-16.00	110.00	0.00	12.57		72.8	72.8	75.7	78.6	81.0	82.6	80.9	78.0	72.6	87.0	Да
062	Грохот	80.50	200.00	0.00	12.57		44.3	44.3	46.5	49.2	53.5	56.5	57.8	56.0	51.6	63.0	Да
063	Инсинератор	-52.50	312.50	0.00	12.57		58.8	58.8	61.7	64.6	67.0	68.6	66.9	64.0	58.6	73.0	Да
064	Шредер	-12.00	94.50	0.00	12.57		46.3	46.3	48.5	51.2	55.5	58.5	59.8	58.0	53.6	65.0	Да
065	Шредер	-18.50	100.00	0.00	12.57		46.3	46.3	48.5	51.2	55.5	58.5	59.8	58.0	53.6	65.0	Да
066	Шредер	-24.50	113.50	0.00	12.57		46.3	46.3	48.5	51.2	55.5	58.5	59.8	58.0	53.6	65.0	Да
067	Котел	93.50	118.00	0.00	12.57		44.8	44.8	47.7	50.6	53.0	54.6	52.9	50.0	44.6	59.0	Да
068	Котел	90.00	115.50	0.00	12.57		44.8	44.8	47.7	50.6	53.0	54.6	52.9	50.0	44.6	59.0	Да
069	Котел	85.50	113.50	0.00	12.57		44.8	44.8	47.7	50.6	53.0	54.6	52.9	50.0	44.6	59.0	Да
070	Пресс	4.00	168.50	0.00	12.57		60.8	60.8	63.7	66.6	69.0	70.6	68.9	66.0	60.6	75.0	Да

071	Пресс	-4.50	173.50	0.00	12.57	60.8	60.8	63.7	66.6	69.0	70.6	68.9	66.0	60.6	75.0	Да
072-	Конвейеры	75.00	183.00	0.00	12.57	44.8	44.8	47.7	50.6	53.0	54.6	52.9	50.0	44.6	59.0	Да
171																
172-	Сепараторы	62.00	202.00	0.00	12.57	50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	65.0	Да
189																
204	КТП №2	64.50	164.50	0.00	12.57	50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	65.0	Да
205	КТП №1	136.50	101.00	0.00	12.57	50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	65.0	Да

1.2. Источники непостоянного шума

N	Объект	Коор	одинаты то	Р	Простран ственный угол	Уровни зву 1			,			чае R = частота	,,,,,,		вных	t	Т	La.экв	La.ma ĸc	В расчете
		Х (м)	Y (M)	Высота подъема (м)	, , , , , ,	Дистанция замера (расчета) R (м)	31.5	63	125	250	500	1000	2000	4000	8000					
01	Экскаватор ЭО-3322	430.50	419.00	0.00	12.57	7.5	81.0	81.0	72.0	68.0	68.0	66.0	64.0	60.0	55.0	1.	4.	71.0	74.0	Да
010	Бортовой автомобиль	393.50	349.00	0.00	12.57	7.5	87.0	87.0	82.0	78.0	74.0	71.0	67.0	60.0	52.0	1.	4.	76.0	81.0	Да
011	Бортовой автомобиль	513.50	487.50	0.00	12.57	7.5	87.0	87.0	82.0	78.0	74.0	71.0	67.0	60.0	52.0	1.	4.	76.0	81.0	Да
012	Автосамосвалы	324.50	398.50		12.57	7.5	87.0	87.0	82.0	7.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
013	Автосамосвалы	258.00	377.00	0.00	12.57	7.5	87.0	87.0	82.0	7.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
014	Автосамосвалы	351.00	348.50	0.00	12.57	7.5	87.0	87.0	82.0	7.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
015	Автосамосвалы	333.50	275.00	0.00	12.57	7.5	87.0	87.0	82.0	7.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
016	Автосамосвалы	248.00	400.00	0.00	12.57	7.5	87.0	87.0	82.0	7.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
017	Автосамосвалы	384.00	363.00	0.00	12.57	7.5	87.0	87.0	82.0	7.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
018	Автокран	385.00	305.00	0.00	12.57	7.5	80.0	80.0	76.0	71.0	63.0	64.0	63.0	56.0	50.0	1.	4.	70.0	72.0	Да
019	Автокран	312.00	314.50	0.00	12.57	7.5	80.0	80.0	76.0	71.0	63.0	64.0	63.0	56.0	50.0	1.	4.	70.0	72.0	Да
0194	Камаз 6520	0.00	153.50	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
02	Экскаватор ЭО-5122	474.00	469.00	0.00	12.57	7.5	95.0	95.0	84.0	79.0	73.0	70.0	68.0	64.0	57.0	1.	4.	77.5	82.0	Да
020	Автобетоносмеситель	332.50	295.00	0.00	12.57	7.5	82.0	82.0	82.0	72.0	71.0	69.0	68.0	62.0	54.0	1.	4.	74.9	78.0	Да
021	Автобетоносмеситель	348.00	334.00	0.00	12.57	7.5	82.0	82.0	82.0	72.0	71.0	69.0	68.0	62.0	54.0	1.	4.	74.9	78.0	Да
022	Автобетоносмеситель	403.50	331.50	0.00	12.57	7.5	82.0	82.0	82.0	72.0	71.0	69.0	68.0	62.0	54.0	1.	4.	74.9	78.0	Да
023	Автобетоносмеситель	316.50	369.50	0.00	12.57	7.5	82.0	82.0	82.0	72.0	71.0	69.0	68.0	62.0	54.0	1.	4.	74.9	78.0	Да
024	Автобетоносмеситель	260.50	418.50		12.57	7.5	82.0	82.0	82.0	72.0	71.0	69.0	68.0	62.0	54.0	1.	4.	74.9	78.0	Да
03	Экскаватор ЭО-5122	493.00	470.00		12.57	7.5	95.0	95.0	84.0	79.0	73.0	70.0	68.0	64.0	57.0	1.	4.	77.5	82.0	Да
036	Автопогрузчик	357.50	401.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
04	Экскватор траншейный	447.00	428.00	0.00	12.57	7.5	78.0	78.0	70.0	72.0	68.0	67.0	66.0	73.0	65.0	1.	4.	76.0	82.0	Да
040	Корчеватель-собиратель	269.50	361.00	0.00	12.57	7.5	78.0	78.0	70.0	72.0	68.0	67.0	66.0	73.0	65.0	1.	4.	76.0	82.0	Да
044	Каток дорожный	430.50	438.50		12.57	7.5	90.0	90.0	82.0	73.0	72.0	70.0	65.0	59.0	54.0	1.	4.	75.1	79.0	Да
045	Асфальтоукладчик	331.00	354.50	0.00	12.57	7.5	82.0	82.0	82.0	78.0	72.0	69.0	67.0	61.0	54.0	1.	4.	75.0	76.0	Да
047	Автогидроподъемник	306.50	449.00		12.57	7.5	61.0	61.0	65.0	58.0	58.0	57.0	53.0	51.0	49.0	1.	4.	62.0	65.0	Да
048	Бурильно-крановая машина	351.50	429.00		12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
05	Бульдозер ДЗ-42	361.50	293.50			7.5	74.0	74.0	83.0	78.0	74.0	74.0	70.0	67.0	62.0	1.	4.	78.0	83.0	Да
053	Микроавтобус	314.50	436.00	0.00	12.57	7.5	60.0	60.0	63.0	65.0	68.0	70.0	68.0	65.0	60.0	1.	1.	74.0	77.0	Да
054	Микроавтобус	538.00	499.50	0.00	12.57	7.5	60.0	60.0	63.0	65.0	68.0	70.0	68.0	65.0	60.0	1.	1.	74.0	77.0	Да
055	Автогрейдер ДЗ-180	254.00	385.00		12.57	7.5	81.0	81.0	72.0	68.0	68.0	66.0	64.0	60.0	55.0	1.	4.	71.0	74.0	Да
056	Автобетононасос	279.50	340.00		12.57	7.5	87.0	87.0	82.0	7.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
06	Бульдозер ДЗ-42	464.00	444.00		12.57	7.5	74.0	74.0	83.0	78.0	74.0	74.0	70.0	67.0	62.0	1.	4.	78.0	83.0	Да
07	Каток грунтовый	547.00	527.50		12.57	7.5	90.0	90.0	82.0	73.0	72.0	70.0	65.0	59.0	54.0	1.	4.	75.1	79.0	Да
08	Каток грунтовый	555.00	495.50			7.5	90.0	90.0	82.0	73.0	72.0	70.0	65.0	59.0	54.0	1.	4.	75.1	79.0	Да
09	Каток дорожный	560.00	518.50	0.00	12.57	7.5	90.0	90.0	82.0	73.0	72.0	70.0	65.0	59.0	54.0	1.	4.	75.1	79.0	Да

191	Поливомоечная машина	12.00	233.50	0.00	12.57	7.5	82.0	82.0	77.0	80.0	76.0	66.0	66.0	56.0	50.0	1.	4.	76.0	82.0	Да
192	Погрузчик ковшовый Bobcat	42.00	162.50	0.00	12.57	7.5	50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	1.	4.	65.0	67.0	Да
193	Погрузчик Polar Badgen	33.50	185.50	0.00	12.57	7.5	50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	1.	4.	65.0	67.0	Да
195	Камаз 6520	10.00	143.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
196	Камаз 6520	-38.00	178.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
197	Камаз 6520	-75.50	239.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
198	Камаз 6520	69.00	246.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
199	Амкодор 332В	60.00	283.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
200	Амкодор 332В	-45.00	127.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
201	Амкодор 332В	-39.50	138.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
202	Амкодор 332В	-1.50	183.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
203	Амкодор 332В	52.00	189.00	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
207	Бульдозер ДЗ-110	-108.50	-44.50	0.00	12.57	7.5	74.0	74.0	83.0	78.0	74.0	74.0	70.0	67.0	62.0	1.	4.	78.0	83.0	Да
208	Трактор Т-130	-148.00	19.00	0.00	12.57	7.5	83.0	83.0	74.0	66.0	69.0	70.0	78.0	60.0	55.0	1.	4.	80.0	83.0	Да
209	Трактор МТЗ-82	-169.50	69.50	0.00	12.57	7.5	83.0	83.0	74.0	66.0	69.0	70.0	78.0	60.0	55.0	1.	4.	80.0	83.0	Да
210	Мусоровоз	117.50	270.50	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
211	Мусоровоз	74.00	250.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
212	Мусоровоз	62.50	242.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
213	Мусоровоз	57.50	238.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
214	Мусоровоз	50.50	234.50	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
215	Мусоровоз	46.00	232.50	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да

N	Объект	Координаты точек (Х, Ү,	Ширина	Высота	Простран						-				вных	t	T	La. экв	L a.ма	В
		Высота подъема)	(M)	(M)	ственный	I	полосах	co cpe,	днегеом	1 етриче	ескими	частота	ами в Г	`ц					кс	расчете
					угол										8000					
						Дистанция 31.5 63 125 250 500 1000 2000 4000 замера 31.5 32.5 32.5 30.5 <td< th=""><th></th><th></th><th></th><th></th><th></th></td<>														
						замера														
						(расчета) R														
						(M)														
057	Стоянка	(128.5, 242, 0),	10.00		12.57	7.5	52.8	52.8	55.7	58.6	61.0	62.6	60.9	58.0	52.6	1.	4.	67.0	71.0	Да
	спецтехники	(155.5, 203.5, 0)																		
206	Стоянка легкового	(78.5, 59, 0),	7.00		12.57	7.5	7.5 48.8 48.8 51.7 54.6 57.0 58.6 56.9 54.0										4.	63.0	65.0	Да
	автотранспорта	(121, 88.5, 0)																		

1.3. Препятствия

N	N	Объект	Координаты точек (Х, Ү)	Высота	Высота	Коэс					а, в ок			ax co	В
				(M)	подъема (м)		cp	еднегео	метрич	нескимі	и часто	гами в	Гц		расчете
					(M)	31.5	63	125	250	500	1000	2000	4000	8000	
00)1 .	АБК	(52.5, 82),	3.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	Да
			(89, 107.5),												
			(97.5, 94.5),												
			(61, 70)												
00)2	Производственный корпус	(8.5, 204),	3.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	Да
			(88.5, 256.5),												
			(122.5, 206.5),												
			(42, 151.5)												

2. Условия расчета

2.1. Расчетные точки

N	Объект	Коој	одинаты то	очки	Тип точки	В
						расчете
		Х (м)	Y (m)	Высота		
				подъема		
				(M)		
001	Расчетная точка	192.00	1716.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
002	Расчетная точка	1354.00	1240.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
003	Расчетная точка	1680.00	301.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
004	Расчетная точка	983.00	-557.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
005	Расчетная точка	203.00	-969.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
006	Расчетная точка	-1193.00	323.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
007	Расчетная точка	-661.00	1216.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
008	Расчетная точка	-723.00	-577.00	1.50	Расчетная точка на границе жилой зоны	Да
009	Расчетная точка	-688.00	712.00	1.50	Расчетная точка на границе жилой зоны	Да
010	Расчетная точка	-327.00	1217.00	1.50	Расчетная точка на границе жилой зоны	Да
011	Расчетная точка	150.00	548.00	1.50	Расчетная точка на границе производственной зоны	Да
012	Расчетная точка	591.00	586.00	1.50	Расчетная точка на границе производственной зоны	Да
013	Расчетная точка	358.00	231.00	1.50	Расчетная точка на границе производственной зоны	Да
014	Расчетная точка	-83.00	137.00	1.50	Расчетная точка на границе производственной зоны	Да

2.2. Расчетные площадки

N	Объект	Координат	ы точки 1	Координат	ы точки 2	Ширина	Высота	Шаг сет	ки (м)	В
						(M)	подъема			расчете
							(M)			
		X (M)	Y (m)	X (M)	Y (m)			X	Y	
001	Расчетная площадка	-1849.00	388.00	2287.00	388.00	3819.00	1.50	100.00	100.00	Да

Вариант расчета: "Эколог-Шум. Вариант расчета по умолчанию"

3. Результаты расчета (расчетный параметр "Звуковое давление")

3.1. Результаты в расчетных точках Точки типа: Расчетная точка на границе производственной зоны

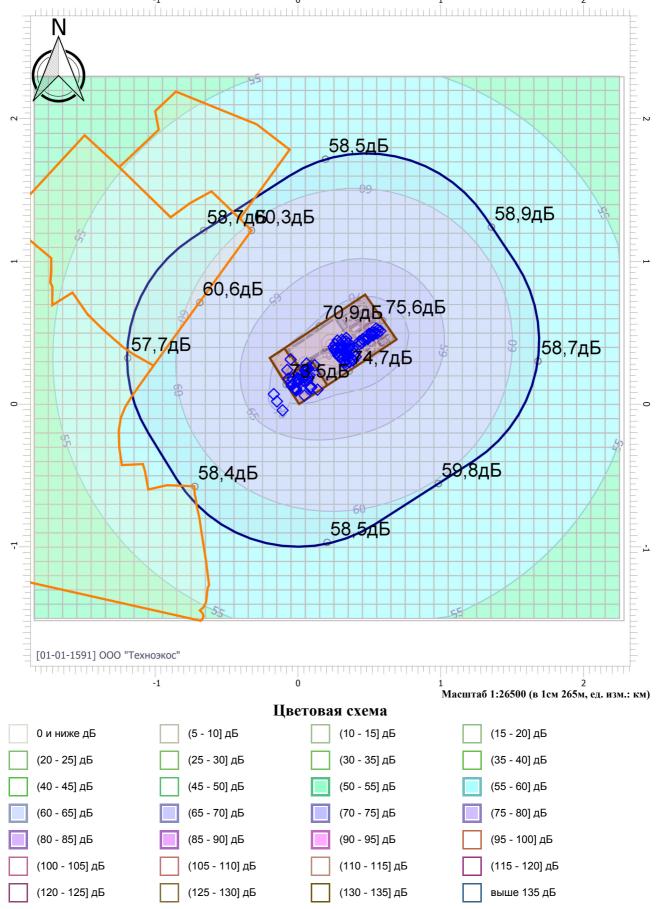
	Расчетная точка	Координа	TLI TOURU	Высота	31.5	63	125	250	500	1000	2000	4000	8000	L а.экв	La.макс
	тастепная то тка	Координа	TDI TO IKI	(M)	51.5	05	123	230	300	1000	2000	4000	0000	La.3Kb	La.marc
N	Название	X (M)	Y (m)												
011	Расчетная точка	150.00	548.00	1.50	70.9	70.8	65.6	58.6	59.6	55.6	51.5	42.3	18.1	60.90	70.80
012	Расчетная точка	591.00	586.00	1.50	75.6	75.6	68	61.1	59.7	57.5	53.5	47	33.9	62.50	72.00
013	Расчетная точка	358.00	231.00	1.50	74.7	74.7	70.8	63.1	64.2	60.6	57.1	50.3	37.7	65.90	75.80
014	Расчетная точка	-83.00	137.00	1.50	73.5	73.4	69.1	64.4	64.2	59.8	58.5	48.7	36.5	65.90	75.60

Точки типа: Расчетная точка на границе санитарно-защитной зоны

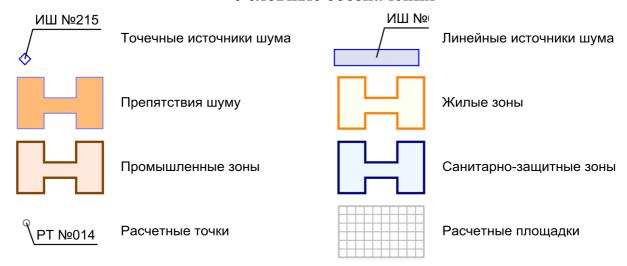
	Расчетная точка	Координа	ты точки		31.5	63	125	250	500	1000	2000	4000	8000	La.экв	La.макс
N	Название	Х (м)	Y (м)	(M)											
001	Расчетная точка	192.00	1716.00	1.50	58.5	58.4	52.2	45.1	44.1	38.3	27.6	0	0	44.80	55.60
002	Расчетная точка	1354.00	1240.00	1.50	58.9	58.8	52.3	45.1	43.9	38.4	27.9	0	0	44.80	55.60

003	Расчетная точка	1680.00	301.00	1.50	58.7	58.5	52.2	45	43.8	38.3	27.6	0	0	44.70	55.50
004	Расчетная точка	983.00	-557.00	1.50	59.8	59.7	53.8	46.9	46.1	40.7	31.6	0	0	46.80	57.70
005	Расчетная точка	203.00	-969.00	1.50	58.5	58.4	52.8	46.1	45.2	39.5	31.3	0	0	45.90	56.90
006	Расчетная точка	-1193.00	323.00	1.50	57.7	57.5	52	45.3	44.5	38.4	30.4	0	0	45.00	56.10
007	Расчетная точка	-661.00	1216.00	1.50	58.7	58.6	52.8	46	45.3	39.4	30.1	0	0	45.80	56.70

Точки типа: Расчетная точка на границе жилой зоны


	Расчетная точка	Координа	ты точки	Высота (м)	31.5	63	125	250	500	1000	2000	4000	8000	La. экв	La.макс
N	Название	Х (м)	Y (m)	()											
008	Расчетная точка	-723.00	-577.00	1.50	58.4	58.3	53	46.5	45.7	40	33.9	0	0	46.40	57.50
009	Расчетная точка	-688.00	712.00	1.50	60.6	60.5	55	48.6	48.1	42.6	35.9	0	0	48.80	59.60
010	Расчетная точка	-327.00	1217.00	1.50	60.3	60.2	54.4	47.6	47.1	41.6	33.2	0	0	47.70	58.50

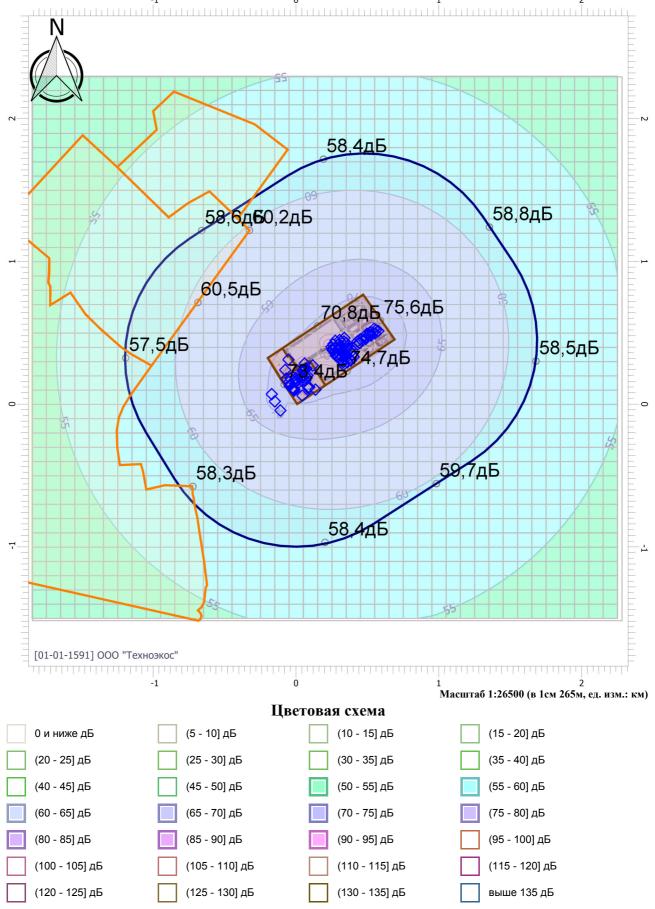
Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию


Тип расчета: Уровни шума

Код расчета: 31.5Гц (УЗД в октавной полосе со среднегеометрической частотой 31.5Гц)

Параметр: Звуковое давление

Условные обозначения

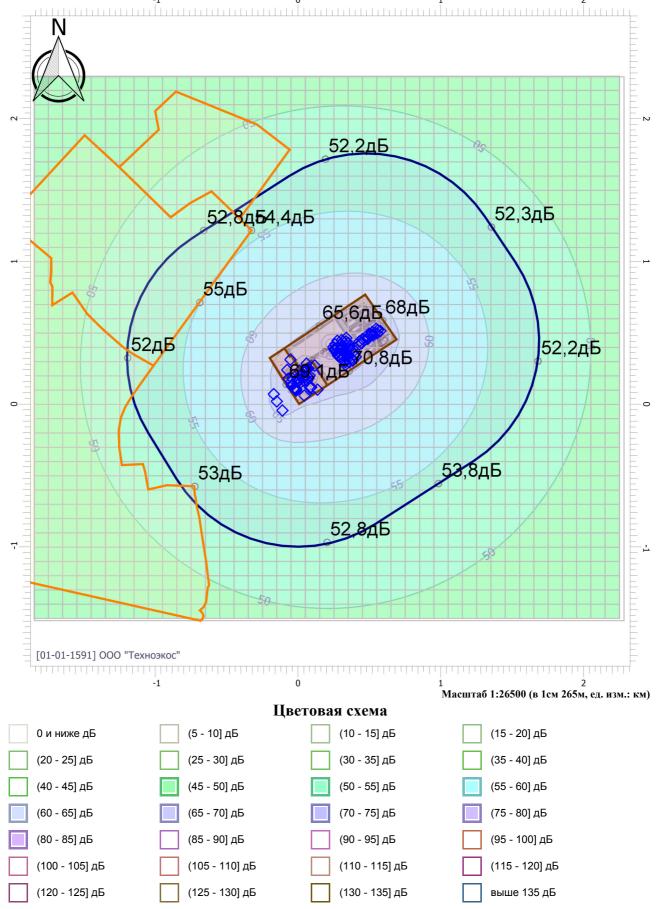


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 63Гц (УЗД в октавной полосе со среднегеометрической частотой 63Гц)

Параметр: Звуковое давление

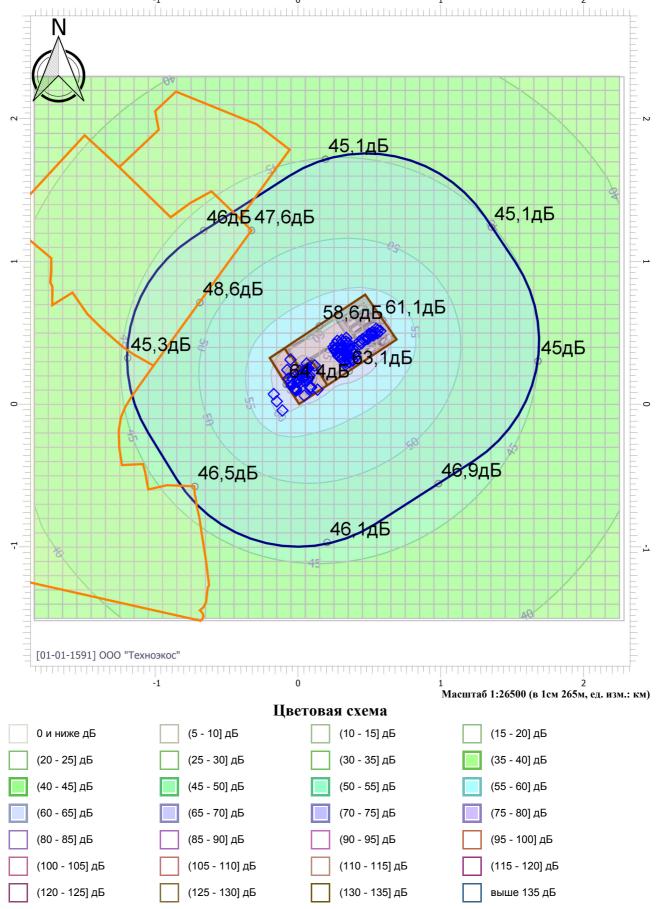


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 125Гц (УЗД в октавной полосе со среднегеометрической частотой 125Гц)

Параметр: Звуковое давление

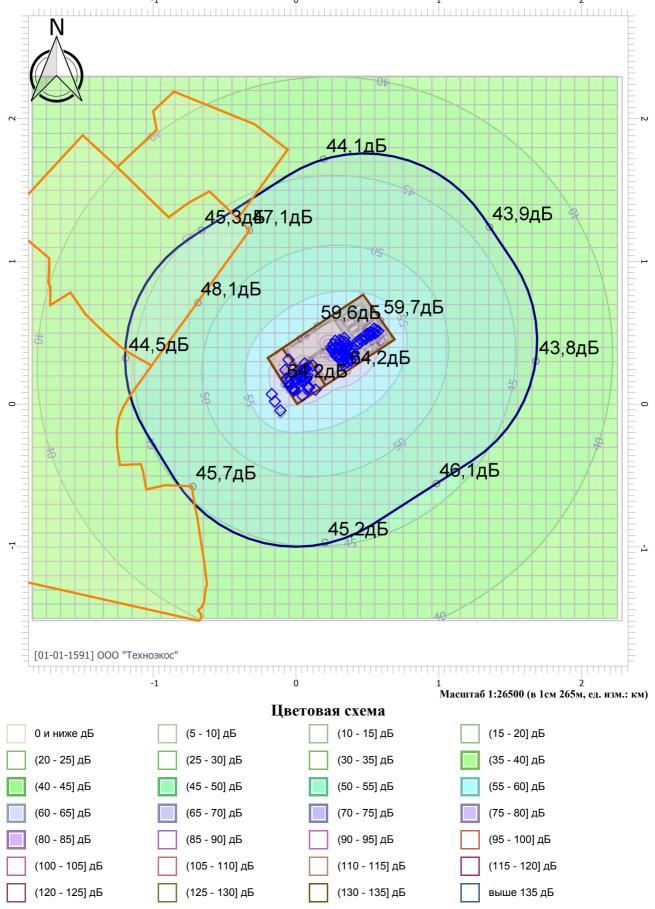


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 250Гц (УЗД в октавной полосе со среднегеометрической частотой 250Гц)

Параметр: Звуковое давление

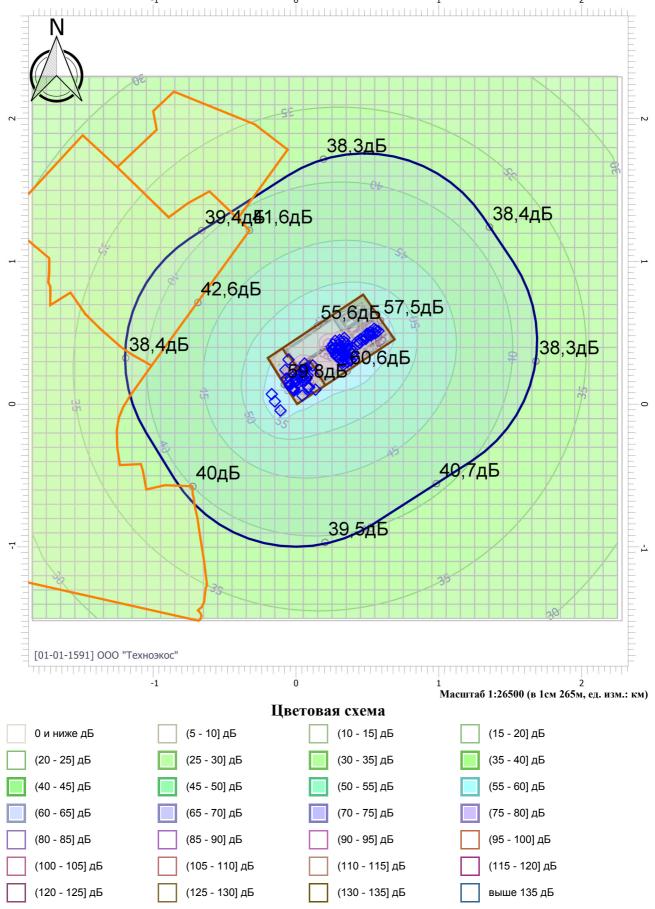


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 500Гц (УЗД в октавной полосе со среднегеометрической частотой 500Гц)

Параметр: Звуковое давление

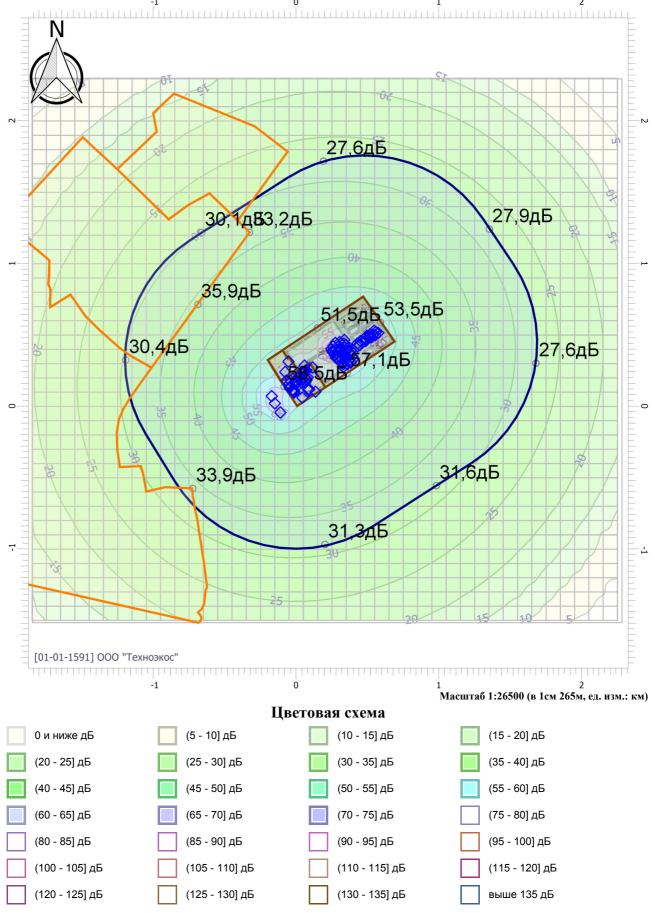


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 1000Гц (УЗД в октавной полосе со среднегеометрической частотой 1000Гц)

Параметр: Звуковое давление

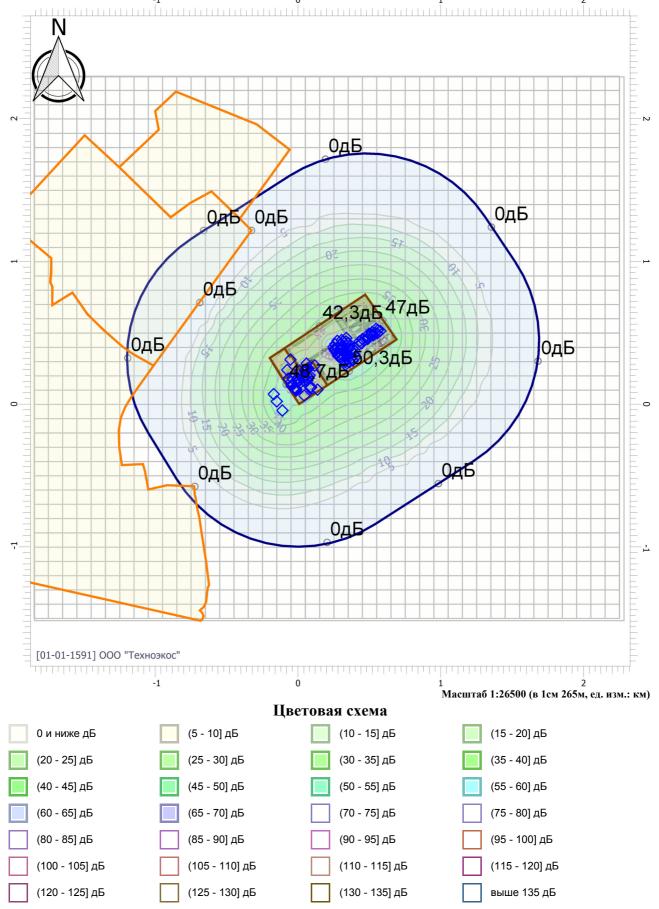


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 2000Гц (УЗД в октавной полосе со среднегеометрической частотой 2000Гц)

Параметр: Звуковое давление

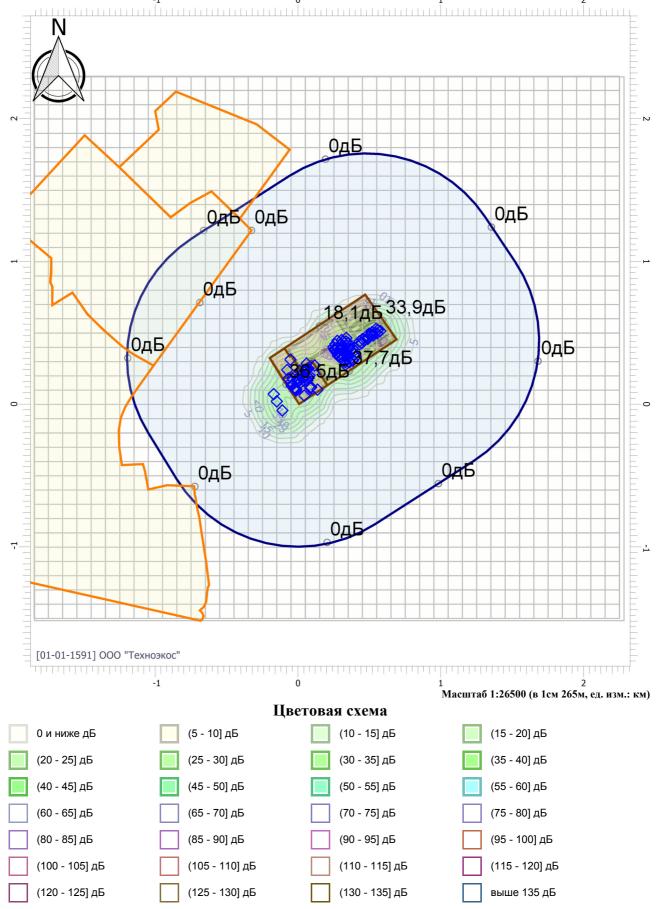


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

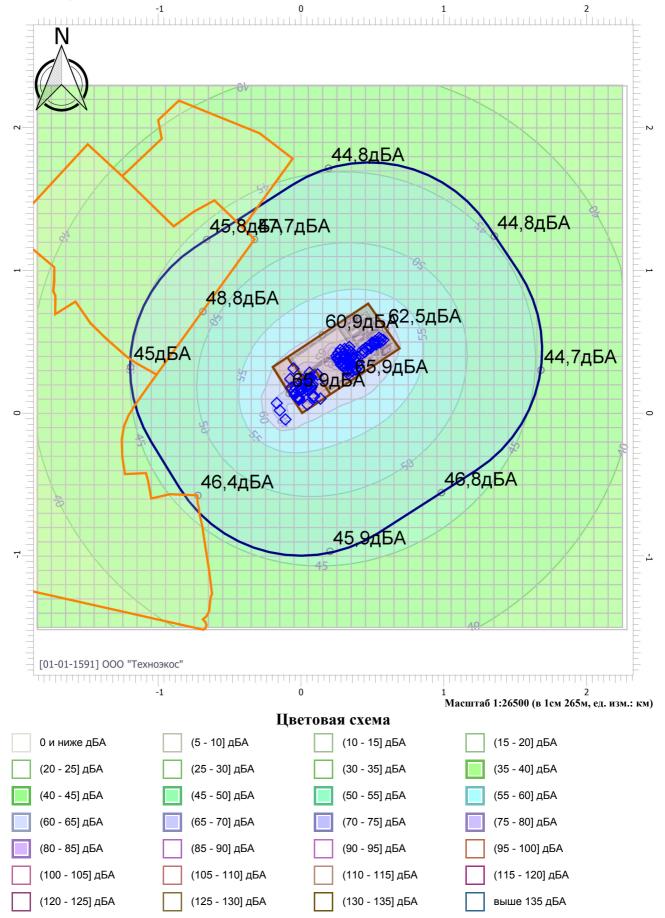
Код расчета: 4000Гц (УЗД в октавной полосе со среднегеометрической частотой 4000Гц)

Параметр: Звуковое давление



Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

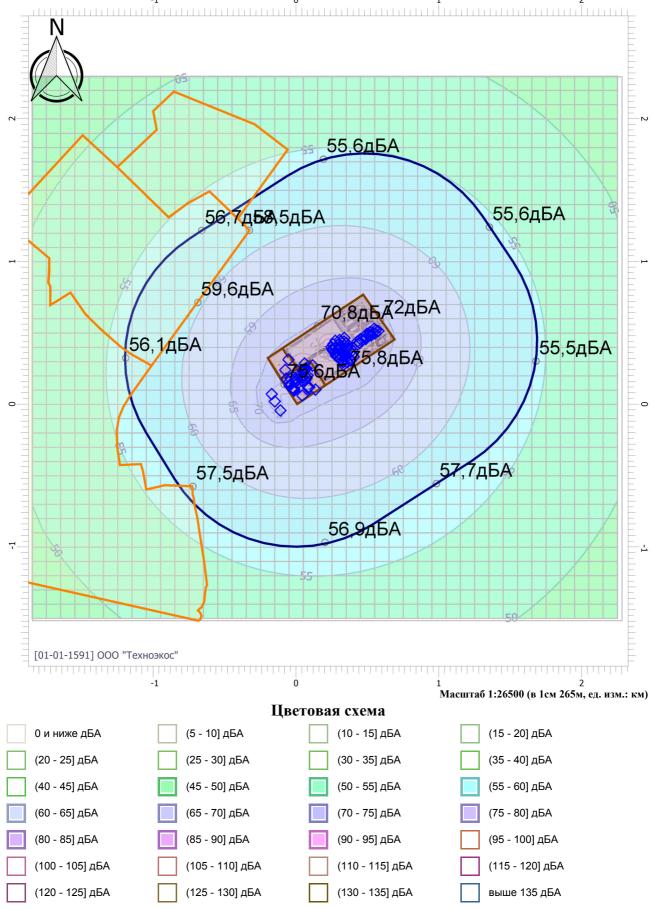
Тип расчета: Уровни шума


Код расчета: 8000Гц (УЗД в октавной полосе со среднегеометрической частотой 8000Гц)

Параметр: Звуковое давление

Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума Код расчета: La (Уровень звука) Параметр: Уровень звука



Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: La.max (Максимальный уровень звука)

Параметр: Максимальный уровень звука

Эксплуатация объекта

Эколог-Шум. Модуль печати результатов расчета

Copyright © 2006-2020 ФИРМА "ИНТЕГРАЛ"

Источник данных: Эколог-Шум, версия 2.4.6.6023 (от 25.06.2020) [3D] Серийный номер 01-01-1591, ООО "Техноэкос"

1. Исходные данные

1.1. Источники постоянного шума

N	Объект	Коор	одинаты то		Простран ственный угол	Уровни зву і			,				: 0), дБ, ами в Г		зных	L а.экв	В расчете
		Х (м)	Y (m)	Высота подъема (м)	,	Дистанция замера (расчета) R (м)	31.5	63	125	250	500	1000	2000	4000	8000		
007	Вентилятор (склад реагентов)	463.50	374.00	0.00	12.57		28.0	28.0	32.0	36.0	36.0	42.0	40.0	41.0	34.0	47.0	Да
008	Вентилятор (склад реагентов)	453.50	366.50	0.00	12.57		73.2	73.2	75.8	73.7	70.2	66.4	60.9	55.0	47.9	71.9	Да
009	Вентилятор (склад реагентов)	461.50	362.50	0.00	12.57		39.2	39.2	41.8	39.7	36.2	32.4	26.9	21.0	13.9	38.0	Да
010	Вентилятор (склад реагентов)	463.50	363.50	0.00	12.57		39.2	39.2	41.8	39.7	36.2	32.4	26.9	21.0	13.9	38.0	Да
011	Вентилятор (склад реагентов)	469.00	373.00	0.00	12.57		39.2	39.2	41.8	39.7	36.2	32.4	26.9	21.0	13.9	38.0	Да
012	Насос (КНС очистных сооружений фильтрата)	489.00	344.00	0.00	12.57		45.3	45.3	47.5	50.2	54.5	57.5	58.8	57.0	52.6	64.0	Да
013	Насос (КНС дренажной системы отвода фильтрата)	483.50	351.50	0.00	12.57		45.3	45.3	47.5	50.2	54.5	57.5	58.8	57.0	52.6	64.0	Да
014	Насос (КНС дренажной системы отвода фильтрата)	520.50	448.00	0.00	12.57		45.3	45.3	47.5	50.2	54.5	57.5	58.8	57.0	52.6	64.0	Да
016	Дробильная установка	-49.00	153.50	0.00	12.57		72.8	72.8	75.7	78.6	81.0	82.6	80.9	78.0	72.6	87.0	Да
017	Дробильная установка	-12.50	104.00	0.00	12.57		72.8	72.8	75.7	78.6	81.0	82.6	80.9	78.0	72.6	87.0	Да
018	Дробильная установка	-67.50	178.00	0.00	12.57		72.8	72.8	75.7	78.6	81.0	82.6	80.9	78.0	72.6	87.0	Да
019	Дробильная установка	-16.00	110.00	0.00	12.57		72.8	72.8	75.7	78.6	81.0	82.6	80.9	78.0	72.6	87.0	Да
020	Грохот	80.50	200.00	0.00	12.57		44.3	44.3	46.5	49.2	53.5	56.5	57.8	56.0	51.6	63.0	Да
021	Инсинератор	-52.50	312.50	0.00	12.57		58.8	58.8	61.7	64.6	67.0	68.6	66.9	64.0	58.6	73.0	Да
022	Шредер	-12.00	94.50	0.00	12.57		46.3	46.3	48.5	51.2	55.5	58.5	59.8	58.0	53.6	65.0	Да
023	Шредер	-18.50	100.00	0.00	12.57		46.3	46.3	48.5	51.2	55.5	58.5	59.8	58.0	53.6	65.0	Да
024	Шредер	-24.50	113.50	0.00	12.57		46.3	46.3	48.5	51.2	55.5	58.5	59.8	58.0	53.6	65.0	Да
025	Котел	93.50	118.00	0.00	12.57		44.8	44.8	47.7	50.6	53.0	54.6	52.9	50.0	44.6	59.0	Да
026	Котел	90.00	115.50	0.00	12.57		44.8	44.8	47.7	50.6	53.0	54.6	52.9	50.0	44.6	59.0	Да
027	Котел	85.50	113.50	0.00	12.57		44.8	44.8	47.7	50.6	53.0	54.6	52.9	50.0	44.6	59.0	Да
028	Пресс	4.00	168.50	0.00	12.57		60.8	60.8	63.7	66.6	69.0	70.6	68.9	66.0	60.6	75.0	Да
029	Пресс	-4.50	173.50	0.00	12.57		60.8	60.8	63.7	66.6	69.0	70.6	68.9	66.0	60.6	75.0	Да
030- 129	Конвейеры	75.00	183.00	0.00	12.57		44.8	44.8	47.7	50.6	53.0	54.6	52.9	50.0	44.6	59.0	Да
130- 147	Сепараторы	62.00	202.00	0.00	12.57		50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	65.0	Да
161	КТП №1	136.50	101.00	0.00	12.57		50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	65.0	Да
162	КТП №2	64.50	164.50	0.00	12.57		50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	65.0	Да

1.2. Источники непостоянного шума

Ī	N	Объект	Коо	рдинаты т	очки	Простран	Уровни зву	укового	давле	ия (мо	щности	і, в слу	чае R =	0), дБ,	в октаі	вных	t	T	L а.экв	La.ма	В
				-	ственный полосах со среднегеометрическими частотами в Гц										кс	расчете					
						угол															
			X (M)	Y (m)	Высота		Дистанция	31.5	63	125	250	500	1000	2000	4000	8000					

																	1	ı		
				подъема		замера														
				(м)		(расчета) R														
001	4 222D	141.50	112.50	0.00	10.57	(M)	75.0	75.0	760	72.0	60.0	65.0	(2.0	57.0	40.0	1	4	71.0	76.0	
001	Амкодор 332В	141.50	443.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
002	Бульдозер Б10ПМ	405.00	532.00	0.00	12.57	7.5	74.0	74.0	83.0	78.0	74.0	74.0	70.0	67.0	62.0	1.	4.	78.0	83.0	Да
003	Бульдозер Б10ПМ	352.50	336.00	0.00	12.57	7.5	74.0	74.0	83.0	78.0	74.0	74.0	70.0	67.0	62.0	1.	4.	78.0	83.0	Да
004	Уплотнительная машина	81.50	361.50	0.00	12.57	7.5	95.0	95.0	84.0	79.0	73.0	70.0	68.0	64.0	57.0	1.	4.	77.5	82.0	Да
005	Поливомоечная машина	210.00	297.50	0.00	12.57	7.5	56.3	56.3	57.7	59.0	59.3	58.9	55.6	51.4	46.9	1.	4.	63.0	68.0	Да
006	Камаз 6520	303.50	420.50		12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
015	Камаз 6520	0.00	153.50	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
148	Автобус	45.00	59.00	0.00	12.57	7.5	58.8	58.8	61.7	64.6	67.0	68.6	66.9	64.0	58.6	1.	4.	73.0	76.0	Да
149	Поливомоечная машина	12.00	233.50	0.00	12.57	7.5	82.0	82.0	77.0	80.0	76.0	66.0	66.0	56.0	50.0	1.	4.	76.0	82.0	Да
150	Погрузчик ковшовый Bobcat	42.00	162.50	0.00	12.57	7.5	50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	1.	4.	65.0	67.0	Да
151	Погрузчик Polar Badgen	33.50	185.50	0.00	12.57	7.5	50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	1.	4.	65.0	67.0	Да
152	Камаз 6520	10.00	143.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
153	Камаз 6520	-38.00	178.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
154	Камаз 6520	-75.50	239.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
155	Камаз 6520	94.00	257.50	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
156	Амкодор 332В	60.00	283.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
157	Амкодор 332В	-45.00	127.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
158	Амкодор 332В	-39.50	138.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
159	Амкодор 332В	-1.50	183.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
160	Амкодор 332В	52.00	189.00	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
165	Мусоровоз	76.00	252.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
166	Мусоровоз	69.50	247.50	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
167	Мусоровоз	63.00	243.50	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
168	Мусоровоз	56.00	239.50	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
169	Мусоровоз	50.00	234.50	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
170	Мусоровоз	45.00	232.50	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да

N	Объект	Координаты точек (Х, Ү,	Ширина	Высота	Простран	Уровни зву	укового	давлеі	ния (мо	щності	и, в слу	чае R =	0), дБ,	в октаі	зных	t	T	La.экв	L a.ма	В
		Высота подъема)	(м)	(M)	ственный угол	1	полосах	co cpe	цнегеом	етрич	ескими	частот	ами в Г	ÙЦ					кс	расчете
					v	замера (расчета) R								8000						
						(м)														
163	Стоянка спецтехники	(128.5, 242, 0), (155.5, 203.5, 0)	10.00		12.57	7.5	52.8	52.8	55.7	58.6	61.0	62.6	60.9	58.0	52.6	1.	4.	67.0	71.0	Да
164	Стоянка легкового автотранспорта	(78.5, 59, 0), (121, 88.5, 0)	7.00		12.57	7.5 48.8 48.8 51.7 54.6 57.0 58.6 56.9 54.0									48.6	1.	4.	63.0	65.0	Да

1.3. Препятствия

	N	Объект	Координаты точек (Х, Y)	Высота (м)	Высота подъема (м)	Коэф			сопогло метрич				к полоса Гц		В расчете
	0.1	AFIG	(52.5.02)	2.00		31.5	63	125	250		1000	2000			-
00	01		(52.5, 82), (89, 107.5), (97.5, 94.5), (61, 70)	3.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	Да

001	Склад реагентов	(451.5, 365),	3.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	Да
		(467, 375.5),												
		(471, 369.5),												
		(455.5, 358.5)												
002	Производственный корпус	(8.5, 204),	3.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	Да
		(88.5, 256.5),												
		(122.5, 206.5),												
		(42, 151.5)												

2. Условия расчета

2.1. Расчетные точки

N	Объект	Коој	одинаты то	ЭЧКИ	Тип точки	В
				1 _		расчете
	l l	X (m)	Y (m)	Высота		
	l l			подъема		
				(M)		
001	Расчетная точка	192.00	1716.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
002	Расчетная точка	1354.00	1240.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
003	Расчетная точка	1680.00	301.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
004	Расчетная точка	983.00	-557.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
005	Расчетная точка	203.00	-969.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
006	Расчетная точка	-1193.00	323.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
007	Расчетная точка	-661.00	1216.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
800	Расчетная точка	-723.00	-577.00	1.50	Расчетная точка на границе жилой зоны	Да
009	Расчетная точка	-688.00	712.00	1.50	Расчетная точка на границе жилой зоны	Да
010	Расчетная точка	-327.00	1217.00	1.50	Расчетная точка на границе жилой зоны	Да
011	Расчетная точка	150.00	548.00	1.50	Расчетная точка на границе производственной зоны	Да
012	Расчетная точка	591.00	586.00	1.50	Расчетная точка на границе производственной зоны	Да
013	Расчетная точка	358.00	231.00	1.50	Расчетная точка на границе производственной зоны	Да
014	Расчетная точка	-83.00	137.00	1.50	Расчетная точка на границе производственной зоны	Да

2.2. Расчетные площадки

l	N	Объект	Координаті	ы точки 1	Координат	ъ точки 2	Ширина	Высота	Шаг сет	гки (м)	В
							(M)	подъема			расчете
								(M)			
			X (M)	Y (м)	X (M)	Y (м)			X	Y	
	001	Расчетная площадка	-1849.00	388.00	2287.00	388.00	3819.00	1.50	100.00	100.00	Да

Вариант расчета: "Эколог-Шум. Вариант расчета по умолчанию" 3. Результаты расчета (расчетный параметр "Звуковое давление")

3.1. Результаты в расчетных точках

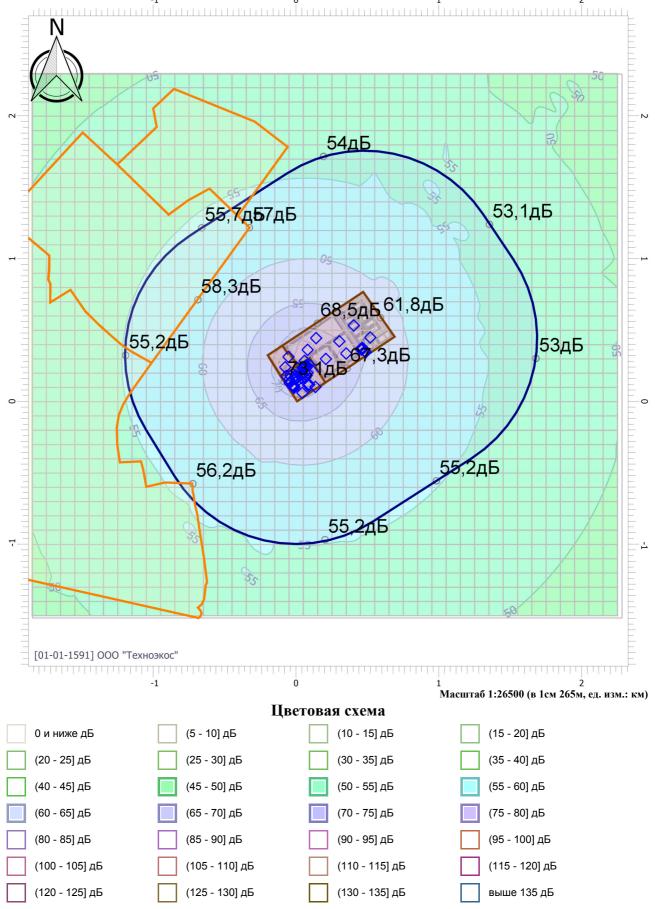
Точки типа: Расчетная точка на границе произволственной зоны

TOTKE	типа. гасчетная точка п	іа границе п	обизводств	сппои зог	пы										
	Расчетная точка	Координа	ты точки	Высота	31.5	63	125	250	500	1000	2000	4000	8000	La.экв	La.макс
				(M)											ı
N	Название	Х (м)	Y (m)												ı
011	Расчетная точка	150.00	548.00	1.50	68.5	68.5	62.4	57.6	56.4	51.8	47.3	36.5	14.7	57.60	67.90
012	Расчетная точка	591.00	586.00	1.50	61.8	61.8	58.3	53.3	51.4	47.9	42.3	32.7	11.1	53.10	63.80
013	Расчетная точка	358.00	231.00	1.50	67.3	67.2	63.3	58.5	57.2	53.5	48.9	40.8	26.3	58.80	69.10
014	Расчетная точка	-83.00	137.00	1.50	73.1	73.1	68.6	64.2	63.8	59.2	55.9	48.5	36.4	65.00	74.70

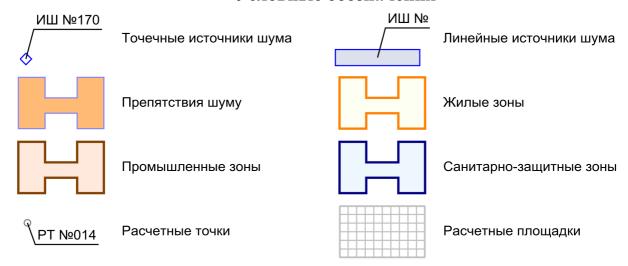
Точки типа: Расчетная точка на границе санитарно-защитной зоны

	Расчетная точка	Координа	ты точки	Высота	31.5	63	125	250	500	1000	2000	4000	8000	La.экв	La.макс
				(M)											1
N	Название	X (M)	Y (m)												
001	Расчетная точка	192.00	1716.00	1.50	54	53.9	48.2	42.7	40.9	34.3	22.5	0	0	41.30	52.10
002	Расчетная точка	1354.00	1240.00	1.50	53.1	53	47.7	42.2	40	33.5	21.1	0	0	40.60	51.50
003	Расчетная точка	1680.00	301.00	1.50	53	52.9	47.4	41.9	39.9	33.2	20.7	0	0	40.40	51.20
004	Расчетная точка	983.00	-557.00	1.50	55.2	55.1	49.7	44.4	42.9	36.6	26.4	0	0	43.30	54.00
005	Расчетная точка	203.00	-969.00	1.50	55.2	55.1	49.5	44.3	42.9	36.4	26.3	0	0	43.20	53.90
006	Расчетная точка	-1193.00	323.00	1.50	55.2	55.1	49.3	44	42.6	35.9	25.6	0	0	42.90	53.50
007	Расчетная точка	-661.00	1216.00	1.50	55.7	55.6	50.3	45	43.2	37	26.5	0	0	43.70	54.50

Точки типа: Расчетная точка на границе жилой зоны


	Расчетная точка	Координа	ты точки		31.5	63	125	250	500	1000	2000	4000	8000	La. экв	La.макс
N	Название	Х (м)	Y (м)	(M)											
008	Расчетная точка	-723.00	-577.00	1.50	56.2	56.1	50.5	45.3	44.1	37.6	28	0	0	44.40	54.90
009	Расчетная точка	-688.00	712.00	1.50	58.3	58.2	52.4	47.4	46.3	40.2	32.1	0	0	46.70	57.20
010	Расчетная точка	-327.00	1217.00	1.50	57	56.9	51.1	45.9	44.5	38.4	29.2	0	0	45.00	55.60

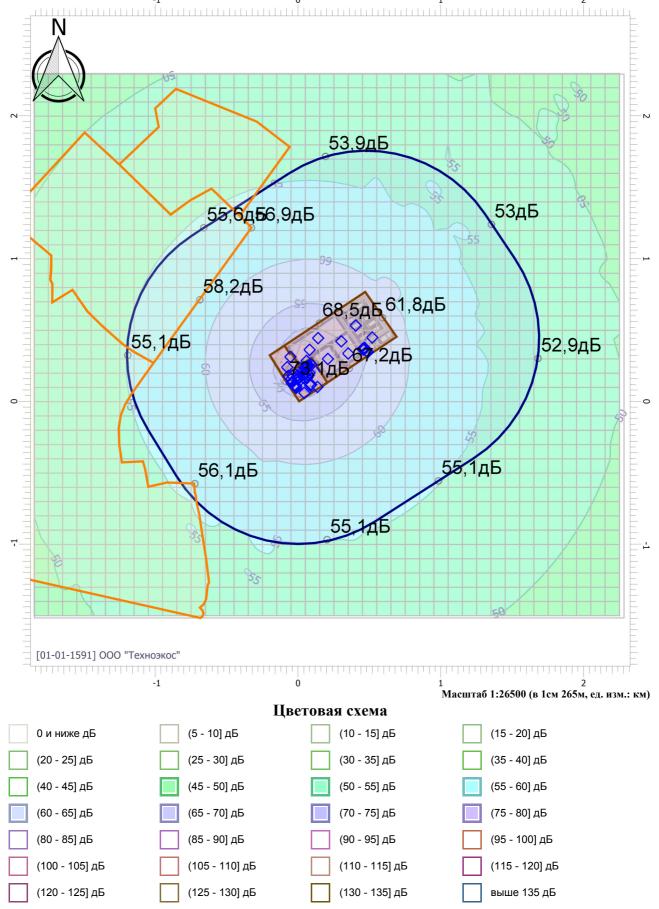
Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию


Тип расчета: Уровни шума

Код расчета: 31.5Гц (УЗД в октавной полосе со среднегеометрической частотой 31.5Гц)

Параметр: Звуковое давление

Условные обозначения

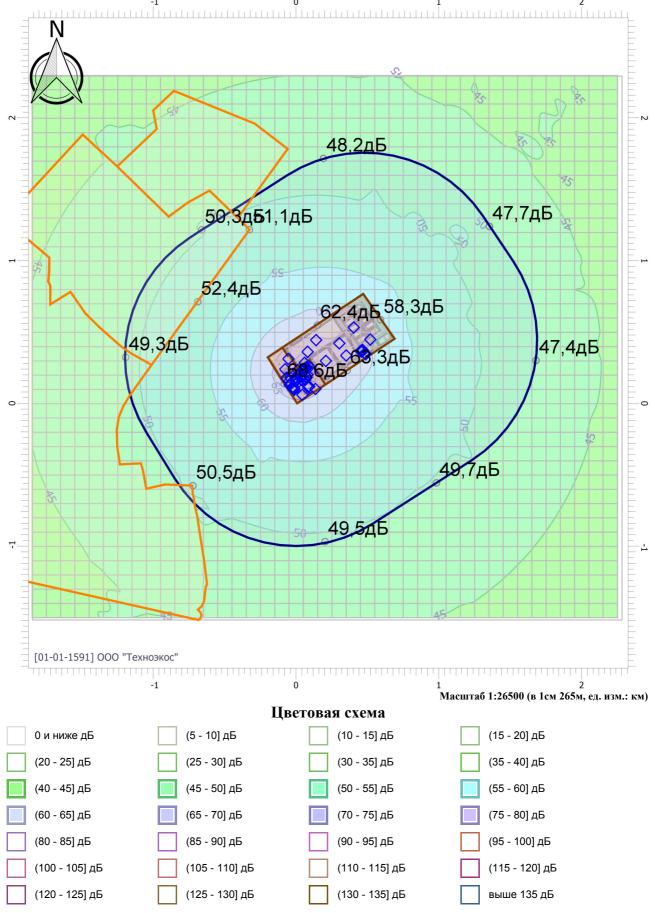


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 63Гц (УЗД в октавной полосе со среднегеометрической частотой 63Гц)

Параметр: Звуковое давление

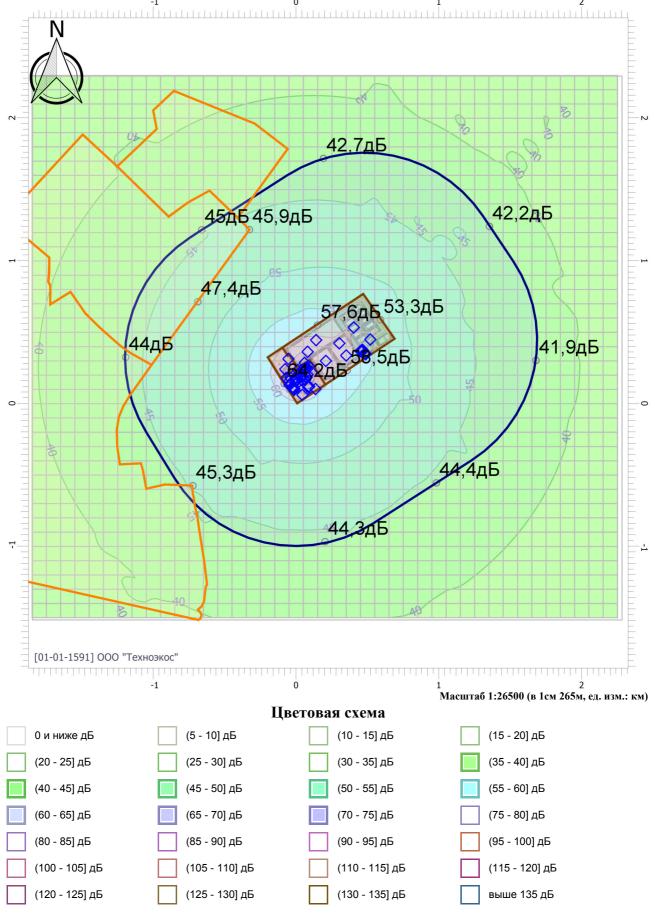


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 125Гц (УЗД в октавной полосе со среднегеометрической частотой 125Гц)

Параметр: Звуковое давление

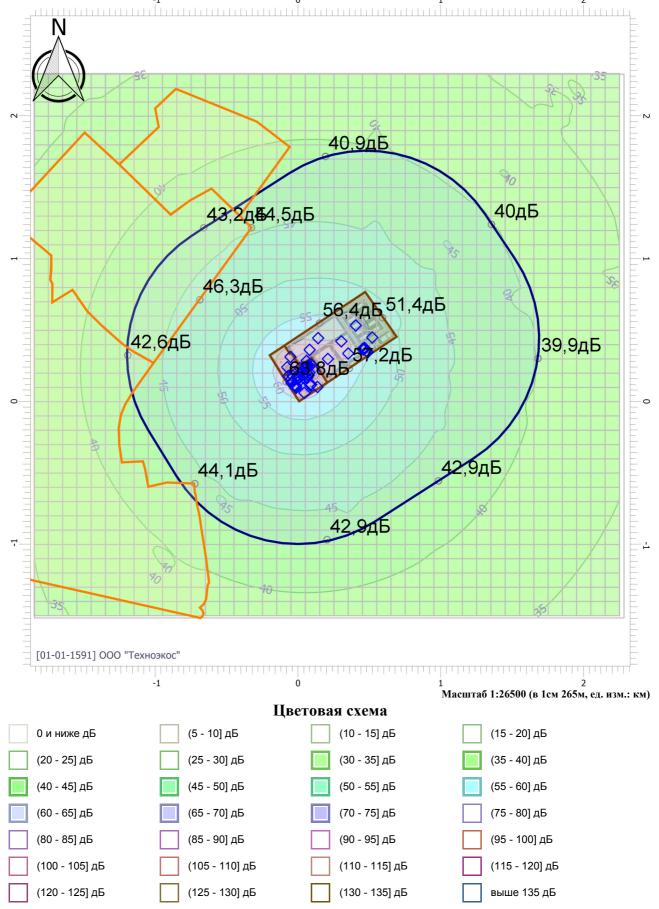


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 250Гц (УЗД в октавной полосе со среднегеометрической частотой 250Гц)

Параметр: Звуковое давление

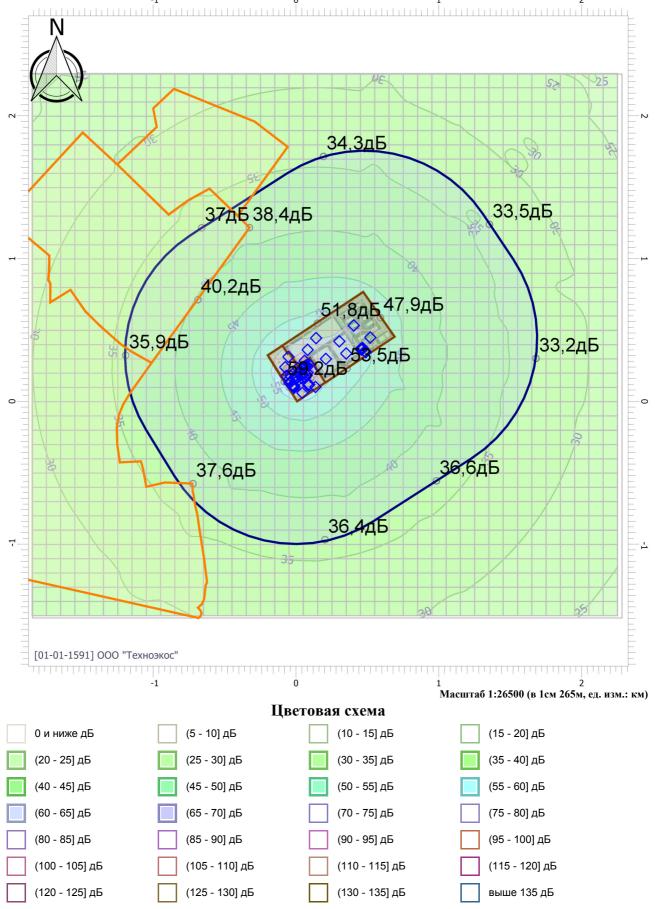


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 500Гц (УЗД в октавной полосе со среднегеометрической частотой 500Гц)

Параметр: Звуковое давление

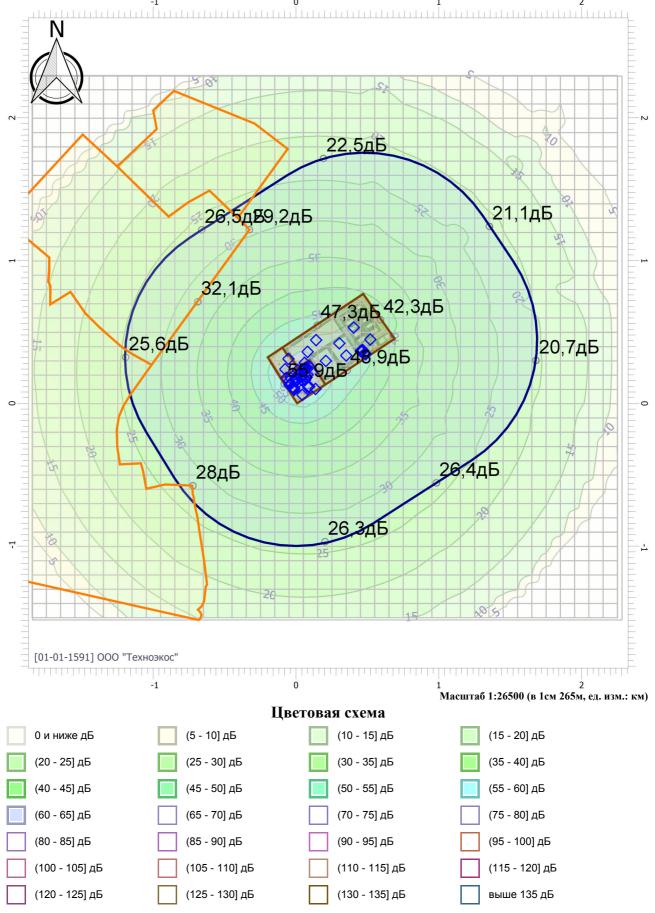


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 1000Гц (УЗД в октавной полосе со среднегеометрической частотой 1000Гц)

Параметр: Звуковое давление

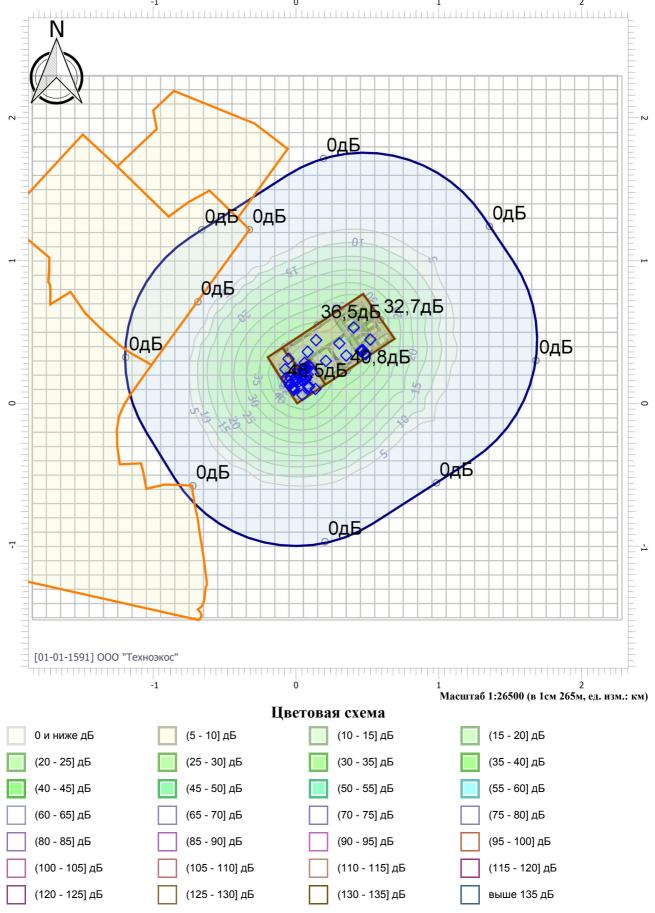


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 2000Гц (УЗД в октавной полосе со среднегеометрической частотой 2000Гц)

Параметр: Звуковое давление

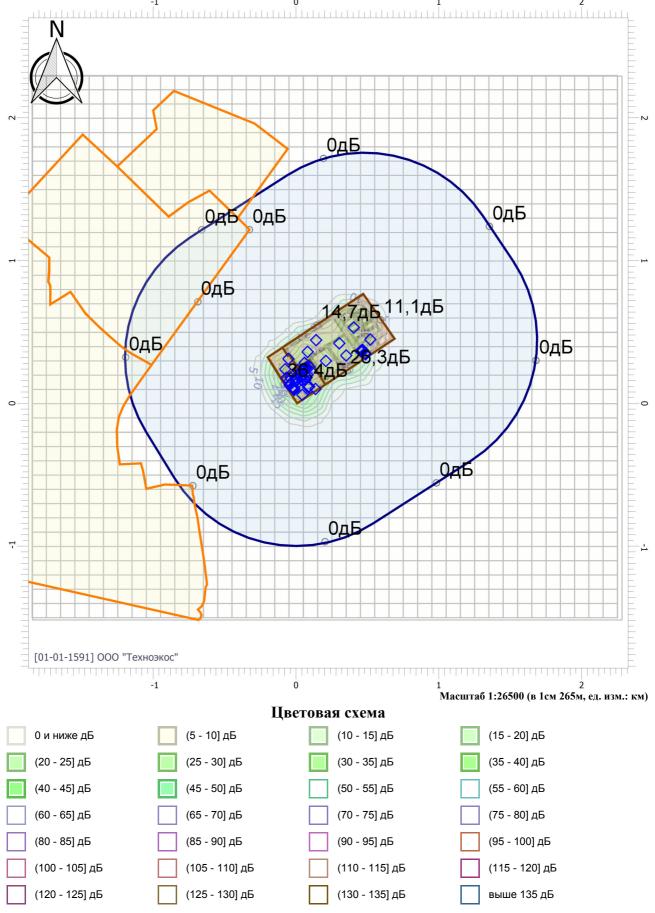


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

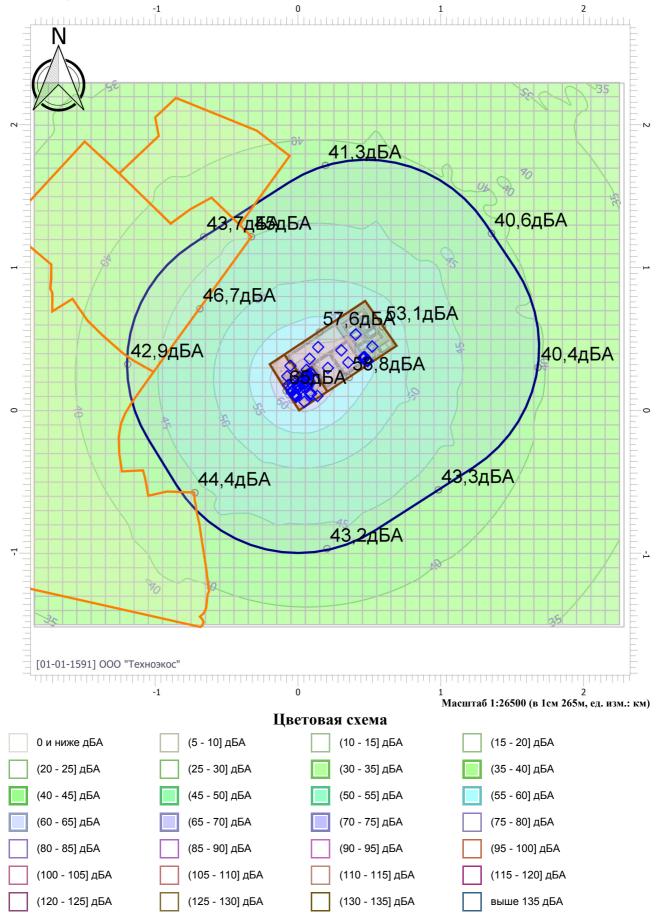
Код расчета: 4000Гц (УЗД в октавной полосе со среднегеометрической частотой 4000Гц)

Параметр: Звуковое давление



Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

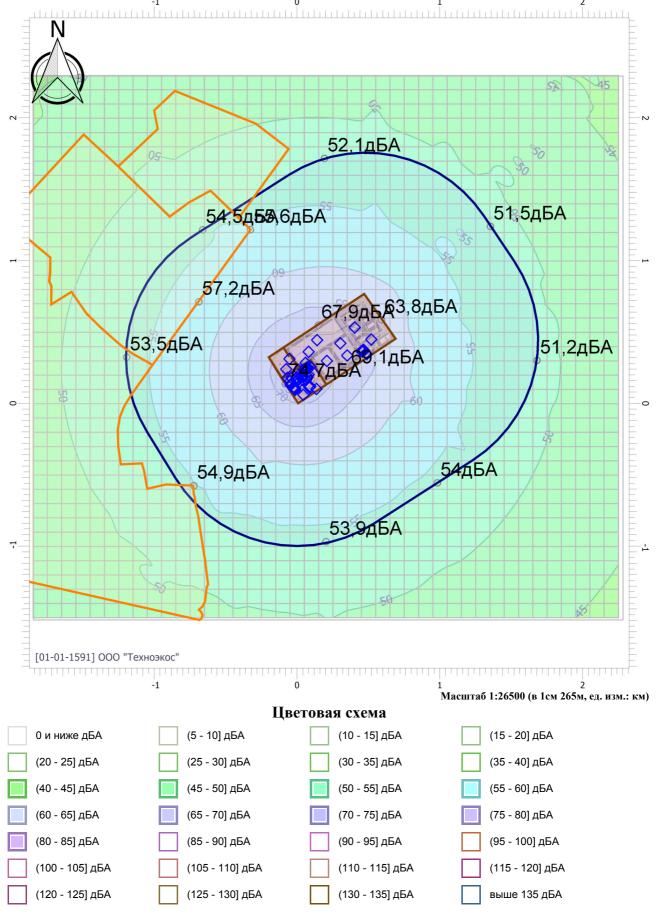
Тип расчета: Уровни шума


Код расчета: 8000Гц (УЗД в октавной полосе со среднегеометрической частотой 8000Гц)

Параметр: Звуковое давление

Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума Код расчета: La (Уровень звука) Параметр: Уровень звука



Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: La.max (Максимальный уровень звука)

Параметр: Максимальный уровень звука

Техническая рекультивация

Эколог-Шум. Модуль печати результатов расчета Copyright © 2006-2020 ФИРМА "ИНТЕГРАЛ"

Источник данных: Эколог-Шум, версия 2.4.6.6023 (от 25.06.2020) [3D] Серийный номер 01-01-1591, ООО "Техноэкос"

1. Исходные данные

1.1. Источники постоянного шума

N	Объект	Коор	одинаты то	ЭЧКИ	Простран ственный угол	Уровни зву 1			ния (мо днегеом						вных	L а.экв	в В расчете
		Х (м)	Y (m)	Высота подъема (м)	•	Дистанция замера (расчета) R (м)	31.5	63	125	250	500	1000	2000	4000	8000		
010	Вентилятор (склад реагентов)	463.50	363.50	0.00	12.57		39.2	39.2	41.8	39.7	36.2	32.4	26.9	21.0	13.9	38.0	Да
011	Вентилятор (склад реагентов)	469.00	373.00	0.00	12.57		39.2	39.2	41.8	39.7	36.2	32.4	26.9	21.0	13.9	38.0	Да
012	Насос (КНС очистных сооружений фильтрата)	489.00	344.00	0.00	12.57		45.3	45.3	47.5	50.2	54.5	57.5	58.8	57.0	52.6	64.0	Да
013	Насос (КНС дренажной системы отвода фильтрата)	483.50	351.50	0.00	12.57		45.3	45.3	47.5	50.2	54.5	57.5	58.8	57.0	52.6	64.0	Да
014	Насос (КНС дренажной системы отвода фильтрата)	520.50	448.00	0.00	12.57		45.3	45.3	47.5	50.2	54.5	57.5	58.8	57.0	52.6	64.0	Да
016	Дробильная установка	-49.00	153.50	0.00	12.57		72.8	72.8	75.7	78.6	81.0	82.6	80.9	78.0	72.6	87.0	Да
017	Дробильная установка	-12.50	104.00	0.00	12.57		72.8	72.8	75.7	78.6	81.0	82.6	80.9	78.0	72.6	87.0	Да
018	Дробильная установка	-67.50	178.00	0.00	12.57		72.8	72.8	75.7	78.6	81.0	82.6	80.9	78.0	72.6	87.0	Да
019	Дробильная установка	-16.00	110.00	0.00	12.57		72.8	72.8	75.7	78.6	81.0	82.6	80.9	78.0	72.6	87.0	Да
020	Грохот	80.50	200.00	0.00	12.57		44.3	44.3	46.5	49.2	53.5	56.5	57.8	56.0	51.6	63.0	Да
021	Инсинератор	-52.50	312.50	0.00	12.57		58.8	58.8	61.7	64.6	67.0	68.6	66.9	64.0	58.6	73.0	Да
022	Шредер	-12.00	94.50	0.00	12.57		46.3	46.3	48.5	51.2	55.5	58.5	59.8	58.0	53.6	65.0	Да
023	Шредер	-18.50	100.00	0.00	12.57		46.3	46.3	48.5	51.2	55.5	58.5	59.8	58.0	53.6	65.0	Да
024	Шредер	-24.50	113.50	0.00	12.57		46.3	46.3	48.5	51.2	55.5	58.5	59.8	58.0	53.6	65.0	Да
025	Котел	93.50	118.00	0.00	12.57		44.8	44.8	47.7	50.6	53.0	54.6	52.9	50.0	44.6	59.0	Да
026	Котел	90.00	115.50	0.00	12.57		44.8	44.8	47.7	50.6	53.0	54.6	52.9	50.0	44.6	59.0	Да
027	Котел	85.50	113.50	0.00	12.57		44.8	44.8	47.7	50.6	53.0	54.6	52.9	50.0	44.6	59.0	Да
028	Пресс	4.00	168.50	0.00	12.57		60.8	60.8	63.7	66.6	69.0	70.6	68.9	66.0	60.6	75.0	Да
029	Пресс	-4.50	173.50	0.00	12.57		60.8	60.8	63.7	66.6	69.0	70.6	68.9	66.0	60.6	75.0	Да
07	Вентилятор (склад реагентов)	463.50	374.00	0.00	12.57		28.0	28.0	32.0	36.0	36.0	42.0	40.0	41.0	34.0	47.0	Да
08	Вентилятор (склад реагентов)	453.50	366.50	0.00	12.57		73.2	73.2	75.8	73.7	70.2	66.4	60.9	55.0	47.9	71.9	Да
09	Вентилятор (склад реагентов)	461.50	362.50	0.00	12.57		39.2	39.2	41.8	39.7	36.2	32.4	26.9	21.0	13.9	38.0	Да
130- 147	Сепараторы	62.00	202.00	0.00	12.57		50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	65.0	Да
161	КТП №1	136.50	101.00	0.00	12.57		50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	65.0	Да
162	КТП №2	64.50	164.50	0.00	12.57		50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	65.0	Да
30-1 29	Конвейеры	75.00	183.00	0.00	12.57		44.8	44.8	47.7	50.6	53.0	54.6	52.9	50.0	44.6	59.0	Да

1.2. Источники непостоянного шума

	N	Объект	Коо	рдинаты т	очки	Простран	Уровни зву	кового	давле	ния (мо	щності	і, в слу	чае R =	0), дБ,	в октаі	вных	t	T	La.экв	La. ма	В
						ственный	I	юлосах	co cpe,	днегеом	етриче	скими	частот	ами в Г	Щ					кс	расчете
						угол															
			Х (м)	Y (m)	Высота		Дистанция	31.5	63	125	250	500	1000	2000	4000	8000					
					подъема		замера														
L					(M)		(расчета) R														

I]					(м)											1]		1 "
015	Камаз 6520	0.00	153.50	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
0165	Камаз 65111-50	143.50	435.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0			79.0	0.0	Да
0166	Краз-257	311.50	369.50	0.00	12.57	7.5	87.0	87.0	90.0	78.0	76.0	72.0	67.0	61.0	56.0	1.	4.	79.0	82.0	Да
148	Автобус	45.00	59.00	0.00	12.57	7.5	58.8	58.8	61.7	64.6	67.0	68.6	66.9	64.0	58.6	1.	4.	73.0	76.0	Да
149	Поливомоечная машина	12.00	233.50	0.00	12.57	7.5	82.0	82.0	77.0	80.0	76.0	66.0	66.0	56.0	50.0	1.	4.	76.0	82.0	Да
150	Погрузчик ковшовый Bobcat	42.00	162.50	0.00	12.57	7.5	50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	1.	4.	65.0	67.0	Да
151	Погрузчик Polar Badgen	33.50	185.50	0.00	12.57	7.5	50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	1.	4.	65.0	67.0	Да
152	Камаз 6520	10.00	143.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
153	Камаз 6520	-38.00	178.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
154	Камаз 6520	-75.50	239.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
155	Камаз 6520	94.00	257.50	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
156	Амкодор 332В	60.00	283.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
157	Амкодор 332В	-45.00	127.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
158	Амкодор 332В	-39.50	138.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
159	Амкодор 332В	-1.50	183.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
160	Амкодор 332В	52.00	189.00	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да

N	Объект	Координаты точек (X, Y, Высота подъема)	Ширина (м)	Высота (м)	Простран ственный угол							чае R = частот:			вных	t	T	La. экв		В расчете
					yron	замера (расчета) R (м)								8000						
	Стоянка спецтехники	(128.5, 242, 0), (155.5, 203.5, 0)	10.00		12.57	7.5	52.8	52.8	55.7	58.6	61.0	62.6	60.9	58.0	52.6	1.	4.	67.0	71.0	Да
164	Стоянка легкового автотранспорта	(78.5, 59, 0), (121, 88.5, 0)	7.00		12.57	7.5	48.8	48.8	51.7	54.6	57.0	58.6	56.9	54.0	48.6	1.	4.	63.0	65.0	Да

1.3. Препятствия

N	Объект	Координаты точек (Х, Ү)	Высота	Высота	Коэс	ффицие	нт звуг	сопогло	щения	а, в ок	тавных	полоса	ax co	В
			(M)	подъема		cp	еднегео	метрич	іескимі	и часто	тами в	Гц		расчете
				(M)										
					31.5	63	125	250	500	1000	2000	4000	8000	
001	АБК	(52.5, 82),	3.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	Нет
		(89, 107.5),												
		(97.5, 94.5),												
		(61, 70)												
001	Склад раегентов	(451.5, 365),	3.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	Да
		(467, 375.5),												
		(471, 369.5),												
		(455.5, 358.5)												
002	Производственный корпус	(8.5, 204),	3.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	Нет
		(88.5, 256.5),												
		(122.5, 206.5),												
		(42, 151.5)												

2. Условия расчета

2.1. Расчетные точки

N	Объект	Коо	одинаты то	очки	Тип точки	В
		<u></u>				расчете
	l l	X (M)	Y (m)	Высота		
	l l	ı		подъема		
		1		(M)		
001	Расчетная точка	192.00	1716.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
002	Расчетная точка	1354.00	1240.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
003	Расчетная точка	1680.00	301.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
004	Расчетная точка	983.00	-557.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
005	Расчетная точка	203.00	-969.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
006	Расчетная точка	-1193.00	323.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
007	Расчетная точка	-661.00	1216.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
800	Расчетная точка	-723.00	-577.00	1.50	Расчетная точка на границе жилой зоны	Да
009	Расчетная точка	-688.00	712.00	1.50	Расчетная точка на границе жилой зоны	Да
010	Расчетная точка	-327.00	1217.00	1.50	Расчетная точка на границе жилой зоны	Да
011	Расчетная точка	150.00	548.00	1.50	Расчетная точка на границе производственной зоны	Да
012	Расчетная точка	591.00	586.00	1.50	Расчетная точка на границе производственной зоны	Да
013	Расчетная точка	358.00	231.00	1.50	Расчетная точка на границе производственной зоны	Да
014	Расчетная точка	-83.00	137.00	1.50	Расчетная точка на границе производственной зоны	Да

2.2. Расчетные площадки

N	Объект	Координат	ы точки 1	Координат	ы точки 2	Ширина	Высота	Шаг сет	ки (м)	В
						(M)	подъема			расчете
		_					(M)			
		Х (м)	Y (m)	Х (м)	Y (m)			X	Y	
001	Расчетная площадка	-1849.00	388.00	2287.00	388.00	3819.00	1.50	100.00	100.00	Да

Вариант расчета: "Эколог-Шум. Вариант расчета по умолчанию" 3. Результаты расчета (расчетный параметр "Звуковое давление")

3.1. Результаты в расчетных точках

Точки типа: Расчетная точка на границе произволственной зоны

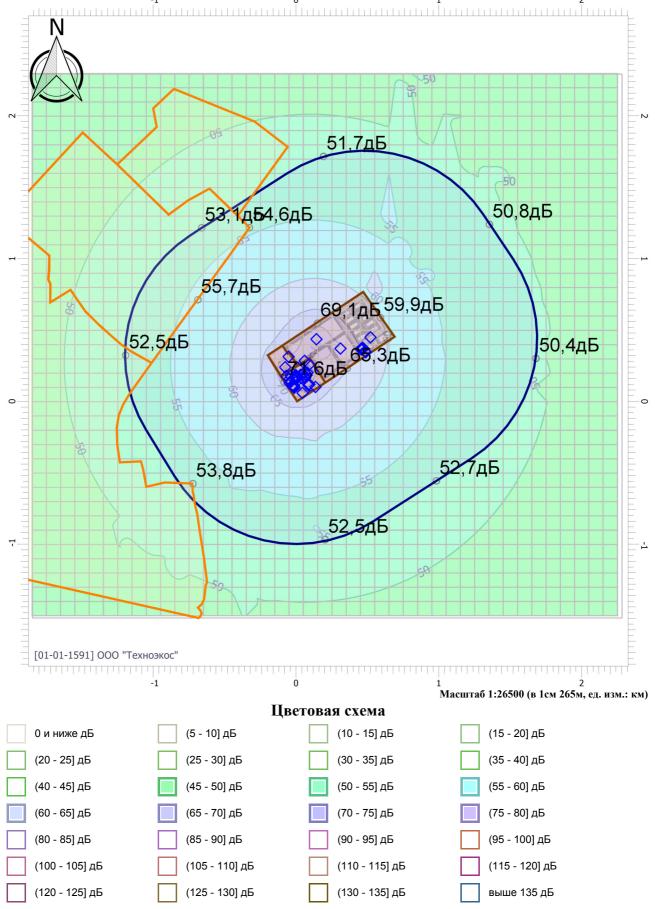
	Расчетная точка	Координа	ты точки	Высота	31.5	63	125	250	500	1000	2000	4000	8000	La. экв	La.макс
				(M)											
N	Название	X (M)	Y (M)												
011	Расчетная точка	150.00	548.00	1.50	69.1	69.1	65.2	59.3	59.8	54.6	50.8	41.9	25.7	60.60	64.80
012	Расчетная точка	591.00	586.00	1.50	59.9	59.9	58.1	50.3	49.8	44.1	37.8	20.6	0	50.50	58.30
013	Расчетная точка	358.00	231.00	1.50	65.3	65.3	64.6	56.1	55.5	50.4	45.5	34	12.9	56.70	65.10
014	Расчетная точка	-83.00	137.00	1.50	71.6	71.6	67.8	63.4	62.9	58.3	55.2	48	36.3	64.20	73.70

Точки типа: Расчетная точка на границе санитарно-зашитной зоны

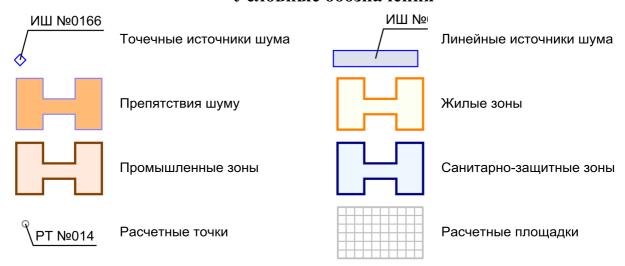
10 110	Tima. Tue terman to tha ne														
	Расчетная точка	Координа	ты точки	Высота	31.5	63	125	250	500	1000	2000	4000	8000	La.экв	La.макс
				(M)											
N	Название	Х (м)	Y (m)												
001	Расчетная точка	192.00	1716.00	1.50	51.7	51.5	48.2	41.3	40.1	32.9	21.4	0	0	40.40	48.70
002	Расчетная точка	1354.00	1240.00	1.50	50.8	50.7	47.8	40.6	39	31.6	19	0	0	39.40	48.10
003	Расчетная точка	1680.00	301.00	1.50	50.4	50.2	46.3	39.8	38.4	30.8	17.8	0	0	38.60	47.20
004	Расчетная точка	983.00	-557.00	1.50	52.7	52.6	49.5	42.6	41.4	34.7	24.3	0	0	41.80	50.90
005	Расчетная точка	203.00	-969.00	1.50	52.5	52.4	49	42.6	41.4	34.6	24.6	0	0	41.70	51.10
006	Расчетная точка	-1193.00	323.00	1.50	52.5	52.4	48.7	42.5	41.4	34.5	24.1	0	0	41.60	50.90

007 Расчет	гная точка -661.0	0 1216.00	1.50	53.1	53	49.5	43.1	42.1	35.2	25.2	0	0	42.30	51.00

Точки типа: Расчетная точка на границе жилой зоны


	Расчетная точка	Координа	ты точки	Высота	31.5	63	125	250	500	1000	2000	4000	8000	La.экв	La.макс
				(M)											
N	Название	Х (м)	Y (m)												
008	Расчетная точка	-723.00	-577.00	1.50	53.8	53.7	49.9	43.9	42.7	36	26.5	0	0	43.00	52.60
009	Расчетная точка	-688.00	712.00	1.50	55.7	55.6	51.9	46	45.2	38.9	30.9	0	0	45.50	54.40
010	Расчетная точка	-327.00	1217.00	1.50	54.6	54.5	51	44.6	43.8	37.3	28.4	0	0	44.10	52.50

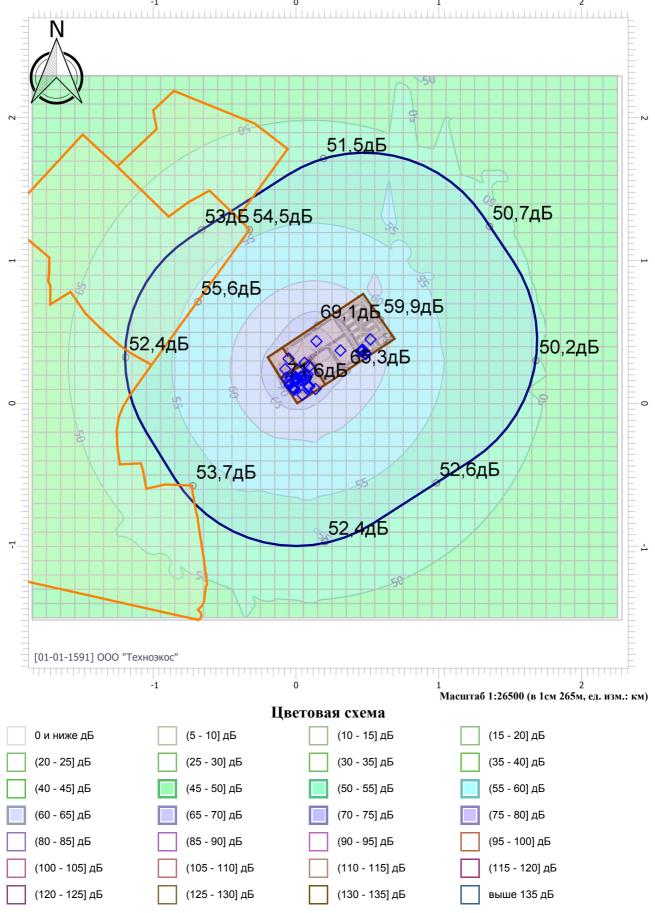
Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию


Тип расчета: Уровни шума

Код расчета: 31.5Гц (УЗД в октавной полосе со среднегеометрической частотой 31.5Гц)

Параметр: Звуковое давление

Условные обозначения

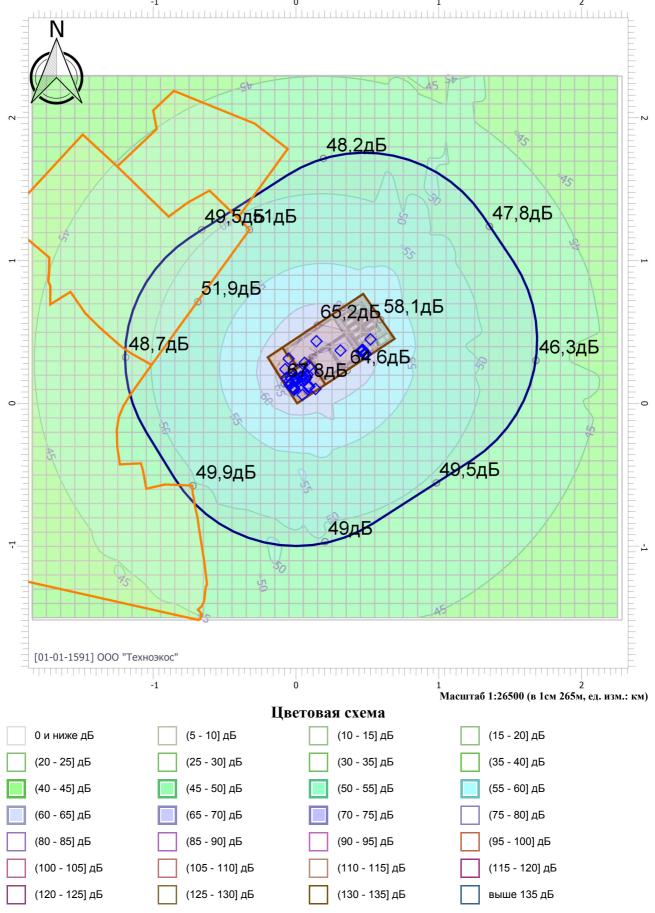


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 63Гц (УЗД в октавной полосе со среднегеометрической частотой 63Гц)

Параметр: Звуковое давление

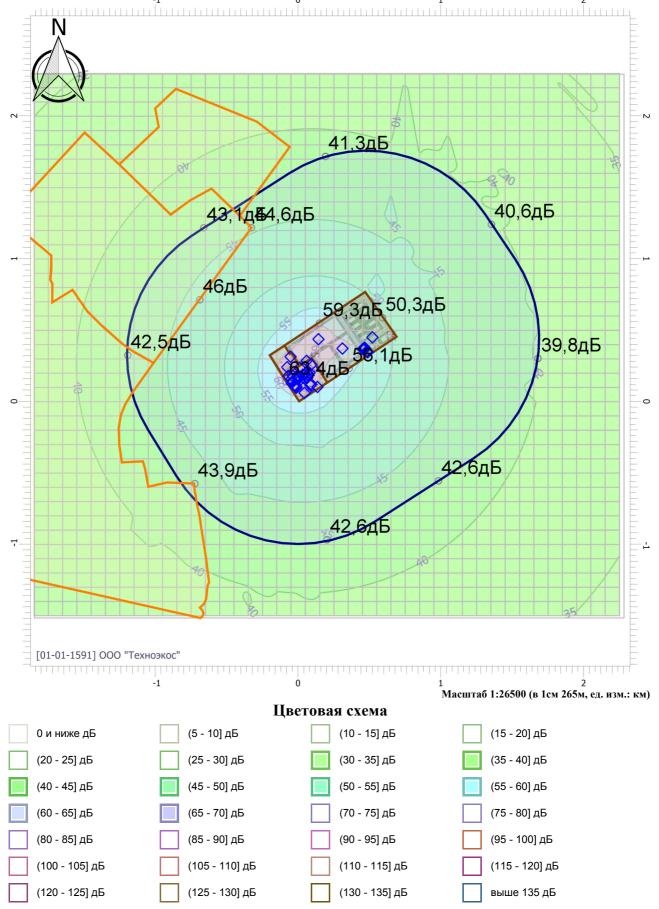


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 125Гц (УЗД в октавной полосе со среднегеометрической частотой 125Гц)

Параметр: Звуковое давление

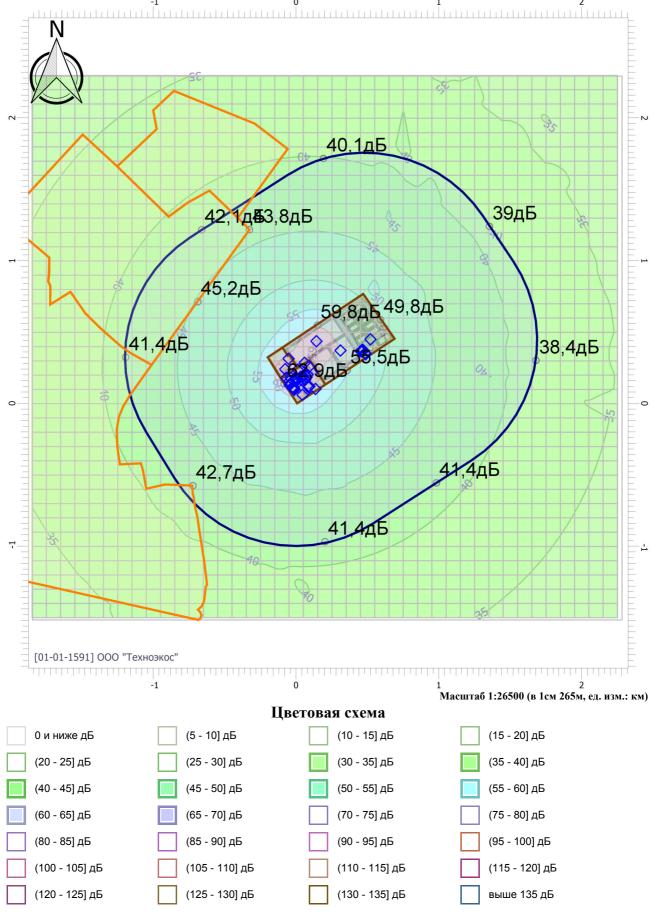


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 250Гц (УЗД в октавной полосе со среднегеометрической частотой 250Гц)

Параметр: Звуковое давление

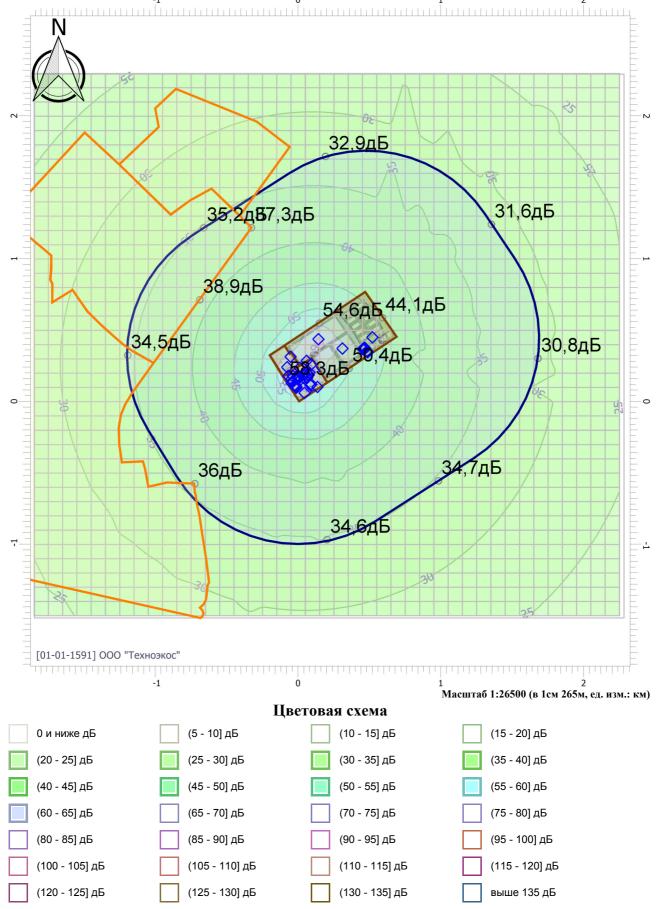


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 500Гц (УЗД в октавной полосе со среднегеометрической частотой 500Гц)

Параметр: Звуковое давление

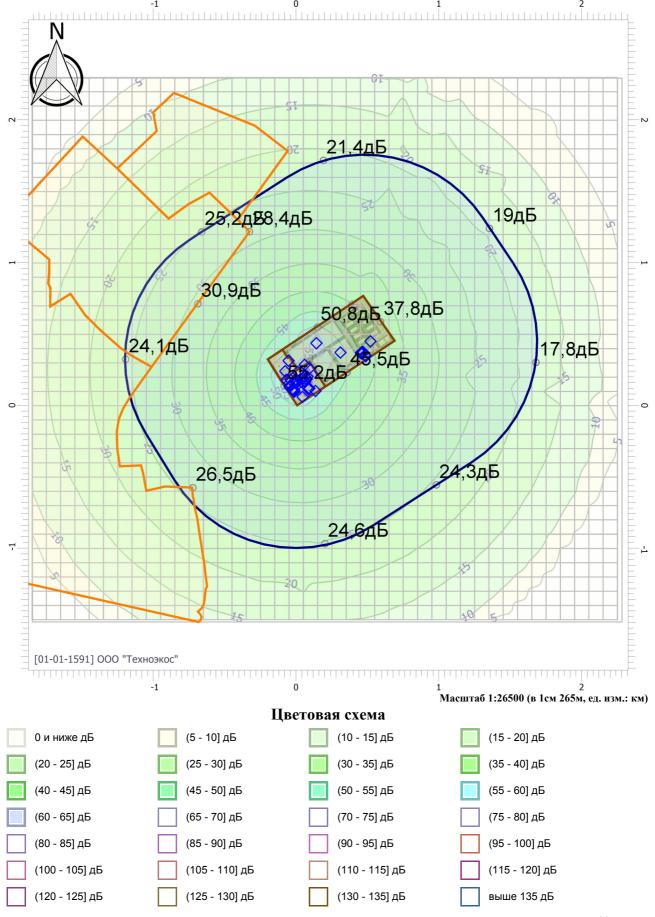


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 1000Гц (УЗД в октавной полосе со среднегеометрической частотой 1000Гц)

Параметр: Звуковое давление

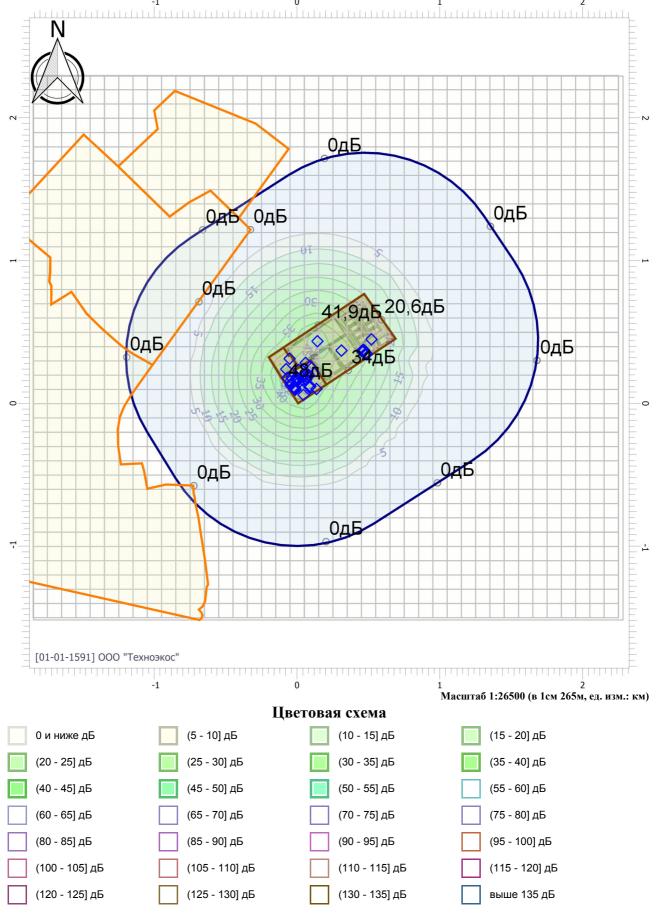


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 2000Гц (УЗД в октавной полосе со среднегеометрической частотой 2000Гц)

Параметр: Звуковое давление

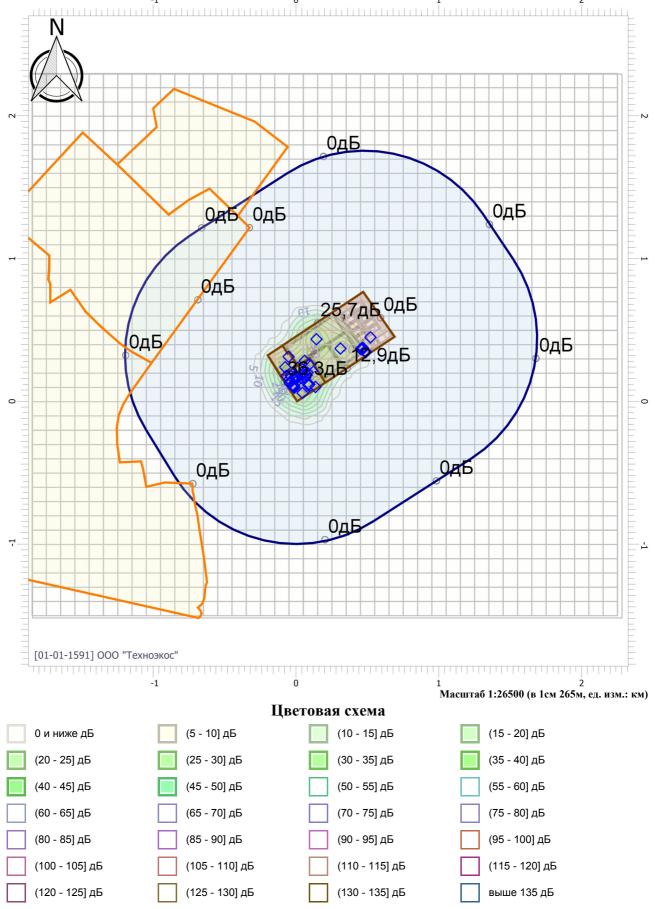


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

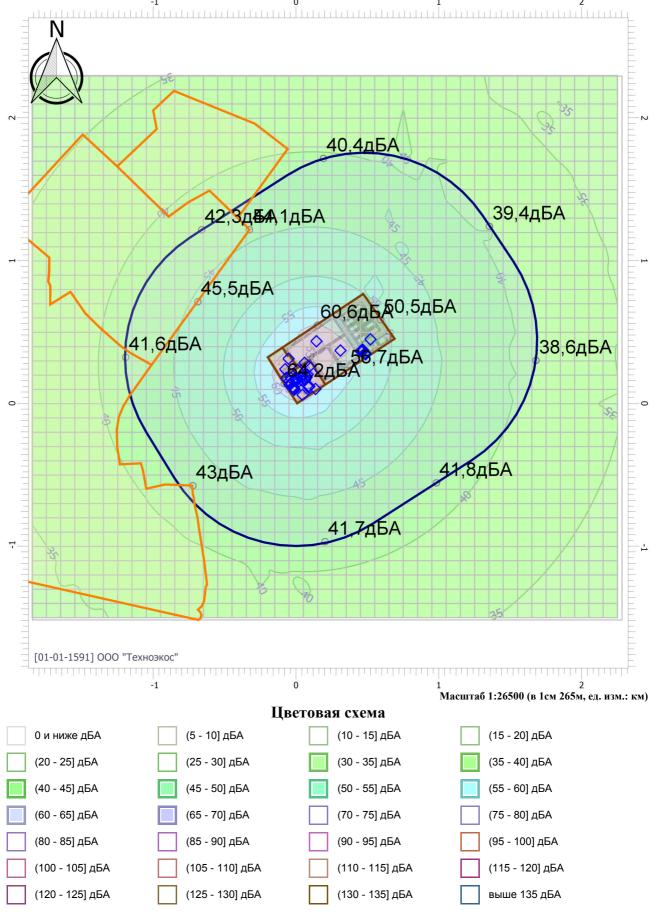
Код расчета: 4000Гц (УЗД в октавной полосе со среднегеометрической частотой 4000Гц)

Параметр: Звуковое давление



Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

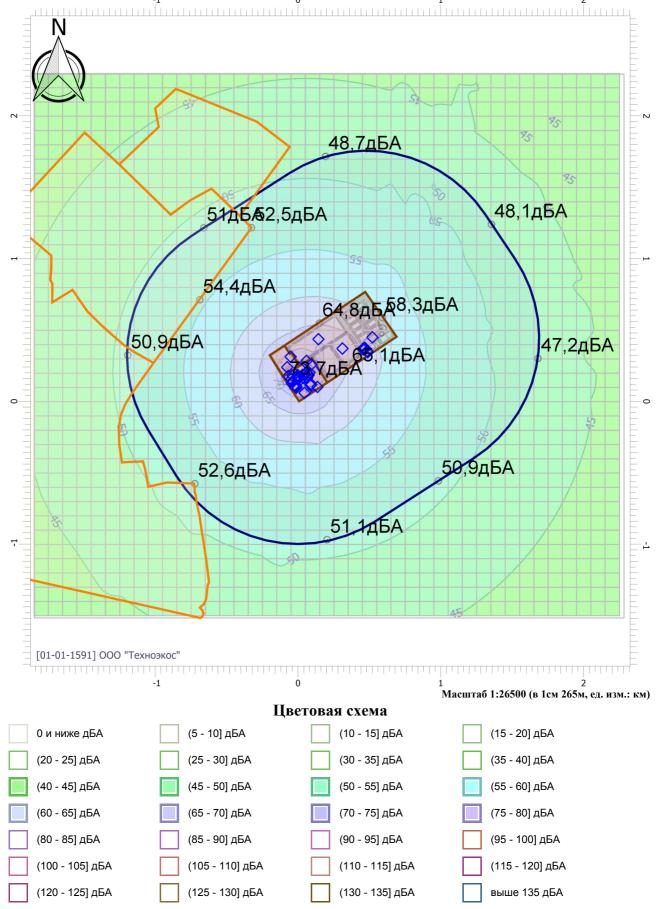
Тип расчета: Уровни шума


Код расчета: 8000Гц (УЗД в октавной полосе со среднегеометрической частотой 8000Гц)

Параметр: Звуковое давление

Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума Код расчета: La (Уровень звука) Параметр: Уровень звука



Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: La.max (Максимальный уровень звука)

Параметр: Максимальный уровень звука

Биологическая рекультивация

Эколог-Шум. Модуль печати результатов расчета Copyright © 2006-2020 ФИРМА "ИНТЕГРАЛ"

Источник данных: Эколог-Шум, версия 2.4.6.6023 (от 25.06.2020) [3D] Серийный номер 01-01-1591, ООО "Техноэкос"

1. Исходные данные

1.1. Источники постоянного шума

N	Объект	Коор	одинаты то		Простран ственный угол	Уровни зву 1			ния (мо цнегеом						вных	L a.экв	В расчете
		Х (м)	Y (m)	Высота подъема (м)	V	Дистанция замера (расчета) R (м)	31.5	63	125	250	500	1000	2000	4000	8000		
010	Вентилятор (склад реагентов)	463.50	363.50	0.00	12.57		39.2	39.2	41.8	39.7	36.2	32.4	26.9	21.0	13.9	38.0	Да
011	Вентилятор (склад реагентов)	469.00	373.00	0.00	12.57		39.2	39.2	41.8	39.7	36.2	32.4	26.9	21.0	13.9	38.0	Да
012	Насос (КНС очистных сооружений фильтрата)	489.00	344.00	0.00	12.57		45.3	45.3	47.5	50.2	54.5	57.5	58.8	57.0	52.6	64.0	Да
013	Насос (КНС дренажной системы отвода фильтрата)	483.50	351.50	0.00	12.57		45.3	45.3	47.5	50.2	54.5	57.5	58.8	57.0	52.6	64.0	Да
014	Насос (КНС дренажной системы отвода фильтрата)	520.50	448.00	0.00	12.57		45.3	45.3	47.5	50.2	54.5	57.5	58.8	57.0	52.6	64.0	Да
016	Дробильная установка	-49.00	153.50	0.00	12.57		72.8	72.8	75.7	78.6	81.0	82.6	80.9	78.0	72.6	87.0	Да
017	Дробильная установка	-12.50	104.00	0.00	12.57		72.8	72.8	75.7	78.6	81.0	82.6	80.9	78.0	72.6	87.0	Да
018	Дробильная установка	-67.50	178.00	0.00	12.57		72.8	72.8	75.7	78.6	81.0	82.6	80.9	78.0	72.6	87.0	Да
019	Дробильная установка	-16.00	110.00	0.00	12.57		72.8	72.8	75.7	78.6	81.0	82.6	80.9	78.0	72.6	87.0	Да
020	Грохот	80.50	200.00	0.00	12.57		44.3	44.3	46.5	49.2	53.5	56.5	57.8	56.0	51.6	63.0	Да
021	Инсинератор	-52.50	312.50	0.00	12.57		58.8	58.8	61.7	64.6	67.0	68.6	66.9	64.0	58.6	73.0	Да
022	Шредер	-12.00	94.50	0.00	12.57		46.3	46.3	48.5	51.2	55.5	58.5	59.8	58.0	53.6	65.0	Да
023	Шредер	-18.50	100.00	0.00	12.57		46.3	46.3	48.5	51.2	55.5	58.5	59.8	58.0	53.6	65.0	Да
024	Шредер	-24.50	113.50	0.00	12.57		46.3	46.3	48.5	51.2	55.5	58.5	59.8	58.0	53.6	65.0	Да
025	Котел	93.50	118.00	0.00	12.57		44.8	44.8	47.7	50.6	53.0	54.6	52.9	50.0	44.6	59.0	Да
026	Котел	90.00	115.50	0.00	12.57		44.8	44.8	47.7	50.6	53.0	54.6	52.9	50.0	44.6	59.0	Да
027	Котел	85.50	113.50	0.00	12.57		44.8	44.8	47.7	50.6	53.0	54.6	52.9	50.0	44.6	59.0	Да
028	Пресс	4.00	168.50	0.00	12.57		60.8	60.8	63.7	66.6	69.0	70.6	68.9	66.0	60.6	75.0	Да
029	Пресс	-4.50	173.50	0.00	12.57		60.8	60.8	63.7	66.6	69.0	70.6	68.9	66.0	60.6	75.0	Да
07	Вентилятор (склад реагентов)	463.50	374.00	0.00	12.57		28.0	28.0	32.0	36.0	36.0	42.0	40.0	41.0	34.0	47.0	Да
08	Вентилятор (склад реагентов)	453.50	366.50	0.00	12.57		73.2	73.2	75.8	73.7	70.2	66.4	60.9	55.0	47.9	71.9	Да
09	Вентилятор (склад реагентов)	461.50	362.50	0.00	12.57		39.2	39.2	41.8	39.7	36.2	32.4	26.9	21.0	13.9	38.0	Да
130- 147	Сепараторы	62.00	202.00	0.00	12.57		50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	65.0	Да
161	КТП №1	136.50	101.00	0.00	12.57		50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	65.0	Да
162	КТП №2	64.50	164.50	0.00	12.57		50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	65.0	Да
30-1 29	Конвейеры	75.00	183.00	0.00	12.57		44.8	44.8	47.7	50.6	53.0	54.6	52.9	50.0	44.6	59.0	Да

1.2. Источники непостоянного шума

	N	Объект	Коо	рдинаты т	очки	Простран	Уровни зву	кового	давле	ния (мо	щності	, в слу	чае R =	0), дБ,	в октаі	вных	t	T	La.экв	La. ма	В
						ственный	I	юлосах	co cpe,	днегеом	етриче	скими	частот	ами в Г	ц					кс	расчете
				угол																	
		Х (м) У (м) Высота					Дистанция	31.5	63	125	250	500	1000	2000	4000	8000					
					подъема		замера														
L					(M)		(расчета) R														

I						(м)												1		i
015	Камаз 6520	0.00	153.50	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
0165	Камаз 65111-50	143.50	435.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0			79.0	0.0	Да
0166	Беларус МТЗ-82К	311.50	369.50	0.00	12.57	7.5	83.0	83.0	74.0	66.0	69.0	70.0	78.0	60.0	55.0	1.	4.	80.0	83.0	Да
148	Автобус	45.00	59.00	0.00	12.57	7.5	58.8	58.8	61.7	64.6	67.0	68.6	66.9	64.0	58.6	1.	4.	73.0	76.0	Да
149	Поливомоечная машина	12.00	233.50	0.00	12.57	7.5	82.0	82.0	77.0	80.0	76.0	66.0	66.0	56.0	50.0	1.	4.	76.0	82.0	Да
150	Погрузчик ковшовый Bobcat	42.00	162.50	0.00	12.57	7.5	50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	1.	4.	65.0	67.0	Да
151	Погрузчик Polar Badgen	33.50	185.50	0.00	12.57	7.5	50.8	50.8	53.7	56.6	59.0	60.6	58.9	56.0	50.6	1.	4.	65.0	67.0	Да
152	Камаз 6520	10.00	143.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
153	Камаз 6520	-38.00	178.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
154	Камаз 6520	-75.50	239.00	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
155	Камаз 6520	94.00	257.50	0.00	12.57	7.5	87.0	87.0	82.0	77.0	78.0	73.0	70.0	64.0	57.0	1.	4.	79.0	82.0	Да
156	Амкодор 332В	60.00	283.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
157	Амкодор 332В	-45.00	127.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
158	Амкодор 332В	-39.50	138.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
159	Амкодор 332В	-1.50	183.50	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да
160	Амкодор 332В	52.00	189.00	0.00	12.57	7.5	75.0	75.0	76.0	72.0	68.0	65.0	63.0	57.0	49.0	1.	4.	71.0	76.0	Да

N	Объект	Координаты точек (X, Y, Высота подъема)	Ширина (м)	Высота (м)	Простран ственный угол							чае R = частот:			вных	t	T	La. экв		В расчете
					yron	Дистанция замера (расчета) R (м)	замера (расчета) R (м)						8000							
	Стоянка спецтехники	(128.5, 242, 0), (155.5, 203.5, 0)	10.00		12.57	7.5	52.8	52.8	55.7	58.6	61.0	62.6	60.9	58.0	52.6	1.	4.	67.0	71.0	Да
164	Стоянка легкового автотранспорта	(78.5, 59, 0), (121, 88.5, 0)	7.00		12.57	7.5	48.8	48.8	51.7	54.6	57.0	58.6	56.9	54.0	48.6	1.	4.	63.0	65.0	Да

1.3. Препятствия

N	Объект	Координаты точек (Х, Ү)	Высота	Высота	Коэс	ффицие	нт звуг	сопогло	щения	а, в ок	тавных	полоса	ax co	В
			(M)	подъема		cp	еднегео	метрич	іескимі	и часто	тами в	Гц		расчете
				(M)										
					31.5	63	125	250	500	1000	2000	4000	8000	
001	АБК	(52.5, 82),	3.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	Нет
		(89, 107.5),												
		(97.5, 94.5),												
		(61, 70)												
001	Склад раегентов	(451.5, 365),	3.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	Да
		(467, 375.5),												
		(471, 369.5),												
		(455.5, 358.5)												
002	Производственный корпус	(8.5, 204),	3.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	Нет
		(88.5, 256.5),												
		(122.5, 206.5),												
		(42, 151.5)												

2. Условия расчета

2.1. Расчетные точки

N	Объект	Коо	одинаты то	очки	Тип точки	В
		<u></u>				расчете
	l l	X (M)	Y (m)	Высота		
	l l	ı		подъема		
		1		(M)		
001	Расчетная точка	192.00	1716.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
002	Расчетная точка	1354.00	1240.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
003	Расчетная точка	1680.00	301.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
004	Расчетная точка	983.00	-557.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
005	Расчетная точка	203.00	-969.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
006	Расчетная точка	-1193.00	323.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
007	Расчетная точка	-661.00	1216.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
800	Расчетная точка	-723.00	-577.00	1.50	Расчетная точка на границе жилой зоны	Да
009	Расчетная точка	-688.00	712.00	1.50	Расчетная точка на границе жилой зоны	Да
010	Расчетная точка	-327.00	1217.00	1.50	Расчетная точка на границе жилой зоны	Да
011	Расчетная точка	150.00	548.00	1.50	Расчетная точка на границе производственной зоны	Да
012	Расчетная точка	591.00	586.00	1.50	Расчетная точка на границе производственной зоны	Да
013	Расчетная точка	358.00	231.00	1.50	Расчетная точка на границе производственной зоны	Да
014	Расчетная точка	-83.00	137.00	1.50	Расчетная точка на границе производственной зоны	Да

2.2. Расчетные площадки

N	Объект	Координат	ы точки 1	Координат	ы точки 2	Ширина	Высота	Шаг сет	ки (м)	В
						(M)	подъема			расчете
							(M)			
		X (M)	Y (m)	X (M)	Y (m)			X	Y	
001	Расчетная площадка	-1849.00	388.00	2287.00	388.00	3819.00	1.50	100.00	100.00	Да

Вариант расчета: "Эколог-Шум. Вариант расчета по умолчанию" 3. Результаты расчета (расчетный параметр "Звуковое давление")

3.1. Результаты в расчетных точках

Точки типа: Расчетная точка на границе произволственной зоны

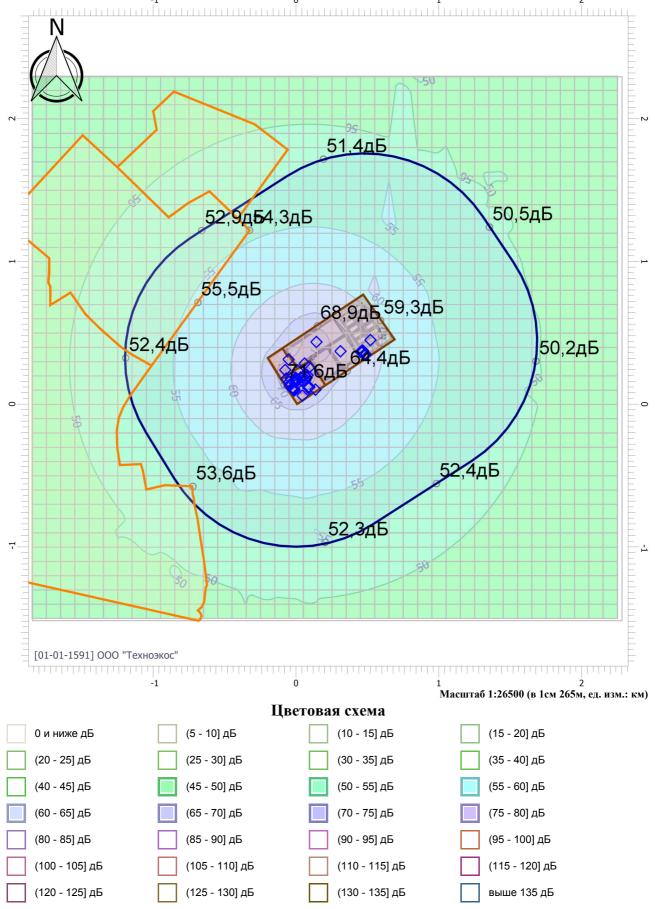
	Расчетная точка	Координа	ты точки	Высота	31.5	63	125	250	500	1000	2000	4000	8000	La.экв	La.макс
				(M)											
N	Название	X (M)	Y (M)												
011	Расчетная точка	150.00	548.00	1.50	68.9	68.9	63.9	59	59.7	54.5	51.7	41.9	25.7	60.50	65.00
012	Расчетная точка	591.00	586.00	1.50	59.3	59.3	54.1	49.3	49.2	43.8	42.3	20.3	0	50.30	58.70
013	Расчетная точка	358.00	231.00	1.50	64.4	64.4	59.2	54.6	54.6	50	51	33.7	11.9	56.80	65.50
014	Расчетная точка	-83.00	137.00	1.50	71.6	71.6	67.6	63.3	62.9	58.3	55.3	48	36.3	64.20	73.70

Точки типа: Расчетная точка на границе санитарно-зашитной зоны

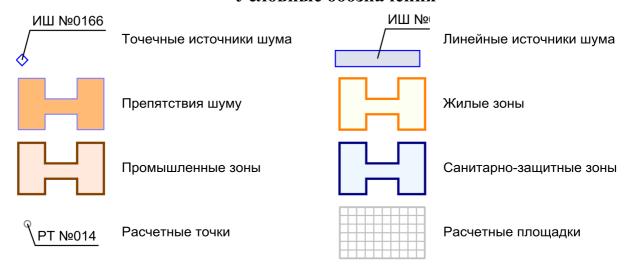
10 110	типа. тастепная то тка п		р												
	Расчетная точка	Координа	ты точки	Высота	31.5	63	125	250	500	1000	2000	4000	8000	La.экв	La.макс
				(M)											
N	Название	X (m)	Y (m)												
001	Расчетная точка	192.00	1716.00	1.50	51.4	51.3	46.1	40.9	39.9	32.7	23.5	0	0	39.90	48.90
002	Расчетная точка	1354.00	1240.00	1.50	50.5	50.4	45.4	40	38.7	31.5	22.1	0	0	38.80	48.20
003	Расчетная точка	1680.00	301.00	1.50	50.2	50	44.8	39.5	38.3	30.7	18.5	0	0	38.30	47.30
004	Расчетная точка	983.00	-557.00	1.50	52.4	52.2	47.2	42.2	41.2	34.5	26.6	0	0	41.40	51.10
005	Расчетная точка	203.00	-969.00	1.50	52.3	52.2	47.2	42.3	41.2	34.6	25.8	0	0	41.40	51.20
006	Расчетная точка	-1193.00	323.00	1.50	52.4	52.2	47.3	42.3	41.2	34.4	24.9	0	0	41.30	50.90

(007	Расчетная точка	-661.00	1216.00	1.50	52.9	52.8	47.8	42.8	41.9	35.1	26.5	0	0	42.00	51.10

Точки типа: Расчетная точка на границе жилой зоны


	Расчетная точка	Координа	ты точки	Высота	31.5	63	125	250	500	1000	2000	4000	8000	La.экв	La.макс
				(M)											
N	Название	X (m)	Y (m)												
800	Расчетная точка	-723.00	-577.00	1.50	53.6	53.5	48.6	43.6	42.6	36	27.1	0	0	42.80	52.70
009	Расчетная точка	-688.00	712.00	1.50	55.5	55.4	50.5	45.8	45.1	38.9	31.8	0	0	45.30	54.50
010	Расчетная точка	-327.00	1217.00	1.50	54.3	54.3	49.2	44.3	43.6	37.2	29.8	0	0	43.80	52.60

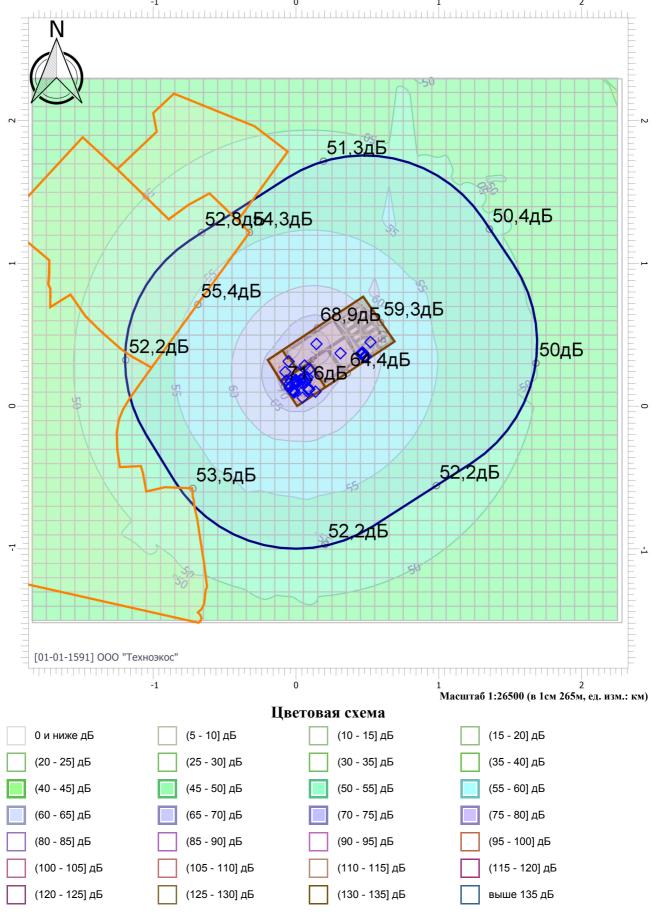
Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию


Тип расчета: Уровни шума

Код расчета: 31.5Гц (УЗД в октавной полосе со среднегеометрической частотой 31.5Гц)

Параметр: Звуковое давление

Условные обозначения

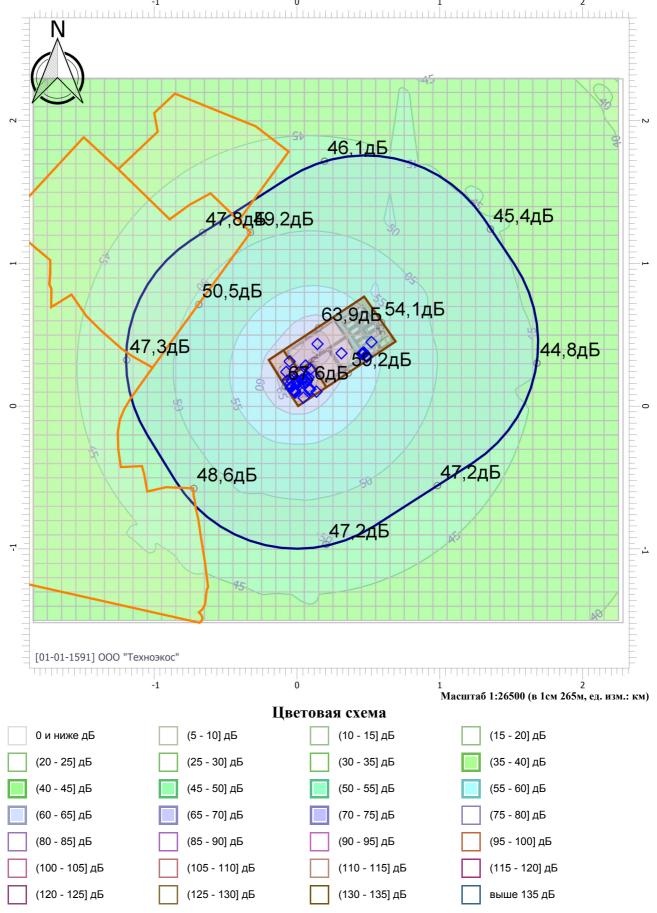


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 63Гц (УЗД в октавной полосе со среднегеометрической частотой 63Гц)

Параметр: Звуковое давление

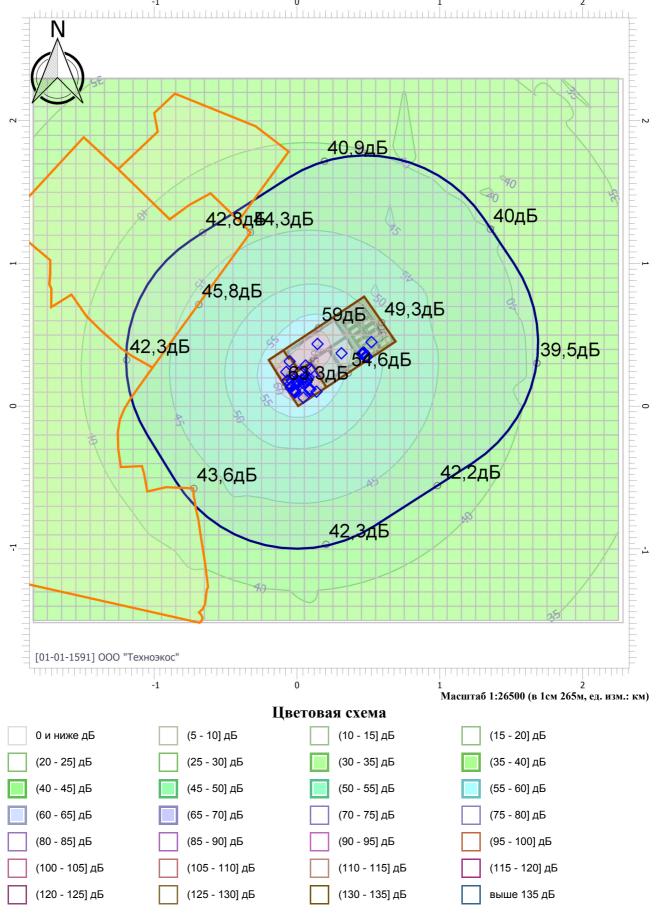


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 125Гц (УЗД в октавной полосе со среднегеометрической частотой 125Гц)

Параметр: Звуковое давление

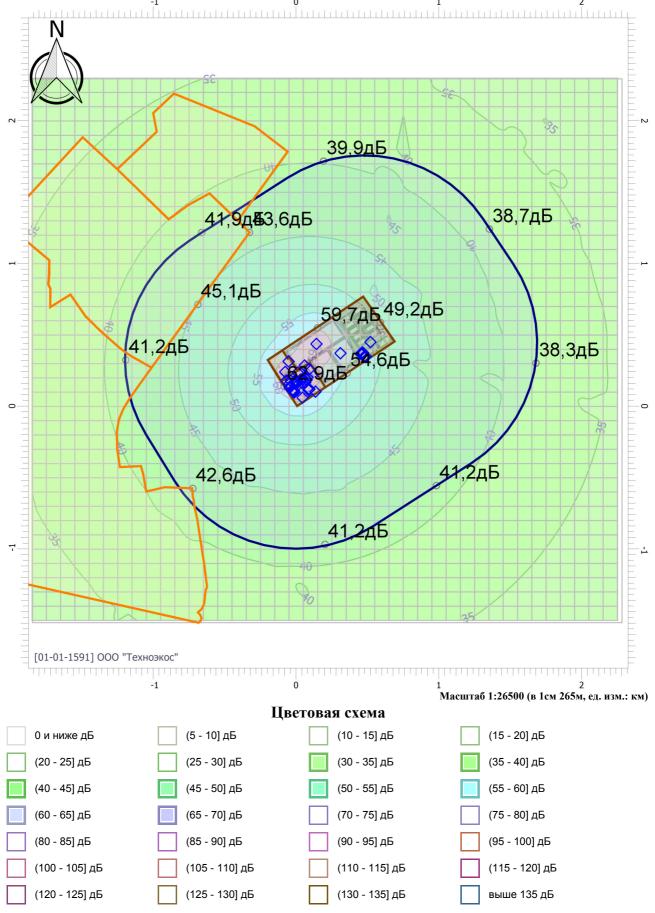


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 250Гц (УЗД в октавной полосе со среднегеометрической частотой 250Гц)

Параметр: Звуковое давление

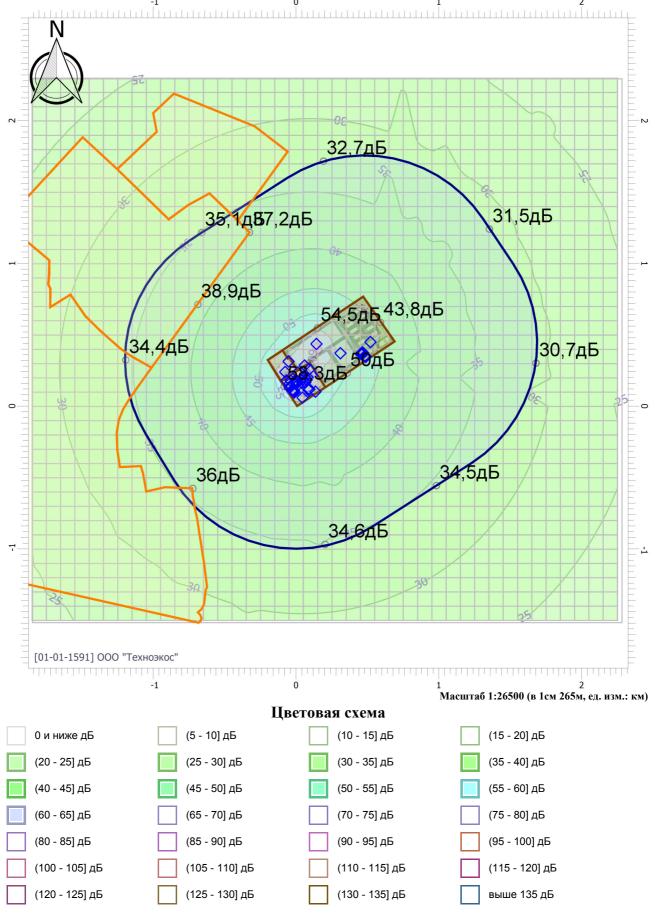


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 500Гц (УЗД в октавной полосе со среднегеометрической частотой 500Гц)

Параметр: Звуковое давление

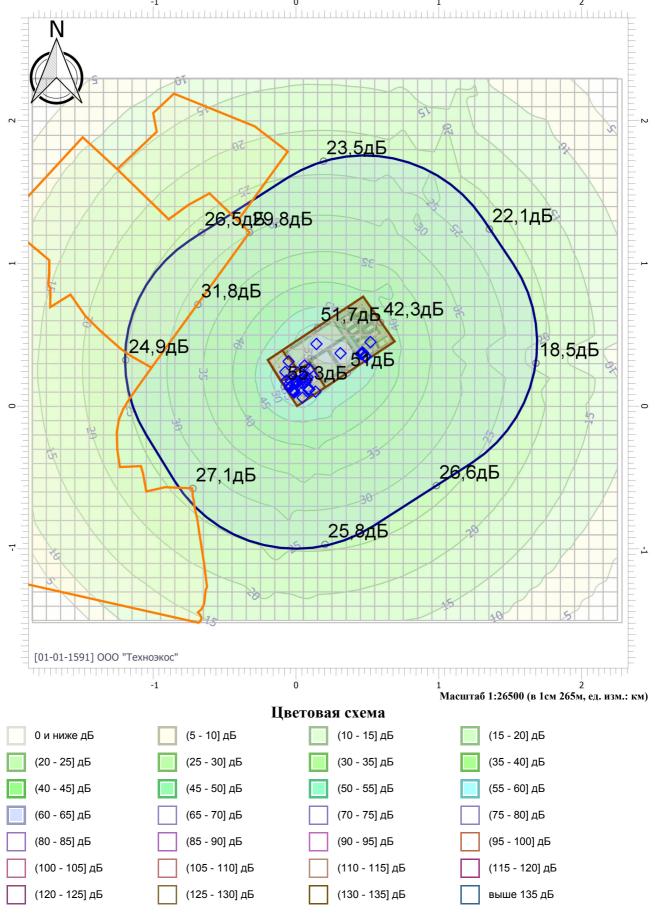


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 1000Гц (УЗД в октавной полосе со среднегеометрической частотой 1000Гц)

Параметр: Звуковое давление

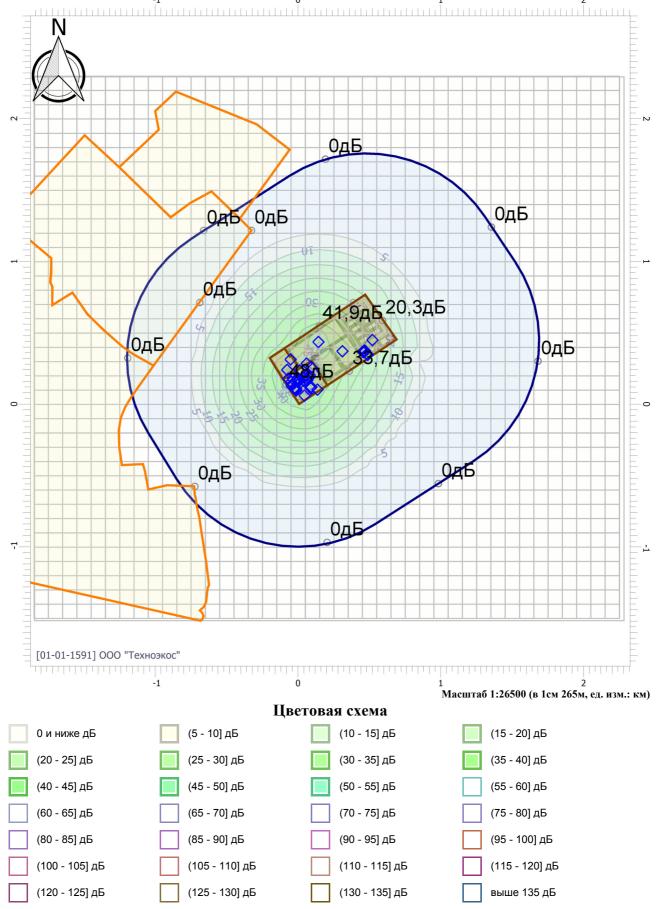


Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: 2000Гц (УЗД в октавной полосе со среднегеометрической частотой 2000Гц)

Параметр: Звуковое давление



Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

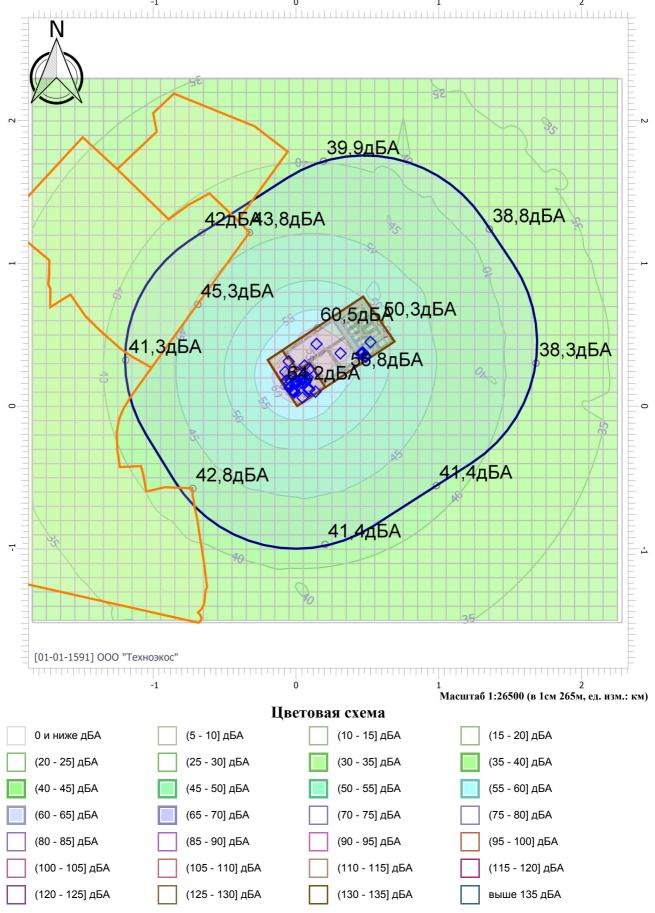
Код расчета: 4000Гц (УЗД в октавной полосе со среднегеометрической частотой 4000Гц)

Параметр: Звуковое давление

Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

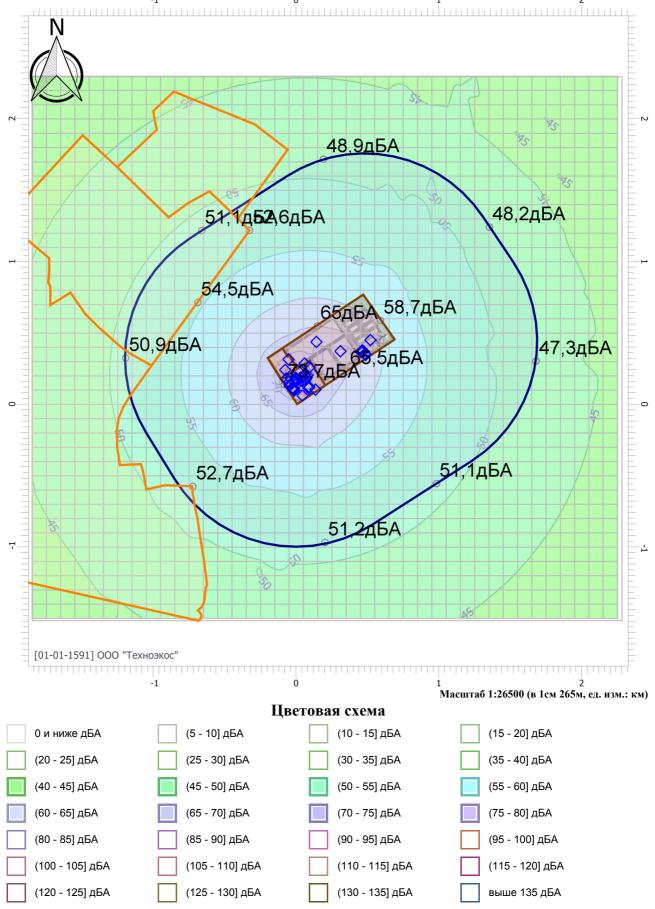
Тип расчета: Уровни шума

Код расчета: 8000Гц (УЗД в октавной полосе со среднегеометрической частотой 8000Гц)


Параметр: Звуковое давление

Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума Код расчета: La (Уровень звука) Параметр: Уровень звука



Вариант расчета: Эколог-Шум. Вариант расчета по умолчанию

Тип расчета: Уровни шума

Код расчета: La.max (Максимальный уровень звука)

Параметр: Максимальный уровень звука

Расчет образования отходов при строительстве объекта.

І этап строительства.

Отходы от выкорчевки деревьев.

Отходы малоценной древесины (хворост, валежник, обломки стволов) – 15411001215.

На строительном участке предусмотрена выкорчевка деревьев (березы) общим количеством около 235 шт., высотой 12 м, диаметром 0,15 м.

Количество деревьев, подвергающихся выкорчевке, составит:

 $M = 3,14 \times 0,075^2 \times 12 \times 235 = 49,808 \text{ m}^3$

 $M_{\rm дp} = 49,808 \times 0,67 =$ 33,371 т/период,

где: 0,075 – радиус ствола дерева, м;

12 – высота дерева, м;

235 – количество деревьев, шт.;

0,67 – плотность древесины (березы) транспортной влажности, т/м³.

Примечание: расчет количества отходов древесины проводится по формуле расчета объема иилиндра: $M = 3.14 \times r^2 \times h$ (r -радиус основания (m), h -высота (m)).

Отходы от срезки верхнего почвенно-растительного слоя и отходы суглинка при проведении земляных работ.

Грунт, образовавшийся при проведении землеройных работ, не загрязненный опасными веществами – 81110001495.

Плотность материала принимаем равной $1,6 \text{ m/m}^3$.

Количество отхода составит:

 $M = [36898 \text{ м}^3 \text{ (почвенно-растительный слой)} + 111345 \text{ м}^3 \text{ (суглинок)}] \times 1,6 =$ **237188,800 т/период.**

Отходы от строительных работ.

Отходы песка незагрязненные – 81910001495.

Нормы потерь и отходов согласно Приложению Д РДС 82-202-96 составляют 0,7%. Количество используемого при строительстве песка составляет 97248 $\rm m^3$ (126422,4 т при плотности песка, равной 1,3 т/ $\rm m^3$).

Норма образования отхода составит:

 $M = 126422,4 \times 0,007 = 884,957$ т/период.

Отходы строительного щебня незагрязненные – 81910003215.

Нормы потерь и отходов согласно Приложению Д РДС 82-202-96 составляют 0,4%. Количество используемого при строительстве щебня составляет 6857 м^3 (9600 т при плотности щебня, равной 1,4 т/m^3).

Норма образования отхода составит:

 $M = 9600 \times 0.004 = 38.400$ т/период.

Лом бетонных изделий, отходы бетона в кусковой форме – 82220101215.

Нормы потерь и отходов согласно Приложению Л РДС 82-202-96 составляют 2%. Количество используемого при строительстве бетона составляет $5968~{\rm m}^3$ ($11936~{\rm T}$ при плотности бетона, равной $2~{\rm T/m}^3$).

Норма образования отхода составит:

 $M = 11936 \times 0.02 = 238,720$ т/период.

Лом строительного кирпича незагрязненный – 82310101215.

Нормы потерь и отходов согласно Приложению Б РДС 82-202-96 составляют 1%. Количество используемого при строительстве кирпича составляет 25,2 $\rm m^3$ (36,54 т при плотности кирпича, равной 1,45 $\rm T/m^3$).

Норма образования отхода составит:

 $M = 36,54 \times 0,01 = 0,365$ т/период.

Отходы затвердевшего строительного раствора в кусковой форме – 82240101214.

Нормы потерь и отходов согласно Приложению Б РДС 82-202-96 составляют 2%. Количество используемого при строительстве цементно-песчаного раствора составляет 65 м³ (130 т при плотности раствора, равной 2 т/м^3).

Норма образования отхода составит:

 $M = 130 \times 0.02 = 2.600$ т/период.

Лом асфальтовых и асфальтобетонных покрытий – 83020001714.

Нормы потерь и отходов согласно Приложению Б РДС 82-202-96 составляют 2%. Количество используемого при строительстве асфальтобетона составляет 3330 m^3 (7992 т при плотности асфальтобетона, равной $2,4 \text{ т/m}^3$).

Норма образования отхода составит:

 $M = 7992 \times 0.02 = 159.840$ т/период.

Лом и отходы стальных изделий незагрязненные – 46120001515.

Нормы потерь и отходов согласно Приложению Е РДС 82-202-96 составляют 2%. Количество используемой при строительстве арматурной стали составляет 5290 т.

Норма образования отхода составит:

 $M = 5290 \times 0.02 = 105.800$ т/период.

Керамические изделия прочие, утратившие потребительские свойства, незагрязненные – 45911099515.

Нормы потерь и отходов согласно Приложению Б РДС 82-202-96 составляют 2%. Количество используемой при строительстве керамической плитки составляет 14,46 т.

Норма образования отхода составит:

 $M = 14,46 \times 0,02 = 0,289$ т/период.

Отходы штукатурки затвердевшей малоопасные – 82491111204.

Нормы потерь и отходов согласно Приложению Б РДС 82-202-96 составляют 6%. Количество используемой при строительстве штукатурки составляет 17 т.

Норма образования отхода составит:

 $M = 17 \times 0.06 = 1.020$ т/период.

Отходы при прокладке проводов и кабелей.

Отходы изолированных проводов и кабелей – 48230201525.

Отход образуется при замене поврежденных кабелей или проводов в изоляции. Количество отхода определяется по формуле:

$$M = (0.25 \times \pi \times d^2 \times h \times \rho) \times 0.01,$$
 т/период

где: $(0,25 \times \pi \times d^2 \times h)$ — формула расчета объема кабеля (провода), где d — диаметр кабеля (провода) (м), h — длина кабеля (провода) (м); ρ — плотность металла в кабеле, τ/m^3 ;

0,01 – процентное количество кабеля (провода), идущего в отходы при возможных повреждениях кабеля (провода), принимается по аналогии с действующими объектами.

Количество отхода составит:

Tun	π	d	h	ρ	M
Алюминиевый изолированный провод	3,14	0,0148	245	2,6989	0,001137
Алюминиевый изолированный провод	3,14	0,028	1216	2,6989	0,020198
Алюминиевый изолированный провод	3,14	0,030	414	2,6989	0,007894
Алюминиевый изолированный провод	3,14	0,032	2336	2,6989	0,050679
Медный изолированный провод	3,14	0,0039	47	8,93	0,000050
Алюминиевый изолированный кабель	3,14	0,017	126	2,6989	0,000771
Алюминиевый изолированный кабель	3,14	0,021	484	2,6989	0,004522
Алюминиевый изолированный кабель	3,14	0,023	2016	2,6989	0,022594
Алюминиевый изолированный кабель	3,14	0,025	110	2,6989	0,001457
Алюминиевый изолированный кабель	3,14	0,027	510	2,6989	0,007877
Алюминиевый изолированный кабель	3,14	0,029	2571	2,6989	0,045809
Алюминиевый изолированный кабель	3,14	0,035	433	2,6989	0,011238
Алюминиевый изолированный кабель	3,14	0,039	898	2,6989	0,028938
Алюминиевый изолированный кабель	3,14	0,041	935	2,6989	0,033299
Алюминиевый изолированный кабель	3,14	0,049	820	2,6989	0,041712
Медный изолированный кабель	3,14	0,0039	5	8,93	0,000005
Медный изолированный кабель	3,14	0,009	7245	8,93	0,041138
Медный изолированный кабель	3,14	0,010	3997	8,93	0,028019
Медный изолированный кабель	3,14	0,012	155	8,93	0,001565
Медный изолированный кабель	3,14	0,013	575	8,93	0,006812
Медный изолированный кабель	3,14	0,0136	2645	8,93	0,034295
Медный изолированный кабель	3,14	0,014	180	8,93	0,002473
Медный изолированный кабель	3,14	0,018	265	8,93	0,006019
Медный изолированный кабель	3,14	0,0185	44	8,93	0,001056
				Итого:	0,400

Отходы труб от прокладки трубопроводов при устройстве инженерных коммуникаций.

Лом и отходы стальных изделий незагрязненные – 46120001515.

Согласно нормам РДС 82-202-96 (Приложение 3) потери труб при прокладке трубопроводов составят:

- 2,5% от общего количества используемого материала (внутренние сети);
- 2,0% от общего количества используемого материала (наружные сети).

Проектом предусмотрена прокладка стальных трубопроводов различного диаметра (от 15 до 600 мм) общим весом 52151,4 кг.

Норма образования отхода составит:

 $M = 41074, 4 \times 0,025 \times 10^{-3} = 1,027$ т/период – внутренний сети

 $M = 11077 \times 0.02 \times 10^{-3} = 0.222$ т/период – наружные сети

Общее количество отхода составит 1,249 т/период.

Лом и отходы чугунных изделий незагрязненные – 46110001515.

Согласно нормам РДС 82-202-96 (Приложение 3) потери труб при прокладке трубопроводов составят:

- 2,5% от общего количества используемого материала (внутренние сети);
- 2,0% от общего количества используемого материала (наружные сети).

Проектом предусмотрена прокладка чугунных трубопроводов различного диаметра (от 100 до 110 мм) общим весом 1145,6 кг.

Норма образования отхода составит:

 $M = 765 \times 0.025 \times 10^{-3} = 0.019$ т/период – внутренний сети

 $M = 380,6 \times 0,02 \times 10^{-3} = 0,008$ т/период – наружные сети

Общее количество отхода составит 0,027 т/период.

Лом и отходы изделий из полиэтилена незагрязненные (кроме тары) — 43411003515.

Согласно нормам РДС 82-202-96 (Приложение 3) потери труб при прокладке трубопроводов составят:

- 2,5% от общего количества используемого материала (внутренние сети);
- 2,5% от общего количества используемого материала (наружные сети).

Проектом предусмотрена прокладка полиэтиленовых трубопроводов различного диаметра (от 32 до 600 мм) общим весом 72759,4 кг.

Норма образования отхода составит:

 $M = 105,2 \times 0,025 \times 10^{-3} = 0,003$ т/период – внутренний сети

 $M = 72654.2 \times 0.025 \times 10^{-3} = 1.816$ т/период – наружные сети

Общее количество отхода составит 1,819 т/период.

Лом и отходы изделий из полипропилена незагрязненные (кроме тары) — 43412003515.

Согласно нормам РДС 82-202-96 (Приложение 3) потери труб при прокладке трубопроводов составят:

- 2,5% от общего количества используемого материала (внутренние сети);
- 2,5% от общего количества используемого материала (наружные сети).

Проектом предусмотрена прокладка полипропиленовых трубопроводов различного диаметра (от 20 до 110 мм) общим весом 13163,6 кг.

Норма образования отхода составит:

 $M = 798,8 \times 0,025 \times 10^{-3} = 0,020$ т/период – внутренний сети

 $M = 12364.8 \times 0.025 \times 10^{-3} = 0.309$ т/период – наружные сети

Общее количество отхода составит 0,329 т/период.

Отходы поливинилхлорида в виде изделий или лома изделий незагрязненные — 43510003514.

Согласно нормам РДС 82-202-96 (Приложение 3) потери труб при прокладке трубопроводов составят:

- 2,5% от общего количества используемого материала (внутренние сети);
- 2,5% от общего количества используемого материала (наружные сети).

Проектом предусмотрена прокладка трубопроводов различного диаметра (от 50 до 110 мм) из ПВХ общим весом 1088,2 кг.

Норма образования отхода составит:

 $M = 744,6 \times 0.025 \times 10^{-3} = 0.019$ т/период – внутренний сети

$$M = 343,6 \times 0,025 \times 10^{-3} = 0,009$$
 т/период – наружные сети

Общее количество отхода составит 0,028 т/период.

Отходы от сварочных работ.

Шлак сварочный с преимущественным содержанием диоксида кремния — 91911121204.

Остатки и огарки стальных сварочных электродов – 91910001205.

Общая потребность в электродах при строительстве составляет 2070 кг/период. Длина электродов – 400мм, диаметр стержня – 4мм.

Типовые нормы трудноустранимых потерь и отходов материалов и изделий в процессе строительного производства для электродов с диаметром стержня свыше 3 мм составляют 6,5% (согласно Приложению О «Правил разработки и применения нормативов трудноустранимых потерь и отходов материалов в строительстве (РДС 82-202-96)» М., 1996г., утв. Постановлением Минстроя РФ от 8 августа 1996г. №18-65).

Согласно РД 153-34.1-02.207-00, пункт 5.19, отход в виде шлака сварочного равен 10% массы электродов ($M_{\scriptscriptstyle 3Л}$).

Норма образования отхода составит:

Наименование отхода по	Код по ФККО	Типовые	Количество	Количество
ФККО		нормы	электродов,	отхода,
		потерь	тонн	т/период
Остатки и огарки стальных	91910001205	6,5%	2,070	0,135
сварочных электродов				
Шлак сварочный с пре-	91911121204	10%	2,070	0,207
имущественным содержа-				
нием диоксида кремния				

Отходы упаковочного картона незагрязненные – 40518301605.

Сварочные электроды поступают на объект в картонных коробках.

Норма образования отхода составит:

$$P = \sum Q_i / M_i \times m_i \times 10^{-3}$$
, т/год

где: Q_i – расход сырья i-го вида, кг/период;

M_i – вес сырья і-го вида в единице упаковки, кг;

 m_i — вес единицы пустой упаковки из-под сырья і-го вида, кг; 10^{-3} — коэффициент перевода кг в тонны.

Норма образования отхода составит:

 $P = 2070 / 5 \times 0.1 \times 10^{-3} = 0.042$ т/период

где: 0,1 – вес единицы пустой упаковки, кг.

Отходы от покрасочных работ.

Тара из черных металлов, загрязненная лакокрасочными материалами (содержание менее 5%) – 46811202514.

Общая потребность в лакокрасочных материалах при строительстве составляет: грунт $\Gamma\Phi$ -021 – 432 кг/период, эмаль $\Pi\Phi$ -115 – 567 кг/период.

В качестве тары приняты железные банки с ЛКМ объемом 10 кг. Вес пустой банки составляет 0,001 т.

Вес сухого остатка в банке из-под краски составляет 3% (0,03) от количества используемой краски («Допустимые нормы образования отходов в технологических процессах железнодорожного транспорта», Москва, 2001г.).

Общий объем образования тары из-под ЛКМ суммируется исходя из веса пустой тары и веса сухого остатка в банке.

Норма образования отхода составит:

Масса сырья (В), кг	999
Вместимость одной единицы тары (N), кг	10
Количество единиц тары ($M = B / N$), шт.	100
Масса одной единицы тары (n), т	0,001
$Macca$ пустой тары $(P = M \times n)$, т	0,100
Норматив образования сухого остатка в таре (S), %	3
Масса сухого остатка ($T = B \times S\% / 1000$), т	0,030
Масса отхода (Р + Т), т/период	0,130

Отходы от технического обслуживания и ремонта технологического оборудования.

Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%) – 91920402604.

Данный вид отхода образуется при текущем обслуживании и периодическом ремонте технологического оборудования.

Количество данного вида отхода определяется по формуле:

$$M_{\mbox{\tiny BETOIIIb}} = H_{\mbox{\tiny УД.ВЕТОIIIb}} imes N imes D imes 10^{-3},$$

где: Н_{уд.ветошь} – удельный норматив ветоши на 1 работающего = 0,1 кг/сут. («Оценка количеств образующихся отходов производства и потребления», СПб, 1997г.);

N – количество рабочих, использующих ветошь, чел/сут.;

D – число рабочих дней за период, сут;

10⁻³ – коэффициент перевода кг в тонны.

Норма образования отхода составит:

 $M_{\text{ветошь}} = 0.1 \times 30 \times 352 \times 10^{-3} = 1.056$ т/период.

Примечание: продолжительность I этапа строительства составляет 16 месяцев (≈ 352 рабочих суток). В расчете количество рабочих принято без учета ИТР и служаших.

Отходы от жизнедеятельности рабочих.

Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный) – 73310001724.

Примечание: I этап строительства - продолжительность 16 месяцев (≈ 352 рабочих суток), при расчетах видов отходов с применением годового удельного норматива принимаем коэффициент 1,33.

Расчет нормы образования отхода проводится по «Сборнику удельных показателей образования отходов производства и потребления», 1999г., таблица 3.2., пункт 6. Среднегодовой норматив образования отходов составляет 40-70 кг/год на одного человека. Для расчета принято максимальное значение в 70 кг/год. На момент строительства предусмотрено 35 человек.

Норма образования отхода составит:

 $M = 35 \times 70 \times 1{,}33 \times 10^{-3} = 3{,}259$ т/период,

где: 10^{-3} – коэффициент перевода кг в тонны.

Пищевые отходы кухонь и организаций общественного питания несортированные – 73610001305.

Отход образуется от приёма пищи. Проектом предусмотрен привоз готовой пищи высокой степени готовности в пластиковой упаковке и раздача её рабочим.

Согласно «Методическим рекомендациям по разработке проекта нормативов предельного размещения отходов для теплоэлектростанций, теплоэлектроцентралей, промышленных и отопительных котельных», СПб, 1998 г. норма образования отходов (М) рассчитывается, исходя из среднесуточной нормы накопления на 1 блюдо - $0,0001 \,\mathrm{m}^3$, числа рабочих дней за период (n), числа блюд на одного человека (m) и числа работающих (z). Плотность отходов (ρ) - $0,3 \,\mathrm{T/m}^3$.

$$M = 0.0001 \times n \times m \times z \times \rho$$
, т/период

Норма образования отхода составит:

 $M = 0.0001 \times 352 \times 3 \times 35 \times 0.3 = 1.109$ т/период.

Отходы посуды одноразовой из разнородных полимерных материалов, загрязненной пищевыми продуктами — 43894111524.

Отход образуется от приёма пищи. Норма образования отхода определяется, исходя из количества единиц одноразовой посуды на 1 рабочего, ее веса (в граммах), количества рабочих и числа рабочих суток за период:

$$M = 4 \times 10 \times 35 \times 352 \times 10^{-6} = 0.493$$
 т/период,

где: 4 – количество единиц одноразовой посуды на 1 рабочего (три тарелки и один стакан), шт.;

10 – средний вес одной единицы одноразовой посуды, грамм;

10-6 – коэффициент перевода грамм в тонны.

Отходы от замены спецодежды, спецобуви и средств защиты.

Спецодежда из хлопчатобумажного и смешанных волокон, утратившая потребительские свойства, незагрязненная – 40211001624.

Отход образуется при замене изношенных хлопчатобумажных комплектов и костю-

мов, рукавиц комбинированных, а также верхней одежды.

Наименование спец- одежды	Количество рабочих	Норма выдачи спецодежды, раз/период	Вес еди- ницы спец- одежды, кг	Нормативная масса образования отхода, т/период
Комплект х/б	35	3	0,45	$M = 35 \times 3 \times 0.45 \times 10^{-3} = 0.047$
Костюм х/б с водооттал- кивающей пропиткой	35	3	2,4	$M = 35 \times 3 \times 2,4 \times 10^{-3} = 0,252$
Рукавицы комбиниро- ванные	35	6	0,3	$M = 35 \times 6 \times 0.3 \times 10^{-3} = 0.063$
Куртка на утепляющей подкладке	35	1	2,5	$M = 35 \times 1 \times 2,5 \times 10^{-3} = 0,088$
Брюки на утепляющей подкладке	35	1	2,8	$M = 35 \times 1 \times 2.8 \times 10^{-3} = 0.098$
			Итого:	0,548 т/период

Спецодежда из брезентовых тканей, утратившая потребительские свойства – 40212112605.

Отход образуется при замене изношенных брезентовых костюмов.

Отход образуете	отход образуется при замене изпошенных брезентовых коспомов.						
Наименование спец-	Количество	Норма выдачи	Вес еди-	Нормативная масса образования			
одежды	рабочих	спецодежды,	ницы	отхода, т/период			
		раз/период	спец-				
			одежды,				
			кг				
Брезентовый костюм	35	1	2,8	$M = 35 \times 1 \times 2.8 \times 10^{-3} = 0.098$			
			Итого:	0,098 т/период			

Обувь кожаная рабочая, утратившая потребительские свойства – 40310100524.

Отход образуется при замене кожаной спецобуви.

omegopusjere	e meg cepusjeren upu sumene nemunen enegeejan.						
Наименование спецобуви	Количество	Норма выдачи	Вес пары	Нормативная масса образования			
	рабочих	спецобуви,	спецобуви,	отхода, т/период			
		раз/период	кг				
Ботинки кожаные	35	1	2,0	$M = 35 \times 1 \times 2,0 \times 10^{-3} = 0,070$			
			Итого:	0,070 т/период			

Резиновые перчатки, утратившие потребительские свойства, незагрязненные – 43114101204.

Отход образуется при замене резиновых перчаток.

т сэйновые перчатки	33	10	Итого:	0,034 т/период
Резиновые перчатки	35	16	0.06	$M = 35 \times 16 \times 0.06 \times 10^{-3} = 0.034$
		раз/период	кг	
		чаток,	перчаток,	
защиты	рабочих	резиновых пер-	резиновых	отхода, т/период
Наименование средств	Количество	Норма выдачи	Вес пары	Нормативная масса образования

Резиновая обувь отработанная, утратившая потребительские свойства, незагрязненная — 43114102204.

Отход образуется при замене резиновой спецобуви.

Наименование средств	Количество	Норма выдачи	Вес пары	Нормативная масса образования
защиты	рабочих	резиновых са-	резиновых	omxoдa, m/nepuoд
		пог, раз/период	сапог, кг	
Резиновые сапоги	35	1	1,6	$M = 35 \times 1 \times 1,6 \times 10^{-3} = 0,056$
			Итого:	0,056 т/период

Отходы от эксплуатации сетей наружного освещения.

Светильники со светодиодными элементами в сборе, утратившие потребительские свойства — 48242711524.

Отход образуется при замене перегоревших светодиодных светильников. Расчет проводится аналогично ртутным лампам по «Сборнику методик по расчету объемов образования отходов. Методика расчета объемов образования отходов МРО-6-99. Отработанные ртутьсодержащие лампы». СПб, 2004г. Норматив образования отхода рассчитывается по формуле:

$$N = \sum n_i \times m_i \times t_i \times 10^{-6} / k_i$$
, т/период

где: n_i - количество установленных ламп і-той марки, шт.;

t_i – фактическое количество часов работы ламп i-той марки, час/период;

 k_{i} – эксплуатационный срок службы ламп i-той марки, час;

m_i – вес одной лампы, г;

10-6 – коэффициент перевода грамм в тонны.

Норма образования отхода составит:

Наименование объекта	Кол-во, шт.	Среднее время ра- боты, час/сут	Число рабо- чих суток за период, шт.	Вес 1-й лампы, г	Нормативный срок службы 1- й лампы, час	Вес от- хода, т/период
Строительная площадка	58	8	352	500	10000	0,00817
					Итого:	0,008

Отходы от ремонта автотранспорта.

Расчет количества отходов проводится в соответствии со «Сборником удельных показателей образования отходов производства и потребления». Государственный комитет Российской Федерации по охране окружающей среды. Москва, 1999г.

Отходы изделий технического назначения из вулканизированной резины незагрязненные в смеси – 43119981724.

Количество отходов резинотехнических материалов, образующихся при проведении вулканизационных работ для автомобилей, определяется из расчета:

- 0,2 кг на 10 000 км пробега для грузовых автомобилей.

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/период
Экскаватор ЭО-3322	1	630	0,2	10000	0,00001
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	650	0,2	10000	0,00001
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	370	0,2	10000	0,00001
Бортовой автомобиль КамАЗ 65117	2	10300	0,2	10000	0,00041
Автосамосвал КамАЗ 6520	6	14800	0,2	10000	0,00178
Автокран КС-55729-1	1	380	0,2	10000	0,00001
Кран на шасси автомобильного типа KRUPP KMK-5120	1	420	0,2	10000	0,00001
Автобетоносмеситель КАМАЗ	3	1500	0,2	10000	0,00009
Виброплита SBV 80 HC3 на базе экскаватора-погрузчика JCB 3CX	1	320	0,2	10000	0,00001
Погрузчик JCB Loadall 550-80	1	380	0,2	10000	0,00001
Самоходный подъемник ножничного типа Grost SPX F3-6000 109546	1	330	0,2	10000	0,00001
Асфальтоукладчик ДС-181-02	1	590	0,2	10000	0,00001
Гудронатор БР-500	1	590	0,2	10000	0,00001
Автогидроподъемник АГП- 18.04	1	400	0,2	10000	0,00001
Бурильно-крановая машина БКМ-516	1	450	0,2	10000	0,00001
Кабельный транспортер на базе КАМАЗ 880702	1	1100	0,2	10000	0,00002
	1			Итого:	0,002

Покрышки пневматических шин с металлическим кордом отработанные – 92113002504.

Количество отработанных покрышек определяется исходя из значения удельного показателя образования отходов:

- 19,1 кг на 10 000 км пробега для грузовых автомобилей.

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/период
Экскаватор ЭО-3322	1	630	19,1	10000	0,00120
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	650	19,1	10000	0,00124
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	370	19,1	10000	0,00071
Бортовой автомобиль КамАЗ	2	10300	19,1	10000	0,03935

				Итого:	0,230
Кабельный транспортер на базе КАМАЗ 880702	1	1100	19,1	10000	0,00210
Бурильно-крановая машина БКМ-516	1	450	19,1	10000	0,00086
Автогидроподъемник АГП- 18.04	1	400	19,1	10000	0,00076
Гудронатор БР-500	1	590	19,1	10000	0,00113
Асфальтоукладчик ДС-181-02	1	590	19,1	10000	0,00113
Самоходный подъемник нож- ничного типа Grost SPX F3- 6000 109546	1	330	19,1	10000	0,00063
Погрузчик JCB Loadall 550-80	1	380	19,1	10000	0,00073
Виброплита SBV 80 HC3 на базе экскаватора-погрузчика JCB 3CX	1	320	19,1	10000	0,00061
Автобетоносмеситель КАМАЗ	3	1500	19,1	10000	0,00860
Кран на шасси автомобильного типа KRUPP KMK-5120	1	420	19,1	10000	0,00080
Автокран КС-55729-1	1	380	19,1	10000	0,00073
Автосамосвал КамАЗ 6520	6	14800	19,1	10000	0,16961
65117					

Аккумуляторы свинцовые отработанные неповрежденные, с электролитом – 92011001532.

Количество лома отработанных свинцовых аккумуляторов определяется исходя из значения удельного показателя образования отходов:

- 4,18 кг на 10 000 км пробега для грузовых автомобилей.

Количество отработанного электролита определяется исходя из значения удельного показателя образования отходов:

- 2,7 л на 10 000 км пробега для грузовых автомобилей.

Расчет количества лома аккумуляторов свинцовых отработанных

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/период
Экскаватор ЭО-3322	1	630	4,18	10000	0,00026
Экскаватор ЭО-5122	2	650	4,18	10000	0,00054
Экскаватор траншейный цепной ЭТЦ-75	1	610	4,18	10000	0,00025
Бульдозер ДЗ-42	2	740	4,18	10000	0,00062
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	650	4,18	10000	0,00027
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD- 40	1	370	4,18	10000	0,00015
Бортовой автомобиль КамАЗ 65117	2	10300	4,18	10000	0,00861
Автосамосвал КамАЗ 6520	6	14800	4,18	10000	0,03712

				Итого:	0,052
Кабельный транспортер на базе КАМАЗ 880702	1	1100	4,18	10000	0,00046
Бурильно-крановая машина БКМ-516	1	450	4,18	10000	0,00019
Автогидроподъемник АГП- 18.04	1	400	4,18	10000	0,00017
Гудронатор БР-500	1	590	4,18	10000	0,00025
Асфальтоукладчик ДС-181-02	1	590	4,18	10000	0,00025
Каток дорожный САТ CB-434D	1	650	4,18	10000	0,00027
Корчеватель-собиратель Д- 695A	1	420	4,18	10000	0,00018
Самоходный подъемник нож- ничного типа Grost SPX F3- 6000 109546	1	330	4,18	10000	0,00014
Погрузчик JCB Loadall 550-80	1	380	4,18	10000	0,00016
Виброплита SBV 80 HC3 на базе экскаватора-погрузчика JCB 3CX	1	320	4,18	10000	0,00013
Автобетоносмеситель КАМАЗ	3	1500	4,18	10000	0,00188
Кран на шасси автомобильного типа KRUPP KMK-5120	1	420	4,18	10000	0,00018
Автокран КС-55729-1	1	380	4,18	10000	0,00016

Расчет количества сернокислотного электролита

Марка автотранс- порта	Кол- во	Пробег одной единицы, км/период	Значение удельного показателя, л	Коэффи- циент перевода л в м ³	Плот- ность электро- лита, т/м ³	Норма- тивный пробег, км	Вес отхо- да, т/период
Экскаватор ЭО-3322	1	630	2,7	0,001	1,2	10000	0,00020
Экскаватор ЭО-5122	2	650	2,7	0,001	1,2	10000	0,00042
Экскаватор траншей- ный цепной ЭТЦ-75	1	610	2,7	0,001	1,2	10000	0,00020
Бульдозер ДЗ-42	2	740	2,7	0,001	1,2	10000	0,00048
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	650	2,7	0,001	1,2	10000	0,00021
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD- 40	1	370	2,7	0,001	1,2	10000	0,00012
Бортовой автомобиль КамАЗ 65117	2	10300	2,7	0,001	1,2	10000	0,00667
Автосамосвал КамАЗ 6520	6	14800	2,7	0,001	1,2	10000	0,02877
Автокран КС-55729-1	1	380	2,7	0,001	1,2	10000	0,00012
Кран на шасси авто- мобильного типа KRUPP KMK-5120	1	420	2,7	0,001	1,2	10000	0,00014
Автобетоносмеситель КАМАЗ	3	1500	2,7	0,001	1,2	10000	0,00146

Виброплита SBV 80 НС3 на базе экскава-							
тора-погрузчика ЈСВ	1	320	2,7	0,001	1,2	10000	0,00010
3CX							
Погрузчик JCB Loadall 550-80	1	380	2,7	0,001	1,2	10000	0,00012
Самоходный подъем-							
ник ножничного типа Grost SPX F3-6000 109546	1	330	2,7	0,001	1,2	10000	0,00011
Корчеватель- собиратель Д-695А	1	420	2,7	0,001	1,2	10000	0,00014
Каток дорожный САТ СВ-434D	1	650	2,7	0,001	1,2	10000	0,00021
Асфальтоукладчик ДС-181-02	1	590	2,7	0,001	1,2	10000	0,00019
Гудронатор БР-500	1	590	2,7	0,001	1,2	10000	0,00019
Автогидроподъемник АГП-18.04	1	400	2,7	0,001	1,2	10000	0,00013
Бурильно-крановая машина БКМ-516	1	450	2,7	0,001	1,2	10000	0,00015
Кабельный транспортер на базе КАМАЗ 880702	1	1100	2,7	0,001	1,2	10000	0,00036
						Итого:	0,040

Количество отхода составит 0,092 т/период.

Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%) – 91920402604.

Согласно нормам расхода материалов на ремонт и эксплуатацию автомашин количество обтирочного материала, загрязненными маслами, определяется из расчета:

- 2,18 кг на 10 000 км пробега для грузовых автомобилей.

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Bec omxo- да, m/период
Экскаватор ЭО-3322	1	630	2,18	10000	0,00014
Экскаватор ЭО-5122	2	650	2,18	10000	0,00028
Экскаватор траншейный цепной ЭТЦ-75	1	610	2,18	10000	0,00013
Бульдозер ДЗ-42	2	740	2,18	10000	0,00032
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	650	2,18	10000	0,00014
Каток грунтовый с кулач- ковым вальцом BOMAG BW 211 PD-40	1	370	2,18	10000	0,00008
Бортовой автомобиль Ка- мАЗ 65117	2	10300	2,18	10000	0,00449
Автосамосвал КамАЗ 6520	6	14800	2,18	10000	0,01936
Автокран КС-55729-1	1	380	2,18	10000	0,00008
Кран на шасси автомо- бильного типа KRUPP	1	420	2,18	10000	0,00009

KMK-5120					
Автобетоносмеситель КАМАЗ	3	1500	2,18	10000	0,00098
Виброплита SBV 80 HC3 на базе экскаватора- погрузчика JCB 3CX	1	320	2,18	10000	0,00007
Погрузчик JCB Loadall 550-80	1	380	2,18	10000	0,00008
Самоходный подъемник ножничного типа Grost SPX F3-6000 109546	1	330	2,18	10000	0,00007
Корчеватель-собиратель Д-695А	1	420	2,18	10000	0,00009
Каток дорожный САТ СВ- 434D	1	650	2,18	10000	0,00014
Асфальтоукладчик ДС- 181-02	1	590	2,18	10000	0,00013
Гудронатор БР-500	1	590	2,18	10000	0,00013
Автогидроподъемник АГП-18.04	1	400	2,18	10000	0,00009
Бурильно-крановая маши- на БКМ-516	1	450	2,18	10000	0,00010
Кабельный транспортер на базе КАМАЗ 880702	1	1100	2,18	10000	0,00024
				Итого:	0,027

Отходы синтетических и полусинтетических масел моторных - 41310001313.

Количество отработанного моторного масла рассчитывается исходя из значения удельного показателя образования отходов:

- 1,17 л на 100 л израсходованного топлива для внедорожных автомобилей – самосвалов и другой подобной техники, работающей на дизельном топливе.

Марка автотранс- порта	Кол-во	Расход топли- ва одной еди- ницы, л/период	Значение удельного показателя, л	Нормативный расход топ- лива, л	Коэффициент перевода л в м3	Плотность масла, т/м3	Вес от- хода, т/период
Экскаватор ЭО-3322	1	8500	1,17	100	0,001	0,93	0,09249
Экскаватор ЭО-5122	2	8900	1,17	100	0,001	0,93	0,19368
Экскаватор траншей- ный цепной ЭТЦ-75	1	8100	1,17	100	0,001	0,93	0,08814
Бульдозер ДЗ-42	2	9500	1,17	100	0,001	0,93	0,20674
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	5750	1,17	100	0,001	0,93	0,06257
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD- 40	1	4800	1,17	100	0,001	0,93	0,05223
Бортовой автомобиль КамАЗ 65117	2	10100	1,17	100	0,001	0,93	0,21980
Автосамосвал КамАЗ 6520	6	9700	1,17	100	0,001	0,93	0,63327
Автокран КС-55729-1	1	4350	1,17	100	0,001	0,93	0,04733

						Итого:	1,945
Кабельный транспортер на базе КАМАЗ 880702	1	1000	1,17	100	0,001	0,93	0,01088
Бурильно-крановая машина БКМ-516	1	680	1,17	100	0,001	0,93	0,00740
Автогидроподъемник АГП-18.04	1	750	1,17	100	0,001	0,93	0,00816
Асфальтоукладчик ДС-181-02	1	1200	1,17	100	0,001	0,93	0,01306
Каток дорожный САТ СВ-434D	1	1000	1,17	100	0,001	0,93	0,01088
Корчеватель- собиратель Д-695А	1	1200	1,17	100	0,001	0,93	0,01306
Самоходный подъемник ножничного типа Grost SPX F3-6000 109546	1	800	1,17	100	0,001	0,93	0,00870
Погрузчик JCB Loadall 550-80	1	900	1,17	100	0,001	0,93	0,00979
Виброплита SBV 80 НСЗ на базе экскава- тора-погрузчика JCB 3CX	1	850	1,17	100	0,001	0,93	0,00925
Автобетоносмеситель КАМАЗ	3	6300	1,17	100	0,001	0,93	0,20565
Кран на шасси авто- мобильного типа KRUPP KMK-5120	1	4800	1,17	100	0,001	0,93	0,05223

Отходы минеральных масел трансмиссионных – **40615001313**. Количество отработанного трансмиссионного масла рассчитывается исходя из значения удельного показателя образования отходов:

- 1,17 л на 100 л израсходованного топлива для внедорожных автомобилей – самосвалов и другой подобной техники, работающей на дизельном топливе.

Марка автотранс- порта	Кол-во	Расход топли- ва одной еди- ницы, л/период	Значение удельного показателя, л	Нормативный расход топ- лива, л	Коэффициент перевода л в м3	Плотность масла, т/м3	Вес от- хода, т/период
Экскаватор ЭО-3322	1	8500	1,17	100	0,001	0,885	0,08801
Экскаватор ЭО-5122	2	8900	1,17	100	0,001	0,885	0,18431
Экскаватор траншей- ный цепной ЭТЦ-75	1	8100	1,17	100	0,001	0,885	0,08387
Бульдозер ДЗ-42	2	9500	1,17	100	0,001	0,885	0,19674
Каток грунтовый самоходный на пневматических шинах ДУ-	1	5750	1,17	100	0,001	0,885	0,05954
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD- 40	1	4800	1,17	100	0,001	0,885	0,04970
Бортовой автомобиль КамАЗ 65117	2	10100	1,17	100	0,001	0,885	0,20916

						Итого:	1,851
Кабельный транспортер на базе КАМАЗ 880702	1	1000	1,17	100	0,001	0,885	0,01035
Бурильно-крановая машина БКМ-516	1	680	1,17	100	0,001	0,885	0,00704
Автогидроподъемник АГП-18.04	1	750	1,17	100	0,001	0,885	0,00777
Асфальтоукладчик ДС-181-02	1	1200	1,17	100	0,001	0,885	0,01243
Каток дорожный САТ СВ-434D	1	1000	1,17	100	0,001	0,885	0,01035
Корчеватель- собиратель Д-695А	1	1200	1,17	100	0,001	0,885	0,01243
Самоходный подъемник ножничного типа Grost SPX F3-6000 109546	1	800	1,17	100	0,001	0,885	0,00828
Погрузчик JCB Loadall 550-80	1	900	1,17	100	0,001	0,885	0,00932
Виброплита SBV 80 НСЗ на базе экскаватора-погрузчика JCB 3CX	1	850	1,17	100	0,001	0,885	0,00880
Автобетоносмеситель КАМАЗ	3	6300	1,17	100	0,001	0,885	0,19570
Кран на шасси авто- мобильного типа KRUPP KMK-5120	1	4800	1,17	100	0,001	0,885	0,04970
Автокран КС-55729-1	1	4350	1,17	100	0,001	0,885	0,04504
Автосамосвал КамАЗ 6520	6	9700	1,17	100	0,001	0,885	0,60263

Отходы минеральных масел гидравлических, не содержащих галогены — 40612001313.

Количество отработанного гидравлического масла рассчитывается исходя из значения удельного показателя образования отходов:

- 0,6 л на 100 л израсходованного топлива для внедорожных автомобилей — самосвалов и другой подобной техники.

Марка автотранс- порта	Кол-во	Расход топли- ва одной еди- ницы, л/период	Значение удельного показателя, л	Нормативный расход топ- лива, л	Коэффициент перевода л в м3	Плотность масла, т/м3	Вес от- хода, т/период
Экскаватор ЭО-3322	1	8500	0,6	100	0,001	0,890	0,04539
Экскаватор ЭО-5122	2	8900	0,6	100	0,001	0,890	0,09505
Экскаватор траншей- ный цепной ЭТЦ-75	1	8100	0,6	100	0,001	0,890	0,04325
Бульдозер ДЗ-42	2	9500	0,6	100	0,001	0,890	0,10146
Каток грунтовый самоходный на пнев-матических шинах ДУ-29	1	5750	0,6	100	0,001	0,890	0,03071
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-	1	4800	0,6	100	0,001	0,890	0,02563

40							
Бортовой автомобиль КамАЗ 65117	2	10100	0,6	100	0,001	0,890	0,10787
Автосамосвал КамАЗ 6520	6	9700	0,6	100	0,001	0,890	0,31079
Автокран КС-55729-1	1	4350	0,6	100	0,001	0,890	0,02323
Кран на шасси авто- мобильного типа KRUPP KMK-5120	1	4800	0,6	100	0,001	0,890	0,02563
Автобетоносмеситель КАМАЗ	3	6300	0,6	100	0,001	0,890	0,10093
Виброплита SBV 80 НС3 на базе экскаватора-погрузчика JCB 3CX	1	850	0,6	100	0,001	0,890	0,00454
Погрузчик JCB Loadall 550-80	1	900	0,6	100	0,001	0,890	0,00481
Самоходный подъ- емник ножничного типа Grost SPX F3- 6000 109546	1	800	0,6	100	0,001	0,890	0,00427
Корчеватель- собиратель Д-695A	1	1200	0,6	100	0,001	0,890	0,00641
Каток дорожный САТ CB-434D	1	1000	0,6	100	0,001	0,890	0,00534
Асфальтоукладчик ДС-181-02	1	1200	0,6	100	0,001	0,890	0,00641
Автогидроподъемник АГП-18.04	1	750	0,6	100	0,001	0,890	0,00401
Бурильно-крановая машина БКМ-516	1	680	0,6	100	0,001	0,890	0,00363
Кабельный транспортер на базе КАМАЗ 880702	1	1000	0,6	100	0,001	0,890	0,00534
						Итого:	0,955

Фильтры очистки масла автотранспортных средств отработанные - 92130201523.

Норматив образования отработанных фильтров, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{\text{H}i} \times 10^{-3},$$
 т/период

где:

N_i – количество автомашин і-й марки, шт.;

 n_i – количество фильтров, установленных на автомашине i-й марки, шт.; от 1 до 4 фильтров (в среднем n_i = 2 фильтра);

m_i – вес одного фильтра на автомашине i-й марки, кг;

 L_i – средний пробег автомобиля i-й марки, тыс.км/период (или среднее время работы спецтехники i-й марки, час/период);

L_{ні} – норма пробега подвижного состава і-ой марки до замены фильтровальных элементов, тыс.км (или норма времени до замены фильтров, час);

 10^{-3} – коэффициент перевода кг в тонны.

Замена масляных фильтров производится через 10 тыс.км пробега. В среднем вес одного масляного фильтра на грузовых машинах составляет 1,5 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Экскаватор ЭО-3322	1	2	1,5	0,630	10	0,00019
Экскаватор ЭО-5122	2	2	1,5	0,650	10	0,00039
Экскаватор траншейный цепной ЭТЦ-75	1	2	1,5	0,610	10	0,00018
Бульдозер ДЗ-42	2	2	1,5	0,740	10	0,00044
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	2	1,5	0,650	10	0,00020
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	2	1,5	0,370	10	0,00011
Бортовой автомобиль КамАЗ 65117	2	2	1,5	10,300	10	0,00618
Автосамосвал КамАЗ 6520	6	2	1,5	14,800	10	0,02664
Автокран КС-55729-1	1	2	1,5	0,380	10	0,00011
Кран на шасси автомобильного типа KRUPP KMK-5120	1	2	1,5	0,420	10	0,00013
Автобетоносмеситель КАМАЗ	3	2	1,5	1,500	10	0,00135
Виброплита SBV 80 HC3 на базе экскаватора-погрузчика JCB 3CX	1	2	1,5	0,320	10	0,00010
Погрузчик JCB Loadall 550-80	1	2	1,5	0,380	10	0,00011
Самоходный подъемник нож- ничного типа Grost SPX F3- 6000 109546	1	2	1,5	0,330	10	0,00010
Корчеватель-собиратель Д- 695A	1	2	1,5	0,420	10	0,00013
Каток дорожный САТ CB-434D	1	2	1,5	0,650	10	0,00020
Асфальтоукладчик ДС-181-02	1	2	1,5	0,590	10	0,00018
Автогидроподъемник АГП- 18.04	1	2	1,5	0,400	10	0,00012
Бурильно-крановая машина БКМ-516	1	2	1,5	0,450	10	0,00014
Кабельный транспортер на базе КАМАЗ 880702	1	2	1,5	1,100	10	0,00033
					Итого:	0,037

Фильтры воздушные автотранспортных средств отработанные – 92130101524.

Норматив образования отработанных фильтров, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{\scriptscriptstyle H i} \times 10^{\text{-3}},$$
 т/период

где:

N_i – количество автомашин i-й марки, шт.;

 n_i — количество фильтров, установленных на автомашине i-й марки, шт.; от 1 до 4 фильтров (в среднем n_i = 2 фильтра);

m_i – вес одного фильтра на автомашине і-й марки, кг;

 L_i — средний пробег автомобиля і-й марки, тыс.км/период (или среднее время работы спецтехники і-й марки, час/период);

L_{ні} – норма пробега подвижного состава і-ой марки до замены фильтровальных элементов, тыс.км (или норма времени до замены фильтров, час);

 10^{-3} – коэффициент перевода кг в тонны.

Замена воздушных фильтров производится через 20 тыс.км пробега. В среднем вес одного воздушного фильтра на грузовых машинах составляет 0,5 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Экскаватор ЭО-3322	1	2	0,5	0,630	20	0,00003
Экскаватор ЭО-5122	2	2	0,5	0,650	20	0,00007
Экскаватор траншейный цепной ЭТЦ-75	1	2	0,5	0,610	20	0,00003
Бульдозер ДЗ-42	2	2	0,5	0,740	20	0,00007
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	2	0,5	0,650	20	0,00003
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	2	0,5	0,370	20	0,00002
Бортовой автомобиль КамАЗ 65117	2	2	0,5	10,300	20	0,00103
Автосамосвал КамАЗ 6520	6	2	0,5	14,800	20	0,00444
Автокран КС-55729-1	1	2	0,5	0,380	20	0,00002
Кран на шасси автомобильного типа KRUPP KMK-5120	1	2	0,5	0,420	20	0,00002
Автобетоносмеситель КАМАЗ	3	2	0,5	1,500	20	0,00023
Виброплита SBV 80 HC3 на базе экскаватора-погрузчика JCB 3CX	1	2	0,5	0,320	20	0,00002
Погрузчик JCB Loadall 550-80	1	2	0,5	0,380	20	0,00002
Самоходный подъемник нож- ничного типа Grost SPX F3-6000 109546	1	2	0,5	0,330	20	0,00002
Корчеватель-собиратель Д-695А	1	2	0,5	0,420	20	0,00002
Каток дорожный САТ CB-434D	1	2	0,5	0,650	20	0,00003
Асфальтоукладчик ДС-181-02	1	2	0,5	0,590	20	0,00003
Автогидроподъемник АГП-18.04	1	2	0,5	0,400	20	0,00002
Бурильно-крановая машина БКМ-516	1	2	0,5	0,450	20	0,00002
Кабельный транспортер на базе КАМАЗ 880702	1	2	0,5	1,100	20	0,00006
					Итого:	0,006

Фильтры очистки топлива автотранспортных средств отработанные – 92130301523.

Норматив образования отработанных фильтров, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{Hi} \times 10^{-3},$$
 т/период

где:

N_i – количество автомашин i-й марки, шт.;

 n_i – количество фильтров, установленных на автомашине i-й марки, шт.; от 1 до 4 фильтров (в среднем n_i = 2 фильтра);

m_i – вес одного фильтра на автомашине i-й марки, кг;

 L_i – средний пробег автомобиля і-й марки, тыс.км/период (или среднее время работы спецтехники і-й марки, час/период);

L_{ні} – норма пробега подвижного состава і-ой марки до замены фильтровальных элементов, тыс.км (или норма времени до замены фильтров, час);

10-3 – коэффициент перевода кг в тонны.

Замена топливных фильтров производится через 10 тыс.км пробега. В среднем вес одного топливного фильтра на грузовых машинах составляет 0,1 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Экскаватор ЭО-3322	1	2	0,1	0,630	10	0,00001
Экскаватор ЭО-5122	2	2	0,1	0,650	10	0,00003
Экскаватор траншейный цеп- ной ЭТЦ-75	1	2	0,1	0,610	10	0,00001
Бульдозер ДЗ-42	2	2	0,1	0,740	10	0,00003
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	2	0,1	0,650	10	0,00001
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	2	0,1	0,370	10	0,00001
Бортовой автомобиль КамАЗ 65117	2	2	0,1	10,300	10	0,00041
Автосамосвал КамАЗ 6520	6	2	0,1	14,800	10	0,00178
Автокран КС-55729-1	1	2	0,1	0,380	10	0,00001
Кран на шасси автомобильного типа KRUPP KMK-5120	1	2	0,1	0,420	10	0,00001
Автобетоносмеситель КАМАЗ	3	2	0,1	1,500	10	0,00009
Виброплита SBV 80 HC3 на базе экскаватора-погрузчика JCB 3CX	1	2	0,1	0,320	10	0,00001
Погрузчик JCB Loadall 550-80	1	2	0,1	0,380	10	0,00001
Самоходный подъемник нож- ничного типа Grost SPX F3- 6000 109546	1	2	0,1	0,330	10	0,00001
Корчеватель-собиратель Д- 695A	1	2	0,1	0,420	10	0,00001
Каток дорожный САТ CB-434D	1	2	0,1	0,650	10	0,00001
Асфальтоукладчик ДС-181-02	1	2	0,1	0,590	10	0,00001
Автогидроподъемник АГП- 18.04	1	2	0,1	0,400	10	0,00001
Бурильно-крановая машина БКМ-516	1	2	0,1	0,450	10	0,00001

Кабельный транспортер на базе КАМАЗ 880702	1	2	0,1	1,100	10	0,00002
					Итого:	0.002

Тормозные колодки отработанные без накладок асбестовых – 92031001525.

Норматив образования отработанных тормозных колодок, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{Hi} \times 10^{-3},$$
 т/период

где:

N_i – количество автомашин і-й марки, шт.;

 n_i – количество тормозных колодок, установленных на автомашине i-й марки, шт.;

m_i – вес одной тормозной колодки на автомашине i-й марки, кг;

L_i – средний пробег автомобиля і-й марки, тыс.км/период (или среднее время работы спецтехники і-й марки, час/период);

 $L_{\mbox{\scriptsize Hi}}$ — норма пробега подвижного состава i-ой марки до замены тормозных колодок, тыс.км (или норма времени до замены фильтров, час);

10-3 – коэффициент перевода кг в тонны.

Замена тормозных колодок для грузовых автомобилей производится через 10 тыс.км пробега. В среднем вес одной тормозной колодки на грузовых машинах составляет 0,53 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Экскаватор ЭО-3322	1	8	0,53	0,630	10	0,00027
Экскаватор ЭО-5122	2	8	0,53	0,650	10	0,00055
Экскаватор траншейный цепной ЭТЦ-75	1	8	0,53	0,610	10	0,00026
Бульдозер ДЗ-42	2	8	0,53	0,740	10	0,00063
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	8	0,53	0,650	10	0,00028
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	8	0,53	0,370	10	0,00016
Бортовой автомобиль КамАЗ 65117	2	8	0,53	10,300	10	0,00873
Автосамосвал КамАЗ 6520	6	8	0,53	14,800	10	0,03765
Автокран КС-55729-1	1	8	0,53	0,380	10	0,00016
Кран на шасси автомобильного типа KRUPP KMK-5120	1	8	0,53	0,420	10	0,00018
Автобетоносмеситель КАМАЗ	3	8	0,53	1,500	10	0,00191
Виброплита SBV 80 HC3 на базе экскаватора-погрузчика JCB 3CX	1	8	0,53	0,320	10	0,00014
Погрузчик JCB Loadall 550-80	1	8	0,53	0,380	10	0,00016
Самоходный подъемник ножничного типа Grost SPX F3-6000 109546	1	8	0,53	0,330	10	0,00014
Корчеватель-собиратель Д-695А	1	8	0,53	0,420	10	0,00018

Каток дорожный САТ CB-434D	1	8	0,53	0,650	10	0,00028
Асфальтоукладчик ДС-181-02	1	8	0,53	0,590	10	0,00025
Автогидроподъемник АГП-18.04	1	8	0,53	0,400	10	0,00017
Бурильно-крановая машина БКМ-516	1	8	0,53	0,450	10	0,00019
Кабельный транспортер на базе КАМАЗ 880702	1	8	0,53	1,100	10	0,00047
					Итого:	0,053

Примечание: отходы черных и цветных металлов при ремонте автотранспорта на объекте не образуются, т.к. ремонт подвижного состава, связанного с заменой узлов, агрегатов и пр. планируется осуществлять на специализированных предприятиях.

Отходы от мойки колес строительного автотранспорта.

С целью предотвращения загрязнения окружающей природной среды на выезде с территории стройплощадки предусмотрен комплект оборудования для мойки колес строительного автотранспорта с системой оборотного водоснабжения на базе очистной установки «МОЙДОДЫР-К-2». Комплект предназначен для мойки колес автотранспортных средств на строительных площадках в стесненных условиях, а также в автопарках, на промышленных объектах и т.п. Комплект обеспечивает очистку оборотной воды при пропускной способности до 10 единиц транспорта в час. Комплект предотвращает загрязнение окружающей среды, обеспечивает повторное использование и экономию до 80% технической воды. Применение шампуней и моющих средств на данной установке не предусматривается. Технические данные установки «МОЙДОДЫР-К-2» приведены в соответствии с «Паспортом и руководством по эксплуатации»:

$\mathcal{N}\!\underline{o}$	Наименование параметров	Количественные
n/n		показатели
1.	Производительность по очищенной воде, м ³ /час	до 2,5
2.	Концентрация загрязняющих веществ в сточной	
	воде, мг/л, не более:	
	- по взвешенным веществам	4500
	- по нефтепродуктам	200
3.	Концентрация загрязняющих веществ в оборот-	
	ной воде, мг/л, не более:	
	- по взвешенным веществам	200
	- по нефтепродуктам	20
4.	Размеры, мм (габаритные)	1900×750×1900 (высота)
5.	Масса без воды, кг	450
6.	Объем воды в установке, м ³	1,25
7.	Обслуживающий персонал, чел.	1

Расчет проводится согласно «Методическим рекомендациям по оценке объемов образования отходов производства и потребления», ГУ НИЦПУРО, Москва 2003 г.

Период I этапа строительства 16 месяцев (≈ 352 рабочих суток). На строительную площадку въезжает не более 32 грузовых автомобилей в сутки. Объем воды в установке «МОЙДОДЫР-К-2» равен 1,25 м³. На мойку колес одного автомобиля в среднем требуется 125 л воды, на 32 автомобилей – 4000 л (4,0 м³) ежедневно, следовательно, за период строительства расход воды составит – 4,0 м³ \times 352 суток = 1408 м³/период.

Осадок механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15% – 72310202394.

Количество осадка отстойника установки мойки колес автомашин определяется по формуле:

$$Q_{oc.ot} = q_w \times (C_{eB} - C_{ex}) / \rho_{oc} \times (100 - P_{oc}) \times 10^4, \quad M^3 / период$$

где: $Q_{oc.ot}$ – количество осевшего обводненного осадка, м³/период;

 q_w – расход сточной воды, м³/период;

 C_{eB} – содержание взвешенных веществ в воде перед установкой, мг/л;

 C_{ex} – содержание взвешенных веществ в осветленной воде, мг/л;

 ρ_{oc} – плотность обводненного осадка (1,5...1,6 г/см³);

 P_{oc} – процент обводненности осадка (80...99%);

 M_{oc} – количество образующегося осевшего осадка, т/период.

$$Q_{\text{ос.от}} = 1408 \times (4500 - 200) / 1,55 \times (100 - 90) \times 10^4 = 39,061 \text{ м}^3/\text{период}$$

$$M_{oc} = 39,061 \times 1,55 = 60,545$$
 т/период.

Всплывшие нефтепродукты из нефтеловушек и аналогичных сооружений – 40635001313.

Количество обводненных нефтепродуктов из отстойника установки мойки колес автомашин определяется по формуле:

$$Q_{\text{неф}} = q_{\text{w}} \times (C_{\text{ен}} - C_{\text{ex}}) / \rho_{\text{неф}} \times (100 - P_{\text{неф}}) \times 10^4, \quad \text{м}^3 / \text{период}$$

где: $Q_{\text{неф}}$ – количество обводненных нефтепродуктов, м³/период;

 q_w – расход сточной воды, m^3 /период;

 C_{eh} – содержание нефтепродуктов в воде перед установкой, мг/л;

 C_{ex} – содержание нефтепродуктов в осветленной воде, мг/л;

 $\rho_{\text{неф}}$ – плотность обводненных нефтепродуктов (0,87...0,90 г/см³);

 $P_{\text{неф}}$ – процент обводненности нефтепродуктов (70...80%);

М_{неф} – масса всплывающих нефтепродуктов, т/период.

$$Q_{\text{Hed}} = 1408 \times (200 - 20) / 0.88 \times (100 - 75) \times 10^4 = 1.152 \text{ м}^3 / \text{период}$$

$$M_{\text{He}\Phi} = 1,152 \times 0,88 = 1,014$$
 т/период.

Отходы от посева травосмеси при озеленении территории.

Многолетние травы (мятлик луговой, райграс пастбищный, овсяница луговая) поступают на территорию площадки в полипропиленовых мешках вместимостью 25 кг.

Количество многолетних трав для I этапа строительства составит: мятлик луговой – 273 кг; райграс пастбищный – 204.6 кг; овсяница луговая – 204.8 кг.

Упаковка полипропиленовая отработанная незагрязненная – 43412311514.

Норма образования отхода составит:

$$P = \sum Q_i / M_i \times m_i \times 10^{-3}$$
, т/период

где: Qі – расход сырья і-го вида, кг/период;

M_i – вес сырья і-го вида в единице упаковки, кг;

m_i – вес единицы пустой упаковки из-под сырья і-го вида, кг;

 10^{-3} – коэффициент перевода кг в тонны.

Норма образования отхода составит:

 $P = 682,4 / 25 \times 0,5 \times 10^{-3} = 0,014$ т/период,

где: 0.5 – вес единицы пустой упаковки, кг; 10^{-3} – коэффициент перевода кг в тонны.

Отходы упаковки от штукатурки.

Штукатурка поступают на территорию площадки в бумажных мешках вместимостью 30 кг. Количество штукатурки на I этапе строительства составляет 17000 кг.

Отходы упаковочных материалов из бумаги и картона, загрязненные неметаллическими нерастворимыми или малорастворимыми минеральными продуктами — 40591131604.

Норма образования отхода составит:

$$P = \sum Q_i / M_i \times m_i \times 10^{-3}$$
, т/период

где: Q_i – расход сырья i-го вида, кг/период;

M_i – вес сырья і-го вида в единице упаковки, кг;

m_i – вес единицы пустой упаковки из-под сырья і-го вида, кг;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

 $P = 17000 / 30 \times 0.3 \times 10^{-3} = 0.170$ т/период,

где: 0,3 – вес единицы пустой упаковки, кг;

10-3 – коэффициент перевода кг в тонны.

Отходы сборных железобетонных плит при демонтаже временных подъездных дорог.

На I этапе строительства предусматривается устройство временных дорог, для чего будут использованы железобетонные плиты в количестве 252 шт. Вес одной плиты составляет 2,2 т.

Лом железобетонных изделий, отходы железобетона в кусковой форме – 82230101215.

Количество отходов ж/б плит составит:

 $M = 252 \times 2,2 = 554,400$ т/период.

ІІ этап строительства.

Отходы от выкорчевки деревьев.

Отходы малоценной древесины (хворост, валежник, обломки стволов) – 15411001215.

На строительном участке предусмотрена выкорчевка деревьев (березы) общим количеством около 100 шт., высотой 10 м, диаметром 0,15 м.

Количество деревьев, подвергающихся выкорчевке, составит:

 $M = 3,14 \times 0,075^2 \times 10 \times 100 = 17,663 \text{ м}^3$ $M_{\text{др}} = 17,663 \times 0,67 = 11,834 \text{ т/период,}$

где: 0,075 – радиус ствола дерева, м;

10 – высота дерева, м;

100 – количество деревьев, шт.;

0,67 – плотность древесины (березы) транспортной влажности, т/м³.

Примечание: расчет количества отходов древесины проводится по формуле расчета объема цилиндра: $M = 3.14 \times r^2 \times h$ (r - paduyc основания (m), h - высота (m)).

Отходы от срезки верхнего почвенно-растительного слоя и отходы суглинка при проведении земляных работ.

Грунт, образовавшийся при проведении землеройных работ, не загрязненный опасными веществами – 81110001495.

Плотность материала принимаем равной $1,6 \text{ m/м}^3$.

Количество отхода составит:

 $M = [31553 \text{ м}^3 \text{ (почвенно-растительный слой)} + 113154 \text{ м}^3 \text{ (суглинок)}] \times 1,6 =$ **231531,200** т/период.

Отходы от строительных работ.

Отходы песка незагрязненные – 81910001495.

Нормы потерь и отходов согласно Приложению Д РДС 82-202-96 составляют 0,7%. Количество используемого при строительстве песка составляет 19005,6 м 3 (24707,28 т при плотности песка, равной 1,3 т/м 3).

Норма образования отхода составит:

 $M = 24707,28 \times 0,007 = 172,951$ т/период.

Отходы песчано-гравийной смеси незагрязненные – 82151111405.

Нормы потерь и отходов согласно Приложению Д РДС 82-202-96 составляют 0,45%. Количество используемой при строительстве песчано-гравийной смеси составляет 9288 м³ (14860,8 т при плотности песчано-гравийной смеси, равной 1,6 т/м³).

Норма образования отхода составит:

 $M = 14860.8 \times 0.0045 = 66.874$ т/период.

Отходы строительного щебня незагрязненные – 81910003215.

Нормы потерь и отходов согласно Приложению Д РДС 82-202-96 составляют 0,4%. Количество используемого при строительстве щебня составляет 11522,2 м 3 (16131,08 т при плотности щебня, равной 1,4 т/м 3).

Норма образования отхода составит:

 $M = 16131,08 \times 0,004 = 64,524$ т/период.

Лом бетонных изделий, отходы бетона в кусковой форме – 82220101215.

Нормы потерь и отходов согласно Приложению Л РДС 82-202-96 составляют 2%. Количество используемого при строительстве бетона составляет $132,34 \text{ м}^3$ (264,68 т при плотности бетона, равной 2 т/м^3).

Норма образования отхода составит:

 $M = 264,68 \times 0,02 = 5,294$ т/период.

Лом асфальтовых и асфальтобетонных покрытий – 83020001714.

Нормы потерь и отходов согласно Приложению Б РДС 82-202-96 составляют 2%. Количество используемого при строительстве асфальтобетона составляет 2235 м^3 (5364 т при плотности асфальтобетона, равной $2,4 \text{ т/м}^3$).

Норма образования отхода составит:

 $M = 5364 \times 0.02 = 107.280$ т/период.

Лом строительного кирпича незагрязненный – 82310101215.

Нормы потерь и отходов согласно Приложению Б РДС 82-202-96 составляют 1%. Количество используемого при строительстве кирпича составляет 137,8 м³ (199,81 т при плотности кирпича, равной 1,45 т/м³).

Норма образования отхода составит:

 $M = 199,81 \times 0,01 = 1,998$ т/период.

Отходы затвердевшего строительного раствора в кусковой форме – 82240101214.

Нормы потерь и отходов согласно Приложению Б РДС 82-202-96 составляют 2%. Количество используемого при строительстве цементно-песчаного раствора составляет 6.5 м^3 (13 т при плотности раствора, равной 2 т/м^3).

Норма образования отхода составит:

 $M = 13 \times 0.02 = 0.260$ т/период.

Отходы битума нефтяного – 30824101214.

Нормы потерь и отходов согласно Приложению Б РДС 82-202-96 составляют 3%. Количество используемого при строительстве жидкого битума составляет 1356 м^3 (1288,2 т при плотности раствора, равной 0.95 т/м^3).

Норма образования отхода составит:

 $M = 1288,2 \times 0,03 = 38,646$ т/период.

Отходы штукатурки затвердевшей малоопасные – 82491111204.

Нормы потерь и отходов согласно Приложению Б РДС 82-202-96 составляют 6%. Количество используемой при строительстве штукатурки составляет 7,56 т.

Норма образования отхода составит:

 $M = 7.56 \times 0.06 = 0.454$ т/период.

Лом и отходы стальных изделий незагрязненные – 46120001515.

Нормы потерь и отходов согласно Приложению Е РДС 82-202-96 составляют 2%. Количество используемой при строительстве арматурной стали составляет 5,976 т.

Норма образования отхода составит:

 $M = 5.976 \times 0.02 = 0.120$ т/период.

Керамические изделия прочие, утратившие потребительские свойства, незагрязненные – 45911099515.

Нормы потерь и отходов согласно Приложению Б РДС 82-202-96 составляют 2%. Количество используемой при строительстве керамической плитки составляет 1,52 т.

Норма образования отхода составит:

 $M = 1,52 \times 0,02 = 0,030$ т/период.

Отходы упаковки от цементно-песчаной смеси и штукатурки.

Цементно-песчаная смесь и штукатурка поступают на территорию площадки в бумажных мешках вместимостью 30 кг. Количество цементно-песчаной смеси и штукатурки на II этапе строительства составляет: ЦПС -6500 кг (в пересчете на сухое вещество от объема используемого раствора), штукатурка -7560 кг.

Отходы упаковочных материалов из бумаги и картона, загрязненные неметаллическими нерастворимыми или малорастворимыми минеральными продуктами — 40591131604.

Норма образования отхода составит:

$$P = \sum Q_i / M_i \times m_i \times 10^{-3},$$
 т/период

где: Q_і – расход сырья і-го вида, кг/период;

M_i – вес сырья i-го вида в единице упаковки, кг;

m_i – вес единицы пустой упаковки из-под сырья і-го вида, кг;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

$$P = 14060 / 30 \times 0.3 \times 10^{-3} = 0.141$$
 т/период,

где: 0,3 – вес единицы пустой упаковки, кг;

10-3 – коэффициент перевода кг в тонны.

Отходы при прокладке проводов и кабелей.

Отходы изолированных проводов и кабелей – 48230201525.

Отход образуется при замене поврежденных кабелей или проводов в изоляции. Количество отхода определяется по формуле:

$$M = (0.25 \times \pi \times d^2 \times h \times \rho) \times 0.01,$$
 т/период

где: $(0,25 \times \pi \times d^2 \times h)$ — формула расчета объема кабеля (провода), где d — диаметр кабеля (провода) (м), h — длина кабеля (провода) (м);

 ρ – плотность металла в кабеле, т/м³;

0,01 — процентное количество кабеля (провода), идущего в отходы при возможных повреждениях кабеля (провода), принимается по аналогии с действующими объектами.

Количество отхода составит:

Tun	π	d	h	ρ	M
Алюминиевый изолированный провод	3,14	0,0148	105	2,6989	0,000487
Алюминиевый изолированный провод	3,14	0,028	645	2,6989	0,010714
Алюминиевый изолированный провод	3,14	0,032	206	2,6989	0,004469
Медный изолированный провод	3,14	0,0039	12	8,93	0,000013

Алюминиевый изолированный кабель	3,14	0,017	38	2,6989	0,000233
Алюминиевый изолированный кабель	3,14	0,035	132	2,6989	0,003426
Алюминиевый изолированный кабель	3,14	0,039	423	2,6989	0,013631
Алюминиевый изолированный кабель	3,14	0,041	286	2,6989	0,010186
Медный изолированный кабель	3,14	0,009	238	8,93	0,001351
Медный изолированный кабель	3,14	0,013	364	8,93	0,004312
Медный изолированный кабель	3,14	0,0136	619	8,93	0,008026
Медный изолированный кабель	3,14	0,0185	567	8,93	0,013603
				Итого:	0,070

Отходы полимерных материалов при устройстве защитного экрана основания 1-й карты захоронения ТКО, пруда-накопителя фильтрата и контрольнорегулирующих прудов дождевых и талых вод.

<u>Расчет количества образующихся отходов геомембраны СТАБАРМ HDPE.</u>

Лом и отходы изделий из полиэтилена незагрязненные (кроме тары) — 43411003515.

Согласно нормам Дополнений к РДС 82-202-96 (Таблица 1) потери рулонных материалов при изоляции поверхностей составят 4% от общего количества используемого материала.

Проектом предусмотрено использование геомембраны СТАБАРМ HDPE в количестве 41081 m^2 .

Согласно СТО 30978849.0008-2016 «Рулонный полимерный изолирующий материал Геомембрана «СТАБАРМ» применяемая в дорожном строительстве. Геомембрана композиционная «СТАБАРМ». Технические условия», плотность геомембраны СТАБАРМ HDPE составляет 0,94 г/см³, толщина геомембраны – 1,5 мм.

Норма образования отхода составит:

 $M = 41081 \times 0,0015 \times 0,94 \times 0,04 = 2,317$ т/период.

Расчет количества образующихся отходов геотекстиля.

Лом и отходы изделий из полипропилена незагрязненные (кроме тары) — 43412003515.

Согласно нормам Дополнений к РДС 82-202-96 (Таблица 1) потери рулонных материалов при изоляции поверхностей составят 4% от общего количества используемого материала.

Проектом предусмотрено использование геотекстиля в количестве 7902 м^2 (плотностью 200 г/м^2).

Норма образования отхода составит:

 $M = 7902 \times 200 \times 0.04 \times 10^{-6} = 0.063$ т/период.

Расчет количества образующихся отходов бентонитовых матов.

Лом и отходы изделий из полипропилена незагрязненные (кроме тары) – 43412003515.

Отходы бентонитовой глины при ремонтно-строительных работах — 82451111205.

Согласно нормам Дополнений к РДС 82-202-96 (Таблица 1) потери рулонных материалов при изоляции поверхностей составят 4% от общего количества используемого материала.

Проектом предусмотрено использование бентонитовых матов Bentofix NSP 4900 в количестве 896 m^2 .

Согласно Техническим характеристикам структура бентонитового мата Bentofix следующая:

- покрывающий материал (геотекстиль из полипропилена) (масса на единицу поверхности 220 гр/м^2)
- несущий материал (тканое геополотно из полипропилена) (масса на единицу поверхности $110 \ {\rm гp/m^2})$
- слой бентонитовой глины (натриевый бентонит (порошок)) (масса на единицу поверхности $4670 \ {\rm гp/m^2})$

Норма образования отхода составит:

 $M_{\text{пп}} = [(896 \times 220) + (896 \times 110)] \times 0,04 \times 10^{-6} =$ **0,012** т/период - отходы полипропилена

 $M_{rn} = 896 \times 4670 \times 0.04 \times 10^{-6} = 0.167$ т/период — отмоды бентонитовой глины.

Отходы полимерных материалов при устройстве нагорной водоотводной канавы.

Расчет количества образующихся отходов геотекстиля.

Лом и отходы изделий из полипропилена незагрязненные (кроме тары) – 43412003515.

Согласно нормам Дополнений к РДС 82-202-96 (Таблица 1) потери рулонных материалов при изоляции поверхностей составят 4% от общего количества используемого материала.

Проектом предусмотрено использование геотекстиля в количестве 598 м 2 (плотностью 200 г/м 2).

Норма образования отхода составит:

 $M = 598 \times 200 \times 0.04 \times 10^{-6} = 0.005$ т/период.

Отходы труб от прокладки трубопроводов при устройстве инженерных коммуникаций.

Лом и отходы стальных изделий незагрязненные – 46120001515.

Согласно нормам РДС 82-202-96 (Приложение 3) потери труб при прокладке трубопроводов составят:

- 2,5% от общего количества используемого материала (внутренние сети);
- 2,0% от общего количества используемого материала (наружные сети).

Проектом предусмотрена прокладка стальных трубопроводов различного диаметра общим весом 2158,57 кг.

Норма образования отхода составит:

 $M = 2158,57 \times 0.02 \times 10^{-3} = 0.043$ т/период – наружные сети

Общее количество отхода составит 0,043 т/период.

Лом и отходы изделий из полиэтилена незагрязненные (кроме тары) – 43411003515.

Согласно нормам РДС 82-202-96 (Приложение 3) потери труб при прокладке трубопроводов составят:

- 2,5% от общего количества используемого материала (внутренние сети);
- 2,5% от общего количества используемого материала (наружные сети).

Проектом предусмотрена прокладка полиэтиленовых трубопроводов различного диаметра общим весом 12836,517 кг.

Норма образования отхода составит:

 $M = 12836,517 \times 0.025 \times 10^{-3} = 0.321$ т/период – наружные сети

Общее количество отхода составит 0,321 т/период.

Лом и отходы изделий из полипропилена незагрязненные (кроме тары) – 43412003515.

Согласно нормам РДС 82-202-96 (Приложение 3) потери труб при прокладке трубопроводов составят:

- 2,5% от общего количества используемого материала (внутренние сети);
- 2,5% от общего количества используемого материала (наружные сети).

Проектом предусмотрена прокладка полипропиленовых трубопроводов различного диаметра общим весом 48,028 кг.

Норма образования отхода составит:

 $M = 48,028 \times 0,025 \times 10^{-3} = 0,001$ т/период – внутренние сети

Общее количество отхода составит 0,001 т/период.

Отходы поливинилхлорида в виде изделий или лома изделий незагрязненные – 43510003514.

Согласно нормам РДС 82-202-96 (Приложение 3) потери труб при прокладке трубопроводов составят:

- 2,5% от общего количества используемого материала (внутренние сети);
- 2,5% от общего количества используемого материала (наружные сети).

Проектом предусмотрена прокладка трубопроводов различного диаметра из ПВХ общим весом 189,15 кг.

Норма образования отхода составит:

 $M = 63 \times 0.025 \times 10^{-3} = 0.002$ т/период – внутренние сети

 $M = 126.15 \times 0.025 \times 10^{-3} = 0.003$ т/период – наружные сети

Общее количество отхода составит 0,005 т/период.

Лом и отходы изделий из стеклопластика в смеси незагрязненные — 43491911204.

Согласно нормам РДС 82-202-96 (Приложение 3) потери труб при прокладке трубопроводов составят 5% от общего количества используемого материала.

Проектом предусмотрена прокладка трубопроводов различного диаметра из стеклопластика общим весом 7084 кг (наружные сети).

Норма образования отхода составит:

 $M = 7084 \times 0.05 \times 10^{-3} = 0.354$ т/период.

Отходы от сварочных работ.

Шлак сварочный с преимущественным содержанием диоксида кремния – 91911121204.

Остатки и огарки стальных сварочных электродов – 91910001205.

Общая потребность в электродах при строительстве составляет 230 кг/период. Длина электродов – 400мм, диаметр стержня – 4мм.

Типовые нормы трудноустранимых потерь и отходов материалов и изделий в процессе строительного производства для электродов с диаметром стержня свыше 3 мм составляют 6,5% (согласно Приложению О «Правил разработки и применения нормативов трудноустранимых потерь и отходов материалов в строительстве (РДС 82-202-96)» М., 1996г., утв. Постановлением Минстроя РФ от 8 августа 1996г. №18-65).

Согласно РД 153-34.1-02.207-00, пункт 5.19, отход в виде шлака сварочного равен 10% массы электродов ($M_{\tiny эл}$).

Норма образования отхода составит:

Наименование отхода по	Код по ФККО	Типовые	Количество	Количество
ФККО		нормы	электродов,	отхода,
		потерь	тонн	т/период
Остатки и огарки стальных	91910001205	6,5%	0,230	0,015
сварочных электродов				
Шлак сварочный с пре-	91911121204	10%	0,230	0,023
имущественным содержа-				
нием диоксида кремния				

Отходы упаковочного картона незагрязненные – 40518301605.

Сварочные электроды поступают на объект в картонных коробках.

Норма образования отхода составит:

$$P = \sum Q_i / M_i \times m_i \times 10^{-3}$$
, т/год

где: Q_i – расход сырья i-го вида, кг/период;

Мі – вес сырья і-го вида в единице упаковки, кг;

m_i – вес единицы пустой упаковки из-под сырья і-го вида, кг;

 10^{-3} – коэффициент перевода кг в тонны.

Норма образования отхода составит:

$$P = 230 / 5 \times 0.1 \times 10^{-3} = 0.005$$
 т/период

где: 0,1 – вес единицы пустой упаковки, кг.

Отходы от покрасочных работ.

Тара из черных металлов, загрязненная лакокрасочными материалами (содержание менее 5%) – 46811202514.

Общая потребность в лакокрасочных материалах при строительстве составляет: грунт $\Gamma\Phi$ -021 – 48 кг/период, эмаль $\Pi\Phi$ -115 – 63 кг/период.

В качестве тары приняты железные банки с ЛКМ объемом $10~\rm kr$. Вес пустой банки составляет $0.001~\rm t$.

Вес сухого остатка в банке из-под краски составляет 3% (0,03) от количества используемой краски («Допустимые нормы образования отходов в технологических процессах железнодорожного транспорта», Москва, 2001г.).

Общий объем образования тары из-под ЛКМ суммируется исходя из веса пустой тары и веса сухого остатка в банке.

Норма образования отхода составит:

Масса сырья (В), кг	111
Вместимость одной единицы тары (N), кг	10
Количество единиц тары $(M = B / N)$, шт.	12
Масса одной единицы тары (n), т	0,001
Масса пустой тары $(P = M \times n)$, т	0,012
Норматив образования сухого остатка в таре (S), %	3
Масса сухого остатка ($T = B \times S\% / 1000$), т	0,003
Масса отхода (P + T), т/период	0,015

Отходы от технического обслуживания и ремонта технологического оборудования.

Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%) – 91920402604.

Данный вид отхода образуется при текущем обслуживании и периодическом ремонте технологического оборудования.

Количество данного вида отхода определяется по формуле:

$$M_{\text{ветошь}} = H_{\text{уд.ветошь}} \times N \times D \times 10^{-3}$$
,

где: $H_{\text{уд.ветошь}}$ — удельный норматив ветоши на 1 работающего = 0,1 кг/сут. («Оценка количеств образующихся отходов производства и потребления», СПб, 1997г.);

N – количество рабочих, использующих ветошь, чел/сут.;

D – число рабочих дней за период, сут;

 10^{-3} – коэффициент перевода кг в тонны.

Норма образования отхода составит:

 $M_{\text{ветошь}} = 0.1 \times 30 \times 198 \times 10^{-3} = 0.594$ т/период.

Примечание: продолжительность II этапа строительства составляет 9 месяцев (≈ 198 рабочих суток). В расчете количество рабочих принято без учета ИТР и служащих.

Отходы от жизнедеятельности рабочих.

Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный) – 73310001724.

Примечание: II этап строительства - продолжительность 9 месяцев (\approx 198 рабочих суток), при расчетах видов отходов с применением годового удельного норматива принимаем коэффициент 0,75.

Расчет нормы образования отхода проводится по «Сборнику удельных показателей образования отходов производства и потребления», 1999г., таблица 3.2., пункт 6. Среднегодовой норматив образования отходов составляет 40-70 кг/год на одного человека. Для расчета принято максимальное значение в 70 кг/год. На момент строительства предусмотрено 35 человек.

Норма образования отхода составит:

$$M = 35 \times 70 \times 0.75 \times 10^{-3} = 1.838$$
 т/период,

где: 10^{-3} – коэффициент перевода кг в тонны.

Пищевые отходы кухонь и организаций общественного питания несортированные – 73610001305.

Отход образуется от приёма пищи. Проектом предусмотрен привоз готовой пищи высокой степени готовности в пластиковой упаковке и раздача её рабочим.

Согласно «Методическим рекомендациям по разработке проекта нормативов предельного размещения отходов для теплоэлектростанций, теплоэлектроцентралей, промышленных и отопительных котельных», СПб, 1998 г. норма образования отходов (М) рассчитывается, исходя из среднесуточной нормы накопления на 1 блюдо - $0,0001 \, \text{м}^3$, числа рабочих дней за период (n), числа блюд на одного человека (m) и числа работающих (z). Плотность отходов (ρ) - $0,3 \, \text{т/m}^3$.

$$M = 0.0001 \times n \times m \times z \times \rho$$
, т/период

Норма образования отхода составит:

 $M = 0.0001 \times 198 \times 3 \times 35 \times 0.3 = 0.624$ т/период.

Отходы посуды одноразовой из разнородных полимерных материалов, загрязненной пищевыми продуктами – 43894111524.

Отход образуется от приёма пищи. Норма образования отхода определяется, исходя из количества единиц одноразовой посуды на 1 рабочего, ее веса (в граммах), количества рабочих и числа рабочих суток за период:

$$M = 4 \times 10 \times 35 \times 198 \times 10^{-6} = 0,277$$
 т/период,

где: 4 – количество единиц одноразовой посуды на 1 рабочего (три тарелки и один стакан), шт.;

10 – средний вес одной единицы одноразовой посуды, грамм;

10-6 – коэффициент перевода грамм в тонны.

Отходы от замены спецодежды, спецобуви и средств защиты.

Спецодежда из хлопчатобумажного и смешанных волокон, утратившая потребительские свойства, незагрязненная – 40211001624.

Отход образуется при замене изношенных хлопчатобумажных комплектов и костюмов, рукавиц комбинированных, а также верхней одежды.

Наименование спец-	Количество	Норма выдачи	Вес еди-	Нормативная масса образования
одежды	рабочих	спецодежды,	ницы	отхода, т/период
		раз/период	спец-	
			одежды,	
			кг	
Комплект х/б	35	2	0,45	$M = 35 \times 2 \times 0.45 \times 10^{-3} = 0.032$
Костюм х/б с водооттал-	35	2	2,4	$M = 35 \times 2 \times 2,4 \times 10^{-3} = 0,168$
кивающей пропиткой				
Рукавицы комбиниро-	35	3	0,3	$M = 35 \times 3 \times 0.3 \times 10^{-3} = 0.032$
ванные				
Куртка на утепляющей	35	1	2,5	$M = 35 \times 1 \times 2,5 \times 10^{-3} = 0,088$
подкладке				
Брюки на утепляющей	35	1	2,8	$M = 35 \times 1 \times 2.8 \times 10^{-3} = 0.098$
подкладке				·
			Итого:	0,418 т/период

Спецодежда из брезентовых тканей, утратившая потребительские свойства – 40212112605.

Отход образуется при замене изношенных брезентовых костюмов.

	• • • • • • • • • • • • • • • • • • •	, monto es e minibilit e	Pesentessi	110011011011
Наименование спец-	Количество	Норма выдачи	Вес еди-	Нормативная масса образования
одежды	рабочих	спецодежды,	ницы	отхода, т/период
		раз/период	спец-	
			одежды,	
			кг	
Брезентовый костюм	35	1	2,8	$M = 35 \times 1 \times 2.8 \times 10^{-3} = 0.098$
			Итого:	0,098 т/период

Обувь кожаная рабочая, утратившая потребительские свойства – 40310100524.

Отход образуется при замене кожаной спецобуви.

Наименование спецобуви	Количество	Норма выдачи	Вес пары	Нормативная масса образования
	рабочих	спецобуви,	спецобуви,	отхода, т/период
		раз/период	кг	
Ботинки кожаные	35	1	2,0	$M = 35 \times 1 \times 2,0 \times 10^{-3} = 0,070$
			Итого:	0,070 т/период

Резиновые перчатки, утратившие потребительские свойства, незагрязненные – 43114101204.

Отход образуется при замене резиновых перчаток.

		. 1		
Наименование средств	Количество	Норма выдачи	Вес пары	Нормативная масса образования
защиты	рабочих	резиновых пер-	резиновых	отхода, т/период
		чаток,	перчаток,	
		раз/период	кг	
Резиновые перчатки	35	9	0,06	$M = 35 \times 9 \times 0.06 \times 10^{-3} = 0.019$
			Итого:	0,019 т/период

Резиновая обувь отработанная, утратившая потребительские свойства, незагрязненная — 43114102204.

Отход образуется при замене резиновой спецобуви.

O Thor copusjere	on inpir sameri	pesimoben ene	цооуын.	
Наименование средств	Количество	Норма выдачи	Вес пары	Нормативная масса образования
защиты	рабочих	резиновых са-	резиновых	отхода, т/период
		пог, раз/период	сапог, кг	
Резиновые сапоги	35	1	1,6	$M = 35 \times 1 \times 1,6 \times 10^{-3} = 0,056$
			Итого:	0,056 т/период

Отходы от эксплуатации сетей внутреннего и наружного освещения.

Светильники со светодиодными элементами в сборе, утратившие потребительские свойства — 48242711524.

Отход образуется при замене перегоревших светодиодных светильников. Расчет проводится аналогично ртутным лампам по «Сборнику методик по расчету объемов образования отходов. Методика расчета объемов образования отходов МРО-6-99. Отработанные ртутьсодержащие лампы». СПб, 2004г. Норматив образования отхода рассчитывается по формуле:

$$N = \sum n_i \times m_i \times t_i \times 10^{-6} / k_i$$
, т/период

где: n_i – количество установленных ламп i-той марки, шт.;

t_i – фактическое количество часов работы ламп i-той марки, час/период;

k_i – эксплуатационный срок службы ламп i-той марки, час;

m_i – вес одной лампы, г;

10-6 – коэффициент перевода грамм в тонны.

Норма образования отхода составит:

Наименование объекта	Кол-во, шт.	Среднее время ра- боты, час/сут	Число рабо- чих суток за период, шт.	Вес 1-й лампы, г	Нормативный срок службы 1- й лампы, час	Вес от- хода, т/период
Строительная площадка	20	8	198	500	10000	0,00158
					Итого:	0,002

Отходы от ремонта автотранспорта.

Расчет количества отходов проводится в соответствии со «Сборником удельных показателей образования отходов производства и потребления». Государственный комитет Российской Федерации по охране окружающей среды. Москва, 1999г.

Отходы изделий технического назначения из вулканизированной резины незагрязненные в смеси – 43119981724.

Количество отходов резинотехнических материалов, образующихся при проведении вулканизационных работ для автомобилей, определяется из расчета:

- 0,2 кг на 10 000 км пробега для грузовых автомобилей.

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/период
Экскаватор ЭО-3322	1	354	0,2	10000	0,000007
Скрепер прицепной ДЗ-20	4	305	0,2	10000	0,000024
Автогрейдер ДЗ-180	1	250	0,2	10000	0,000005
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	366	0,2	10000	0,000007
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	208	0,2	10000	0,000004
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	215	0,2	10000	0,000004
Бортовой автомобиль КамАЗ 65117	2	5794	0,2	10000	0,000232
Автосамосвал КамАЗ 6520	6	8325	0,2	10000	0,000999
Автокран КС-55729-1	1	214	0,2	10000	0,000004
Кран на шасси автомобильного типа KRUPP KMK-5120	1	236	0,2	10000	0,000005
Автобетоносмеситель АБС-58140 на базе КАМАЗ-65201	5	844	0,2	10000	0,000084
Автобетононасос с распределительной стрелой M43-IR104	1	230	0,2	10000	0,000005
Виброплита SBV 80 HC3 на базе экс- каватора-погрузчика JCB 3CX	1	180	0,2	10000	0,000004
Погрузчик JCB Loadall 550-80	1	214	0,2	10000	0,000004
Самоходный подъемник ножничного типа Grost SPX F3-6000 109546	1	186	0,2	10000	0,000004
Асфальтоукладчик ДС-181-02	1	332	0,2	10000	0,000007

Бурильно-крановая машина БКМ-516	253 0,2	2 10000	0,000005
Кабельный транспортер на базе КА- МАЗ 880702	619 0,2		0,000012

Покрышки пневматических шин с металлическим кордом отработанные – 92113002504.

Количество отработанных покрышек определяется исходя из значения удельного показателя образования отходов:

- 19,1 кг на 10 000 км пробега для грузовых автомобилей.

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/период
Экскаватор ЭО-3322	1	354	19,1	10000	0,00068
Скрепер прицепной ДЗ-20	4	305	19,1	10000	0,00233
Автогрейдер ДЗ-180	1	250	19,1	10000	0,00048
Каток грунтовый самоходный на пнев- матических шинах ДУ-29	1	366	19,1	10000	0,00070
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	208	19,1	10000	0,00040
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	215	19,1	10000	0,00041
Бортовой автомобиль КамАЗ 65117	2	5794	19,1	10000	0,02213
Автосамосвал КамАЗ 6520	6	8325	19,1	10000	0,09540
Автокран КС-55729-1	1	214	19,1	10000	0,00041
Кран на шасси автомобильного типа KRUPP KMK-5120	1	236	19,1	10000	0,00045
Автобетоносмеситель АБС-58140 на базе КАМАЗ-65201	5	844	19,1	10000	0,00806
Автобетононасос с распределительной стрелой M43-IR104	1	230	19,1	10000	0,00044
Виброплита SBV 80 HC3 на базе экс- каватора-погрузчика JCB 3CX	1	180	19,1	10000	0,00034
Погрузчик JCB Loadall 550-80	1	214	19,1	10000	0,00041
Самоходный подъемник ножничного типа Grost SPX F3-6000 109546	1	186	19,1	10000	0,00036
Асфальтоукладчик ДС-181-02	1	332	19,1	10000	0,00063
Автогудронатор ДС-39Г	1	332	19,1	10000	0,00063
Автогидроподъемник АГП-18.04	1	225	19,1	10000	0,00043
Бурильно-крановая машина БКМ-516	1	253	19,1	10000	0,00048
Кабельный транспортер на базе КА- МАЗ 880702	1	619	19,1	10000	0,00118
				Итого:	0,136

Аккумуляторы свинцовые отработанные неповрежденные, с электролитом – 92011001532.

Количество лома отработанных свинцовых аккумуляторов определяется исходя из значения удельного показателя образования отходов:

- 4,18 кг на 10 000 км пробега для грузовых автомобилей.

Количество отработанного электролита определяется исходя из значения удельного показателя образования отходов:

- 2,7 л на 10 000 км пробега для грузовых автомобилей.

Расчет количества лома аккумуляторов свинцовых отработанных

Расчет количест	пва ломс	а аккумуляторов (свинцовых отр	аботанных	
Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Bec omxo- да, m/период
Экскаватор ЭО-3322	1	354	4,18	10000	0,00015
Экскаватор ЭО-5122	2	366	4,18	10000	0,00031
Экскаватор траншейный цепной ЭТЦ-75	1	343	4,18	10000	0,00014
Бульдозер ДЗ-42	2	416	4,18	10000	0,00035
Скрепер прицепной ДЗ-20	4	305	4,18	10000	0,00051
Автогрейдер Д3-180	1	250	4,18	10000	0,00010
Каток грунтовый самоходный на пнев- матических шинах ДУ-29	1	366	4,18	10000	0,00015
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	208	4,18	10000	0,00009
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	215	4,18	10000	0,00009
Бортовой автомобиль КамАЗ 65117	2	5794	4,18	10000	0,00484
Автосамосвал КамАЗ 6520	6	8325	4,18	10000	0,02088
Автокран КС-55729-1	1	214	4,18	10000	0,00009
Кран на шасси автомобильного типа KRUPP KMK-5120	1	236	4,18	10000	0,00010
Автобетоносмеситель АБС-58140 на базе КАМАЗ-65201	5	844	4,18	10000	0,00176
Автобетононасос с распределительной стрелой M43-IR104	1	230	4,18	10000	0,00010
Виброплита SBV 80 HC3 на базе экскаватора-погрузчика JCB 3CX	1	180	4,18	10000	0,00008
Погрузчик JCB Loadall 550-80	1	214	4,18	10000	0,00009
Самоходный подъемник ножничного типа Grost SPX F3-6000 109546	1	186	4,18	10000	0,00008
Корчеватель-собиратель Д-695А	1	236	4,18	10000	0,00010
Каток дорожный САТ CB-434D	1	366	4,18	10000	0,00015
Асфальтоукладчик ДС-181-02	1	332	4,18	10000	0,00014
Автогудронатор ДС-39Г	1	332	4,18	10000	0,00014
Автогидроподъемник АГП-18.04	1	225	4,18	10000	0,00009
Бурильно-крановая машина БКМ-516	1	253	4,18	10000	0,00011
		1	T.	1	

660702			<u> </u>	Итого:	0,031
Кабельный транспортер на базе КАМАЗ 880702	1	619	4,18	10000	0,00026

Расчет количества сернокислотного электролита

		1 ucaem ko	личестви се	рнокислотного	о электролит	и	
Марка автотранс- порта	Кол-	Пробег одной еди- ницы, км/период	Значение удельного показателя, л	Коэффициент перевода л в м ³	Плотность электролита, т/м ³	Нормативный пробег, км	Вес от- хода, т/период
Экскаватор ЭО-3322	1	354	2,7	0,001	1,2	10000	0,00011
Экскаватор ЭО-5122	2	366	2,7	0,001	1,2	10000	0,00024
Экскаватор траншейный цепной ЭТЦ-75	1	343	2,7	0,001	1,2	10000	0,00011
Бульдозер ДЗ-42	2	416	2,7	0,001	1,2	10000	0,00027
Скрепер прицепной ДЗ-20	4	305	2,7	0,001	1,2	10000	0,00040
Автогрейдер ДЗ-180	1	250	2,7	0,001	1,2	10000	0,00008
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	366	2,7	0,001	1,2	10000	0,00012
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD- 40	1	208	2,7	0,001	1,2	10000	0,00007
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	215	2,7	0,001	1,2	10000	0,00007
Бортовой автомобиль КамАЗ 65117	2	5794	2,7	0,001	1,2	10000	0,00375
Автосамосвал КамАЗ 6520	6	8325	2,7	0,001	1,2	10000	0,01618
Автокран КС-55729-1	1	214	2,7	0,001	1,2	10000	0,00007
Кран на шасси авто- мобильного типа KRUPP KMK-5120	1	236	2,7	0,001	1,2	10000	0,00008
Автобетоносмеситель АБС-58140 на базе КАМАЗ-65201	5	844	2,7	0,001	1,2	10000	0,00137
Автобетононасос с распределительной стрелой M43-IR104	1	230	2,7	0,001	1,2	10000	0,00007
Виброплита SBV 80 НС3 на базе экскаватора-погрузчика JCB 3CX	1	180	2,7	0,001	1,2	10000	0,00006
Погрузчик JCB Loadall 550-80	1	214	2,7	0,001	1,2	10000	0,00007
Самоходный подъемник ножничного типа Grost SPX F3-6000 109546	1	186	2,7	0,001	1,2	10000	0,00006
Корчеватель- собиратель Д-695А	1	236	2,7	0,001	1,2	10000	0,00008
Каток дорожный САТ CB-434D	1	366	2,7	0,001	1,2	10000	0,00012

Асфальтоукладчик ДС-181-02	1	332	2,7	0,001	1,2	10000	0,00011
Автогудронатор ДС- 39Г	1	332	2,7	0,001	1,2	10000	0,00011
Автогидроподъемник АГП-18.04	1	225	2,7	0,001	1,2	10000	0,00007
Бурильно-крановая машина БКМ-516	1	253	2,7	0,001	1,2	10000	0,00008
Кабельный транспортер на базе КАМАЗ 880702	1	619	2,7	0,001	1,2	10000	0,00020
Итого:							

Количество отхода составит 0,055 т/период.

Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%) – 91920402604.

Согласно нормам расхода материалов на ремонт и эксплуатацию автомашин количество обтирочного материала, загрязненными маслами, определяется из расчета:

- 2,18 кг на 10 000 км пробега для грузовых автомобилей.

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/период
Экскаватор ЭО-3322	1	354	2,18	10000	0,00008
Экскаватор ЭО-5122	2	366	2,18	10000	0,00016
Экскаватор траншейный цепной ЭТЦ-75	1	343	2,18	10000	0,00007
Бульдозер ДЗ-42	2	416	2,18	10000	0,00018
Скрепер прицепной ДЗ-20	4	305	2,18	10000	0,00027
Автогрейдер ДЗ-180	1	250	2,18	10000	0,00005
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	366	2,18	10000	0,00008
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	208	2,18	10000	0,00005
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	215	2,18	10000	0,00005
Бортовой автомобиль Ка- мАЗ 65117	2	5794	2,18	10000	0,00253
Автосамосвал КамАЗ 6520	6	8325	2,18	10000	0,01089
Автокран КС-55729-1	1	214	2,18	10000	0,00005
Кран на шасси автомобильного типа KRUPP KMK-5120	1	236	2,18	10000	0,00005
Автобетоносмеситель АБС- 58140 на базе КАМАЗ- 65201	5	844	2,18	10000	0,00092
Автобетононасос с распределительной стрелой М43-IR104	1	230	2,18	10000	0,00005

Виброплита SBV 80 НС3 на					
базе экскаватора-	1	180	2,18	10000	0,00004
погрузчика ЈСВ ЗСХ					
Погрузчик JCB Loadall 550- 80	1	214	2,18	10000	0,00005
Самоходный подъемник ножничного типа Grost SPX F3-6000 109546	1	186	2,18	10000	0,00004
Корчеватель-собиратель Д- 695A	1	236	2,18	10000	0,00005
Каток дорожный САТ СВ- 434D	1	366	2,18	10000	0,00008
Асфальтоукладчик ДС-181- 02	1	332	2,18	10000	0,00007
Автогудронатор ДС-39Г	1	332	2,18	10000	0,00007
Автогидроподъемник АГП- 18.04	1	225	2,18	10000	0,00005
Бурильно-крановая машина БКМ-516	1	253	2,18	10000	0,00006
Кабельный транспортер на базе КАМАЗ 880702	1	619	2,18	10000	0,00013
				Итого:	0,016

Отходы синтетических и полусинтетических масел моторных - 41310001313.

Количество отработанного моторного масла рассчитывается исходя из значения удельного показателя образования отходов:

- 1,17 л на 100 л израсходованного топлива для внедорожных автомобилей – самосвалов и другой подобной техники, работающей на дизельном топливе.

Марка автотранспор- та	Кол- во	Расход топ- лива одной единицы, л/период	Значение удельного показателя, л	Нормативный расход топ- лива, л	Коэффициент перевода л в м3	Плотность масла, т/м3	Вес от- хода, т/период
Экскаватор ЭО-3322	1	4781	1,17	100	0,001	0,93	0,05202
Экскаватор ЭО-5122	2	5006	1,17	100	0,001	0,93	0,10894
Экскаватор траншей- ный цепной ЭТЦ-75	1	4556	1,17	100	0,001	0,93	0,04957
Бульдозер ДЗ-42	2	5344	1,17	100	0,001	0,93	0,11630
Скрепер прицепной ДЗ- 20	4	1289	1,17	100	0,001	0,93	0,05610
Автогрейдер ДЗ-180	1	1850	1,17	100	0,001	0,93	0,02013
Каток грунтовый само- ходный на пневматиче- ских шинах ДУ-29	1	3234	1,17	100	0,001	0,93	0,03519
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	2700	1,17	100	0,001	0,93	0,02938
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	2650	1,17	100	0,001	0,93	0,02883
Бортовой автомобиль КамАЗ 65117	2	5681	1,17	100	0,001	0,93	0,12363
Автосамосвал КамАЗ 6520	6	5456	1,17	100	0,001	0,93	0,35620

Автокран КС-55729-1	1	2447	1,17	100	0,001	0,93	0,02663
Кран на шасси автомо- бильного типа KRUPP KMK-5120	1	2700	1,17	100	0,001	0,93	0,02938
Автобетоносмеситель АБС-58140 на базе КАМАЗ-65201	5	3544	1,17	100	0,001	0,93	0,19281
Автобетононасос с распределительной стрелой M43-IR104	1	1600	1,17	100	0,001	0,93	0,01741
Виброплита SBV 80 HC3 на базе экскавато- ра-погрузчика JCB 3CX	1	478	1,17	100	0,001	0,93	0,00520
Погрузчик JCB Loadall 550-80	1	506	1,17	100	0,001	0,93	0,00551
Самоходный подъемник ножничного типа Grost SPX F3-6000 109546	1	450	1,17	100	0,001	0,93	0,00490
Корчеватель- собиратель Д-695A	1	675	1,17	100	0,001	0,93	0,00734
Каток дорожный САТ СВ-434D	1	563	1,17	100	0,001	0,93	0,00613
Асфальтоукладчик ДС- 181-02	1	675	1,17	100	0,001	0,93	0,00734
Автогудронатор ДС- 39Г	1	555	1,17	100	0,001	0,93	0,00604
Автогидроподъемник АГП-18.04	1	422	1,17	100	0,001	0,93	0,00459
Бурильно-крановая ма- шина БКМ-516	1	383	1,17	100	0,001	0,93	0,00417
Кабельный транспортер на базе КАМАЗ 880702	1	563	1,17	100	0,001	0,93	0,00613
						Итого:	1,300

Отходы минеральных масел трансмиссионных – 40615001313.

Количество отработанного трансмиссионного масла рассчитывается исходя из значения удельного показателя образования отходов:

- 1,17 л на 100 л израсходованного топлива для внедорожных автомобилей – самосвалов и другой подобной техники, работающей на дизельном топливе.

Марка автотранспор- та	Кол- во	Расход топ- лива одной единицы, л/период	Значение удельного показателя, л	Нормативный расход топ- лива, л	Коэффициент перевода л в м3	Плотность масла, т/м3	Вес от- хода, т/период
Экскаватор ЭО-3322	1	4781	1,17	100	0,001	0,885	0,04950
Экскаватор ЭО-5122	2	5006	1,17	100	0,001	0,885	0,10367
Экскаватор траншей- ный цепной ЭТЦ-75	1	4556	1,17	100	0,001	0,885	0,04718
Бульдозер ДЗ-42	2	5344	1,17	100	0,001	0,885	0,11067
Скрепер прицепной Д3- 20	4	1289	1,17	100	0,001	0,885	0,05339
Автогрейдер ДЗ-180	1	1850	1,17	100	0,001	0,885	0,01916
Каток грунтовый само- ходный на пневматиче-	1	3234	1,17	100	0,001	0,885	0,03349

ских шинах ДУ-29							
Каток грунтовый с ку- лачковым вальцом BOMAG BW 211 PD-40	1	2700	1,17	100	0,001	0,885	0,02796
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	2650	1,17	100	0,001	0,885	0,02744
Бортовой автомобиль КамАЗ 65117	2	5681	1,17	100	0,001	0,885	0,11765
Автосамосвал КамАЗ 6520	6	5456	1,17	100	0,001	0,885	0,33896
Автокран КС-55729-1	1	2447	1,17	100	0,001	0,885	0,02534
Кран на шасси автомо- бильного типа KRUPP KMK-5120	1	2700	1,17	100	0,001	0,885	0,02796
Автобетоносмеситель АБС-58140 на базе КАМАЗ-65201	5	3544	1,17	100	0,001	0,885	0,18348
Автобетононасос с распределительной стрелой M43-IR104	1	1600	1,17	100	0,001	0,885	0,01657
Виброплита SBV 80 HC3 на базе экскаватора-погрузчика JCB 3CX	1	478	1,17	100	0,001	0,885	0,00495
Погрузчик JCB Loadall 550-80	1	506	1,17	100	0,001	0,885	0,00524
Самоходный подъемник ножничного типа Grost SPX F3-6000 109546	1	450	1,17	100	0,001	0,885	0,00466
Корчеватель- собиратель Д-695A	1	675	1,17	100	0,001	0,885	0,00699
Каток дорожный САТ СВ-434D	1	563	1,17	100	0,001	0,885	0,00583
Асфальтоукладчик ДС- 181-02	1	675	1,17	100	0,001	0,885	0,00699
Автогудронатор ДС- 39Г	1	555	1,17	100	0,001	0,885	0,00575
Автогидроподъемник АГП-18.04	1	422	1,17	100	0,001	0,885	0,00437
Бурильно-крановая ма- шина БКМ-516	1	383	1,17	100	0,001	0,885	0,00397
Кабельный транспортер на базе КАМАЗ 880702	1	563	1,17	100	0,001	0,885	0,00583
						Итого:	1,237

Отходы минеральных масел гидравлических, не содержащих галогены — 40612001313.

Количество отработанного гидравлического масла рассчитывается исходя из значения удельного показателя образования отходов:

- 0,6 л на 100 л израсходованного топлива для внедорожных автомобилей — самосвалов и другой подобной техники.

Марка автотранспор- та	Кол- во	Расход топ- лива одной единицы, л/период	Значение удельного показателя, л	Нормативный расход топ- лива, л	Коэффициент перевода л в м3	Плотность масла, т/м3	Вес от- хода, т/период
Экскаватор ЭО-3322	1	4781	0,6	100	0,001	0,890	0,02553
Экскаватор ЭО-5122	2	5006	0,6	100	0,001	0,890	0,05346
Экскаватор траншей- ный цепной ЭТЦ-75	1	4556	0,6	100	0,001	0,890	0,02433
Бульдозер ДЗ-42	2	5344	0,6	100	0,001	0,890	0,05707
Скрепер прицепной Д3- 20	4	1289	0,6	100	0,001	0,890	0,02753
Автогрейдер ДЗ-180	1	1850	0,6	100	0,001	0,890	0,00988
Каток грунтовый само- ходный на пневматиче- ских шинах ДУ-29	1	3234	0,6	100	0,001	0,890	0,01727
Каток грунтовый с ку- лачковым вальцом BOMAG BW 211 PD-40	1	2700	0,6	100	0,001	0,890	0,01442
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	2650	0,6	100	0,001	0,890	0,01415
Бортовой автомобиль КамАЗ 65117	2	5681	0,6	100	0,001	0,890	0,06067
Автосамосвал КамАЗ 6520	6	5456	0,6	100	0,001	0,890	0,17481
Автокран КС-55729-1	1	2447	0,6	100	0,001	0,890	0,01307
Кран на шасси автомо- бильного типа KRUPP KMK-5120	1	2700	0,6	100	0,001	0,890	0,01442
Автобетоносмеситель АБС-58140 на базе КАМАЗ-65201	5	3544	0,6	100	0,001	0,890	0,09462
Автобетононасос с распределительной стрелой М43-IR104	1	1600	0,6	100	0,001	0,890	0,00854
Виброплита SBV 80 HC3 на базе экскаватора-погрузчика JCB 3CX	1	478	0,6	100	0,001	0,890	0,00255
Погрузчик JCB Loadall 550-80	1	506	0,6	100	0,001	0,890	0,00270
Самоходный подъемник ножничного типа Grost SPX F3-6000 109546	1	450	0,6	100	0,001	0,890	0,00240
Корчеватель- собиратель Д-695A	1	675	0,6	100	0,001	0,890	0,00360
Каток дорожный САТ СВ-434D	1	563	0,6	100	0,001	0,890	0,00301
Асфальтоукладчик ДС- 181-02	1	675	0,6	100	0,001	0,890	0,00360
Автогудронатор ДС- 39Г	1	555	0,6	100	0,001	0,890	0,00296
Автогидроподъемник АГП-18.04	1	422	0,6	100	0,001	0,890	0,00225
Бурильно-крановая ма- шина БКМ-516	1	383	0,6	100	0,001	0,890	0,00205

Кабельный транспортер на базе КАМАЗ 880702	1	563	0,6	100	0,001	0,890	0,00301
						Итого:	0,638

Фильтры очистки масла автотранспортных средств отработанные - 92130201523.

Норматив образования отработанных фильтров, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{Hi} \times 10^{-3},$$
 т/период

где:

N_i – количество автомашин i-й марки, шт.;

 n_i – количество фильтров, установленных на автомашине i-й марки, шт.; от 1 до 4 фильтров (в среднем n_i = 2 фильтра);

m_i – вес одного фильтра на автомашине i-й марки, кг;

 L_i — средний пробег автомобиля і-й марки, тыс.км/период (или среднее время работы спецтехники і-й марки, час/период);

L_{ні} – норма пробега подвижного состава і-ой марки до замены фильтровальных элементов, тыс.км (или норма времени до замены фильтров, час);

10-3 – коэффициент перевода кг в тонны.

Замена масляных фильтров производится через 10 тыс.км пробега. В среднем вес одного масляного фильтра на грузовых машинах составляет 1,5 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Экскаватор ЭО-3322	1	2	1,5	0,354	10	0,00011
Экскаватор ЭО-5122	2	2	1,5	0,366	10	0,00022
Экскаватор траншейный цепной ЭТЦ-75	1	2	1,5	0,343	10	0,00010
Бульдозер ДЗ-42	2	2	1,5	0,416	10	0,00025
Скрепер прицепной ДЗ-20	4	2	1,5	0,305	10	0,00037
Автогрейдер ДЗ-180	1	2	1,5	0,250	10	0,00008
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	2	1,5	0,366	10	0,00011
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	2	1,5	0,208	10	0,00006
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	2	1,5	0,215	10	0,00006
Бортовой автомобиль Ка- мАЗ 65117	2	2	1,5	5,794	10	0,00348
Автосамосвал КамАЗ 6520	6	2	1,5	8,325	10	0,01499
Автокран КС-55729-1	1	2	1,5	0,214	10	0,00006
Кран на шасси автомобиль- ного типа KRUPP KMK- 5120	1	2	1,5	0,236	10	0,00007
Автобетоносмеситель АБС- 58140 на базе КАМАЗ-	5	2	1,5	0,844	10	0,00127

65201						
Автобетононасос с распределительной стрелой М43-IR104	1	2	1,5	0,230	10	0,00007
Виброплита SBV 80 НС3 на базе экскаватора- погрузчика JCB 3CX	1	2	1,5	0,180	10	0,00005
Погрузчик JCB Loadall 550- 80	1	2	1,5	0,214	10	0,00006
Самоходный подъемник ножничного типа Grost SPX F3-6000 109546	1	2	1,5	0,186	10	0,00006
Корчеватель-собиратель Д- 695A	1	2	1,5	0,236	10	0,00007
Каток дорожный САТ СВ- 434D	1	2	1,5	0,366	10	0,00011
Асфальтоукладчик ДС-181- 02	1	2	1,5	0,332	10	0,00010
Автогудронатор ДС-39Г	1	2	1,5	0,332	10	0,00010
Автогидроподъемник АГП- 18.04	1	2	1,5	0,225	10	0,00007
Бурильно-крановая машина БКМ-516	1	2	1,5	0,253	10	0,00008
Кабельный транспортер на базе КАМАЗ 880702	1	2	1,5	0,619	10	0,00019
					Итого:	0,022

Фильтры воздушные автотранспортных средств отработанные – 92130101524.

Норматив образования отработанных фильтров, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{\text{H}i} \times 10^{-3},$$
 т/период

где:

N_i – количество автомашин і-й марки, шт.;

 n_i – количество фильтров, установленных на автомашине i-й марки, шт.; от 1 до 4 фильтров (в среднем n_i = 2 фильтра);

m_i – вес одного фильтра на автомашине і-й марки, кг;

 L_i – средний пробег автомобиля i-й марки, тыс.км/период (или среднее время работы спецтехники i-й марки, час/период);

L_{ні} – норма пробега подвижного состава і-ой марки до замены фильтровальных элементов, тыс.км (или норма времени до замены фильтров, час);

 10^{-3} – коэффициент перевода кг в тонны.

Замена воздушных фильтров производится через 20 тыс.км пробега. В среднем вес одного воздушного фильтра на грузовых машинах составляет 0,5 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Экскаватор ЭО-3322	1	2	0,5	0,354	20	0,00002
Экскаватор ЭО-5122	2	2	0,5	0,366	20	0,00004
Экскаватор траншейный цепной ЭТЦ-75	1	2	0,5	0,343	20	0,00002

					Итого:	0,004
Кабельный транспортер на базе КАМАЗ 880702	1	2	0,5	0,619	20	0,00003
Бурильно-крановая машина БКМ-516	1	2	0,5	0,253	20	0,00001
Автогидроподъемник АГП- 18.04	1	2	0,5	0,225	20	0,00001
Автогудронатор ДС-39Г	1	2	0,5	0,332	20	0,00002
Асфальтоукладчик ДС-181- 02	1	2	0,5	0,332	20	0,00002
Каток дорожный САТ СВ- 434D	1	2	0,5	0,366	20	0,00002
Корчеватель-собиратель Д- 695А	1	2	0,5	0,236	20	0,00001
Самоходный подъемник ножничного типа Grost SPX F3-6000 109546	1	2	0,5	0,186	20	0,00001
Погрузчик JCB Loadall 550- 80	1	2	0,5	0,214	20	0,00001
Виброплита SBV 80 НС3 на базе экскаватора- погрузчика JCB 3CX	1	2	0,5	0,180	20	0,00001
Автобетононасос с распре- делительной стрелой М43- IR104	1	2	0,5	0,230	20	0,00001
Автобетоносмеситель АБС- 58140 на базе КАМАЗ- 65201	5	2	0,5	0,844	20	0,00021
Кран на шасси автомобиль- ного типа KRUPP KMK- 5120	1	2	0,5	0,236	20	0,00001
Автокран КС-55729-1	1	2	0,5	0,214	20	0,00001
Автосамосвал КамАЗ 6520	6	2	0,5	8,325	20	0,00250
Бортовой автомобиль Ка- мАЗ 65117	2	2	0,5	5,794	20	0,00058
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	2	0,5	0,215	20	0,00001
Каток грунтовый с кулачко- вым вальцом BOMAG BW 211 PD-40	1	2	0,5	0,208	20	0,00001
Каток грунтовый самоход- ный на пневматических шинах ДУ-29	1	2	0,5	0,366	20	0,00002
Автогрейдер ДЗ-180	1	2	0,5	0,250	20	0,00001
Скрепер прицепной ДЗ-20	4	2	0,5	0,305	20	0,00006
Бульдозер ДЗ-42	2	2	0,5	0,416	20	0,00004

Фильтры очистки топлива автотранспортных средств отработанные – 92130301523.

Норматив образования отработанных фильтров, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{{\scriptscriptstyle H}i} \times 10^{\text{-3}},$$
 т/период

где:

N_i – количество автомашин і-й марки, шт.;

 n_i – количество фильтров, установленных на автомашине i-й марки, шт.; от 1 до 4 фильтров (в среднем n_i = 2 фильтра);

m_i – вес одного фильтра на автомашине і-й марки, кг;

 L_i — средний пробег автомобиля і-й марки, тыс.км/период (или среднее время работы спецтехники і-й марки, час/период);

 $L_{\text{ні}}$ — норма пробега подвижного состава і-ой марки до замены фильтровальных элементов, тыс.км (или норма времени до замены фильтров, час);

10-3 – коэффициент перевода кг в тонны.

Замена топливных фильтров производится через 10 тыс.км пробега. В среднем вес одного топливного фильтра на грузовых машинах составляет 0,1 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Экскаватор ЭО-3322	1	2	0,1	0,354	10	0,000007
Экскаватор ЭО-5122	2	2	0,1	0,366	10	0,000015
Экскаватор траншейный цепной ЭТЦ-75	1	2	0,1	0,343	10	0,000007
Бульдозер ДЗ-42	2	2	0,1	0,416	10	0,000017
Скрепер прицепной ДЗ-20	4	2	0,1	0,305	10	0,000024
Автогрейдер ДЗ-180	1	2	0,1	0,250	10	0,000005
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	2	0,1	0,366	10	0,000007
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	2	0,1	0,208	10	0,000004
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	2	0,1	0,215	10	0,000004
Бортовой автомобиль Ка- мАЗ 65117	2	2	0,1	5,794	10	0,000232
Автосамосвал КамАЗ 6520	6	2	0,1	8,325	10	0,000999
Автокран КС-55729-1	1	2	0,1	0,214	10	0,000004
Кран на шасси автомобиль- ного типа KRUPP KMK- 5120	1	2	0,1	0,236	10	0,000005
Автобетоносмеситель АБС- 58140 на базе КАМАЗ- 65201	5	2	0,1	0,844	10	0,000084
Автобетононасос с распределительной стрелой М43-IR104	1	2	0,1	0,230	10	0,000005
Виброплита SBV 80 HC3 на базе экскаватора- погрузчика JCB 3CX	1	2	0,1	0,180	10	0,000004
Погрузчик JCB Loadall 550- 80	1	2	0,1	0,214	10	0,000004
Самоходный подъемник ножничного типа Grost SPX F3-6000 109546	1	2	0,1	0,186	10	0,000004

					Итого:	0,001
Кабельный транспортер на базе КАМАЗ 880702	1	2	0,1	0,619	10	0,000012
Бурильно-крановая машина БКМ-516	1	2	0,1	0,253	10	0,000005
Автогидроподъемник АГП- 18.04	1	2	0,1	0,225	10	0,000005
Автогудронатор ДС-39Г	1	2	0,1	0,332	10	0,000007
Асфальтоукладчик ДС-181- 02	1	2	0,1	0,332	10	0,000007
Каток дорожный САТ СВ- 434D	1	2	0,1	0,366	10	0,000007
Корчеватель-собиратель Д- 695A	1	2	0,1	0,236	10	0,000005

Тормозные колодки отработанные без накладок асбестовых – 92031001525.

Норматив образования отработанных тормозных колодок, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{\text{H}i} \times 10^{-3},$$
 т/период

где:

N_i – количество автомашин і-й марки, шт.;

 n_i – количество тормозных колодок, установленных на автомашине i-й марки, шт.;

m_i – вес одной тормозной колодки на автомашине i-й марки, кг;

 L_i – средний пробег автомобиля і-й марки, тыс.км/период (или среднее время работы спецтехники і-й марки, час/период);

 $L_{\text{ні}}$ — норма пробега подвижного состава і-ой марки до замены тормозных колодок, тыс.км (или норма времени до замены фильтров, час);

10-3 – коэффициент перевода кг в тонны.

Замена тормозных колодок для грузовых автомобилей производится через 10 тыс.км пробега. В среднем вес одной тормозной колодки на грузовых машинах составляет 0,53 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Экскаватор ЭО-3322	1	8	0,53	0,354	10	0,00015
Экскаватор ЭО-5122	2	8	0,53	0,366	10	0,00031
Экскаватор траншейный цепной ЭТЦ-75	1	8	0,53	0,343	10	0,00015
Бульдозер ДЗ-42	2	8	0,53	0,416	10	0,00035
Скрепер прицепной ДЗ-20	4	8	0,53	0,305	10	0,00052
Автогрейдер ДЗ-180	1	8	0,53	0,250	10	0,00011
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	8	0,53	0,366	10	0,00016
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	8	0,53	0,208	10	0,00009
Каток грунтовый с гладким	1	8	0,53	0,215	10	0,00009

					Итого:	0,031
Кабельный транспортер на базе КАМАЗ 880702	1	8	0,53	0,619	10	0,00026
Бурильно-крановая машина БКМ-516	1	8	0,53	0,253	10	0,00011
Автогидроподъемник АГП- 18.04	1	8	0,53	0,225	10	0,00010
Автогудронатор ДС-39Г	1	8	0,53	0,332	10	0,00014
Асфальтоукладчик ДС-181- 02	1	8	0,53	0,332	10	0,00014
Каток дорожный САТ СВ- 434D	1	8	0,53	0,366	10	0,00016
Корчеватель-собиратель Д- 695А	1	8	0,53	0,236	10	0,00010
Самоходный подъемник ножничного типа Grost SPX F3-6000 109546	1	8	0,53	0,186	10	0,00008
Погрузчик JCB Loadall 550- 80	1	8	0,53	0,214	10	0,00009
Виброплита SBV 80 НС3 на базе экскаватора- погрузчика JCB 3CX	1	8	0,53	0,180	10	0,00008
Автобетононасос с распределительной стрелой М43- IR104	1	8	0,53	0,230	10	0,00010
Автобетоносмеситель АБС- 58140 на базе КАМАЗ- 65201	5	8	0,53	0,844	10	0,00179
Кран на шасси автомобиль- ного типа KRUPP KMK- 5120	1	8	0,53	0,236	10	0,00010
Автокран КС-55729-1	1	8	0,53	0,214	10	0,00009
Автосамосвал КамАЗ 6520	6	8	0,53	8,325	10	0,02118
Бортовой автомобиль Ка- мАЗ 65117	2	8	0,53	5,794	10	0,00491
вальцом BOMAG BW 213 D-4						

Примечание: отходы черных и цветных металлов при ремонте автотранспорта на объекте не образуются, т.к. ремонт подвижного состава, связанного с заменой узлов, агрегатов и пр. планируется осуществлять на специализированных предприятиях.

Отходы от мойки колес строительного автотранспорта.

С целью предотвращения загрязнения окружающей природной среды на выезде с территории стройплощадки предусмотрен комплект оборудования для мойки колес строительного автотранспорта с системой оборотного водоснабжения на базе очистной установки «МОЙДОДЫР-К-2». Комплект предназначен для мойки колес автотранспортных средств на строительных площадках в стесненных условиях, а также в автопарках, на промышленных объектах и т.п. Комплект обеспечивает очистку оборотной воды при пропускной способности до 10 единиц транспорта в час. Комплект предотвращает загрязнение окружающей среды, обеспечивает повторное использование и экономию до 80% технической воды. Применение шампуней и моющих средств на данной установке не предусматривается. Технические данные установки «МОЙДОДЫР-К-2» приведены в соответствии с «Паспортом и руководством по эксплуатации»:

$\mathcal{N}_{\underline{o}}$	Наименование параметров	Количественные
n/n		показатели
1.	Производительность по очищенной воде, м ³ /час	до 2,5
2.	Концентрация загрязняющих веществ в сточной	
	воде, мг/л, не более:	
	- по взвешенным веществам	4500
	- по нефтепродуктам	200
3.	Концентрация загрязняющих веществ в оборот-	
	ной воде, мг/л, не более:	
	- по взвешенным веществам	200
	- по нефтепродуктам	20
4.	Размеры, мм (габаритные)	1900×750×1900 (высота)
5.	Масса без воды, кг	450
6.	Объем воды в установке, м ³	1,25
7.	Обслуживающий персонал, чел.	1

Расчет проводится согласно «Методическим рекомендациям по оценке объемов образования отходов производства и потребления», ГУ НИЦПУРО, Москва 2003 г.

Период II этапа строительства 9 месяцев (\approx 198 рабочих суток). На строительную площадку въезжает не более 27 грузовых автомобилей в сутки. Объем воды в установке «МОЙДОДЫР-К-2» равен 1,25 м³. На мойку колес одного автомобиля в среднем требуется 125 л воды, на 27 автомобилей – 3375 л (3,375 м³) ежедневно, следовательно, за период строительства расход воды составит – 3,375 м³ × 198 суток = 668,25 м³/период.

Осадок механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15% – 72310202394.

Количество осадка отстойника установки мойки колес автомашин определяется по формуле:

$$Q_{\text{oc.ot}} = q_w \times (C_{\text{eB}}$$
 - $C_{\text{ex}}) / \rho_{\text{oc}} \times (100$ - $P_{\text{oc}}) \times 10^4$, м³/период

где: $Q_{\text{ос.от}}$ – количество осевшего обводненного осадка, м³/период;

 q_w – расход сточной воды, м³/период;

 C_{eB} – содержание взвешенных веществ в воде перед установкой, мг/л;

 C_{ex} – содержание взвешенных веществ в осветленной воде, мг/л;

 ρ_{oc} – плотность обводненного осадка (1,5...1,6 г/см³);

 P_{oc} – процент обводненности осадка (80...99%);

 M_{oc} – количество образующегося осевшего осадка, т/период.

$$Q_{\text{ос.от}} = 668,\!25 \times (4500$$
 - $200)$ / $1,\!55 \times (100-90) \times 10^4 = 18,\!539$ м 3 /период

$$M_{oc} = 18,539 \times 1,55 = 28,735$$
 т/период.

Всплывшие нефтепродукты из нефтеловушек и аналогичных сооружений – 40635001313.

Количество обводненных нефтепродуктов из отстойника установки мойки колес автомашин определяется по формуле:

$$Q_{\text{не}\varphi} = q_w \times (C_{\text{ен}}$$
 - $C_{\text{ex}})$ / $\rho_{\text{не}\varphi} \times (100$ - $P_{\text{не}\varphi}) \times 10^4$, $\,$ м 3 /период

где: $Q_{\text{неф}}$ – количество обводненных нефтепродуктов, м³/период;

 q_w – расход сточной воды, м³/период;

 $C_{\text{ен}}$ – содержание нефтепродуктов в воде перед установкой, мг/л;

 C_{ex} – содержание нефтепродуктов в осветленной воде, мг/л;

 $\rho_{\text{неф}}$ – плотность обводненных нефтепродуктов (0,87...0,90 г/см³);

 $P_{\text{неф}}$ – процент обводненности нефтепродуктов (70...80%);

М_{неф} – масса всплывающих нефтепродуктов, т/период.

$$Q_{\text{неф}} = 668,25 \times (200 - 20) / 0,88 \times (100 - 75) \times 10^4 = 0,547 \text{ м}^3/\text{период}$$

$$M_{\text{неф}} = 0,547 \times 0,88 = 0,481$$
 т/период.

Отходы от посева травосмеси при озеленении территории.

Многолетние травы (мятлик луговой, райграс пастбищный, овсяница луговая) поступают на территорию площадки в полипропиленовых мешках вместимостью 25 кг.

Количество многолетних трав для II этапа строительства составит: мятлик луговой – 201,6 кг; райграс пастбищный – 151,2 кг; овсяница луговая – 151,2 кг.

Упаковка полипропиленовая отработанная незагрязненная – 43412311514.

Норма образования отхода составит:

$$P = \sum Q_i / M_i \times m_i \times 10^{-3}$$
, т/период

где: Q_i – расход сырья i-го вида, кг/период;

M_i – вес сырья і-го вида в единице упаковки, кг;

m_i – вес единицы пустой упаковки из-под сырья і-го вида, кг;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

$$P = 504 / 25 \times 0.5 \times 10^{-3} = 0.010$$
 т/период,

где: 0,5 – вес единицы пустой упаковки, кг;

10-3 – коэффициент перевода кг в тонны.

Отходы железобетонных плит при демонтаже временных подъездных дорог.

Предусматривается устройство временных подъездных дорог, для чего будут использованы железобетонные плиты в количестве 659 шт. (588 м³).

Лом железобетонных изделий, отходы железобетона в кусковой форме – 82230101215.

Количество отходов ж/б плит составит:

 $M = 588 \text{ м}^3 \times 2.5 \text{ т/м}^3$ (плотность железобетона) = **1470,000** т/период.

III этап строительства.

Отходы от срезки верхнего почвенно-растительного слоя и отходы суглинка при проведении земляных работ.

Грунт, образовавшийся при проведении землеройных работ, не загрязненный опасными веществами – 81110001495.

Плотность материала принимаем равной $1,6 \text{ m/m}^3$.

Количество отхода составит:

 $M = [5573 \text{ м}^3 \text{ (почвенно-растительный слой)} + 32608 \text{ м}^3 \text{ (суглинок)}] \times 1,6 =$ **61089,600**т/период.

Отходы от строительных работ.

Отходы песка незагрязненные – 81910001495.

Нормы потерь и отходов согласно Приложению Д РДС 82-202-96 составляют 0,7%. Количество используемого при строительстве песка составляет 12801 $\rm m^3$ (16641,3 т при плотности песка, равной 1,3 $\rm T/m^3$).

Норма образования отхода составит:

 $M = 16641,3 \times 0,007 = 116,489$ т/период.

Отходы песчано-гравийной смеси незагрязненные – 82151111405.

Нормы потерь и отходов согласно Приложению Д РДС 82-202-96 составляют 0,45%. Количество используемой при строительстве песчано-гравийной смеси составляет 8701 m^3 (13921,6 т при плотности песчано-гравийной смеси, равной 1,6 т/ m^3).

Норма образования отхода составит:

 $M = 13921.6 \times 0.0045 = 62.647$ т/период.

Отходы строительного щебня незагрязненные – 81910003215.

Нормы потерь и отходов согласно Приложению Д РДС 82-202-96 составляют 0,4%. Количество используемого при строительстве щебня составляет 6853 м^3 (9594,2 т при плотности щебня, равной $1,4 \text{ т/м}^3$).

Норма образования отхода составит:

 $M = 9594,2 \times 0,004 = 38,377$ т/период.

Лом асфальтовых и асфальтобетонных покрытий – 83020001714.

Нормы потерь и отходов согласно Приложению Б РДС 82-202-96 составляют 2%. Количество используемого при строительстве асфальтобетона составляет 968 m^3 (2323,2 т при плотности асфальтобетона, равной $2,4 \text{ т/m}^3$).

Норма образования отхода составит:

 $M = 2323,2 \times 0,02 = 46,464$ т/период.

Отходы битума нефтяного – 30824101214.

Нормы потерь и отходов согласно Приложению Б РДС 82-202-96 составляют 3%. Количество используемого при строительстве жидкого битума составляет 1356 $\rm m^3$ (1288,2 т при плотности раствора, равной 0,95 $\rm T/m^3$).

Норма образования отхода составит:

 $M = 1288,2 \times 0,03 = 38,646$ т/период.

Отходы полимерных материалов при устройстве защитного экрана основания 2-й карты захоронения ТКО.

Расчет количества образующихся отходов геомембраны CTAБAPM HDPE.

Лом и отходы изделий из полиэтилена незагрязненные (кроме тары) – 43411003515.

Согласно нормам Дополнений к РДС 82-202-96 (Таблица 1) потери рулонных материалов при изоляции поверхностей составят 4% от общего количества используемого материала.

Проектом предусмотрено использование геомембраны СТАБАРМ HDPE в количестве 29819 м².

Согласно СТО 30978849.0008-2016 «Рулонный полимерный изолирующий материал Геомембрана «СТАБАРМ» применяемая в дорожном строительстве. Геомембрана композиционная «СТАБАРМ». Технические условия», плотность геомембраны СТАБАРМ HDPE составляет 0,94 г/см³, толщина геомембраны – 1,5 мм.

Норма образования отхода составит:

 $M = 29819 \times 0.0015 \times 0.94 \times 0.04 = 1.682$ т/период.

Расчет количества образующихся отходов геотекстиля.

Лом и отходы изделий из полипропилена незагрязненные (кроме тары) – 43412003515.

Согласно нормам Дополнений к РДС 82-202-96 (Таблица 1) потери рулонных материалов при изоляции поверхностей составят 4% от общего количества используемого материала.

Проектом предусмотрено использование геотекстиля в количестве 10460 м^2 (плотностью 200 г/м^2).

Норма образования отхода составит:

 $M = 10460 \times 200 \times 0.04 \times 10^{-6} = 0.084$ т/период.

Расчет количества образующихся отходов бентонитовых матов.

Лом и отходы изделий из полипропилена незагрязненные (кроме тары) – 43412003515.

Отходы бентонитовой глины при ремонтно-строительных работах — 82451111205.

Согласно нормам Дополнений к РДС 82-202-96 (Таблица 1) потери рулонных материалов при изоляции поверхностей составят 4% от общего количества используемого материала.

Проектом предусмотрено использование бентонитовых матов Bentofix NSP 4900 в количестве 1765 m^2 .

Согласно Техническим характеристикам структура бентонитового мата Bentofix следующая:

- покрывающий материал (геотекстиль из полипропилена) (масса на единицу поверхности 220 гр/м^2)
- несущий материал (тканое геополотно из полипропилена) (масса на единицу поверхности 110 гр/м^2)
- слой бентонитовой глины (натриевый бентонит (порошок)) (масса на единицу поверхности 4670 гр/м^2)

Норма образования отхода составит:

 $M_{nn} = [(1765 \times 220) + (1765 \times 110)] \times 0,04 \times 10^{-6} =$ **0,023** т/период - *отходы полипро- пилена*

 $M_{rr} = 1765 \times 4670 \times 0,04 \times 10^{-6} =$ **0,330 т/период** — *отходы бентонитовой глины*.

Отходы труб от прокладки трубопроводов при устройстве инженерных коммуникаций.

Лом и отходы стальных изделий незагрязненные – 46120001515.

Согласно нормам РДС 82-202-96 (Приложение 3) потери труб при прокладке трубопроводов составят:

- 2,5% от общего количества используемого материала (внутренние сети);
- 2,0% от общего количества используемого материала (наружные сети).

Проектом предусмотрена прокладка стальных трубопроводов различного диаметра общим весом 504,14 кг.

Норма образования отхода составит:

 $M = 504.14 \times 0.02 \times 10^{-3} = 0.010$ т/период – наружные сети

Общее количество отхода составит 0,010 т/период.

Лом и отходы изделий из полиэтилена незагрязненные (кроме тары) – 43411003515.

Согласно нормам РДС 82-202-96 (Приложение 3) потери труб при прокладке трубопроводов составят:

- 2,5% от общего количества используемого материала (внутренние сети);
- 2,5% от общего количества используемого материала (наружные сети).

Проектом предусмотрена прокладка полиэтиленовых трубопроводов различного диаметра общим весом 4929,12 кг.

Норма образования отхода составит:

 $M = 4929,12 \times 0,025 \times 10^{-3} = 0,123$ т/период – наружные сети

Общее количество отхода составит 0,123 т/период.

Лом и отходы изделий из стеклопластика в смеси незагрязненные — 43491911204.

Согласно нормам РДС 82-202-96 (Приложение 3) потери труб при прокладке трубопроводов составят 5% от общего количества используемого материала.

Проектом предусмотрена прокладка трубопроводов различного диаметра из стеклопластика общим весом 8197 кг (наружные сети).

Норма образования отхода составит:

 $M = 8197 \times 0.05 \times 10^{-3} = 0.410$ т/период.

Отходы от технического обслуживания и ремонта технологического оборудования.

Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%) – 91920402604.

Данный вид отхода образуется при текущем обслуживании и периодическом ремонте технологического оборудования.

Количество данного вида отхода определяется по формуле:

$$M_{\text{ветошь}} = H_{\text{уд.ветошь}} \times N \times D \times 10^{-3}$$
,

где: Н_{уд.ветошь} – удельный норматив ветоши на 1 работающего = 0,1 кг/сут. («Оценка количеств образующихся отходов производства и потребления», СПб, 1997г.);

N – количество рабочих, использующих ветошь, чел/сут.;

D – число рабочих дней за период, сут;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

 $M_{\text{ветошь}} = 0.1 \times 15 \times 99 \times 10^{-3} = 0.149$ т/период.

Примечание: продолжительность III этапа строительства составляет 4,5 месяца (≈ 99 рабочих суток). В расчете количество рабочих принято без учета ИТР и служащих.

Отходы от жизнедеятельности рабочих.

Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный) – 73310001724.

Примечание: III этап строительства - продолжительность 4,5 месяца (≈ 99 рабочих суток), при расчетах видов отходов с применением годового удельного норматива принимаем коэффициент 0,375.

Расчет нормы образования отхода проводится по «Сборнику удельных показателей образования отходов производства и потребления», 1999г., таблица 3.2., пункт 6. Среднегодовой норматив образования отходов составляет 40-70 кг/год на одного человека. Для расчета принято максимальное значение в 70 кг/год. На момент строительства предусмотрено 18 человек.

Норма образования отхода составит:

 $M = 18 \times 70 \times 0.375 \times 10^{-3} = 0.473$ т/период,

где: 10^{-3} – коэффициент перевода кг в тонны.

Пищевые отходы кухонь и организаций общественного питания несортированные – 73610001305.

Отход образуется от приёма пищи. Проектом предусмотрен привоз готовой пищи высокой степени готовности в пластиковой упаковке и раздача её рабочим.

Согласно «Методическим рекомендациям по разработке проекта нормативов предельного размещения отходов для теплоэлектростанций, теплоэлектроцентралей, промышленных и отопительных котельных», СПб, 1998 г. норма образования отходов (М) рассчитывается, исходя из среднесуточной нормы накопления на 1 блюдо - $0,0001 \,\mathrm{m}^3$, числа рабочих дней за период (n), числа блюд на одного человека (m) и числа работающих (z). Плотность отходов (ρ) - $0,3 \,\mathrm{T/m}^3$.

$$M = 0.0001 \times n \times m \times z \times \rho$$
, т/период

Норма образования отхода составит:

 $M = 0.0001 \times 99 \times 3 \times 18 \times 0.3 = 0.160$ т/период.

Отходы посуды одноразовой из разнородных полимерных материалов, загрязненной пищевыми продуктами – 43894111524.

Отход образуется от приёма пищи. Норма образования отхода определяется, исходя из количества единиц одноразовой посуды на 1 рабочего, ее веса (в граммах), количества рабочих и числа рабочих суток за период:

$$M = 4 \times 10 \times 18 \times 99 \times 10^{-6} = 0.071$$
 т/период,

где: 4 – количество единиц одноразовой посуды на 1 рабочего (три тарелки и один стакан), шт.;

10 – средний вес одной единицы одноразовой посуды, грамм;

10-6 – коэффициент перевода грамм в тонны.

Отходы от замены спецодежды, спецобуви и средств защиты.

Спецодежда из хлопчатобумажного и смешанных волокон, утратившая потребительские свойства, незагрязненная – 40211001624.

Отход образуется при замене изношенных хлопчатобумажных комплектов и костю-

мов, рукавиц комбинированных, а также верхней одежды.

Наименование спец-	Количество	Норма выдачи	Вес еди-	Нормативная масса образования
одежды	рабочих	спецодежды,	ницы	отхода, т/период
		раз/период	спец-	
			одежды,	
			кг	
Комплект х/б	18	1	0,45	$M = 18 \times 1 \times 0.45 \times 10^{-3} = 0.008$
Костюм х/б с водооттал-	18	1	2,4	$M = 18 \times 1 \times 2,4 \times 10^{-3} = 0,043$
кивающей пропиткой				
Рукавицы комбиниро-	18	2	0,3	$M = 18 \times 2 \times 0.3 \times 10^{-3} = 0.011$
ванные				
Куртка на утепляющей	18	1	2,5	$M = 18 \times 1 \times 2.5 \times 10^{-3} = 0.045$
подкладке				
Брюки на утепляющей	18	1	2,8	$M = 18 \times 1 \times 2.8 \times 10^{-3} = 0.050$
подкладке				
			Итого:	0,157 т/период

Спецодежда из брезентовых тканей, утратившая потребительские свойства – 40212112605.

Отход образуется при замене изношенных брезентовых костюмов.

			1	
Наименование спец-	Количество	Норма выдачи	Вес еди-	Нормативная масса образования
одежды	рабочих	спецодежды,	ницы	отхода, т/период
		раз/период	спец-	
		- •	одежды,	
			кг	
Брезентовый костюм	18	1	2,8	$M = 18 \times 1 \times 2.8 \times 10^{-3} = 0.050$
			Итого:	0,050 т/период

Обувь кожаная рабочая, утратившая потребительские свойства – 40310100524.

Отхол образуется при замене кожаной спецобуви

	I	1	5	
Наименование спецобуви	Количество рабочих	Норма выдачи спецобуви,	Вес пары спецобуви,	Нормативная масса образования отхода, т/период
	_	раз/период	кг	-
Ботинки кожаные	18	1	2,0	$M = 18 \times 1 \times 2,0 \times 10^{-3} = 0,036$
			Итого:	0,036 т/период

Резиновые перчатки, утратившие потребительские свойства, незагрязненные – 43114101204.

Отход образуется при замене резиновых перчаток.

Наименование средств	Количество	Норма выдачи	Вес пары	Нормативная масса образования
защиты	рабочих	резиновых пер-	резиновых	отхода, т/период
		чаток,	перчаток,	
		раз/период	кг	
Резиновые перчатки	18	5	0,06	$M = 18 \times 5 \times 0.06 \times 10^{-3} = 0.005$
			Итого:	0,005 т/период

Резиновая обувь отработанная, утратившая потребительские свойства, незагрязненная — 43114102204.

Отход образуется при замене резиновой спецобуви.

Наименование средств	Количество	Норма выдачи	Вес пары	Нормативная масса образования
защиты	рабочих	резиновых са-	резиновых	отхода, т/период
		пог, раз/период	сапог, кг	
Резиновые сапоги	18	1	1,6	$M = 18 \times 1 \times 1,6 \times 10^{-3} = 0,029$
			Итого:	0,029 т/период

Отходы от эксплуатации сетей внутреннего и наружного освещения.

Светильники со светодиодными элементами в сборе, утратившие потребительские свойства — 48242711524.

Отход образуется при замене перегоревших светодиодных светильников. Расчет проводится аналогично ртутным лампам по «Сборнику методик по расчету объемов образования отходов. Методика расчета объемов образования отходов МРО-6-99. Отработанные ртутьсодержащие лампы». СПб, 2004г. Норматив образования отхода рассчитывается по формуле:

$$N = \sum n_i \times m_i \times t_i \times 10^{-6} / k_i$$
, т/период

где: n_i – количество установленных ламп i-той марки, шт.;

t_i – фактическое количество часов работы ламп i-той марки, час/период;

k_i – эксплуатационный срок службы ламп i-той марки, час;

m_i – вес одной лампы, г;

10-6 – коэффициент перевода грамм в тонны.

Норма образования отхода составит:

Наименование объекта	Кол-во, шт.	Среднее время ра- боты, час/сут	Число рабо- чих суток за период, шт.	Вес 1-й лампы, г	Нормативный срок службы 1- й лампы, час	Вес от- хода, т/период
Строительная площадка	20	8	99	500	10000	0,00079
					Итого:	0,001

Отходы от ремонта автотранспорта.

Расчет количества отходов проводится в соответствии со «Сборником удельных показателей образования отходов производства и потребления». Государственный комитет Российской Федерации по охране окружающей среды. Москва, 1999г.

Отходы изделий технического назначения из вулканизированной резины незагрязненные в смеси – 43119981724.

Количество отходов резинотехнических материалов, образующихся при проведении вулканизационных работ для автомобилей, определяется из расчета:

- 0,2 кг на 10 000 км пробега для грузовых автомобилей.

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/период
Экскаватор ЭО-3322	1	177	0,2	10000	0,000004
Скрепер прицепной ДЗ-20	2	153	0,2	10000	0,000006
Автогрейдер ДЗ-180	1	125	0,2	10000	0,000003
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	183	0,2	10000	0,000004
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	104	0,2	10000	0,000002
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	108	0,2	10000	0,000002
Бортовой автомобиль КамАЗ 65117	2	2897	0,2	10000	0,000116
Автосамосвал КамАЗ 6520	6	4163	0,2	10000	0,000500
Автокран КС-55729-1	1	107	0,2	10000	0,000002
Автогудронатор ДС-39Г	1	166	0,2	10000	0,000003
				Итого:	0,001

Покрышки пневматических шин с металлическим кордом отработанные – 92113002504.

Количество отработанных покрышек определяется исходя из значения удельного показателя образования отходов:

- 19,1 кг на 10 000 км пробега для грузовых автомобилей.

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/период
Экскаватор ЭО-3322	1	177	19,1	10000	0,00034
Скрепер прицепной ДЗ-20	2	153	19,1	10000	0,00058
Автогрейдер ДЗ-180	1	125	19,1	10000	0,00024
Каток грунтовый самоходный на пнев- матических шинах ДУ-29	1	183	19,1	10000	0,00035
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	104	19,1	10000	0,00020
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	108	19,1	10000	0,00021
Бортовой автомобиль КамАЗ 65117	2	2897	19,1	10000	0,01107
Автосамосвал КамАЗ 6520	6	4163	19,1	10000	0,04771
Автокран КС-55729-1	1	107	19,1	10000	0,00020
Автогудронатор ДС-39Г	1	166	19,1	10000	0,00032
				Итого:	0,061

Аккумуляторы свинцовые отработанные неповрежденные, с электролитом – 92011001532.

Количество лома отработанных свинцовых аккумуляторов определяется исходя из значения удельного показателя образования отходов:

- 4,18 кг на 10 000 км пробега для грузовых автомобилей.

Количество отработанного электролита определяется исходя из значения удельного показателя образования отходов:

- 2,7 л на 10 000 км пробега для грузовых автомобилей.

Расчет количества лома аккумуляторов свинцовых отработанных

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/период
Экскаватор ЭО-3322	1	177	4,18	10000	0,00007
Экскаватор ЭО-5122	2	183	4,18	10000	0,00015
Бульдозер ДЗ-42	2	208	4,18	10000	0,00017
Скрепер прицепной ДЗ-20	2	153	4,18	10000	0,00013
Автогрейдер Д3-180	1	125	4,18	10000	0,00005
Каток грунтовый самоходный на пнев- матических шинах ДУ-29	1	183	4,18	10000	0,00008
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	104	4,18	10000	0,00004
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	108	4,18	10000	0,00005
Бортовой автомобиль КамАЗ 65117	2	2897	4,18	10000	0,00242
Автосамосвал КамАЗ 6520	6	4163	4,18	10000	0,01044
Автокран КС-55729-1	1	107	4,18	10000	0,00004
Автогудронатор ДС-39Г	1	166	4,18	10000	0,00007
	•		•	Итого:	0,014

Расчет количества сернокислотного электролита

Марка автотранс- порта	Кол-	Пробег од- ной едини- цы, км/период	Значение удельного показателя, л	Коэффициент перевода л в м ³	Плотность электролита, т/м ³	Нормативный пробег, км	Вес от- хода, т/период
Экскаватор ЭО-3322	1	177	2,7	0,001	1,2	10000	0,00006
Экскаватор ЭО-5122	2	183	2,7	0,001	1,2	10000	0,00012
Бульдозер ДЗ-42	2	208	2,7	0,001	1,2	10000	0,00013
Скрепер прицепной ДЗ-20	2	153	2,7	0,001	1,2	10000	0,00010
Автогрейдер ДЗ-180	1	125	2,7	0,001	1,2	10000	0,00004
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	183	2,7	0,001	1,2	10000	0,00006
Каток грунтовый с кулачковым вальцом	1	104	2,7	0,001	1,2	10000	0,00003

						Итого:	0,011
Автогудронатор ДС- 39Г	1	166	2,7	0,001	1,2	10000	0,00005
Автокран КС-55729- 1	1	107	2,7	0,001	1,2	10000	0,00003
Автосамосвал Ка- мАЗ 6520	6	4163	2,7	0,001	1,2	10000	0,00809
Бортовой автомо- биль КамАЗ 65117	2	2897	2,7	0,001	1,2	10000	0,00188
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	108	2,7	0,001	1,2	10000	0,00003
BOMAG BW 211 PD-40							

Количество отхода составит 0,025 т/период.

Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%) – 91920402604.

Согласно нормам расхода материалов на ремонт и эксплуатацию автомашин количество обтирочного материала, загрязненными маслами, определяется из расчета:

- 2,18 кг на 10 000 км пробега для грузовых автомобилей.

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/период
Экскаватор ЭО-3322	1	177	2,18	10000	0,00004
Экскаватор ЭО-5122	2	183	2,18	10000	0,00008
Бульдозер ДЗ-42	2	208	2,18	10000	0,00009
Скрепер прицепной ДЗ-20	2	153	2,18	10000	0,00007
Автогрейдер ДЗ-180	1	125	2,18	10000	0,00003
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	183	2,18	10000	0,00004
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	104	2,18	10000	0,00002
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	108	2,18	10000	0,00002
Бортовой автомобиль Ка- мАЗ 65117	2	2897	2,18	10000	0,00126
Автосамосвал КамАЗ 6520	6	4163	2,18	10000	0,00545
Автокран КС-55729-1	1	107	2,18	10000	0,00002
Автогудронатор ДС-39Г	1	166	2,18	10000	0,00004
				Итого:	0,007

Отходы синтетических и полусинтетических масел моторных - 41310001313.

Количество отработанного моторного масла рассчитывается исходя из значения удельного показателя образования отходов:

- 1,17 л на 100 л израсходованного топлива для внедорожных автомобилей — самосвалов и другой подобной техники, работающей на дизельном топливе.

Марка автотранспор- та	Кол-во	Расход топ- лива одной единицы, л/период	Значение удельного показателя, л	Нормативный расход топ- лива, л	Коэффициент перевода л в м3	Плотность масла, т/м3	Вес от- хода, т/период
Экскаватор ЭО-3322	1	2391	1,17	100	0,001	0,93	0,02602
Экскаватор ЭО-5122	2	2503	1,17	100	0,001	0,93	0,05447
Бульдозер ДЗ-42	2	2672	1,17	100	0,001	0,93	0,05815
Скрепер прицепной ДЗ-20	2	645	1,17	100	0,001	0,93	0,01404
Автогрейдер ДЗ-180	1	925	1,17	100	0,001	0,93	0,01006
Каток грунтовый само- ходный на пневмати- ческих шинах ДУ-29	1	1617	1,17	100	0,001	0,93	0,01759
Каток грунтовый с кулачковым вальцом ВОМАG BW 211 PD- 40	1	1350	1,17	100	0,001	0,93	0,01469
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	1325	1,17	100	0,001	0,93	0,01442
Бортовой автомобиль КамАЗ 65117	2	2841	1,17	100	0,001	0,93	0,06183
Автосамосвал КамАЗ 6520	6	2728	1,17	100	0,001	0,93	0,17810
Автокран КС-55729-1	1	1224	1,17	100	0,001	0,93	0,01332
Автогудронатор ДС- 39Г	1	278	1,17	100	0,001	0,93	0,00302
						Итого:	0,466

Отходы минеральных масел трансмиссионных – 40615001313.

Количество отработанного трансмиссионного масла рассчитывается исходя из значения удельного показателя образования отходов:

- 1,17 л на 100 л израсходованного топлива для внедорожных автомобилей – самосвалов и другой подобной техники, работающей на дизельном топливе.

Марка автотранспор- та	Кол-во	Расход топ- лива одной единицы, л/период	Значение удельного показателя, л	Нормативный расход топ- лива, л	Коэффициент перевода л в м3	Плотность масла, т/м3	Вес от- хода, т/период
Экскаватор ЭО-3322	1	2391	1,17	100	0,001	0,885	0,02476
Экскаватор ЭО-5122	2	2503	1,17	100	0,001	0,885	0,05183
Бульдозер ДЗ-42	2	2672	1,17	100	0,001	0,885	0,05533
Скрепер прицепной ДЗ-20	2	645	1,17	100	0,001	0,885	0,01336

						Итого:	0,443
Автогудронатор ДС- 39Г	1	278	1,17	100	0,001	0,885	0,00288
Автокран КС-55729-1	1	1224	1,17	100	0,001	0,885	0,01267
Автосамосвал КамАЗ 6520	6	2728	1,17	100	0,001	0,885	0,16948
Бортовой автомобиль КамАЗ 65117	2	2841	1,17	100	0,001	0,885	0,05883
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	1325	1,17	100	0,001	0,885	0,01372
Каток грунтовый с ку- лачковым вальцом BOMAG BW 211 PD- 40	1	1350	1,17	100	0,001	0,885	0,01398
Каток грунтовый само- ходный на пневмати- ческих шинах ДУ-29	1	1617	1,17	100	0,001	0,885	0,01674
Автогрейдер ДЗ-180	1	925	1,17	100	0,001	0,885	0,00958

Отходы минеральных масел гидравлических, не содержащих галогены – 40612001313.

Количество отработанного гидравлического масла рассчитывается исходя из значения удельного показателя образования отходов:

- 0,6 л на 100 л израсходованного топлива для внедорожных автомобилей – самосвалов и другой подобной техники.

Марка автотранспор- та	Кол-во	Расход топ- лива одной единицы, л/период	Значение удельного показателя, л	Нормативный расход топ- лива, л	Коэффициент перевода л в м3	Плотность масла, т/м3	Вес от- хода, т/период
Экскаватор ЭО-3322	1	2391	0,6	100	0,001	0,890	0,01277
Экскаватор ЭО-5122	2	2503	0,6	100	0,001	0,890	0,02673
Бульдозер ДЗ-42	2	2672	0,6	100	0,001	0,890	0,02854
Скрепер прицепной Д3-20	2	645	0,6	100	0,001	0,890	0,00689
Автогрейдер ДЗ-180	1	925	0,6	100	0,001	0,890	0,00494
Каток грунтовый само- ходный на пневмати- ческих шинах ДУ-29	1	1617	0,6	100	0,001	0,890	0,00863
Каток грунтовый с кулачковым вальцом ВОМАG BW 211 PD- 40	1	1350	0,6	100	0,001	0,890	0,00721
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	1325	0,6	100	0,001	0,890	0,00708
Бортовой автомобиль КамАЗ 65117	2	2841	0,6	100	0,001	0,890	0,03034
Автосамосвал КамАЗ 6520	6	2728	0,6	100	0,001	0,890	0,08741
Автокран КС-55729-1	1	1224	0,6	100	0,001	0,890	0,00654
Автогудронатор ДС-	1	278	0,6	100	0,001	0,890	0,00148

			Итого:	0,229
39Г				

Фильтры очистки масла автотранспортных средств отработанные - 92130201523.

Норматив образования отработанных фильтров, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{Hi} \times 10^{-3}$$
, т/период

где:

N_i – количество автомашин i-й марки, шт.;

 n_i – количество фильтров, установленных на автомашине i-й марки, шт.; от 1 до 4 фильтров (в среднем n_i = 2 фильтра);

m_i – вес одного фильтра на автомашине i-й марки, кг;

 L_i — средний пробег автомобиля і-й марки, тыс.км/период (или среднее время работы спецтехники і-й марки, час/период);

L_{ні} – норма пробега подвижного состава і-ой марки до замены фильтровальных элементов, тыс.км (или норма времени до замены фильтров, час);

10-3 – коэффициент перевода кг в тонны.

Замена масляных фильтров производится через 10 тыс.км пробега. В среднем вес одного масляного фильтра на грузовых машинах составляет 1,5 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Экскаватор ЭО-3322	1	2	1,5	0,177	10	0,00005
Экскаватор ЭО-5122	2	2	1,5	0,183	10	0,00011
Бульдозер ДЗ-42	2	2	1,5	0,208	10	0,00012
Скрепер прицепной ДЗ-20	2	2	1,5	0,153	10	0,00009
Автогрейдер ДЗ-180	1	2	1,5	0,125	10	0,00004
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	2	1,5	0,183	10	0,00005
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	2	1,5	0,104	10	0,00003
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	2	1,5	0,108	10	0,00003
Бортовой автомобиль Ка- мАЗ 65117	2	2	1,5	2,897	10	0,00174
Автосамосвал КамАЗ 6520	6	2	1,5	4,163	10	0,00749
Автокран КС-55729-1	1	2	1,5	0,107	10	0,00003
Автогудронатор ДС-39Г	1	2	1,5	0,166	10	0,00005
					Итого:	0,010

Фильтры воздушные автотранспортных средств отработанные – 92130101524.

Норматив образования отработанных фильтров, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{Hi} \times 10^{-3},$$
 т/период

где:

N_i – количество автомашин i-й марки, шт.;

 n_i – количество фильтров, установленных на автомашине i-й марки, шт.; от 1 до 4 фильтров (в среднем n_i = 2 фильтра);

m_i – вес одного фильтра на автомашине і-й марки, кг;

 L_i – средний пробег автомобиля і-й марки, тыс.км/период (или среднее время работы спецтехники і-й марки, час/период);

L_{ні} – норма пробега подвижного состава і-ой марки до замены фильтровальных элементов, тыс.км (или норма времени до замены фильтров, час);

10-3 – коэффициент перевода кг в тонны.

Замена воздушных фильтров производится через 20 тыс.км пробега. В среднем вес одного воздушного фильтра на грузовых машинах составляет 0,5 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Экскаватор ЭО-3322	1	2	0,5	0,177	20	0,00001
Экскаватор ЭО-5122	2	2	0,5	0,183	20	0,00002
Бульдозер ДЗ-42	2	2	0,5	0,208	20	0,00002
Скрепер прицепной ДЗ-20	2	2	0,5	0,153	20	0,00002
Автогрейдер ДЗ-180	1	2	0,5	0,125	20	0,00001
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	2	0,5	0,183	20	0,00001
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	2	0,5	0,104	20	0,00001
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	2	0,5	0,108	20	0,00001
Бортовой автомобиль Ка- мАЗ 65117	2	2	0,5	2,897	20	0,00029
Автосамосвал КамАЗ 6520	6	2	0,5	4,163	20	0,00125
Автокран КС-55729-1	1	2	0,5	0,107	20	0,00001
Автогудронатор ДС-39Г	1	2	0,5	0,166	20	0,00001
			•		Итого:	0,002

Фильтры очистки топлива автотранспортных средств отработанные – 92130301523.

Норматив образования отработанных фильтров, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{Hi} \times 10^{-3},$$
 т/период

гле:

N_i – количество автомашин і-й марки, шт.;

 n_i – количество фильтров, установленных на автомашине i-й марки, шт.; от 1 до 4 фильтров (в среднем n_i = 2 фильтра);

m_i – вес одного фильтра на автомашине i-й марки, кг;

 L_i – средний пробег автомобиля і-й марки, тыс.км/период (или среднее время работы спецтехники і-й марки, час/период);

L_{ні} – норма пробега подвижного состава і-ой марки до замены фильтровальных элементов, тыс.км (или норма времени до замены фильтров, час);

10-3 – коэффициент перевода кг в тонны.

Замена топливных фильтров производится через 10 тыс.км пробега. В среднем вес одного топливного фильтра на грузовых машинах составляет 0,1 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Экскаватор ЭО-3322	1	2	0,1	0,177	10	0,000004
Экскаватор ЭО-5122	2	2	0,1	0,183	10	0,000007
Бульдозер ДЗ-42	2	2	0,1	0,208	10	0,000008
Скрепер прицепной ДЗ-20	2	2	0,1	0,153	10	0,000006
Автогрейдер ДЗ-180	1	2	0,1	0,125	10	0,000003
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	2	0,1	0,183	10	0,000004
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	2	0,1	0,104	10	0,000002
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	2	0,1	0,108	10	0,000002
Бортовой автомобиль Ка- мАЗ 65117	2	2	0,1	2,897	10	0,000116
Автосамосвал КамАЗ 6520	6	2	0,1	4,163	10	0,000500
Автокран КС-55729-1	1	2	0,1	0,107	10	0,000002
Автогудронатор ДС-39Г	1	2	0,1	0,166	10	0,000003
					Итого:	0,001

Тормозные колодки отработанные без накладок асбестовых – 92031001525.

Норматив образования отработанных тормозных колодок, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{{\scriptscriptstyle H}i} \times 10^{\text{-3}},$$
 т/период

где:

N_i – количество автомашин i-й марки, шт.;

 n_i – количество тормозных колодок, установленных на автомашине i-й марки, шт.;

ті – вес одной тормозной колодки на автомашине і-й марки, кг;

 L_i — средний пробег автомобиля і-й марки, тыс.км/период (или среднее время работы спецтехники і-й марки, час/период);

 $L_{\text{ні}}$ — норма пробега подвижного состава і-ой марки до замены тормозных колодок, тыс.км (или норма времени до замены фильтров, час);

 10^{-3} – коэффициент перевода кг в тонны.

Замена тормозных колодок для грузовых автомобилей производится через 10 тыс.км пробега. В среднем вес одной тормозной колодки на грузовых машинах составляет 0,53 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Экскаватор ЭО-3322	1	8	0,53	0,177	10	0,00008
Экскаватор ЭО-5122	2	8	0,53	0,183	10	0,00016
Бульдозер ДЗ-42	2	8	0,53	0,208	10	0,00018
Скрепер прицепной ДЗ-20	2	8	0,53	0,153	10	0,00013
Автогрейдер ДЗ-180	1	8	0,53	0,125	10	0,00005
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	8	0,53	0,183	10	0,00008
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	8	0,53	0,104	10	0,00004
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	8	0,53	0,108	10	0,00005
Бортовой автомобиль Ка- мАЗ 65117	2	8	0,53	2,897	10	0,00246
Автосамосвал КамАЗ 6520	6	8	0,53	4,163	10	0,01059
Автокран КС-55729-1	1	8	0,53	0,107	10	0,00005
Автогудронатор ДС-39Г	1	8	0,53	0,166	10	0,00007
					Итого:	0,014

Примечание: отходы черных и цветных металлов при ремонте автотранспорта на объекте не образуются, т.к. ремонт подвижного состава, связанного с заменой узлов, агрегатов и пр. планируется осуществлять на специализированных предприятиях.

Отходы от мойки колес строительного автотранспорта.

С целью предотвращения загрязнения окружающей природной среды на выезде с территории стройплощадки предусмотрен комплект оборудования для мойки колес строительного автотранспорта с системой оборотного водоснабжения на базе очистной установки «МОЙДОДЫР-К-2». Комплект предназначен для мойки колес автотранспортных средств на строительных площадках в стесненных условиях, а также в автопарках, на промышленных объектах и т.п. Комплект обеспечивает очистку оборотной воды при пропускной способности до 10 единиц транспорта в час. Комплект предотвращает загрязнение окружающей среды, обеспечивает повторное использование и экономию до 80% технической воды. Применение шампуней и моющих средств на данной установке не предусматривается. Технические данные установки «МОЙДОДЫР-К-2» приведены в соответствии с «Паспортом и руководством по эксплуатации»:

$\mathcal{N}\!\underline{o}$	Наименование параметров	Количественные
n/n		показатели
1.	Производительность по очищенной воде, м ³ /час	до 2,5
2.	Концентрация загрязняющих веществ в сточной	
	воде, мг/л, не более:	
	- по взвешенным веществам	4500
	- по нефтепродуктам	200
3.	Концентрация загрязняющих веществ в оборот-	
	ной воде, мг/л, не более:	
	- по взвешенным веществам	200
	- по нефтепродуктам	20
4.	Размеры, мм (габаритные)	1900×750×1900 (высота)
5.	Масса без воды, кг	450
6.	Объем воды в установке, м ³	1,25
7.	Обслуживающий персонал, чел.	1

Расчет проводится согласно «Методическим рекомендациям по оценке объемов образования отходов производства и потребления», ГУ НИЦПУРО, Москва 2003 г.

Период III этапа строительства 4,5 месяца (\approx 99 рабочих суток). На строительную площадку въезжает не более 14 грузовых автомобилей в сутки. Объем воды в установке «МОЙДОДЫР-К-2» равен 1,25 м³. На мойку колес одного автомобиля в среднем требуется 125 л воды, на 14 автомобилей – 1750 л (1,750 м³) ежедневно, следовательно, за период строительства расход воды составит – 1,750 м³ × 99 суток = 173,25 м³/период.

Осадок механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15% – 72310202394.

Количество осадка отстойника установки мойки колес автомашин определяется по формуле:

$$Q_{oc.ot} = q_w \times (C_{eB}$$
 - $C_{ex}) / \rho_{oc} \times (100$ - $P_{oc}) \times 10^4$, м³/период

где: $Q_{oc.ot}$ – количество осевшего обводненного осадка, м³/период;

 q_w – расход сточной воды, м³/период;

 C_{eB} – содержание взвешенных веществ в воде перед установкой, мг/л;

Сех – содержание взвешенных веществ в осветленной воде, мг/л;

 ρ_{oc} – плотность обводненного осадка (1,5...1,6 г/см³);

 P_{oc} – процент обводненности осадка (80...99%);

 M_{oc} – количество образующегося осевшего осадка, т/период.

$$Q_{\text{oc.ot}} = 173,\!25 \times (4500$$
 - $200)$ / $1,\!55 \times (100-90) \times 10^4 = 4,\!806$ м 3 /период

$$M_{oc} = 4,806 \times 1,55 = 7,449$$
 т/период.

Всплывшие нефтепродукты из нефтеловушек и аналогичных сооружений – 40635001313.

Количество обводненных нефтепродуктов из отстойника установки мойки колес автомашин определяется по формуле:

$$Q_{\text{не}\varphi} = q_w \times (C_{\text{ен}}$$
 - $C_{\text{ex}})$ / $\rho_{\text{не}\varphi} \times (100$ - $P_{\text{не}\varphi}) \times 10^4$, $\,$ м 3 /период

где: $Q_{\text{неф}}$ – количество обводненных нефтепродуктов, м³/период;

 $q_{\rm w}$ – расход сточной воды, м³/период;

 $C_{\text{ен}}$ — содержание нефтепродуктов в воде перед установкой, мг/л;

Сех – содержание нефтепродуктов в осветленной воде, мг/л;

 $\rho_{\text{неф}}$ – плотность обводненных нефтепродуктов (0,87...0,90 г/см³);

 $P_{\text{неф}}$ – процент обводненности нефтепродуктов (70...80%);

М_{неф} – масса всплывающих нефтепродуктов, т/период.

$$Q_{\text{неф}} = 173,25 \times (200 - 20) / 0,88 \times (100 - 75) \times 10^4 = 0,142 \text{ м}^3/\text{период}$$

$$M_{\text{неф}} = 0.142 \times 0.88 = 0.125$$
 т/период.

Отходы от посева травосмеси при озеленении территории.

Многолетние травы (мятлик луговой, райграс пастбищный, овсяница луговая) поступают на территорию площадки в полипропиленовых мешках вместимостью 25 кг.

Количество многолетних трав для III этапа строительства составит: мятлик луговой – 16,8 кг; райграс пастбищный – 12,6 кг; овсяница луговая – 12,6 кг.

Упаковка полипропиленовая отработанная незагрязненная – 43412311514.

Норма образования отхода составит:

$$P = \sum Q_i / M_i \times m_i \times 10^{-3}$$
, т/период

где: Q_i – расход сырья i-го вида, кг/период;

M_i – вес сырья і-го вида в единице упаковки, кг;

m_i – вес единицы пустой упаковки из-под сырья і-го вида, кг;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

$$P = 42 / 25 \times 0.5 \times 10^{-3} = 0.001$$
 т/период,

где: 0,5 – вес единицы пустой упаковки, кг;

10-3 – коэффициент перевода кг в тонны.

Отходы железобетонных плит при демонтаже временных подъездных дорог.

Предусматривается устройство временных подъездных дорог, для чего будут использованы железобетонные плиты в количестве 230 шт. (205 м³).

Лом железобетонных изделий, отходы железобетона в кусковой форме – 82230101215.

Количество отходов ж/б плит составит:

 $M = 205 \text{ м}^3 \times 2.5 \text{ т/м}^3$ (плотность железобетона) = **512,500 т/период.**

IV этап строительства.

Отходы от выкорчевки деревьев.

Отходы малоценной древесины (хворост, валежник, обломки стволов) – 15411001215.

На строительном участке предусмотрена выкорчевка деревьев (березы) общим количеством около 866 шт., высотой 12 м, диаметром 0,15 м.

Количество деревьев, подвергающихся выкорчевке, составит:

$$M = 3.14 \times 0.075^2 \times 12 \times 866 = 183.549 \text{ m}^3$$

 $M_{\text{AD}} = 183.549 \times 0.67 = 122.978 \text{ T/nepuol},$

где: 0,075 – радиус ствола дерева, м;

12 – высота дерева, м;

866 – количество деревьев, шт.;

0,67 – плотность древесины (березы) транспортной влажности, т/м 3 .

Примечание: расчет количества отходов древесины проводится по формуле расчета объема цилиндра: $M = 3.14 \times r^2 \times h$ (r -радиус основания (m), h -высота (m)).

Отходы от срезки верхнего почвенно-растительного слоя и отходы суглинка при проведении земляных работ.

Грунт, образовавшийся при проведении землеройных работ, не загрязненный опасными веществами – 81110001495.

Плотность материала принимаем равной $1,6 \text{ m/м}^3$.

Количество отхода составит:

 $M = [13385 \text{ м}^3 \text{ (почвенно-растительный слой)} + 111231 \text{ м}^3 \text{ (суглинок)}] \times 1,6 = 199385,600 т/период.}$

Отходы от строительных работ.

Отходы песка незагрязненные – 81910001495.

Нормы потерь и отходов согласно Приложению Д РДС 82-202-96 составляют 0,7%. Количество используемого при строительстве песка составляет 29624 $\rm m^3$ (38511,2 т при плотности песка, равной 1,3 $\rm T/m^3$).

Норма образования отхода составит:

 $M = 38511,2 \times 0,007 = 269,578$ т/период.

Отходы песчано-гравийной смеси незагрязненные – 82151111405.

Нормы потерь и отходов согласно Приложению Д РДС 82-202-96 составляют 0,45%. Количество используемой при строительстве песчано-гравийной смеси составляет 20451 M^3 (32721,6 т при плотности песчано-гравийной смеси, равной 1,6 т/ M^3).

Норма образования отхода составит:

 $M = 32721.6 \times 0.0045 = 147.247$ т/период.

Отходы строительного щебня незагрязненные – 81910003215.

Нормы потерь и отходов согласно Приложению Д РДС 82-202-96 составляют 0,4%. Количество используемого при строительстве щебня составляет 13772 м 3 (19280,8 т при плотности щебня, равной 1,4 т/м 3).

Норма образования отхода составит:

 $M = 19280,8 \times 0,004 = 77,123$ т/период.

Лом бетонных изделий, отходы бетона в кусковой форме – 82220101215.

Нормы потерь и отходов согласно Приложению Л РДС 82-202-96 составляют 2%. Количество используемого при строительстве бетона составляет 12 м^3 (24 т при плотности бетона, равной 2 т/м^3).

Норма образования отхода составит:

 $M = 24 \times 0.02 = 0.480$ т/период.

Лом асфальтовых и асфальтобетонных покрытий – 83020001714.

Нормы потерь и отходов согласно Приложению Б РДС 82-202-96 составляют 2%. Количество используемого при строительстве асфальтобетона составляет 1068 м^3 (2563,2 т при плотности асфальтобетона, равной $2,4 \text{ т/м}^3$).

Норма образования отхода составит:

 $M = 2563.2 \times 0.02 = 51.264$ т/период.

Отходы битума нефтяного – 30824101214.

Нормы потерь и отходов согласно Приложению Б РДС 82-202-96 составляют 3%. Количество используемого при строительстве жидкого битума составляет 1356 м^3 (1288,2 т при плотности раствора, равной 0,95 т/м^3).

Норма образования отхода составит:

 $M = 1288,2 \times 0,03 = 38,646$ т/период.

Отходы полимерных материалов при устройстве защитного экрана основания 3-й карты захоронения ТКО.

<u>Расчет количества образующихся отходов геомембраны СТАБАРМ HDPE.</u>

Лом и отходы изделий из полиэтилена незагрязненные (кроме тары) – 43411003515.

Согласно нормам Дополнений к РДС 82-202-96 (Таблица 1) потери рулонных материалов при изоляции поверхностей составят 4% от общего количества используемого материала.

Проектом предусмотрено использование геомембраны СТАБАРМ HDPE в количестве 62606 m^2 .

Согласно СТО 30978849.0008-2016 «Рулонный полимерный изолирующий материал Геомембрана «СТАБАРМ» применяемая в дорожном строительстве. Геомембрана композиционная «СТАБАРМ». Технические условия», плотность геомембраны СТАБАРМ HDPE составляет 0,94 г/см³, толщина геомембраны – 1,5 мм.

Норма образования отхода составит:

 $M = 62606 \times 0.0015 \times 0.94 \times 0.04 = 3.531$ т/период.

Расчет количества образующихся отходов геотекстиля.

Лом и отходы изделий из полипропилена незагрязненные (кроме тары) – 43412003515.

Согласно нормам Дополнений к РДС 82-202-96 (Таблица 1) потери рулонных материалов при изоляции поверхностей составят 4% от общего количества используемого материала.

Проектом предусмотрено использование геотекстиля в количестве 13296 м^2 (плотностью 200 г/ м^2).

Норма образования отхода составит:

 $M = 13296 \times 200 \times 0.04 \times 10^{-6} = 0.106$ т/период.

Расчет количества образующихся отходов бентонитовых матов.

Лом и отходы изделий из полипропилена незагрязненные (кроме тары) – 43412003515.

Отходы бентонитовой глины при ремонтно-строительных работах — 82451111205.

Согласно нормам Дополнений к РДС 82-202-96 (Таблица 1) потери рулонных материалов при изоляции поверхностей составят 4% от общего количества используемого материала.

Проектом предусмотрено использование бентонитовых матов Bentofix NSP 4900 в количестве 2041 m^2 .

Согласно Техническим характеристикам структура бентонитового мата Bentofix следующая:

- покрывающий материал (геотекстиль из полипропилена) (масса на единицу поверхности 220 гр/м^2)
- несущий материал (тканое геополотно из полипропилена) (масса на единицу поверхности $110 \ {\rm гp/m^2})$
- слой бентонитовой глины (натриевый бентонит (порошок)) (масса на единицу поверхности $4670 \ \text{гр/м}^2$)

Норма образования отхода составит:

 $\mathbf{M}_{\Pi\Pi} = [(2041 \times 220) + (2041 \times 110)] \times 0,04 \times 10^{-6} = \mathbf{0,027}$ т/период - отходы полипро-

 $M_{rn} = 2041 \times 4670 \times 0.04 \times 10^{-6} = 0.381$ т/период — отходы бентонитовой глины.

Отходы труб от прокладки трубопроводов при устройстве инженерных коммуникаций.

Лом и отходы стальных изделий незагрязненные – 46120001515.

Согласно нормам РДС 82-202-96 (Приложение 3) потери труб при прокладке трубопроводов составят:

- 2,5% от общего количества используемого материала (внутренние сети);
- 2,0% от общего количества используемого материала (наружные сети).

Проектом предусмотрена прокладка стальных трубопроводов различного диаметра общим весом 565,62 кг.

Норма образования отхода составит:

$$M = 565,62 \times 0,02 \times 10^{-3} = 0,011$$
 т/период – наружные сети

Общее количество отхода составит 0,011 т/период.

Лом и отходы изделий из полиэтилена незагрязненные (кроме тары) – 43411003515.

Согласно нормам РДС 82-202-96 (Приложение 3) потери труб при прокладке трубопроводов составят:

- 2,5% от общего количества используемого материала (внутренние сети);
- 2,5% от общего количества используемого материала (наружные сети).

Проектом предусмотрена прокладка полиэтиленовых трубопроводов различного диаметра общим весом 3695,52 кг.

Норма образования отхода составит:

$$M = 3695,52 \times 0,025 \times 10^{-3} = 0,092$$
 т/период – наружные сети

Общее количество отхода составит 0,092 т/период.

Лом и отходы изделий из стеклопластика в смеси незагрязненные — 43491911204.

Согласно нормам РДС 82-202-96 (Приложение 3) потери труб при прокладке трубопроводов составят 5% от общего количества используемого материала.

Проектом предусмотрена прокладка трубопроводов различного диаметра из стеклопластика общим весом 16583 кг (наружные сети).

Норма образования отхода составит:

 $M = 16583 \times 0.05 \times 10^{-3} = 0.829$ т/период.

Отходы от технического обслуживания и ремонта технологического оборудования.

Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%) – 91920402604.

Данный вид отхода образуется при текущем обслуживании и периодическом ремонте технологического оборудования.

Количество данного вида отхода определяется по формуле:

$$M_{\text{ветошь}} = H_{\text{уд.ветошь}} \times N \times D \times 10^{-3}$$
,

где: $H_{\text{уд.ветошь}}$ — удельный норматив ветоши на 1 работающего = 0,1 кг/сут. («Оценка количеств образующихся отходов производства и потребления», СПб, 1997г.);

N – количество рабочих, использующих ветошь, чел/сут.;

D – число рабочих дней за период, сут;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

 $M_{\text{ветошь}} = 0.1 \times 15 \times 154 \times 10^{-3} = 0.231$ т/период.

Примечание: продолжительность IV этапа строительства составляет 7 месяцев (≈ 154 рабочих суток). В расчете количество рабочих принято без учета ИТР и служащих.

Отходы от жизнедеятельности рабочих.

Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный) – 73310001724.

Примечание: IV этап строительства - продолжительность 7 месяцев (≈ 154 рабочих суток), при расчетах видов отходов с применением годового удельного норматива принимаем коэффициент 0.58.

Расчет нормы образования отхода проводится по «Сборнику удельных показателей образования отходов производства и потребления», 1999г., таблица 3.2., пункт 6. Среднегодовой норматив образования отходов составляет 40-70 кг/год на одного человека. Для расчета принято максимальное значение в 70 кг/год. На момент строительства предусмотрено 18 человек.

Норма образования отхода составит:

$$M = 18 \times 70 \times 0.58 \times 10^{-3} = 0.731$$
 т/период,

где: 10^{-3} – коэффициент перевода кг в тонны.

Пищевые отходы кухонь и организаций общественного питания несортированные – 73610001305.

Отход образуется от приёма пищи. Проектом предусмотрен привоз готовой пищи высокой степени готовности в пластиковой упаковке и раздача её рабочим.

Согласно «Методическим рекомендациям по разработке проекта нормативов предельного размещения отходов для теплоэлектростанций, теплоэлектроцентралей, промышленных и отопительных котельных», СПб, 1998 г. норма образования отходов (М) рассчитывается, исходя из среднесуточной нормы накопления на 1 блюдо - $0,0001 \,\mathrm{m}^3$, числа рабочих дней за период (n), числа блюд на одного человека (m) и числа работающих (z). Плотность отходов (ρ) - $0,3 \,\mathrm{T/m}^3$.

$$M = 0.0001 \times n \times m \times z \times \rho$$
, т/период

Норма образования отхода составит:

 $M = 0,0001 \times 154 \times 3 \times 18 \times 0,3 = 0,249$ т/период.

Отходы посуды одноразовой из разнородных полимерных материалов, загрязненной пищевыми продуктами — 43894111524.

Отход образуется от приёма пищи. Норма образования отхода определяется, исходя из количества единиц одноразовой посуды на 1 рабочего, ее веса (в граммах), количества рабочих и числа рабочих суток за период:

$$M = 4 \times 10 \times 18 \times 154 \times 10^{-6} = 0,111$$
 т/период,

где: 4 – количество единиц одноразовой посуды на 1 рабочего (три тарелки и один стакан), шт.;

10 – средний вес одной единицы одноразовой посуды, грамм;

10-6 – коэффициент перевода грамм в тонны.

Отходы от замены спецодежды, спецобуви и средств защиты.

Спецодежда из хлопчатобумажного и смешанных волокон, утратившая потребительские свойства, незагрязненная – 40211001624.

Отход образуется при замене изношенных хлопчатобумажных комплектов и костю-

мов, рукавиц комбинированных, а также верхней одежды.

Наименование спец-	Количество	Норма выдачи	Вес еди-	Нормативная масса образования
одежды	рабочих	спецодежды,	ницы	отхода, т/период
		раз/период	спец-	
			одежды,	
			кг	
Комплект х/б	18	2	0,45	$M = 18 \times 2 \times 0.45 \times 10^{-3} = 0.016$
Костюм х/б с водооттал-	18	2	2,4	$M = 18 \times 2 \times 2,4 \times 10^{-3} = 0,086$
кивающей пропиткой				
Рукавицы комбиниро-	18	3	0,3	$M = 18 \times 3 \times 0.3 \times 10^{-3} = 0.016$
ванные				
Куртка на утепляющей	18	1	2,5	$M = 18 \times 1 \times 2,5 \times 10^{-3} = 0,045$
подкладке				
Брюки на утепляющей	18	1	2,8	$M = 18 \times 1 \times 2.8 \times 10^{-3} = 0.050$
подкладке				
			Итого:	0,213 т/период

Спецодежда из брезентовых тканей, утратившая потребительские свойства – 40212112605.

Отход образуется при замене изношенных брезентовых костюмов.

Наименование спец-	Количество	Норма выдачи	Вес еди-	Нормативная масса образования				
одежды	рабочих	спецодежды,	ницы	отхода, т/период				
		раз/период	спец-					
			одежды,					
			кг					
Брезентовый костюм	18	1	2,8	$M = 18 \times 1 \times 2.8 \times 10^{-3} = 0.050$				
			Итого:	0,050 т/период				

Обувь кожаная рабочая, утратившая потребительские свойства – 40310100524.

Отход образуется при замене кожаной спецобуви.

Наименование спецобуви	Количество	Норма выдачи	Вес пары	Нормативная масса образования
	рабочих	спецобуви,	спецобуви,	отхода, т/период
		раз/период	кг	
Ботинки кожаные	18	1	2,0	$M = 18 \times 1 \times 2,0 \times 10^{-3} = 0,036$
			Итого:	0,036 т/период

Резиновые перчатки, утратившие потребительские свойства, незагрязненные – 43114101204.

Отход образуется при замене резиновых перчаток.

		- P		
Наименование средств	Количество	Норма выдачи	Вес пары	Нормативная масса образования
защиты	рабочих	резиновых пер-	резиновых	отхода, т/период
		чаток,	перчаток,	
		раз/период	кг	
Резиновые перчатки	18	7	0,06	$M = 18 \times 7 \times 0.06 \times 10^{-3} = 0.008$
			Итого:	0,008 т/период

Резиновая обувь отработанная, утратившая потребительские свойства, незагрязненная — 43114102204.

Отхол образуется при замене резиновой спенобуви.

		- p	7007	
Наименование средств	Количество	Норма выдачи	Вес пары	Нормативная масса образования
защиты	рабочих	резиновых са-	резиновых	отхода, т/период
		пог, раз/период	сапог, кг	
Резиновые сапоги	18	1	1,6	$M = 18 \times 1 \times 1,6 \times 10^{-3} = 0,029$
			Итого:	0,029 т/период

Отходы от эксплуатации сетей внутреннего и наружного освещения.

Светильники со светодиодными элементами в сборе, утратившие потребительские свойства – 48242711524.

Отход образуется при замене перегоревших светодиодных светильников. Расчет проводится аналогично ртутным лампам по «Сборнику методик по расчету объемов образования отходов. Методика расчета объемов образования отходов МРО-6-99. Отработанные ртутьсодержащие лампы». СПб, 2004г. Норматив образования отхода рассчитывается по формуле:

$$N = \sum n_i \times m_i \times t_i \times 10^{-6} / k_i$$
, т/период

где: n_i – количество установленных ламп i-той марки, шт.;

t_i – фактическое количество часов работы ламп i-той марки, час/период;

k_i – эксплуатационный срок службы ламп i-той марки, час;

m_i – вес одной лампы, г;

10-6 – коэффициент перевода грамм в тонны.

Норма образования отхода составит:

Наименование объекта	Кол-во, шт.	Среднее время ра- боты, час/сут	Число рабо- чих суток за период, шт.	Вес 1-й лампы, г	Нормативный срок службы 1- й лампы, час	Вес от- хода, т/период
Строительная площадка	30	8	154	500	10000	0,00185
			•		Итого:	0,002

Отходы от ремонта автотранспорта.

Расчет количества отходов проводится в соответствии со «Сборником удельных показателей образования отходов производства и потребления». Государственный комитет Российской Федерации по охране окружающей среды. Москва, 1999г.

Отходы изделий технического назначения из вулканизированной резины незагрязненные в смеси – 43119981724.

Количество отходов резинотехнических материалов, образующихся при проведении вулканизационных работ для автомобилей, определяется из расчета:

- 0,2 кг на 10 000 км пробега для грузовых автомобилей.

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/период
Экскаватор ЭО-3322	1	276	0,2	10000	0,000006
Скрепер прицепной ДЗ-20	2	238	0,2	10000	0,000010
Автогрейдер ДЗ-180	1	195	0,2	10000	0,000004
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	285	0,2	10000	0,000006
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	162	0,2	10000	0,000003
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	168	0,2	10000	0,000003
Бортовой автомобиль КамАЗ 65117	2	4519	0,2	10000	0,000181
Автосамосвал КамАЗ 6520	6	6494	0,2	10000	0,000779
Автокран КС-55729-1	1	167	0,2	10000	0,000003
Кран на шасси автомобильного типа KRUPP KMK-4070	1	184	0,2	10000	0,000004
Автобетоносмеситель КАМАЗ	1	658	0,2	10000	0,000013
Асфальтоукладчик ДС-181-02	1	259	0,2	10000	0,000005
Автогудронатор ДС-39Г	1	259	0,2	10000	0,000005
	•		,	Итого:	0,001

Покрышки пневматических шин с металлическим кордом отработанные – 92113002504.

Количество отработанных покрышек определяется исходя из значения удельного показателя образования отходов:

- 19,1 кг на 10 000 км пробега для грузовых автомобилей.

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/период
Экскаватор ЭО-3322	1	276	19,1	10000	0,00053
Скрепер прицепной ДЗ-20	2	238	19,1	10000	0,00091
Автогрейдер ДЗ-180	1	195	19,1	10000	0,00037
Каток грунтовый самоходный на пнев- матических шинах ДУ-29	1	285	19,1	10000	0,00054
Каток грунтовый с кулачковым валь- цом BOMAG BW 211 PD-40	1	162	19,1	10000	0,00031
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	168	19,1	10000	0,00032
Бортовой автомобиль КамАЗ 65117	2	4519	19,1	10000	0,01726
Автосамосвал КамАЗ 6520	6	6494	19,1	10000	0,07442
Автокран КС-55729-1	1	167	19,1	10000	0,00032
Кран на шасси автомобильного типа KRUPP KMK-4070	1	184	19,1	10000	0,00035
Автобетоносмеситель КАМАЗ	1	658	19,1	10000	0,00126
Асфальтоукладчик ДС-181-02	1	259	19,1	10000	0,00049
Автогудронатор ДС-39Г	1	259	19,1	10000	0,00049
	•			Итого:	0,098

Аккумуляторы свинцовые отработанные неповрежденные, с электролитом – 92011001532.

Количество лома отработанных свинцовых аккумуляторов определяется исходя из значения удельного показателя образования отходов:

- 4,18 кг на 10 000 км пробега для грузовых автомобилей.

Количество отработанного электролита определяется исходя из значения удельного показателя образования отходов:

- 2,7 л на 10 000 км пробега для грузовых автомобилей.

Расчет количества лома аккумуляторов свинцовых отработанных

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Bec omxo- да, m/nepuoд
Экскаватор ЭО-3322	1	276	4,18	10000	0,00012
Экскаватор ЭО-5122	2	285	4,18	10000	0,00024
Бульдозер ДЗ-42	2	324	4,18	10000	0,00027
Скрепер прицепной ДЗ-20	2	238	4,18	10000	0,00020

				Итого:	0,022
Автогудронатор ДС-39Г	1	259	4,18	10000	0,00011
Асфальтоукладчик ДС-181-02	1	259	4,18	10000	0,00011
Каток дорожный САТ CB-434D	1	285	4,18	10000	0,00012
Автобетоносмеситель КАМАЗ	1	658	4,18	10000	0,00028
Корчеватель-собиратель Д-695А	1	184	4,18	10000	0,00008
Кран на шасси автомобильного типа KRUPP KMK-4070	1	184	4,18	10000	0,00008
Автокран КС-55729-1	1	167	4,18	10000	0,00007
Автосамосвал КамАЗ 6520	6	6494	4,18	10000	0,01629
Бортовой автомобиль КамАЗ 65117	2	4519	4,18	10000	0,00378
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	168	4,18	10000	0,00007
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	162	4,18	10000	0,00007
Каток грунтовый самоходный на пнев- матических шинах ДУ-29	1	285	4,18	10000	0,00012
Автогрейдер ДЗ-180	1	195	4,18	10000	0,00008

Расчет количества сернокислотного электролита

Марка автотранс- порта	Кол-	Пробег одной еди- ницы, км/период	Значение удельного показателя, л	Коэффициент перевода л в м ³	Плотность электролита, т/м³	Нормативный пробег, км	Вес от- хода, т/период
Экскаватор ЭО-3322	1	276	2,7	0,001	1,2	10000	0,00009
Экскаватор ЭО-5122	2	285	2,7	0,001	1,2	10000	0,00018
Бульдозер ДЗ-42	2	324	2,7	0,001	1,2	10000	0,00021
Скрепер прицепной Д3-20	2	238	2,7	0,001	1,2	10000	0,00015
Автогрейдер ДЗ-180	1	195	2,7	0,001	1,2	10000	0,00006
Каток грунтовый са- моходный на пневма- тических шинах ДУ- 29	1	285	2,7	0,001	1,2	10000	0,00009
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD- 40	1	162	2,7	0,001	1,2	10000	0,00005
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	168	2,7	0,001	1,2	10000	0,00005
Бортовой автомобиль КамАЗ 65117	2	4519	2,7	0,001	1,2	10000	0,00293
Автосамосвал КамАЗ 6520	6	6494	2,7	0,001	1,2	10000	0,01262
Автокран КС-55729-1	1	167	2,7	0,001	1,2	10000	0,00005
Кран на шасси авто- мобильного типа KRUPP KMK-4070	1	184	2,7	0,001	1,2	10000	0,00006

Корчеватель- собиратель Д-695А	1	184	2,7	0,001	1,2	10000	0,00006
Автобетоносмеситель КАМАЗ	1	658	2,7	0,001	1,2	10000	0,00021
Каток дорожный САТ СВ-434D	1	285	2,7	0,001	1,2	10000	0,00009
Асфальтоукладчик ДС-181-02	1	259	2,7	0,001	1,2	10000	0,00008
Автогудронатор ДС- 39Г	1	259	2,7	0,001	1,2	10000	0,00008
						Итого:	0,017

Количество отхода составит 0,039 т/период.

Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%) – 91920402604.

Согласно нормам расхода материалов на ремонт и эксплуатацию автомашин количество обтирочного материала, загрязненными маслами, определяется из расчета:

- 2,18 кг на 10 000 км пробега для грузовых автомобилей.

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/период
Экскаватор ЭО-3322	1	276	2,18	10000	0,00006
Экскаватор ЭО-5122	2	285	2,18	10000	0,00012
Бульдозер ДЗ-42	2	324	2,18	10000	0,00014
Скрепер прицепной ДЗ-20	2	238	2,18	10000	0,00010
Автогрейдер ДЗ-180	1	195	2,18	10000	0,00004
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	285	2,18	10000	0,00006
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	162	2,18	10000	0,00004
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	168	2,18	10000	0,00004
Бортовой автомобиль Ка- мАЗ 65117	2	4519	2,18	10000	0,00197
Автосамосвал КамАЗ 6520	6	6494	2,18	10000	0,00849
Автокран КС-55729-1	1	167	2,18	10000	0,00004
Кран на шасси автомобильного типа KRUPP KMK-4070	1	184	2,18	10000	0,00004
Корчеватель-собиратель Д- 695A	1	184	2,18	10000	0,00004
Автобетоносмеситель КА- МАЗ	1	658	2,18	10000	0,00014
Каток дорожный САТ СВ- 434D	1	285	2,18	10000	0,00006
Асфальтоукладчик ДС-181- 02	1	259	2,18	10000	0,00006

Автогудронатор ДС-39Г	1	259	2,18	10000	0,00006
				Итого:	0,012

Отходы синтетических и полусинтетических масел моторных - 41310001313.

Количество отработанного моторного масла рассчитывается исходя из значения удельного показателя образования отходов:

- 1,17 л на 100 л израсходованного топлива для внедорожных автомобилей – самосвалов и другой подобной техники, работающей на дизельном топливе.

Марка автотранспор- та	Кол- во	Расход топ- лива одной единицы, л/период	Значение удельного показателя, л	Нормативный расход топ- лива, л	Коэффициент перевода л в м3	Плотность масла, т/м3	Вес от- хода, т/период
Экскаватор ЭО-3322	1	3729	1,17	100	0,001	0,93	0,04058
Экскаватор ЭО-5122	2	3904	1,17	100	0,001	0,93	0,08496
Бульдозер ДЗ-42	2	4168	1,17	100	0,001	0,93	0,09070
Скрепер прицепной ДЗ- 20	2	1005	1,17	100	0,001	0,93	0,02187
Автогрейдер ДЗ-180	1	1443	1,17	100	0,001	0,93	0,01570
Каток грунтовый само- ходный на пневматиче- ских шинах ДУ-29	1	2523	1,17	100	0,001	0,93	0,02745
Каток грунтовый с ку- лачковым вальцом BOMAG BW 211 PD-40	1	2106	1,17	100	0,001	0,93	0,02292
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	2067	1,17	100	0,001	0,93	0,02249
Бортовой автомобиль КамАЗ 65117	2	4431	1,17	100	0,001	0,93	0,09643
Автосамосвал КамАЗ 6520	6	4256	1,17	100	0,001	0,93	0,27786
Автокран КС-55729-1	1	1909	1,17	100	0,001	0,93	0,02077
Кран на шасси автомо- бильного типа KRUPP KMK-4070	1	2106	1,17	100	0,001	0,93	0,02292
Корчеватель- собиратель Д-695A	1	527	1,17	100	0,001	0,93	0,00573
Автобетоносмеситель КАМАЗ	1	2764	1,17	100	0,001	0,93	0,03008
Каток дорожный САТ CB-434D	1	439	1,17	100	0,001	0,93	0,00478
Асфальтоукладчик ДС- 181-02	1	527	1,17	100	0,001	0,93	0,00573
Автогудронатор ДС- 39Г	1	433	1,17	100	0,001	0,93	0,00471
						Итого:	0,796

Отходы минеральных масел трансмиссионных – 40615001313.

Количество отработанного трансмиссионного масла рассчитывается исходя из значения удельного показателя образования отходов:

- 1,17 л на 100 л израсходованного топлива для внедорожных автомобилей – самосвалов и другой подобной техники, работающей на дизельном топливе.

Марка автотранспор- та	Кол- во	Расход топ- лива одной единицы, л/период	Значение удельного показателя, л	Нормативный расход топ- лива, л	Коэффициент перевода л в м3	Плотность масла, т/м3	Вес от- хода, т/период
Экскаватор ЭО-3322	1	3729	1,17	100	0,001	0,885	0,03861
Экскаватор ЭО-5122	2	3904	1,17	100	0,001	0,885	0,08085
Бульдозер ДЗ-42	2	4168	1,17	100	0,001	0,885	0,08632
Скрепер прицепной ДЗ- 20	2	1005	1,17	100	0,001	0,885	0,02081
Автогрейдер ДЗ-180	1	1443	1,17	100	0,001	0,885	0,01494
Каток грунтовый само- ходный на пневматиче- ских шинах ДУ-29	1	2523	1,17	100	0,001	0,885	0,02612
Каток грунтовый с кулачковым вальцом ВОМАС BW 211 PD-40	1	2106	1,17	100	0,001	0,885	0,02181
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	2067	1,17	100	0,001	0,885	0,02140
Бортовой автомобиль КамАЗ 65117	2	4431	1,17	100	0,001	0,885	0,09176
Автосамосвал КамАЗ 6520	6	4256	1,17	100	0,001	0,885	0,26441
Автокран КС-55729-1	1	1909	1,17	100	0,001	0,885	0,01977
Кран на шасси автомо- бильного типа KRUPP KMK-4070	1	2106	1,17	100	0,001	0,885	0,02181
Корчеватель- собиратель Д-695A	1	527	1,17	100	0,001	0,885	0,00546
Автобетоносмеситель КАМАЗ	1	2764	1,17	100	0,001	0,885	0,02862
Каток дорожный САТ СВ-434D	1	439	1,17	100	0,001	0,885	0,00455
Асфальтоукладчик ДС- 181-02	1	527	1,17	100	0,001	0,885	0,00546
Автогудронатор ДС- 39Г	1	433	1,17	100	0,001	0,885	0,00448
						Итого:	0,757

Отходы минеральных масел гидравлических, не содержащих галогены – 40612001313.

Количество отработанного гидравлического масла рассчитывается исходя из значения удельного показателя образования отходов:

-0.6 л на 100 л израсходованного топлива для внедорожных автомобилей — самосвалов и другой подобной техники.

Марка автотранспор- та	Кол- во	Расход топ- лива одной единицы, л/период	Значение удельного показателя, л	Нормативный расход топ- лива, л	Коэффициент перевода л в м3	Плотность масла, т/м3	Вес от- хода, т/период
Экскаватор ЭО-3322	1	3729	0,6	100	0,001	0,890	0,01991
Экскаватор ЭО-5122	2	3904	0,6	100	0,001	0,890	0,04169
Бульдозер ДЗ-42	2	4168	0,6	100	0,001	0,890	0,04451
Скрепер прицепной ДЗ- 20	2	1005	0,6	100	0,001	0,890	0,01073
Автогрейдер ДЗ-180	1	1443	0,6	100	0,001	0,890	0,00771
Каток грунтовый само- ходный на пневматиче- ских шинах ДУ-29	1	2523	0,6	100	0,001	0,890	0,01347
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	2106	0,6	100	0,001	0,890	0,01125
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	2067	0,6	100	0,001	0,890	0,01104
Бортовой автомобиль КамАЗ 65117	2	4431	0,6	100	0,001	0,890	0,04732
Автосамосвал КамАЗ 6520	6	4256	0,6	100	0,001	0,890	0,13636
Автокран КС-55729-1	1	1909	0,6	100	0,001	0,890	0,01019
Кран на шасси автомо- бильного типа KRUPP KMK-4070	1	2106	0,6	100	0,001	0,890	0,01125
Корчеватель- собиратель Д-695А	1	527	0,6	100	0,001	0,890	0,00281
Автобетоносмеситель КАМАЗ	1	2764	0,6	100	0,001	0,890	0,01476
Каток дорожный САТ СВ-434D	1	439	0,6	100	0,001	0,890	0,00234
Асфальтоукладчик ДС- 181-02	1	527	0,6	100	0,001	0,890	0,00281
Автогудронатор ДС- 39Г	1	433	0,6	100	0,001	0,890	0,00231
	•					Итого:	0,390

Фильтры очистки масла автотранспортных средств отработанные - 92130201523.

Норматив образования отработанных фильтров, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{{\scriptscriptstyle H}i} \times 10^{\text{-3}},$$
 т/период

где:

N_i – количество автомашин i-й марки, шт.;

 n_i – количество фильтров, установленных на автомашине i-й марки, шт.; от 1 до 4 фильтров (в среднем n_i = 2 фильтра);

m_i – вес одного фильтра на автомашине i-й марки, кг;

 L_i — средний пробег автомобиля i-й марки, тыс.км/период (или среднее время работы спецтехники i-й марки, час/период);

L_{ні} – норма пробега подвижного состава і-ой марки до замены фильтровальных элементов, тыс.км (или норма времени до замены фильтров, час);

 10^{-3} – коэффициент перевода кг в тонны.

Замена масляных фильтров производится через 10 тыс.км пробега. В среднем вес одного масляного фильтра на грузовых машинах составляет 1,5 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Экскаватор ЭО-3322	1	2	1,5	0,276	10	0,00008
Экскаватор ЭО-5122	2	2	1,5	0,285	10	0,00017
Бульдозер ДЗ-42	2	2	1,5	0,324	10	0,00019
Скрепер прицепной ДЗ-20	2	2	1,5	0,238	10	0,00014
Автогрейдер ДЗ-180	1	2	1,5	0,195	10	0,00006
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	2	1,5	0,285	10	0,00009
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	2	1,5	0,162	10	0,00005
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	2	1,5	0,168	10	0,00005
Бортовой автомобиль Ка- мАЗ 65117	2	2	1,5	4,519	10	0,00271
Автосамосвал КамАЗ 6520	6	2	1,5	6,494	10	0,01169
Автокран КС-55729-1	1	2	1,5	0,167	10	0,00005
Кран на шасси автомобильного типа KRUPP KMK-4070	1	2	1,5	0,184	10	0,00006
Корчеватель-собиратель Д- 695A	1	2	1,5	0,184	10	0,00006
Автобетоносмеситель КА- МАЗ	1	2	1,5	0,658	10	0,00020
Каток дорожный САТ СВ- 434D	1	2	1,5	0,285	10	0,00009
Асфальтоукладчик ДС-181- 02	1	2	1,5	0,259	10	0,00008
Автогудронатор ДС-39Г	1	2	1,5	0,259	10	0,00008
				•	Итого:	0,016

Фильтры воздушные автотранспортных средств отработанные – 92130101524.

Норматив образования отработанных фильтров, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{\text{H}i} \times 10^{-3},$$
 т/период

где:

N_i – количество автомашин і-й марки, шт.;

 n_i – количество фильтров, установленных на автомашине i-й марки, шт.; от 1 до 4 фильтров (в среднем n_i = 2 фильтра);

m_i – вес одного фильтра на автомашине і-й марки, кг;

 L_i – средний пробег автомобиля і-й марки, тыс.км/период (или среднее время работы спецтехники і-й марки, час/период);

L_{ні} – норма пробега подвижного состава і-ой марки до замены фильтровальных элементов, тыс.км (или норма времени до замены фильтров, час);

10-3 – коэффициент перевода кг в тонны.

Замена воздушных фильтров производится через 20 тыс.км пробега. В среднем вес одного воздушного фильтра на грузовых машинах составляет 0,5 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Экскаватор ЭО-3322	1	2	0,5	0,276	20	0,00001
Экскаватор ЭО-5122	2	2	0,5	0,285	20	0,00003
Бульдозер ДЗ-42	2	2	0,5	0,324	20	0,00003
Скрепер прицепной ДЗ-20	2	2	0,5	0,238	20	0,00002
Автогрейдер ДЗ-180	1	2	0,5	0,195	20	0,00001
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	2	0,5	0,285	20	0,00001
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	2	0,5	0,162	20	0,00001
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	2	0,5	0,168	20	0,00001
Бортовой автомобиль Ка- мАЗ 65117	2	2	0,5	4,519	20	0,00045
Автосамосвал КамАЗ 6520	6	2	0,5	6,494	20	0,00195
Автокран КС-55729-1	1	2	0,5	0,167	20	0,00001
Кран на шасси автомобиль- ного типа KRUPP KMK- 4070	1	2	0,5	0,184	20	0,00001
Корчеватель-собиратель Д- 695A	1	2	0,5	0,184	20	0,00001
Автобетоносмеситель КА- МАЗ	1	2	0,5	0,658	20	0,00003
Каток дорожный САТ СВ- 434D	1	2	0,5	0,285	20	0,00001
Асфальтоукладчик ДС-181- 02	1	2	0,5	0,259	20	0,00001
Автогудронатор ДС-39Г	1	2	0,5	0,259	20	0,00001
					Итого:	0,003

Фильтры очистки топлива автотранспортных средств отработанные – 92130301523.

Норматив образования отработанных фильтров, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{\text{H}i} \times 10^{-3},$$
 т/период

где:

N_i – количество автомашин і-й марки, шт.;

 n_i – количество фильтров, установленных на автомашине i-й марки, шт.; от 1 до 4 фильтров (в среднем n_i = 2 фильтра);

m_i – вес одного фильтра на автомашине і-й марки, кг;

 L_i – средний пробег автомобиля і-й марки, тыс.км/период (или среднее время работы спецтехники і-й марки, час/период);

 $L_{\text{ні}}$ — норма пробега подвижного состава і-ой марки до замены фильтровальных элементов, тыс.км (или норма времени до замены фильтров, час);

10-3 – коэффициент перевода кг в тонны.

Замена топливных фильтров производится через 10 тыс.км пробега. В среднем вес одного топливного фильтра на грузовых машинах составляет 0,1 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Экскаватор ЭО-3322	1	2	0,1	0,276	10	0,000006
Экскаватор ЭО-5122	2	2	0,1	0,285	10	0,000011
Бульдозер ДЗ-42	2	2	0,1	0,324	10	0,000013
Скрепер прицепной ДЗ-20	2	2	0,1	0,238	10	0,000010
Автогрейдер ДЗ-180	1	2	0,1	0,195	10	0,000004
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	2	0,1	0,285	10	0,000006
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	2	0,1	0,162	10	0,000003
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	2	0,1	0,168	10	0,000003
Бортовой автомобиль Ка- мАЗ 65117	2	2	0,1	4,519	10	0,000181
Автосамосвал КамАЗ 6520	6	2	0,1	6,494	10	0,000779
Автокран КС-55729-1	1	2	0,1	0,167	10	0,000003
Кран на шасси автомобиль- ного типа KRUPP KMK- 4070	1	2	0,1	0,184	10	0,000004
Корчеватель-собиратель Д- 695A	1	2	0,1	0,184	10	0,000004
Автобетоносмеситель KA- MA3	1	2	0,1	0,658	10	0,000013
Каток дорожный САТ СВ- 434D	1	2	0,1	0,285	10	0,000006
Асфальтоукладчик ДС-181- 02	1	2	0,1	0,259	10	0,000005
Автогудронатор ДС-39Г	1	2	0,1	0,259	10	0,000005
		•		•	Итого:	0,001

Тормозные колодки отработанные без накладок асбестовых – 92031001525.

Норматив образования отработанных тормозных колодок, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{Hi} \times 10^{-3},$$
 т/период

где:

N_i – количество автомашин i-й марки, шт.;

 n_i – количество тормозных колодок, установленных на автомашине i-й марки, шт.;

m_i – вес одной тормозной колодки на автомашине i-й марки, кг;

L_i – средний пробег автомобиля і-й марки, тыс.км/период (или среднее время работы спецтехники і-й марки, час/период);

 $L_{\text{ні}}$ — норма пробега подвижного состава і-ой марки до замены тормозных колодок, тыс.км (или норма времени до замены фильтров, час);

10-3 – коэффициент перевода кг в тонны.

Замена тормозных колодок для грузовых автомобилей производится через 10 тыс.км пробега. В среднем вес одной тормозной колодки на грузовых машинах составляет 0,53 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Экскаватор ЭО-3322	1	8	0,53	0,276	10	0,00012
Экскаватор ЭО-5122	2	8	0,53	0,285	10	0,00024
Бульдозер ДЗ-42	2	8	0,53	0,324	10	0,00027
Скрепер прицепной ДЗ-20	2	8	0,53	0,238	10	0,00020
Автогрейдер ДЗ-180	1	8	0,53	0,195	10	0,00008
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	8	0,53	0,285	10	0,00012
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	8	0,53	0,162	10	0,00007
Каток грунтовый с гладким вальцом BOMAG BW 213 D-4	1	8	0,53	0,168	10	0,00007
Бортовой автомобиль Ка- мАЗ 65117	2	8	0,53	4,519	10	0,00383
Автосамосвал КамАЗ 6520	6	8	0,53	6,494	10	0,01652
Автокран КС-55729-1	1	8	0,53	0,167	10	0,00007
Кран на шасси автомобильного типа KRUPP KMK-4070	1	8	0,53	0,184	10	0,00008
Корчеватель-собиратель Д- 695A	1	8	0,53	0,184	10	0,00008
Автобетоносмеситель КА- МАЗ	1	8	0,53	0,658	10	0,00028
Каток дорожный САТ СВ- 434D	1	8	0,53	0,285	10	0,00012
Асфальтоукладчик ДС-181- 02	1	8	0,53	0,259	10	0,00011

					Итого:	0,022
Автогудронатор ДС-39Г	1	8	0,53	0,259	10	0,00011

Примечание: отходы черных и цветных металлов при ремонте автотранспорта на объекте не образуются, т.к. ремонт подвижного состава, связанного с заменой узлов, агрегатов и пр. планируется осуществлять на специализированных предприятиях.

Отходы от мойки колес строительного автотранспорта.

С целью предотвращения загрязнения окружающей природной среды на выезде с территории стройплощадки предусмотрен комплект оборудования для мойки колес строительного автотранспорта с системой оборотного водоснабжения на базе очистной установки «МОЙДОДЫР-К-2». Комплект предназначен для мойки колес автотранспортных средств на строительных площадках в стесненных условиях, а также в автопарках, на промышленных объектах и т.п. Комплект обеспечивает очистку оборотной воды при пропускной способности до 10 единиц транспорта в час. Комплект предотвращает загрязнение окружающей среды, обеспечивает повторное использование и экономию до 80% технической воды. Применение шампуней и моющих средств на данной установке не предусматривается. Технические данные установки «МОЙДОДЫР-К-2» приведены в соответствии с «Паспортом и руководством по эксплуатации»:

$\mathcal{N}\!$	Наименование параметров	Количественные
n/n		показатели
1.	Производительность по очищенной воде, м ³ /час	до 2,5
2.	Концентрация загрязняющих веществ в сточной	
	воде, мг/л, не более:	
	- по взвешенным веществам	4500
	- по нефтепродуктам	200
3.	Концентрация загрязняющих веществ в оборот-	
	ной воде, мг/л, не более:	
	- по взвешенным веществам	200
	- по нефтепродуктам	20
4.	Размеры, мм (габаритные)	1900×750×1900 (высота)
5.	Масса без воды, кг	450
6.	Объем воды в установке, м ³	1,25
7.	Обслуживающий персонал, чел.	1

Расчет проводится согласно «Методическим рекомендациям по оценке объемов образования отходов производства и потребления», ГУ НИЦПУРО, Москва 2003 г.

Период IV этапа строительства 7 месяцев (≈ 154 рабочих суток). На строительную площадку въезжает не более 20 грузовых автомобилей в сутки. Объем воды в установке «МОЙДОДЫР-К-2» равен 1,25 м³. На мойку колес одного автомобиля в среднем требуется 125 л воды, на 20 автомобилей – 2500 л (2,500 м³) ежедневно, следовательно, за период строительства расход воды составит – 2,500 м³ × 154 суток = 385 м³/период.

Осадок механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15% – 72310202394.

Количество осадка отстойника установки мойки колес автомашин определяется по формуле:

$$Q_{\text{oc.ot}} = q_w \times (C_{\text{eB}} - C_{\text{ex}}) / \rho_{\text{oc}} \times (100 - P_{\text{oc}}) \times 10^4$$
, м³/период

где: $Q_{\text{ос.от}}$ – количество осевшего обводненного осадка, м³/период;

 q_w – расход сточной воды, м³/период;

 C_{eB} – содержание взвешенных веществ в воде перед установкой, мг/л;

 C_{ex} – содержание взвешенных веществ в осветленной воде, мг/л;

 ρ_{oc} – плотность обводненного осадка (1,5...1,6 г/см³);

 P_{oc} – процент обводненности осадка (80...99%);

 M_{oc} – количество образующегося осевшего осадка, т/период.

$$Q_{\text{ос.от}} = 385 \times (4500 - 200) / 1,55 \times (100 - 90) \times 10^4 = 10,681 \text{ м}^3$$
/период

$$M_{oc} = 10,681 \times 1,55 = 16,556$$
 т/период.

Всплывшие нефтепродукты из нефтеловушек и аналогичных сооружений – 40635001313.

Количество обводненных нефтепродуктов из отстойника установки мойки колес автомашин определяется по формуле:

$$Q_{\text{неф}} = q_{\text{w}} \times (C_{\text{ен}} - C_{\text{ех}}) / \rho_{\text{неф}} \times (100 - P_{\text{неф}}) \times 10^4, \quad \text{м}^3 / \text{период}$$

где: $Q_{\text{не}\varphi}$ – количество обводненных нефтепродуктов, м³/период;

 q_w – расход сточной воды, M^3 /период;

 C_{eh} — содержание нефтепродуктов в воде перед установкой, мг/л;

 C_{ex} – содержание нефтепродуктов в осветленной воде, мг/л;

 $\rho_{\text{неф}}$ – плотность обводненных нефтепродуктов (0,87...0,90 г/см³);

 $P_{\text{неф}}$ – процент обводненности нефтепродуктов (70...80%);

М_{неф} – масса всплывающих нефтепродуктов, т/период.

$$Q_{\text{неф}} = 685 \times (200 - 20) / 0.88 \times (100 - 75) \times 10^4 = 0.560 \text{ м}^3 / \text{период}$$

$$M_{\text{не}\varphi} = 0,560 \times 0,88 =$$
 0,493 т/период.

Отходы от посева травосмеси при озеленении территории.

Многолетние травы (мятлик луговой, райграс пастбищный, овсяница луговая) поступают на территорию площадки в полипропиленовых мешках вместимостью 25 кг.

Количество многолетних трав для IV этапа строительства составит: мятлик луговой -49.2 кг; райграс пастбищный -36.9 кг; овсяница луговая -36.9 кг.

Упаковка полипропиленовая отработанная незагрязненная – 43412311514.

Норма образования отхода составит:

$$P = \sum Q_i / M_i \times m_i \times 10^{-3},$$
 т/период

где: Q_i – расход сырья i-го вида, кг/период;

M_i – вес сырья і-го вида в единице упаковки, кг;

m_i – вес единицы пустой упаковки из-под сырья і-го вида, кг;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

$$P = 123 / 25 \times 0.5 \times 10^{-3} = 0.002$$
 т/период,

где: 0,5 – вес единицы пустой упаковки, кг;

10-3 – коэффициент перевода кг в тонны.

Отходы железобетонных плит при демонтаже временных подъездных дорог.

Предусматривается устройство временных подъездных дорог, для чего будут использованы железобетонные плиты в количестве $241 \, \text{mt}$. ($215 \, \text{m}^3$).

Лом железобетонных изделий, отходы железобетона в кусковой форме – 82230101215.

Количество отходов ж/б плит составит:

 $M = 215 \text{ м}^3 \times 2,5 \text{ т/м}^3$ (плотность железобетона) = **537,500 т/период.**

V этап строительства.

Отходы суглинка при проведении земляных работ.

Грунт, образовавшийся при проведении землеройных работ, не загрязненный опасными веществами – 81110001495.

Плотность материала принимаем равной $1,6 \text{ m/м}^3$.

Количество отхода составит:

 $M = 21724 \text{ м}^3 \text{ (суглинок)} \times 1,6 = 34758,400 \text{ т/период.}$

Отходы от строительных работ.

Отходы песка незагрязненные – 81910001495.

Нормы потерь и отходов согласно Приложению Д РДС 82-202-96 составляют 0,7%. Количество используемого при строительстве песка составляет 263 м^3 (341,9 т при плотности песка, равной 1,3 т/м^3).

Норма образования отхода составит:

 $M = 341.9 \times 0.007 = 2.393$ т/период.

Отходы строительного щебня незагрязненные – 81910003215.

Нормы потерь и отходов согласно Приложению Д РДС 82-202-96 составляют 0,4%. Количество используемого при строительстве щебня составляет 1760 $\rm m^3$ (2464 т при плотности щебня, равной 1,4 $\rm T/m^3$).

Норма образования отхода составит:

 $M = 2464 \times 0,004 = 9,856$ т/период.

Лом асфальтовых и асфальтобетонных покрытий – 83020001714.

Нормы потерь и отходов согласно Приложению Б РДС 82-202-96 составляют 2%. Количество используемого при строительстве асфальтобетона составляет 1936 м^3 (4646,4 т при плотности асфальтобетона, равной $2,4 \text{ т/м}^3$).

Норма образования отхода составит:

 $M = 4646,4 \times 0,02 = 92,928$ т/период.

Отходы битума нефтяного – 30824101214.

Нормы потерь и отходов согласно Приложению Б РДС 82-202-96 составляют 3%. Количество используемого при строительстве жидкого битума составляет 2712 м^3 (2576,4 т при плотности раствора, равной 0.95 т/м^3).

Норма образования отхода составит:

 $M = 2576,4 \times 0,03 = 77,292$ т/период.

Отходы труб от прокладки трубопроводов при устройстве инженерных коммуникаций.

Лом и отходы стальных изделий незагрязненные – 46120001515.

Согласно нормам РДС 82-202-96 (Приложение 3) потери труб при прокладке трубопроводов составят:

- 2,5% от общего количества используемого материала (внутренние сети);
- 2,0% от общего количества используемого материала (наружные сети).

Проектом предусмотрена прокладка стальных трубопроводов различного диаметра общим весом 1008,28 кг.

Норма образования отхода составит:

 $M = 1008,28 \times 0,02 \times 10^{-3} = 0,020$ т/период – наружные сети

Общее количество отхода составит 0,020 т/период.

Лом и отходы изделий из полиэтилена незагрязненные (кроме тары) — 43411003515.

Согласно нормам РДС 82-202-96 (Приложение 3) потери труб при прокладке трубопроводов составят:

- 2,5% от общего количества используемого материала (внутренние сети);
- 2,5% от общего количества используемого материала (наружные сети).

Проектом предусмотрена прокладка полиэтиленовых трубопроводов различного диаметра общим весом 1999,32 кг.

Норма образования отхода составит:

 $M = 1999,32 \times 0,025 \times 10^{-3} = 0,050$ т/период – наружные сети

Общее количество отхода составит 0,050 т/период.

Отходы от технического обслуживания и ремонта технологического оборудования.

Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%) – 91920402604.

Данный вид отхода образуется при текущем обслуживании и периодическом ремонте технологического оборудования.

Количество данного вида отхода определяется по формуле:

$$M_{\text{ветошь}} = H_{\text{уд.ветошь}} \times N \times D \times 10^{-3}$$
,

где: $H_{\text{уд.ветошь}}$ — удельный норматив ветоши на 1 работающего = 0,1 кг/сут. («Оценка количеств образующихся отходов производства и потребления», СПб, 1997г.);

N – количество рабочих, использующих ветошь, чел/сут.;

D – число рабочих дней за период, сут;

 10^{-3} – коэффициент перевода кг в тонны.

Норма образования отхода составит:

$$M_{\text{ветонць}} = 0.1 \times 15 \times 55 \times 10^{-3} = 0.083$$
 т/период.

Примечание: продолжительность V этапа строительства составляет 2,5 месяца (≈ 55 рабочих суток). В расчете количество рабочих принято без учета ИТР и служащих.

Отходы от жизнедеятельности рабочих.

Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный) – 73310001724.

Примечание: V этап строительства - продолжительность 2,5 месяца (\approx 55 рабочих суток), при расчетах видов отходов с применением годового удельного норматива принимаем коэффициент 0,21.

Расчет нормы образования отхода проводится по «Сборнику удельных показателей образования отходов производства и потребления», 1999г., таблица 3.2., пункт 6. Среднегодовой норматив образования отходов составляет 40-70 кг/год на одного человека. Для расчета принято максимальное значение в 70 кг/год. На момент строительства предусмотрено 18 человек.

Норма образования отхода составит:

$$M = 18 \times 70 \times 0.21 \times 10^{-3} = 0.265$$
 т/период,

где: 10^{-3} – коэффициент перевода кг в тонны.

Пищевые отходы кухонь и организаций общественного питания несортированные – 73610001305.

Отход образуется от приёма пищи. Проектом предусмотрен привоз готовой пищи высокой степени готовности в пластиковой упаковке и раздача её рабочим.

Согласно «Методическим рекомендациям по разработке проекта нормативов предельного размещения отходов для теплоэлектростанций, теплоэлектроцентралей, промышленных и отопительных котельных», СПб, 1998 г. норма образования отходов (М) рассчитывается, исходя из среднесуточной нормы накопления на 1 блюдо - $0,0001 \,\mathrm{m}^3$, числа рабочих дней за период (n), числа блюд на одного человека (m) и числа работающих (z). Плотность отходов (ρ) - $0,3 \,\mathrm{T/m}^3$.

$$M = 0.0001 \times n \times m \times z \times \rho$$
, т/период

Норма образования отхода составит:

 $M = 0,0001 \times 55 \times 3 \times 18 \times 0,3 = 0,089$ т/период.

Отходы посуды одноразовой из разнородных полимерных материалов, загрязненной пищевыми продуктами — 43894111524.

Отход образуется от приёма пищи. Норма образования отхода определяется, исходя из количества единиц одноразовой посуды на 1 рабочего, ее веса (в граммах), количества рабочих и числа рабочих суток за период:

$$M = 4 \times 10 \times 18 \times 55 \times 10^{-6} = 0,040$$
 т/период,

где: 4 – количество единиц одноразовой посуды на 1 рабочего (три тарелки и один стакан), шт.;

10 – средний вес одной единицы одноразовой посуды, грамм;

10-6 – коэффициент перевода грамм в тонны.

Отходы от замены спецодежды, спецобуви и средств защиты.

Спецодежда из хлопчатобумажного и смешанных волокон, утратившая потребительские свойства, незагрязненная – 40211001624.

Отход образуется при замене изношенных хлопчатобумажных комплектов и костюмов, рукавиц комбинированных, а также верхней одежды.

Наименование спец-	Количество	Норма выдачи	Вес еди-	Нормативная масса образования
одежды	рабочих	спецодежды,	ницы	отхода, т/период
		раз/период	спец-	
			одежды,	
			кг	
Комплект х/б	18	1	0,45	$M = 18 \times 1 \times 0,45 \times 10^{-3} = 0,008$
Костюм х/б с водооттал-	18	1	2,4	$M = 18 \times 1 \times 2,4 \times 10^{-3} = 0,043$
кивающей пропиткой				
Рукавицы комбиниро-	18	1	0,3	$M = 18 \times 1 \times 0.3 \times 10^{-3} = 0.005$
ванные				
Куртка на утепляющей	18	1	2,5	$M = 18 \times 1 \times 2,5 \times 10^{-3} = 0,045$
подкладке				
Брюки на утепляющей	18	1	2,8	$M = 18 \times 1 \times 2.8 \times 10^{-3} = 0.050$
подкладке				
			Итого:	0,151 т/период

Спецодежда из брезентовых тканей, утратившая потребительские свойства – 40212112605.

Отход образуется при замене изношенных брезентовых костюмов.

	,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, monto ma eminant o	Pesentessi	110011011011
Наименование спец-	Количество	Норма выдачи	Вес еди-	Нормативная масса образования
одежды	рабочих	спецодежды,	ницы	отхода, т/период
		раз/период	спец-	
			одежды,	
			кг	
Брезентовый костюм	18	1	2,8	$M = 18 \times 1 \times 2.8 \times 10^{-3} = 0.050$
			Итого:	0,050 т/период

Обувь кожаная рабочая, утратившая потребительские свойства – 40310100524.

Отход образуется при замене кожаной спецобуви.

Наименование спецобуви	Количество	Норма выдачи	Вес пары	Нормативная масса образования
	рабочих	спецобуви,	спецобуви,	отхода, т/период
		раз/период	кг	
Ботинки кожаные	18	1	2,0	$M = 18 \times 1 \times 2,0 \times 10^{-3} = 0,036$
			Итого:	0,036 т/период

Резиновые перчатки, утратившие потребительские свойства, незагрязненные – 43114101204.

Отход образуется при замене резиновых перчаток.

		. 1		
Наименование средств	Количество	Норма выдачи	Вес пары	Нормативная масса образования
защиты	рабочих	резиновых пер-	резиновых	отхода, т/период
		чаток,	перчаток,	
		раз/период	кг	
Резиновые перчатки	18	3	0,06	$M = 18 \times 3 \times 0.06 \times 10^{-3} = 0.003$
			Итого:	0,003 т/период

Резиновая обувь отработанная, утратившая потребительские свойства, незагрязненная — 43114102204.

Отход образуется при замене резиновой спецобуви.

O mod oopusjen	on inpir sameri	pesimoben ene	добуви.	
Наименование средств	Количество	Норма выдачи	Вес пары	Нормативная масса образования
защиты	рабочих	резиновых са-	резиновых	отхода, т/период
		пог, раз/период	сапог, кг	
Резиновые сапоги	18	1	1,6	$M = 18 \times 1 \times 1,6 \times 10^{-3} = 0,029$
			Итого:	0,029 т/период

Отходы от эксплуатации сетей внутреннего и наружного освещения.

Светильники со светодиодными элементами в сборе, утратившие потребительские свойства — 48242711524.

Отход образуется при замене перегоревших светодиодных светильников. Расчет проводится аналогично ртутным лампам по «Сборнику методик по расчету объемов образования отходов. Методика расчета объемов образования отходов МРО-6-99. Отработанные ртутьсодержащие лампы». СПб, 2004г. Норматив образования отхода рассчитывается по формуле:

$$N = \sum n_i \times m_i \times t_i \times 10^{-6} / k_i$$
, т/период

где: n_i – количество установленных ламп i-той марки, шт.;

t_i – фактическое количество часов работы ламп i-той марки, час/период;

k_i – эксплуатационный срок службы ламп i-той марки, час;

m_i – вес одной лампы, г;

10-6 – коэффициент перевода грамм в тонны.

Норма образования отхода составит:

Наименование объекта	Кол-во, шт.	Среднее время ра- боты, час/сут	Число рабо- чих суток за период, шт.	Вес 1-й лампы, г	Нормативный срок службы 1- й лампы, час	Вес от- хода, т/период
Строительная площадка	15	8	55	500	10000	0,00033
					Итого:	0,0003

Отходы от ремонта автотранспорта.

Расчет количества отходов проводится в соответствии со «Сборником удельных показателей образования отходов производства и потребления». Государственный комитет Российской Федерации по охране окружающей среды. Москва, 1999г.

Отходы изделий технического назначения из вулканизированной резины незагрязненные в смеси – 43119981724.

Количество отходов резинотехнических материалов, образующихся при проведении вулканизационных работ для автомобилей, определяется из расчета:

- 0,2 кг на 10 000 км пробега для грузовых автомобилей.

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/период
Экскаватор ЭО-3322	1	99	0,2	10000	0,000002
Скрепер прицепной ДЗ-20	2	85	0,2	10000	0,000003
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	102	0,2	10000	0,000002
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	58	0,2	10000	0,000001
Автосамосвал КамАЗ 6520	6	2331	0,2	10000	0,000280
Автокран КС-55729-1	1	60	0,2	10000	0,000001
Автогудронатор ДС-39Г	1	93	0,2	10000	0,000002
				Итого:	0,0003

Покрышки пневматических шин с металлическим кордом отработанные – 92113002504.

Количество отработанных покрышек определяется исходя из значения удельного показателя образования отходов:

- 19,1 кг на 10 000 км пробега для грузовых автомобилей.

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/период
Экскаватор ЭО-3322	1	99	19,1	10000	0,00019

Скрепер прицепной ДЗ-20	2	85	19,1	10000	0,00032
Каток грунтовый самоходный на пнев- матических шинах ДУ-29	1	102	19,1	10000	0,00019
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	58	19,1	10000	0,00011
Автосамосвал КамАЗ 6520	6	2331	19,1	10000	0,02671
Автокран КС-55729-1	1	60	19,1	10000	0,00011
Автогудронатор ДС-39Г	1	93	19,1	10000	0,00018
				Итого:	0,028

Аккумуляторы свинцовые отработанные неповрежденные, с электролитом – 92011001532.

Количество лома отработанных свинцовых аккумуляторов определяется исходя из значения удельного показателя образования отходов:

- 4,18 кг на 10 000 км пробега для грузовых автомобилей.

Количество отработанного электролита определяется исходя из значения удельного показателя образования отходов:

- 2,7 л на 10 000 км пробега для грузовых автомобилей.

Расчет количества лома аккумуляторов свинцовых отработанных

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Bec omxo- да, m/nepuoд
Экскаватор ЭО-3322	1	99	4,18	10000	0,00004
Экскаватор ЭО-5122	2	102	4,18	10000	0,00009
Бульдозер Д3-42	2	116	4,18	10000	0,00010
Скрепер прицепной ДЗ-20	2	85	4,18	10000	0,00007
Каток грунтовый самоходный на пнев- матических шинах ДУ-29	1	102	4,18	10000	0,00004
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	58	4,18	10000	0,00002
Автосамосвал КамАЗ 6520	6	2331	4,18	10000	0,00585
Автокран КС-55729-1	1	60	4,18	10000	0,00003
Автогудронатор ДС-39Г	1	93	4,18	10000	0,00004
	•			Итого:	0,006

Расчет количества сернокислотного электролита

Марка автотранс- порта	Кол- во	Пробег од- ной едини- цы, км/период	Значение удельного показателя, л	Коэффициент перевода л в м ³	Плотность электролита, т/м³	Нормативный пробег, км	Вес от- хода, т/период
Экскаватор ЭО-3322	1	99	2,7	0,001	1,2	10000	0,00003
Экскаватор ЭО-5122	2	102	2,7	0,001	1,2	10000	0,00007
Бульдозер ДЗ-42	2	116	2,7	0,001	1,2	10000	0,00008

Скрепер прицепной ДЗ-20	2	85	2,7	0,001	1,2	10000	0,00006
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	102	2,7	0,001	1,2	10000	0,00003
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	58	2,7	0,001	1,2	10000	0,00002
Автосамосвал Ка- мАЗ 6520	6	2331	2,7	0,001	1,2	10000	0,00453
Автокран КС-55729- 1	1	60	2,7	0,001	1,2	10000	0,00002
Автогудронатор ДС- 39Г	1	93	2,7	0,001	1,2	10000	0,00003
						Итого:	0,005

Количество отхода составит 0,011 т/период.

Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%) – 91920402604.

Согласно нормам расхода материалов на ремонт и эксплуатацию автомашин количество обтирочного материала, загрязненными маслами, определяется из расчета:

- 2,18 кг на 10 000 км пробега для грузовых автомобилей.

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/период
Экскаватор ЭО-3322	1	99	2,18	10000	0,00002
Экскаватор ЭО-5122	2	102	2,18	10000	0,00004
Бульдозер ДЗ-42	2	116	2,18	10000	0,00005
Скрепер прицепной ДЗ-20	2	85	2,18	10000	0,00004
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	102	2,18	10000	0,00002
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	58	2,18	10000	0,00001
Автосамосвал КамАЗ 6520	6	2331	2,18	10000	0,00305
Автокран КС-55729-1	1	60	2,18	10000	0,00001
Автогудронатор ДС-39Г	1	93	2,18	10000	0,00002
				Итого:	0,003

Отходы синтетических и полусинтетических масел моторных - 41310001313.

Количество отработанного моторного масла рассчитывается исходя из значения удельного показателя образования отходов:

- 1,17 л на 100 л израсходованного топлива для внедорожных автомобилей – самосвалов и другой подобной техники, работающей на дизельном топливе.

Марка автотранспор- та	Кол-во	Расход топ- лива одной единицы, л/период	Значение удельного показателя, л	Нормативный расход топ- лива, л	Коэффициент перевода л в м3	Плотность масла, т/м3	Вес от- хода, т/период
Экскаватор ЭО-3322	1	1339	1,17	100	0,001	0,93	0,01457
Экскаватор ЭО-5122	2	1402	1,17	100	0,001	0,93	0,03051
Бульдозер ДЗ-42	2	1496	1,17	100	0,001	0,93	0,03256
Скрепер прицепной ДЗ-20	2	361	1,17	100	0,001	0,93	0,00786
Каток грунтовый само- ходный на пневмати- ческих шинах ДУ-29	1	906	1,17	100	0,001	0,93	0,00986
Каток грунтовый с кулачковым вальцом ВОМАG BW 211 PD-40	1	756	1,17	100	0,001	0,93	0,00823
Автосамосвал КамАЗ 6520	6	1528	1,17	100	0,001	0,93	0,09976
Автокран КС-55729-1	1	685	1,17	100	0,001	0,93	0,00745
Автогудронатор ДС- 39Г	1	155	1,17	100	0,001	0,93	0,00169
						Итого:	0,212

Отходы минеральных масел трансмиссионных – 40615001313.

Количество отработанного трансмиссионного масла рассчитывается исходя из значения удельного показателя образования отходов:

- 1,17 л на 100 л израсходованного топлива для внедорожных автомобилей – самосвалов и другой подобной техники, работающей на дизельном топливе.

Марка автотранспор- та	Кол-во	Расход топ- лива одной единицы, л/период	Значение удельного показателя, л	Нормативный расход топ- лива, л	Коэффициент перевода л в м3	Плотность масла, т/м3	Вес от- хода, т/период
Экскаватор ЭО-3322	1	1339	1,17	100	0,001	0,885	0,01386
Экскаватор ЭО-5122	2	1402	1,17	100	0,001	0,885	0,02903
Бульдозер ДЗ-42	2	1496	1,17	100	0,001	0,885	0,03098
Скрепер прицепной ДЗ-20	2	361	1,17	100	0,001	0,885	0,00748
Каток грунтовый само- ходный на пневмати- ческих шинах ДУ-29	1	906	1,17	100	0,001	0,885	0,00938
Каток грунтовый с кулачковым вальцом ВОМАG BW 211 PD-40	1	756	1,17	100	0,001	0,885	0,00783
Автосамосвал КамАЗ 6520	6	1528	1,17	100	0,001	0,885	0,09493
Автокран КС-55729-1	1	685	1,17	100	0,001	0,885	0,00709
Автогудронатор ДС- 39Г	1	155	1,17	100	0,001	0,885	0,00160
						Итого:	0,202

Отходы минеральных масел гидравлических, не содержащих галогены – 40612001313.

Количество отработанного гидравлического масла рассчитывается исходя из значения удельного показателя образования отходов:

- 0,6 л на 100 л израсходованного топлива для внедорожных автомобилей – самосвалов и другой подобной техники.

Марка автотранспор- та	Кол-во	Расход топ- лива одной единицы, л/период	Значение удельного показателя, л	Нормативный расход топ- лива, л	Коэффициент перевода л в м3	Плотность масла, т/м3	Вес от- хода, т/период
Экскаватор ЭО-3322	1	1339	0,6	100	0,001	0,890	0,00715
Экскаватор ЭО-5122	2	1402	0,6	100	0,001	0,890	0,01497
Бульдозер ДЗ-42	2	1496	0,6	100	0,001	0,890	0,01598
Скрепер прицепной ДЗ-20	2	361	0,6	100	0,001	0,890	0,00386
Каток грунтовый само- ходный на пневмати- ческих шинах ДУ-29	1	906	0,6	100	0,001	0,890	0,00484
Каток грунтовый с кулачковым вальцом ВОМАG BW 211 PD-40	1	756	0,6	100	0,001	0,890	0,00404
Автосамосвал КамАЗ 6520	6	1528	0,6	100	0,001	0,890	0,04896
Автокран КС-55729-1	1	685	0,6	100	0,001	0,890	0,00366
Автогудронатор ДС- 39Г	1	155	0,6	100	0,001	0,890	0,00083
						Итого:	0,104

Фильтры очистки масла автотранспортных средств отработанные - 92130201523.

Норматив образования отработанных фильтров, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{\text{H}i} \times 10^{-3},$$
 т/период

где:

N_i – количество автомашин і-й марки, шт.;

 n_i – количество фильтров, установленных на автомашине i-й марки, шт.; от 1 до 4 фильтров (в среднем n_i = 2 фильтра);

m_i – вес одного фильтра на автомашине і-й марки, кг;

 L_i – средний пробег автомобиля i-й марки, тыс.км/период (или среднее время работы спецтехники i-й марки, час/период);

L_{ні} – норма пробега подвижного состава і-ой марки до замены фильтровальных элементов, тыс.км (или норма времени до замены фильтров, час);

10-3 – коэффициент перевода кг в тонны.

Замена масляных фильтров производится через 10 тыс.км пробега. В среднем вес одного масляного фильтра на грузовых машинах составляет 1,5 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Экскаватор ЭО-3322	1	2	1,5	0,099	10	0,00003
Экскаватор ЭО-5122	2	2	1,5	0,102	10	0,00006
Бульдозер ДЗ-42	2	2	1,5	0,116	10	0,00007
Скрепер прицепной ДЗ-20	2	2	1,5	0,085	10	0,00005
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	2	1,5	0,102	10	0,00003
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	2	1,5	0,058	10	0,00002
Автосамосвал КамАЗ 6520	6	2	1,5	2,331	10	0,00420
Автокран КС-55729-1	1	2	1,5	0,060	10	0,00002
Автогудронатор ДС-39Г	1	2	1,5	0,093	10	0,00003
					Итого:	0,005

Фильтры воздушные автотранспортных средств отработанные – 92130101524.

Норматив образования отработанных фильтров, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{Hi} \times 10^{-3},$$
 т/период

где:

N_i – количество автомашин i-й марки, шт.;

 n_i – количество фильтров, установленных на автомашине i-й марки, шт.; от 1 до 4 фильтров (в среднем n_i = 2 фильтра);

m_i – вес одного фильтра на автомашине i-й марки, кг;

 L_i — средний пробег автомобиля i-й марки, тыс.км/период (или среднее время работы спецтехники i-й марки, час/период);

L_{ні} – норма пробега подвижного состава і-ой марки до замены фильтровальных элементов, тыс.км (или норма времени до замены фильтров, час);

 10^{-3} – коэффициент перевода кг в тонны.

Замена воздушных фильтров производится через 20 тыс.км пробега. В среднем вес одного воздушного фильтра на грузовых машинах составляет 0,5 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Экскаватор ЭО-3322	1	2	0,5	0,099	20	0,000005
Экскаватор ЭО-5122	2	2	0,5	0,102	20	0,000010
Бульдозер ДЗ-42	2	2	0,5	0,116	20	0,000012
Скрепер прицепной ДЗ-20	2	2	0,5	0,085	20	0,000009
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	2	0,5	0,102	20	0,000005
Каток грунтовый с кулачко-	1	2	0,5	0,058	20	0,000003

вым вальцом BOMAG BW 211 PD-40						
Автосамосвал КамАЗ 6520	6	2	0,5	2,331	20	0,000699
Автокран КС-55729-1	1	2	0,5	0,060	20	0,000003
Автогудронатор ДС-39Г	1	2	0,5	0,093	20	0,000005
					Итого:	0,001

Фильтры очистки топлива автотранспортных средств отработанные – 92130301523.

Норматив образования отработанных фильтров, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{Hi} \times 10^{-3},$$
 т/период

где:

N_i – количество автомашин і-й марки, шт.;

 n_i – количество фильтров, установленных на автомашине i-й марки, шт.; от 1 до 4 фильтров (в среднем n_i = 2 фильтра);

m_i – вес одного фильтра на автомашине i-й марки, кг;

 L_i – средний пробег автомобиля і-й марки, тыс.км/период (или среднее время работы спецтехники і-й марки, час/период);

L_{ні} – норма пробега подвижного состава і-ой марки до замены фильтровальных элементов, тыс.км (или норма времени до замены фильтров, час);

10-3 – коэффициент перевода кг в тонны.

Замена топливных фильтров производится через 10 тыс.км пробега. В среднем вес одного топливного фильтра на грузовых машинах составляет 0,1 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Экскаватор ЭО-3322	1	2	0,1	0,099	10	0,000002
Экскаватор ЭО-5122	2	2	0,1	0,102	10	0,000004
Бульдозер ДЗ-42	2	2	0,1	0,116	10	0,000005
Скрепер прицепной ДЗ-20	2	2	0,1	0,085	10	0,000003
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	2	0,1	0,102	10	0,000002
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	2	0,1	0,058	10	0,000001
Автосамосвал КамАЗ 6520	6	2	0,1	2,331	10	0,000280
Автокран КС-55729-1	1	2	0,1	0,060	10	0,000001
Автогудронатор ДС-39Г	1	2	0,1	0,093	10	0,000002
					Итого:	0,0003

Тормозные колодки отработанные без накладок асбестовых – 92031001525.

Норматив образования отработанных тормозных колодок, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{Hi} \times 10^{-3},$$
 т/период

где:

N_i – количество автомашин i-й марки, шт.;

 n_i – количество тормозных колодок, установленных на автомашине i-й марки, шт.;

m_i – вес одной тормозной колодки на автомашине i-й марки, кг;

L_i – средний пробег автомобиля і-й марки, тыс.км/период (или среднее время работы спецтехники і-й марки, час/период);

 $L_{\text{ні}}$ – норма пробега подвижного состава і-ой марки до замены тормозных колодок, тыс.км (или норма времени до замены фильтров, час);

10-3 – коэффициент перевода кг в тонны.

Замена тормозных колодок для грузовых автомобилей производится через 10 тыс.км пробега. В среднем вес одной тормозной колодки на грузовых машинах составляет 0,53 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Экскаватор ЭО-3322	1	8	0,53	0,099	10	0,00004
Экскаватор ЭО-5122	2	8	0,53	0,102	10	0,00009
Бульдозер ДЗ-42	2	8	0,53	0,116	10	0,00010
Скрепер прицепной ДЗ-20	2	8	0,53	0,085	10	0,00007
Каток грунтовый самоходный на пневматических шинах ДУ-29	1	8	0,53	0,102	10	0,00004
Каток грунтовый с кулачковым вальцом BOMAG BW 211 PD-40	1	8	0,53	0,058	10	0,00002
Автосамосвал КамАЗ 6520	6	8	0,53	2,331	10	0,00593
Автокран КС-55729-1	1	8	0,53	0,060	10	0,00003
Автогудронатор ДС-39Г	1	8	0,53	0,093	10	0,00004
					Итого:	0,006

Примечание: отходы черных и цветных металлов при ремонте автотранспорта на объекте не образуются, т.к. ремонт подвижного состава, связанного с заменой узлов, агрегатов и пр. планируется осуществлять на специализированных предприятиях.

Отходы от мойки колес строительного автотранспорта.

С целью предотвращения загрязнения окружающей природной среды на выезде с территории стройплощадки предусмотрен комплект оборудования для мойки колес строительного автотранспорта с системой оборотного водоснабжения на базе очистной установки «МОЙДОДЫР-К-2». Комплект предназначен для мойки колес автотранспортных средств на строительных площадках в стесненных условиях, а также в автопарках, на промышленных объектах и т.п. Комплект обеспечивает очистку оборотной воды при про-

пускной способности до 10 единиц транспорта в час. Комплект предотвращает загрязнение окружающей среды, обеспечивает повторное использование и экономию до 80% технической воды. Применение шампуней и моющих средств на данной установке не предусматривается. Технические данные установки «МОЙДОДЫР-К-2» приведены в соответствии с «Паспортом и руководством по эксплуатации»:

$\mathcal{N}\!\underline{o}$	Наименование параметров	Количественные
n/n		показатели
1.	Производительность по очищенной воде, м ³ /час	до 2,5
2.	Концентрация загрязняющих веществ в сточной	
	воде, мг/л, не более:	
	- по взвешенным веществам	4500
	- по нефтепродуктам	200
3.	Концентрация загрязняющих веществ в оборот-	
	ной воде, мг/л, не более:	
	- по взвешенным веществам	200
	- по нефтепродуктам	20
4.	Размеры, мм (габаритные)	1900×750×1900 (высота)
5.	Масса без воды, кг	450
6.	Объем воды в установке, м ³	1,25
7.	Обслуживающий персонал, чел.	1

Расчет проводится согласно «Методическим рекомендациям по оценке объемов образования отходов производства и потребления», ГУ НИЦПУРО, Москва 2003 г.

Период V этапа строительства 2,5 месяца (\approx 55 рабочих суток). На строительную площадку въезжает не более 8 грузовых автомобилей в сутки. Объем воды в установке «МОЙДОДЫР-К-2» равен 1,25 м³. На мойку колес одного автомобиля в среднем требуется 125 л воды, на 8 автомобилей – 1000 л (1,000 м³) ежедневно, следовательно, за период строительства расход воды составит – 1,000 м³ × 55 суток = 55 м³/период.

Осадок механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15% – 72310202394.

Количество осадка отстойника установки мойки колес автомашин определяется по формуле:

$$Q_{oc.ot} = q_w \times (C_{eB} - C_{ex}) / \rho_{oc} \times (100 - P_{oc}) \times 10^4, \quad M^3 / период$$

где: $Q_{\text{ос.от}}$ – количество осевшего обводненного осадка, м³/период;

 q_w – расход сточной воды, м³/период;

 \hat{C}_{eB} – содержание взвешенных веществ в воде перед установкой, мг/л;

 C_{ex} – содержание взвешенных веществ в осветленной воде, мг/л;

 ho_{oc} – плотность обводненного осадка (1,5...1,6 г/см³);

 P_{oc} – процент обводненности осадка (80...99%);

 M_{oc} – количество образующегося осевшего осадка, т/период.

$$Q_{\text{ос.от}} = 55 \times (4500 - 200) / 1,55 \times (100 - 90) \times 10^4 = 1,526 \text{ м}^3$$
/период

$$M_{oc} = 1,526 \times 1,55 = 2,365$$
 т/период.

Всплывшие нефтепродукты из нефтеловушек и аналогичных сооружений – 40635001313.

Количество обводненных нефтепродуктов из отстойника установки мойки колес автомашин определяется по формуле:

$$Q_{\text{неф}} = q_{\text{w}} \times (C_{\text{ен}} - C_{\text{ех}}) / \rho_{\text{неф}} \times (100 - P_{\text{неф}}) \times 10^4, \quad \text{м}^3 / \text{период}$$

где: $Q_{\text{неф}}$ – количество обводненных нефтепродуктов, м³/период;

 q_w – расход сточной воды, м³/период;

 C_{eh} – содержание нефтепродуктов в воде перед установкой, мг/л;

 C_{ex} – содержание нефтепродуктов в осветленной воде, мг/л;

 $\rho_{\text{неф}}$ – плотность обводненных нефтепродуктов (0,87...0,90 г/см³);

 $P_{\text{неф}}$ – процент обводненности нефтепродуктов (70...80%);

М_{неф} – масса всплывающих нефтепродуктов, т/период.

$$Q_{\text{неф}} = 55 \times (200 - 20) / 0,88 \times (100 - 75) \times 10^4 = 0,045 \text{ м}^3/\text{период}$$

$$M_{\text{неф}} = 0.045 \times 0.88 = 0.040$$
 т/период.

Отходы от посева травосмеси при озеленении территории.

Многолетние травы (мятлик луговой, райграс пастбищный, овсяница луговая) поступают на территорию площадки в полипропиленовых мешках вместимостью 25 кг.

Количество многолетних трав для V этапа строительства составит: мятлик луговой – $20~\mathrm{kr}$; райграс пастбищный – $15~\mathrm{kr}$; овсяница луговая – $15~\mathrm{kr}$.

Упаковка полипропиленовая отработанная незагрязненная – 43412311514.

Норма образования отхода составит:

$$P = \sum Q_i / M_i \times m_i \times 10^{-3}$$
, т/период

где: Q_i – расход сырья i-го вида, кг/период;

M_i – вес сырья і-го вида в единице упаковки, кг;

m_i – вес единицы пустой упаковки из-под сырья і-го вида, кг;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

$$P = 50 / 25 \times 0.5 \times 10^{-3} = 0.001$$
 т/период,

где: 0,5 – вес единицы пустой упаковки, кг;

10-3 – коэффициент перевода кг в тонны.

Отходы железобетонных плит при демонтаже временных подъездных дорог.

Предусматривается устройство временных подъездных дорог, для чего будут использованы железобетонные плиты в количестве $82 \text{ шт.} (73 \text{ м}^3)$.

Лом железобетонных изделий, отходы железобетона в кусковой форме – 82230101215.

Количество отходов ж/б плит составит:

 $M = 73 \text{ м}^3 \times 2.5 \text{ т/м}^3$ (плотность железобетона) = **182,500 т/период.**

Приложение 75

Расчет образования отходов при эксплуатации объекта.

Отходы от основного производства.

На проектируемом участке захоронения - полигоне ТКО - планируется размещать (захоранивать) отходы общим количеством 136 593 т/год (278 761 $\rm m^3$ /год при усредненной плотности отходов, равной 0,49 $\rm t/m^3$), а именно:

- 32 175 т/год (80 438 м³/год) ТКО с производственного корпуса после сортировки;
- 13~650~т/год (34 125 м³/год) смешанное сырье с производственного корпуса после сортировки;
- $24\ 340\ \text{т/год}\ (48\ 680\ \text{м}^3/\text{год})$ КГО и прочие строительные отходы с площадки обработки и утилизации КГО и ПО;
- $8\ 000\ \text{т/год}\ (12\ 988\ \text{м}^3/\text{год})$ промышленные отходы IV класса опасности с площадки обработки и утилизации КГО и ПО;
- $8\ 000\ \text{т/год}\ (16\ 530\ \text{м}^3/\text{год})$ промышленные отходы V класса опасности с площадки обработки и утилизации КГО и ПО;
- $15\ 000\ \text{т/год}\ (25\ 000\ \text{м}^3/\text{год})$ отходы сепарации (балластной фракции) с площадки обезвреживания органических отходов IV-V класса;
- $29~862~\text{т/год}~(48~477~\text{м}^3/\text{год})$ промышленные отходы IV класса опасности, не подлежащие обработке, обезвреживанию и утилизации;
- $5 \ 366 \ \text{т/год} \ (11 \ 087 \ \text{м}^3/\text{год})$ промышленные отходы V класса опасности, не подлежащие обработке, обезвреживанию и утилизации;
- $200 \text{ т/год } (234 \text{ м}^3/\text{год})$ зола от инсинератора с площадки обезвреживания отходов III класса.

На проектируемом участке захоронения - полигоне ΠO - планируется размещать (захоранивать) отходы общим количеством 7 **357** т/год (11 **495** м³/год при усредненной плотности отходов, равной 0,64 т/м³), а именно:

- <u>845 т/год (988 м³/год)</u> промышленные отходы III класса опасности, не подлежащие обработке, обезвреживанию и утилизации;
- $6512 \text{ т/год } (10572 \text{ м}^3/\text{год})$ промышленные отходы IV класса опасности, не подлежащие обработке, обезвреживанию и утилизации.

Отходы от жизнедеятельности сотрудников.

Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный) – 73310001724.

Расчет нормы образования отхода проводится по «Сборнику удельных показателей образования отходов производства и потребления», 1999г., таблица 3.2., пункт 6. Среднегодовой норматив образования отходов составляет 40-70 кг/год на одного человека. Для расчета принято максимальное значение в 70 кг/год. Предусмотрены 97 человек в сутки (подмена 92 человека).

Норма образования отхода составит:

$$M = 97 \times 70 \times 10^{-3} = 6,790$$
 т/год,

где: 10^{-3} – коэффициент перевода кг в тонны.

Пищевые отходы кухонь и организаций общественного питания несортированные – 73610001305.

Отход образуется от приёма пищи. В здании АБК предусмотрена столоваяраздаточная, работающая на продуктах высокой степени готовности. Столоваяраздаточная предназначена для питания блюдами, приготовленными на существующих предприятиях общественного питания города согласно договорным отношениям. Предусмотрен привоз горячей пищи в термосах и раздача блюд сотрудникам. Для питания сотрудников предусмотрено наличие столовой посуды.

Согласно «Методическим рекомендациям по разработке проекта нормативов предельного размещения отходов для теплоэлектростанций, теплоэлектроцентралей, промышленных и отопительных котельных», СПб, 1998 г. норма образования отходов (М) рассчитывается, исходя из среднесуточной нормы накопления на 1 блюдо - $0,0001 \, \text{м}^3$, числа рабочих дней в году (n), числа блюд на одного человека (m) и числа работающих (z). Плотность отходов (ρ) - $0,3 \, \text{т/m}^3$.

$$M = 0.0001 \times n \times m \times z \times \rho$$
, $T/\Gamma O J$

```
Норма образования отхода составит:
```

- Полигон ТКО:

 $M = 0.0001 \times 365 \times 3 \times 8 \times 0.3 = 0.263$ т/год

- Полигон ПО:

 $M = 0.0001 \times 365 \times 3 \times 2 \times 0.3 = 0.066$ т/год

- Площадка обезвреживания органических отходов IV-V класса:

 $M = 0.0001 \times 365 \times 3 \times 3 \times 0.3 = 0.099$ т/год

- Площадка обезвреживания отходов III класса:

 $M = 0,0001 \times 365 \times 3 \times 4 \times 0,3 = 0,131$ т/год

- ИТР:

 $M = 0,0001 \times 260 \times 3 \times 5 \times 0,3 = 0,117$ т/год

 $M = 0,0001 \times 365 \times 3 \times 1 \times 0,3 = 0,033$ т/год

- Служащие:

 $M = 0.0001 \times 260 \times 3 \times 2 \times 0.3 = 0.047$ т/год

 $M = 0.0001 \times 365 \times 3 \times 9 \times 0.3 = 0.296$ т/год

- МОП:

 $M = 0.0001 \times 260 \times 3 \times 4 \times 0.3 = 0.094$ т/год

- *MCK*:

 $M = 0.0001 \times 365 \times 3 \times 54 \times 0.3 = 1.774$ т/год

- Площадка обработки и утилизации КГО и ПО:

 $M = 0.0001 \times 365 \times 3 \times 3 \times 0.3 = 0.099$ т/год

- Бокс для ремонта спецтехники:

 $M = 0.0001 \times 365 \times 3 \times 2 \times 0.3 = 0.066$ т/год

Общее количество отхода составит 3,085 т/год.

Отходы от замены спецодежды, спецобуви и средств защиты.

Спецодежда из хлопчатобумажного и смешанных волокон, утратившая потребительские свойства, незагрязненная – 40211001624.

Отход образуется при замене изношенных хлопчатобумажных халатов, комплектов и костюмов, рукавиц комбинированных, перчаток с защитным покрытием, сигнальных жилетов, а также верхней одежды.

Наименование	Количество	Норма выда-	Вес еди-	Нормативная масса образования
спецодежды	сотрудников	чи спецодеж-	ницы	отхода, т/год
	с учетом	ды	спец-	
	подменных		одежды,	
	смен		кг	
Халат х/б	189	2 раза в год	0,65	$M = 189 \times 2 \times 0.65 \times 10^{-3} = 0.246$
Комплект х/б	189	2 раза в год	0,45	$M = 189 \times 2 \times 0.45 \times 10^{-3} = 0.170$
Костюм х/б с водооттал-	189	1 раз в год	2,4	$M = 189 \times 1 \times 2,4 \times 10^{-3} = 0,454$
кивающей пропиткой				
Рукавицы комбиниро-	189	4 раза в год	0,3	$M = 189 \times 4 \times 0.3 \times 10^{-3} = 0.227$
ванные		_		
Куртка на утепляющей	189	1 раз в год	2,5	$M = 189 \times 1 \times 2,5 \times 10^{-3} = 0,473$
подкладке		_		
Брюки на утепляющей	189	1 раз в год	2,8	$M = 189 \times 1 \times 2.8 \times 10^{-3} = 0.529$
подкладке		_		
Жилет сигнальный	189	1 раз в год	0,25	$M = 189 \times 1 \times 0.25 \times 10^{-3} = 0.047$
Перчатки с защитным	189	1 раз в год	0,35	$M = 189 \times 1 \times 0.35 \times 10^{-3} = 0.066$
покрытием		•	•	. ,
•			Итого:	2,212 т/год

Спецодежда из брезентовых тканей, утратившая потребительские свойства – 40212112605.

Отход образуется при замене изношенных брезентовых костюмов.

 0	1		1	
Наименование спец-	Количество	Норма выдачи	Вес еди-	Нормативная масса образования
одежды	сотрудни-	спецодежды	ницы	отхода, т/период
	ков с уче-		спец-	
	том под-		одежды,	
	менных		кг	
	смен			
Брезентовый костюм	189	1 раз в год	2,8	$M = 189 \times 1 \times 2,8 \times 10^{-3} = 0,529$
			Итого:	0,529 т/период

Обувь кожаная рабочая, утратившая потребительские свойства – 40310100524. Отход образуется при замене кожаной спецобуви

Отлод образуется при замене кожаной спецобуви.									
Наименование спецобуви	Количество	Норма выда-	Вес пары	Нормативная масса образования					
	сотрудников	чи спецобуви	спецобуви,	отхода, т/год					
	с учетом		кг						
	подменных								
	смен								
Ботинки кожаные	189	1 раз в год	2,0	$M = 189 \times 1 \times 2,0 \times 10^{-3} = 0,378$					
			Итого:	0,378 т/год					

Резиновые перчатки, утратившие потребительские свойства, незагрязненные – 43114101204.

Отход образуется при замене резиновых перчаток.

откод образуется при замене резиновых пер шток.									
Наименование средств	Количество	Норма выда-	Вес пары	Нормативная масса образования					
защиты	сотрудников	чи резиновых	резиновых	отхода, т/год					
	с учетом	перчаток	перчаток,						
	подменных		кг						
	смен								
Резиновые перчатки	189	12 раз в год	0,06	$M = 189 \times 12 \times 0.06 \times 10^{-3} = 0.136$					
			Итого:	0,136 т/год					

Резиновая обувь отработанная, утратившая потребительские свойства, незагрязненная — 43114102204.

Отход образуется при замене резиновой спецобуви.

Ornog copus yeren non sumene pesintobon enegocybn.									
Наименование средств	Количество	Норма выда-	Вес пары	Нормативная масса образования					
защиты	сотрудников	чи резиновых	резиновых	отхода, т/год					
	с учетом	сапог	сапог, кг						
	подменных								
	смен								
Резиновые сапоги	189	1 раз в год	1,6	$M = 189 \times 1 \times 1,6 \times 10^{-3} = 0,302$					
			Итого:	0,302 т/год					

Отходы от уборки асфальтированной территории, ликвидации проливов нефтепродуктов на территории.

Смет с территории предприятия малоопасный - 73339001714.

Смет с территории организаций образуется в результате уборки твердых покрытий территории. Согласно Приложению М «СП 42.13330.2011. Свод правил. Градостроительство. Планировка и застройка городских и сельских поселений. Актуализированная редакция СНиП 2.07.01-89*» количество смета с асфальтобетонных покрытий на 1 м 2 в год составляет 5-15 кг. Для расчета принято максимальное значение в 15 кг/м 2 .

$$M = S \times N \times 10^{-3}$$
, T/Γ од

где: S – площадь твердого покрытия, M^2 ;

N – норматив образования смета с 1 M^2 , кг;

 10^{-3} – коэффициент перевода кг в тонны.

Норма образования отхода составит:

 $M = 35881 \times 15 \times 10^{-3} = 538,215$ т/год.

Песок, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%) – 91920102394.

Отход образуется при ликвидации проливов нефтепродуктов на асфальтированной территории. Для данного отхода отсутствует отраслевой норматив образования. По аналогии с действующими объектами песка, загрязненного маслами (содержание масел менее 15%) образуется **0,550** т/год.

Отходы от эксплуатации сетей внутреннего и наружного освещения.

Светильники со светодиодными элементами в сборе, утратившие потребительские свойства – 48242711524.

Отход образуется при замене перегоревших светодиодных светильников. Расчет проводится аналогично ртутным лампам по «Сборнику методик по расчету объемов образования отходов. Методика расчета объемов образования отходов МРО-6-99. Отработанные ртутьсодержащие лампы». СПб, 2004г. Норматив образования отхода рассчитывается по формуле:

$$N = \sum n_i \times m_i \times t_i \times 10^{-6} / k_i$$
, т/год

где: n_i – количество установленных светильников i-той марки, шт.;

t_i – фактическое количество часов работы светильников i-той марки, час/год;

k_i – эксплуатационный срок службы светильников i-той марки, час;

m_i – вес одного светильника, г;

10-6 – коэффициент перевода грамм в тонны.

Норма образования отхода составит:

Норма образования отхода составит:								
Наименование объекта	Кол-во, шт.	Среднее время ра- боты, час/сут	Число рабочих суток в году, ит.	Вес 1-го светильника, г	Нормативный срок службы 1-го светильника, час	Вес от- хода, т/год		
Весовая	9	12	365	500	100000	0,0002		
Весовая	4	12	365	2160	100000	0,0004		
Весовая	2	12	365	3400	50000	0,0006		
АБК со встроен- ным КПП	35	8	260	3800	50000	0,0055		
АБК со встроен- ным КПП	9	8	260	2160	100000	0,0004		
АБК со встроен- ным КПП	35	8	260	500	100000	0,0004		
АБК со встроен- ным КПП	24	8	260	3400	50000	0,0034		
Склад смешанного сырья	16	12	365	1460	50000	0,0020		
Склад смешанного сырья	4	12	365	6700	100000	0,0012		
Производственный корпус	245	12	365	1460	50000	0,0313		
Производственный корпус	13	12	365	6700	100000	0,0038		
Производственный корпус	4	12	365	3800	50000	0,0013		
Производственный корпус	29	12	365	2160	100000	0,0027		
Производственный корпус	4	12	365	2400	8000	0,0053		
Производственный корпус	50	12	365	3400	50000	0,0149		
Производственный корпус	23	12	365	500	100000	0,0005		
Котельная	12	24	365	3800	50000	0,0080		
Котельная	8	24	365	6700	100000	0,0047		
Котельная	2	24	365	2160	100000	0,0004		
Котельная	4	24	365	500	100000	0,0002		
Котельная	10	24	365	1460	50000	0,0026		
Склад МТО	10	8	260	1460	50000	0,0006		
Склад МТО	5	8	260	500	100000	0,0001		
Бокс для ремонта спецтехники	23	12	365	2160	100000	0,0022		
Бокс для ремонта спецтехники	2	12	365	500	100000	0,0000		

					Итого:	0,136
Наружное освещение	4	16	365	16470	100000	0,0038
Наружное освещение	75	16	365	7500	100000	0,0329
Склад реагентов	3	8	197	3400	50000	0,0003
Склад реагентов	11	8	197	500	100000	0,0001
Склад реагентов	17	8	197	2160	100000	0,0006
Склад реагентов	4	8	197	3800	50000	0,0005
Бокс для ремонта спецтехники	4	12	365	1460	50000	0,0005
Бокс для ремонта спецтехники	8	12	365	3400	50000	0,0024
Бокс для ремонта спецтехники	7	12	365	6700	100000	0,0021

Отходы изолированных проводов и кабелей – 48230201525.

Отход образуется при замене поврежденных кабелей или проводов в изоляции. Количество отхода определяется по формуле:

$$M = (0.25 \times \pi \times d^2 \times h \times \rho) \times 0.03,$$
 т/год

где: $(0.25 \times \pi \times d^2 \times h)$ — формула расчета объема кабеля (провода), где d — диаметр кабеля (провода) (м), h — длина кабеля (провода) (м);

 ρ – плотность металла в кабеле, т/м³;

0,03 – процентное количество кабеля (провода), идущего в отходы при возможных повреждениях кабеля (провода), принимается по аналогии с действующими объектами.

Количество отхода составит:

Tun	π	d	h	ρ	M
Алюминиевый изолированный провод	3,14	0,0148	280	2,6989	0,003898
Алюминиевый изолированный провод	3,14	0,028	1216	2,6989	0,060594
Алюминиевый изолированный провод	3,14	0,030	414	2,6989	0,023682
Алюминиевый изолированный провод	3,14	0,032	2881	2,6989	0,187508
Медный изолированный провод	3,14	0,0039	74	8,93	0,000237
Алюминиевый изолированный кабель	3,14	0,017	164	2,6989	0,003012
Алюминиевый изолированный кабель	3,14	0,021	484	2,6989	0,013566
Алюминиевый изолированный кабель	3,14	0,023	2016	2,6989	0,067783
Алюминиевый изолированный кабель	3,14	0,025	110	2,6989	0,004370
Алюминиевый изолированный кабель	3,14	0,027	660	2,6989	0,030581
Алюминиевый изолированный кабель	3,14	0,029	2571	2,6989	0,137428
Алюминиевый изолированный кабель	3,14	0,035	433	2,6989	0,033713

				Итого:	1,261
Медный изолированный кабель	3,14	0,0185	71	8,93	0,005110
Медный изолированный кабель	3,14	0,018	265	8,93	0,018056
Медный изолированный кабель	3,14	0,014	180	8,93	0,007419
Медный изолированный кабель	3,14	0,0136	2645	8,93	0,102884
Медный изолированный кабель	3,14	0,013	754	8,93	0,026798
Медный изолированный кабель	3,14	0,012	155	8,93	0,004694
Медный изолированный кабель	3,14	0,010	3997	8,93	0,084058
Медный изолированный кабель	3,14	0,009	7245	8,93	0,123414
Медный изолированный кабель	3,14	0,0039	8	8,93	0,000026
Алюминиевый изолированный кабель	3,14	0,049	885	2,6989	0,135056
Алюминиевый изолированный кабель	3,14	0,041	935	2,6989	0,099898
Алюминиевый изолированный кабель	3,14	0,039	898	2,6989	0,086813

Отходы от ремонта автотранспорта.

Расчет количества отходов проводится в соответствии со «Сборником удельных показателей образования отходов производства и потребления». Государственный комитет Российской Федерации по охране окружающей среды. Москва, 1999г.

Отходы изделий технического назначения из вулканизированной резины незагрязненные в смеси – 43119981724.

Количество отходов резинотехнических материалов, образующихся при проведении вулканизационных работ для автомобилей, определяется из расчета:

- 0,2 кг на 10 000 км пробега для грузовых автомобилей;
- 1,2 кг на 10 000 км пробега для автобусов.

Марка автотранспорта	Кол-во	Годовой пробег одной единицы, км	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/год
Ковшовый погрузчик «Амкодор 332В»	5	1577	0,2	10000	0,00016
Автомобиль КАМАЗ 6520-3072-53	5	4161	0,2	10000	0,00042
Вилочный погрузчик POLAR BADGER CPCD20	1	832	0,2	10000	0,00002
Мини-погрузчик ковшовый Bobcat S450	1	499	0,2	10000	0,00001
Поливомоечная машина КО-829Д1-21	1	2628	0,2	10000	0,00005
ПАЗС прицеп-топливозаправщик 9500л	1	500	0,2	10000	0,00001
Самосвал КамАЗ-65111-50	1	3504	0,2	10000	0,00007
Автобус НЕФАЗ-5299-11-52	1	2628	1,2	10000	0,00032
				Итого:	0,001

Покрышки пневматических шин с металлическим кордом отработанные – 92113002504.

Количество отработанных покрышек определяется исходя из значения удельного показателя образования отходов:

- 19,1 кг на 10 000 км пробега для грузовых автомобилей;
- 17,3 кг на 10 000 км пробега для автобусов.

Марка автотранспорта	Кол-во	Годовой пробег одной единицы, км	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/год
Ковшовый погрузчик «Амкодор 332В»	5	1577	19,1	10000	0,01506
Автомобиль КАМАЗ 6520-3072-53	5	4161	19,1	10000	0,03974
Вилочный погрузчик POLAR BADGER CPCD20	1	832	19,1	10000	0,00159
Мини-погрузчик ковшовый Bobcat S450	1	499	19,1	10000	0,00095
Поливомоечная машина КО-829Д1-21	1	2628	19,1	10000	0,00502
ПАЗС прицеп-топливозаправщик 9500л	1	500	19,1	10000	0,00096
Самосвал КамАЗ-65111-50	1	3504	19,1	10000	0,00669
Автобус НЕФАЗ-5299-11-52	1	2628	17,3	10000	0,00455
				Итого:	0,075

Аккумуляторы свинцовые отработанные неповрежденные, с электролитом – 92011001532.

Количество лома отработанных свинцовых аккумуляторов определяется исходя из значения удельного показателя образования отходов:

- 4,18 кг на 10 000 км пробега для грузовых автомобилей;
- 1,31 кг на 10 000 км пробега для автобусов.

Количество отработанного электролита определяется исходя из значения удельного показателя образования отходов:

- 2,7 л на 10 000 км пробега для грузовых автомобилей;
- 0,94 л на 10 000 км пробега для автобусов.

Расчет количества лома аккумуляторов свинцовых отработанных

- was the same of								
Марка автотранспорта	Кол-во	Годовой пробег одной единицы, км	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/год			
Ковшовый погрузчик «Амкодор 332В»	5	1577	4,18	10000	0,00330			
Автомобиль КАМАЗ 6520-3072-53	5	4161	4,18	10000	0,00870			
Вилочный погрузчик POLAR BADGER CPCD20	1	832	4,18	10000	0,00035			
Мини-погрузчик ковшовый Bobcat S450	1	499	4,18	10000	0,00021			
Поливомоечная машина КО-829Д1-21	1	2628	4,18	10000	0,00110			
Самосвал КамАЗ-65111-50	1	3504	4,18	10000	0,00146			
Уплотнительная машина UM-25 "Бур- лак"	1	175	4,18	10000	0,00007			

Бульдозер Б10ПМ	2	456	4,18	10000	0,00038
Автобус НЕФАЗ-5299-11-52	1	2628	1,31	10000	0,00034
				Итого:	0,016

Расчет количества сернокислотного электролита

Марка автотранс- порта	Кол-	Годовой пробег од- ной едини- цы, км	Значение удельного показателя, л	Коэффициент перевода л в м ³	Плотность электролита, т/м³	Нормативный пробег, км	Вес от- хода, т/год
Ковшовый погрузчик «Амкодор 332В»	5	1577	2,7	0,001	1,2	10000	0,00255
Автомобиль КАМАЗ 6520-3072-53	5	4161	2,7	0,001	1,2	10000	0,00674
Вилочный погрузчик POLAR BADGER CPCD20	1	832	2,7	0,001	1,2	10000	0,00027
Мини-погрузчик ковшовый Bobcat S450	1	499	2,7	0,001	1,2	10000	0,00016
Поливомоечная ма- шина КО-829Д1-21	1	2628	2,7	0,001	1,2	10000	0,00085
Самосвал КамАЗ- 65111-50	1	3504	2,7	0,001	1,2	10000	0,00114
Уплотнительная ма- шина UM-25 "Бур- лак"	1	175	2,7	0,001	1,2	10000	0,00006
Бульдозер Б10ПМ	2	456	2,7	0,001	1,2	10000	0,00030
Автобус НЕФАЗ- 5299-11-52	1	2628	0,94	0,001	1,2	10000	0,00030
						Итого:	0,012

Количество отхода составит 0,028 т/год.

Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%) – 91920402604.

Согласно нормам расхода материалов на ремонт и эксплуатацию автомашин количество обтирочного материала, загрязненными маслами, определяется из расчета:

- 2,18 кг на 10 000 км пробега для грузовых автомобилей;
- 3,0 кг на 10 000 км пробега для автобусов.

Марка автотранспорта	Кол-во	Годовой пробег одной единицы, км	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/год
Ковшовый погрузчик «Ам- кодор 332В»	5	1577	2,18	10000	0,00172
Автомобиль КАМАЗ 6520- 3072-53	5	4161	2,18	10000	0,00454
Вилочный погрузчик POLAR BADGER CPCD20	1	832	2,18	10000	0,00018
Мини-погрузчик ковшовый Bobcat S450	1	499	2,18	10000	0,00011
Поливомоечная машина КО-829Д1-21	1	2628	2,18	10000	0,00057

Самосвал КамАЗ-65111-50	1	3504	2,18	10000	0,00076
Уплотнительная машина UM-25 "Бурлак"	1	175	2,18	10000	0,00004
Бульдозер Б10ПМ	2	456	2,18	10000	0,00020
Автобус НЕФАЗ-5299-11-52	1	2628	3,0	10000	0,00079
				Итого:	0,009

Отходы синтетических и полусинтетических масел моторных - 41310001313.

Количество отработанного моторного масла рассчитывается исходя из значения удельного показателя образования отходов:

- 0,77 л на 100 л израсходованного топлива для грузовых автомобилей, работающих на дизельном топливе;
- -0.85 л на 100 л израсходованного топлива для автобусов, работающих на дизельном топливе;
- 1,17 л на 100 л израсходованного топлива для внедорожных автомобилей самосвалов и другой подобной техники, работающей на дизельном топливе.

Марка автотранспор- та	Кол-во	Годовой рас- ход топлива одной едини- цы, л	Значение удельного показателя, л	Нормативный расход топ- лива, л	Коэффициент перевода л в м3	Плотность масла, т/м3	Вес от- хода, т/год
Ковшовый погрузчик «Амкодор 332В»	5	951	1,17	100	0,001	0,93	0,05174
Автомобиль КАМАЗ 6520-3072-53	5	1456	1,17	100	0,001	0,93	0,07921
Вилочный погрузчик POLAR BADGER CPCD20	1	394	1,17	100	0,001	0,93	0,00429
Мини-погрузчик ков- шовый Bobcat S450	1	394	1,17	100	0,001	0,93	0,00429
Поливомоечная машина КО-829Д1-21	1	762	0,77	100	0,001	0,93	0,00546
Самосвал КамАЗ- 65111-50	1	1226	1,17	100	0,001	0,93	0,01334
Уплотнительная машина UM-25 "Бурлак"	1	2010	1,17	100	0,001	0,93	0,02187
Бульдозер Б10ПМ	2	1248	1,17	100	0,001	0,93	0,02716
Автобус НЕФАЗ-5299- 11-52	1	841	0,85	100	0,001	0,93	0,00665
						Итого:	0,214

Отходы минеральных масел трансмиссионных – 40615001313.

Количество отработанного трансмиссионного масла рассчитывается исходя из значения удельного показателя образования отходов:

- 0,05 л на 100 л израсходованного топлива для грузовых автомобилей, работающих на дизельном топливе;
- 0,06 л на 100 л израсходованного топлива для автобусов, работающих на дизельном топливе:
- 1,17 л на 100 л израсходованного топлива для внедорожных автомобилей самосвалов и другой подобной техники, работающей на дизельном топливе.

Марка автотранспор- та	Кол-во	Годовой рас- ход топлива одной едини- цы, л	Значение удельного показателя, л	Нормативный расход топ- лива, л	Коэффициент перевода л в м3	Плотность масла, т/м3	Вес от- хода, т/год
Ковшовый погрузчик «Амкодор 332В»	5	951	1,17	100	0,001	0,885	0,04924
Автомобиль КАМАЗ 6520-3072-53	5	1456	1,17	100	0,001	0,885	0,07538
Вилочный погрузчик POLAR BADGER CPCD20	1	394	1,17	100	0,001	0,885	0,00408
Мини-погрузчик ков- шовый Bobcat S450	1	394	1,17	100	0,001	0,885	0,00408
Поливомоечная машина КО-829Д1-21	1	762	0,05	100	0,001	0,885	0,00034
Самосвал КамАЗ- 65111-50	1	1226	1,17	100	0,001	0,885	0,01269
Уплотнительная машина UM-25 "Бурлак"	1	2010	1,17	100	0,001	0,885	0,02081
Бульдозер Б10ПМ	2	1248	1,17	100	0,001	0,885	0,02584
Автобус НЕФАЗ-5299- 11-52	1	841	0,06	100	0,001	0,885	0,00045
						Итого:	0,193

Отходы минеральных масел гидравлических, не содержащих галогены – 40612001313.

Количество отработанного гидравлического масла рассчитывается исходя из значения удельного показателя образования отходов:

- 0,1 л на 100 л израсходованного топлива для автомобилей с установленным на них рабочим оборудованием с гидравлическим приводом, работающих на дизельном топливе;
- 0,01-0,1 л на 100 л израсходованного топлива (в зависимости от марки автобуса) для автобусов, работающих на дизельном топливе и сжиженном газе;
- 0.6 л на 100 л израсходованного топлива для внедорожных автомобилей самосвалов и другой подобной техники.

Марка автотранспор- та	Кол-во	Годовой рас- ход топлива одной едини- цы, л	Значение удельного показателя, л	Нормативный расход топ- лива, л	Коэффициент перевода л в м3	Плотность масла, т/м3	Вес от- хода, т/год
Ковшовый погрузчик «Амкодор 332В»	5	951	0,6	100	0,001	0,890	0,02539
Автомобиль КАМАЗ 6520-3072-53	5	1456	0,6	100	0,001	0,890	0,03888
Вилочный погрузчик POLAR BADGER CPCD20	1	394	0,6	100	0,001	0,890	0,00210
Мини-погрузчик ков- шовый Bobcat S450	1	394	0,6	100	0,001	0,890	0,00210
Поливомоечная машина КО-829Д1-21	1	762	0,1	100	0,001	0,890	0,00068
Самосвал КамАЗ- 65111-50	1	1226	0,6	100	0,001	0,890	0,00655
Уплотнительная машина UM-25 "Бурлак"	1	2010	0,6	100	0,001	0,890	0,01073
Бульдозер Б10ПМ	2	1248	0,6	100	0,001	0,890	0,01333

Автобус НЕФАЗ-5299- 11-52	1	841	0,1	100	0,001	0,890	0,00075
						Итого:	0,101

Фильтры очистки масла автотранспортных средств отработанные - 92130201523.

Норматив образования отработанных фильтров, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{Hi} \times 10^{-3},$$
 т/год

где:

N_i – количество автомашин і-й марки, шт.;

 n_i – количество фильтров, установленных на автомашине i-й марки, шт.; от 1 до 4 фильтров (в среднем n_i = 2 фильтра);

m_i – вес одного фильтра на автомашине i-й марки, кг;

L_i – средний годовой пробег автомобиля i-й марки, тыс.км (или среднее время работы спецтехники i-й марки, час/период);

L_{ні} – норма пробега подвижного состава і-ой марки до замены фильтровальных элементов, тыс.км (или норма времени до замены фильтров, час);

10-3 – коэффициент перевода кг в тонны.

Замена масляных фильтров производится через 10 тыс.км пробега. В среднем вес одного масляного фильтра на грузовых машинах составляет 1,5 кг.

					Итого:	0,012
Автобус НЕФАЗ-5299-11-52	1	2	1,5	2,628	10	0,00079
Бульдозер Б10ПМ	2	2	1,5	0,456	10	0,00027
Уплотнительная машина UM-25 "Бурлак"	1	2	1,5	0,175	10	0,00005
Самосвал КамАЗ-65111-50	1	2	1,5	3,504	10	0,00105
Поливомоечная машина КО-829Д1-21	1	2	1,5	2,628	10	0,00079
Мини-погрузчик ковшовый Bobcat S450	1	2	1,5	0,499	10	0,00015
Вилочный погрузчик POLAR BADGER CPCD20	1	2	1,5	0,832	10	0,00025
Автомобиль КАМАЗ 6520- 3072-53	5	2	1,5	4,161	10	0,00624
Ковшовый погрузчик «Ам-кодор 332В»	5	2	1,5	1,577	10	0,00237
Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/год

Фильтры воздушные автотранспортных средств отработанные – 92130101524.

Норматив образования отработанных фильтров, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{Hi} \times 10^{-3},$$
 т/год

гле:

N_i – количество автомашин і-й марки, шт.;

 n_i – количество фильтров, установленных на автомашине i-й марки, шт.; от 1 до 4 фильтров (в среднем n_i = 2 фильтра);

m_i – вес одного фильтра на автомашине i-й марки, кг;

 L_i — средний годовой пробег автомобиля і-й марки, тыс.км (или среднее время работы спецтехники і-й марки, час/период);

 $L_{\text{ні}}$ — норма пробега подвижного состава і-ой марки до замены фильтровальных элементов, тыс.км (или норма времени до замены фильтров, час);

10-3 – коэффициент перевода кг в тонны.

Замена воздушных фильтров производится через 20 тыс.км пробега. В среднем вес одного воздушного фильтра на грузовых машинах составляет 0,5 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/год
Ковшовый погрузчик «Ам- кодор 332В»	5	2	0,5	1,577	20	0,00039
Автомобиль КАМАЗ 6520- 3072-53	5	2	0,5	4,161	20	0,00104
Вилочный погрузчик POLAR BADGER CPCD20	1	2	0,5	0,832	20	0,00004
Мини-погрузчик ковшовый Bobcat S450	1	2	0,5	0,499	20	0,00002
Поливомоечная машина КО-829Д1-21	1	2	0,5	2,628	20	0,00013
Самосвал КамАЗ-65111-50	1	2	0,5	3,504	20	0,00018
Уплотнительная машина UM-25 "Бурлак"	1	2	0,5	0,175	20	0,00001
Бульдозер Б10ПМ	2	2	0,5	0,456	20	0,00005
Автобус НЕФАЗ-5299-11-52	1	2	0,5	2,628	20	0,00013
					Итого:	0,002

Фильтры очистки топлива автотранспортных средств отработанные — 92130301523.

Норматив образования отработанных фильтров, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{\text{H}i} \times 10^{\text{-3}},$$
 т/год

где:

N_i – количество автомашин i-й марки, шт.;

 n_i – количество фильтров, установленных на автомашине i-й марки, шт.; от 1 до 4 фильтров (в среднем n_i = 2 фильтра);

m_i – вес одного фильтра на автомашине і-й марки, кг;

L_i – средний годовой пробег автомобиля i-й марки, тыс.км (или среднее время работы спецтехники i-й марки, час/период);

 $L_{\text{ні}}$ – норма пробега подвижного состава і-ой марки до замены фильтровальных элементов, тыс.км (или норма времени до замены фильтров, час);

10-3 – коэффициент перевода кг в тонны.

Замена топливных фильтров производится через 10 тыс.км пробега. В среднем вес одного топливного фильтра на грузовых машинах составляет 0,1 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/год
Ковшовый погрузчик «Ам- кодор 332В»	5	2	0,1	1,577	10	0,000158
Автомобиль КАМАЗ 6520- 3072-53	5	2	0,1	4,161	10	0,000416
Вилочный погрузчик POLAR BADGER CPCD20	1	2	0,1	0,832	10	0,000017
Мини-погрузчик ковшовый Bobcat S450	1	2	0,1	0,499	10	0,000010
Поливомоечная машина КО-829Д1-21	1	2	0,1	2,628	10	0,000053
Самосвал КамАЗ-65111-50	1	2	0,1	3,504	10	0,000070
Уплотнительная машина UM-25 "Бурлак"	1	2	0,1	0,175	10	0,000004
Бульдозер Б10ПМ	2	2	0,1	0,456	10	0,000018
Автобус НЕФАЗ-5299-11-52	1	2	0,1	2,628	10	0,000053
					Итого:	0,001

Лом и отходы, содержащие незагрязненные черные металлы в виде изделий, кусков, несортированные – 46101001205.

Количество лома черных металлов, образующихся при ремонте автомобилей (непригодные детали и узлы, куски металла, металлическая стружка, остатки сварочных электродов, проволоки и т.п.), определяется исходя из значения удельного показателя образования отходов:

- 20,2 кг на 10 000 км пробега для грузовых автомобилей;
- 26,3 кг на 10 000 км пробега для автобусов.

Лом черных металлов от замены агрегатов автомобилей определяется из значения удельного показателя образования отходов:

- 86,0 кг на 10 000 км пробега для грузовых автомобилей;
- 62,0 кг на 10 000 км пробега для автобусов.

				Итого:	0,419
Автобус НЕФАЗ-5299-11-52	1	2628	88,3	10000	0,02321
Бульдозер Б10ПМ	2	456	106,2	10000	0,00969
Уплотнительная машина UM-25 "Бурлак"	1	175	106,2	10000	0,00186
Самосвал КамАЗ-65111-50	1	3504	106,2	10000	0,03721
Поливомоечная машина КО-829Д1-21	1	2628	106,2	10000	0,02791
Мини-погрузчик ковшовый Bobcat S450	1	499	106,2	10000	0,00530
Вилочный погрузчик POLAR BADGER CPCD20	1	832	106,2	10000	0,00884
Автомобиль КАМАЗ 6520- 3072-53	5	4161	106,2	10000	0,22095
Ковшовый погрузчик «Ам- кодор 332В»	5	1577	106,2	10000	0,08374
Марка автотранспорта	Кол-во	Годовой пробег одной единицы, км	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/год

Лом и отходы алюминия несортированные – 46220006205.

Количество лома алюминия, образующегося при ремонте автомобилей, определяется исходя из значения удельного показателя образования отходов:

- 0,55 кг на 10 000 км пробега для грузовых автомобилей;
- 0,77 кг на 10 000 км пробега для автобусов.

Количество лома алюминия от замены агрегатов автомобилей определяется исходя из значения удельного показателя образования отходов:

- 31,8 кг на 10 000 км пробега для грузовых автомобилей;
- 44,5 кг на 10 000 км пробега для автобусов.

Марка автотранспорта	Кол-во	Годовой пробег одной единицы, км	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/год
Ковшовый погрузчик «Ам- кодор 332В»	5	1577	32,35	10000	0,02551
Автомобиль КАМАЗ 6520- 3072-53	5	4161	32,35	10000	0,06730
Вилочный погрузчик POLAR BADGER CPCD20	1	832	32,35	10000	0,00269
Мини-погрузчик ковшовый Bobcat S450	1	499	32,35	10000	0,00161
Поливомоечная машина КО-829Д1-21	1	2628	32,35	10000	0,00850
Самосвал КамАЗ-65111-50	1	3504	32,35	10000	0,01134
Уплотнительная машина UM-25 "Бурлак"	1	175	32,35	10000	0,00057
Бульдозер Б10ПМ	2	456	32,35	10000	0,00295
Автобус НЕФАЗ-5299-11-52	1	2628	45,27	10000	0,01190
				Итого:	0,132

Тормозные колодки отработанные без накладок асбестовых – 92031001525.

Норматив образования отработанных тормозных колодок, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i imes n_i imes m_i imes L_i \, / \, L_{\mbox{\scriptsize H}i} imes 10^{-3},$$
 т/год

где:

N_i – количество автомашин і-й марки, шт.;

 n_i – количество тормозных колодок, установленных на автомашине i-й марки, шт.;

m_i – вес одной тормозной колодки на автомашине i-й марки, кг;

 L_i — средний годовой пробег автомобиля i-й марки, тыс.км/год (или среднее время работы спецтехники i-й марки, час/период);

 $L_{\text{ні}}$ – норма пробега подвижного состава і-ой марки до замены тормозных колодок, тыс.км (или норма времени до замены фильтров, час);

10-3 – коэффициент перевода кг в тонны.

Замена тормозных колодок для грузовых автомобилей производится через 10 тыс.км пробега. В среднем вес одной тормозной колодки на грузовых машинах составляет 0,53 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/год
Ковшовый погрузчик «Ам- кодор 332В»	5	8	0,53	1,577	10	0,00334
Автомобиль КАМАЗ 6520- 3072-53	5	8	0,53	4,161	10	0,00882
Вилочный погрузчик POLAR BADGER CPCD20	1	8	0,53	0,832	10	0,00035
Мини-погрузчик ковшовый Bobcat S450	1	8	0,53	0,499	10	0,00021
Поливомоечная машина КО-829Д1-21	1	8	0,53	2,628	10	0,00111
Самосвал КамАЗ-65111-50	1	8	0,53	3,504	10	0,00149
Уплотнительная машина UM-25 "Бурлак"	1	8	0,53	0,175	10	0,00007
Бульдозер Б10ПМ	2	8	0,53	0,456	10	0,00039
Автобус НЕФАЗ-5299-11-52	1	8	0,53	2,628	10	0,00111
					Итого:	0,017

Отходы от дезинфицирующих ванн для мойки колес автотранспорта.

Мойка колес происходит в двух железобетонных ваннах, заполненных опилками и дезинфицирующим раствором.

Методика расчета отсутствует. На основании СанПиН 2.1.3684-21 «Санитарноэпидемиологические требования к содержанию территорий городских и сельских поселений, к водным объектам, питьевой воде и питьевому водоснабжению населения, атмосферному воздуху, почвам, жилым помещениям, эксплуатации производственных, общественных помещений, организации и проведению санитарно-противоэпидемических (профилактических) мероприятий» металлические сборники для сбора отходов, установленные на городской территории, должны подвергаться мойке 1 раз в 10 дней в теплый период года. Принимаем, что дезинфицирующий раствор в ванне для мойки колес будет заменяться не реже 1 раза в 10 дней.

Опилки, пропитанные вироцидом, отработанные – 73910211294.

Расчет ведем по одной дезинфицирующей ванне.

Внутренние размеры дезинфицирующей ванны составляют: ширина $-3\,$ м, длина $-18\,$ м, глубина $-0.3\,$ м. Таким образом, геометрический объем ванны составит $16.2\,$ м $^3.$

Количество отходов составит: $16.2 \text{ м}^3 \times 17 \text{ раз/год} = 275.400 \text{ тонн}.$

В том числе: опилки древесные, загрязненные $-16.2 \text{ м}^3 \times 17 \text{ раз/год} \times 0.2 \text{ т/м}^3 = 55,080 т/год;$

3%-ный раствор дезинфицирующего средства: 275,400-55,080=220,320 т/год, в том числе вода 213,710 тонн.

При условии, что часть воды будет испаряться и будет вынос на колесах автотранспорта, считаем, что воды в отходе останется не более 40%. Тогда количество опилок, загрязненных вироцидом, составит:

M = 55,080 + 6,6096 + 85,484 = 147,174 T/год

Из расчета двух дезинфицирующих ванн количество отхода составит 294,348 т/год.

Отходы от мойки колес автотранспорта.

Расчет количества отходов проводится в соответствии со «Сборником удельных показателей образования отходов производства и потребления». Государственный комитет Российской Федерации по охране окружающей среды. Москва, 1999г.

Осадок механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15% – 72310202394.

Количество осадка сточных вод (влажностью 95-98%) от мойки грузовых автомобилей определяется исходя из значения удельного показателя образования отходов:

- 146,3 кг на 10 000 км пробега (сухого вещества без учета массы воды).

```
Норма образования отхода составит: M = 335 \times (146.3 \times 3500 / 10000) \times 10^{-3} = 17.154 т/год,
```

где: 335 — количество единиц автотранспорта, транспортирующего отходы на участок захоронения ПО, шт./год;

3500 – годовой пробег одной единицы автотранспорта, км;

10-3 – коэффициент перевода кг в тонны.

Всплывшие нефтепродукты из нефтеловушек и аналогичных сооружений – 40635001313.

Количество маслонефтеотходов, обводненных (80%) от мойки грузовых автомобилей определяется исходя из значения удельного показателя образования отходов:

- 2,99 кг на 10 000 км пробега (сухого вещества без учета массы воды).

```
Норма образования отхода составит: M = 335 \times (2,99 \times 3500 / 10000) \times 10^{-3} = 0,351 т/год,
```

где: 335 — количество единиц автотранспорта, транспортирующего отходы на участок захоронения ПО, шт./год;

3500 – годовой пробег одной единицы автотранспорта, км;

10-3 – коэффициент перевода кг в тонны.

Отходы фильтрата, образующегося в «теле» участков захоронения ТКО и ПО, с площадки обезвреживания органических отходов IV-V класса.

Образование фильтрата – неизбежный процесс, который происходит при длительном хранении любого вида отходов. Атмосферные осадки в виде дождя и снега, проходя через толщу отходов, «обогащаются» множеством разнообразных веществ, и превращаются в сложную по химическому составу жидкость с неприятным запахом.

Фильтрат, образующийся в «теле» участков захоронения ТКО и ПО, направляется в пруд-накопитель фильтрата, оттуда — на очистные сооружения фильтрата.

Фильтрат, выделяющийся из отходов в процессе компостирования на площадке обезвреживания органических отходов IV-V класса, по предусмотренным в основании буртов каналам направляется посредством системы сбора фильтрата в накопительные емкости (2 шт.), оттуда — на очистные сооружения фильтрата. Ввиду отсутствия данного вида отхода в ФККО, целесообразно именовать его аналогично фильтрату с полигонов захоронения ТКО, т.к. процесс образования данного вида отхода в обоих случаях идентичен.

Количество фильтрата при эксплуатации объекта составит:

 $M_{\Phi} = (8879 + 1750 + 912,5) \text{ м}^3/\text{год} + 1846 \text{ м}^3/\text{год}$ (выпадение осадков на поверхность) $-2767 \text{ м}^3/\text{год}$ (испарение с поверхности) $= 10620,5 \text{ м}^3/\text{год}$ (10620,500 т/год), в том числе:

Фильтрат полигонов захоронения твердых коммунальных отходов малоопасный (73910112394) – 9010,432 т/год

Фильтрат полигонов захоронения промышленных отходов, отнесенных к III-V классам опасности (74812112304) – 1610,068 т/год.

Отходы от очистных сооружений фильтрата.

Для работы очистных сооружений фильтрата предусматривается размещение двух обратноосмотических установок глубокой очистки и обессоливания стоков полигона про-изводительностью 25 м³/сутки (1,3 м³/час) каждая. Установки размещаются в полной заводской готовности в двух утепленных блок-контейнерах.

Очистные сооружения фильтрата работают в теплый период года (≈ 197 суток в год).

В результате работы очистных сооружений по очистке фильтрата полигона планируется образование следующих отходов:

Отходы очистки фильтрата полигонов захоронения твердых коммунальных отходов методом обратного осмоса (73913331393)* - концентрат, образующийся в результате очистки стоков (фильтрата) полигона:

 $M_{\kappa} = 7.4 \text{ м}^3/\text{сут} \times 197 \text{ сут}/\text{год} = 1457.8 \text{ м}^3/\text{год}$ (1457,800 т/год)

* Состав и количество концентрата после электрохимической обработки уточняется в результате пуско-наладочных работ (ПНР) на реальных сточных водах.

Согласно документации на обратноосмотическую установку глубокой очистки и обессоливания производительностью $1,3\,\mathrm{m}^3/\mathrm{ч}$ ас ниже приведены вспомогательные материалы, рекомендуемые к применению (из расчета на одну установку):

- триполифосфат натрия пищевой по ТУ 2148-017-00203677-99

 $5 \text{ кг/сут} \times 197 \text{ сут/год} = 985 \text{ кг/год}$

Потребуется 20 полиэтиленовых мешков по 50 кг.

- кислота соляная HCl (36%) по ГОСТ 3118-77

Объем потребляемой соляной кислоты составляет 0.06 л/операцию, потребность в соляной кислоте составляет 1 раз в две недели, т.е. 14 раз в год. Объем составит $0.06 \times 14 = 0.84$ л/год.

Кислоту упаковывают в полиэтиленовые канистры вместимостью 50 л – возвратная тара. Потребуется 1 полиэтиленовая канистра.

- серная кислота H₂SO₄ (92%) по ГОСТ 2184-77

 $40 \ \text{кг/сут} \times 197 \ \text{сут/год} = 7880 \ \text{кг/год}$

На территории участка не хранится, а поставляется по потребности.

- пиросульфит натрия Na₂S₂O₅ по ТУ 2142-050-00206457-99

Количество потребляемого пиросульфита натрия составляет 1,2 кг/операцию, потребность в пиросульфите натрия составляет 1 раз в два месяца, т.е. 4 раза в год. Количество составит $1,2 \times 4 = 4,8$ кг/год.

Потребуется 1 полиэтиленовый мешок по 25 кг.

- перекись водорода H_2O_2 по ΓOCT 177-88

Потребность в перекиси водорода не постоянная, она нужна для дезинфекции установки в жаркую погоду в объёме 0,5 л/операцию.

 $0.5 \times 6.5 \text{ мес.} \times 1 \text{ раз/мес.} \approx 3.5 \text{ л}$

В связи с этим на территории участка не хранится, а поставляется по потребности.

-ингибитор солеотложений типа Avista Vitec 3000 (или 4000)

 $0.1 \text{ кг/сут} \times 197 \text{ сут/год} = 19.7 \text{ кг/год}$

Потребуется 1 полиэтиленовая канистра по 23 кг – возвратная тара.

- соль поваренная таблетированная (хлористый натрий NaCl) по ГОСТ 4233-77

Количество потребляемой поваренной соли составляет 6 кг/операцию, потребность в поваренной соли составляет 1 раз в месяц, т.е. 7 раз в год. Количество составит $6 \times 7 = 42$ кг/год.

Потребуется 2 полиэтиленовых мешка по 25 кг.

- едкий натр NaOH по ГОСТ 4328-77

 $1,4 \ \text{кг/сут} \times 197 \ \text{сут/год} = 275,8 \ \text{кг/год}$

Потребуется 12 полиэтиленовых мешков по 25 кг.

Вес пустого полиэтиленового мешка вместимостью 50 кг составляет 1 кг. Вес пустого полиэтиленового мешка вместимостью 25 кг-0.5 кг.

В результате применения данных вспомогательных материалов образуются отходы упаковочных материалов следующих видов (из расчета на две установки):

Упаковка полиэтиленовая, загрязненная неорганическими хлоридами и/или сульфатами - 43811215514 в количестве 0,003 т/год;

Упаковка полиэтиленовая, загрязненная неорганическими полифосфатами — 43811218514 в количестве 0,040 т/год;

Тара полиэтиленовая, загрязненная щелочами (содержание менее 5%) – 43811231514 в количестве 0,012 т/год.

Расчет количества образующихся отходов обратноосмотических мембран

Мембраны обратного осмоса полиамидные отработанные при водоподготовке – 71021412514.

Согласно технико-коммерческому предложению при работе обратноосмотических установок один раз в год рекомендуется замена элементов в мембранном модуле. Максимально принимаем, что в течение одного года будет произведена замена всех обратноосмотических мембран.

Норма образования отхода составит:

 $M = 2 \times 16 \times 4.1 \times 10^{-3} = 0.131$ т/год,

где: 2 – количество обратноосмотических установок, шт.;

16 — количество элементов в мембранном модуле обратноосмотической установки (8 элементов типа К 4040-С, 8 элементов типа К 4040-С3), шт.;

4,1 – вес обратноосмотического элемента (мембраны), кг;

10-3 – коэффициент перевода кг в тонны.

Отходы зачистки дренажных канав карт участков захоронения ТКО и ПО, пруда-накопителя фильтрата.

Отходы очистки дренажных канав, прудов-накопителей фильтрата полигонов захоронения твердых коммунальных отходов малоопасные — 73910311394.

Отход образуется в результате зачистки дренажных канав и прудов-накопителей на полигоне размещения отходов. Для данного отхода отсутствует отраслевой норматив образования. По аналогии с действующими объектами, количество отхода составит **10,000** т/год.

Отходы от очистных сооружений ливневых стоков.

<u>1.1. Расчет отходов от очистки ливнестоков с административно-</u> производственной зоны.

Очистка ливнестоков с территории административно-производственной зоны осуществляется на локальных очистных сооружениях серии Fibrand производительностью 10 л/с (36 м^3 /час). Исходные данные для расчета количества отходов осадка и нефтепродуктов приняты в соответствии с коммерческим предложением поставщика оборудования.

В соответствии с материалами инженерно-экологических изысканий, среднегодовое количество осадков составляет 427 мм.

Площадь твердого покрытия административно-производственной зоны составляет 13298 m^2 .

Количество воды, требуемой на полив территории в теплый период года, составляет $55,73 \text{ m}^3/\text{сут}$ ($3343,8 \text{ m}^3/\text{год}$).

Среднегодовое количество ливневых вод (дождевых, талых и поливомоечных) составит:

$$M = (13298 \text{ m}^2 \times 0.427) + 3343.8 = 9022.046 \text{ m}^3.$$

Расчет количества отходов проводится в соответствии с «Методическими рекомендациями по оценке объемов образования отходов производства и потребления». М.: ГУ НИЦПУРО. - 2003 г.

<u>Расчет количества осадка, улавливаемого пескоуловителем и маслобензоотделите-</u> лем (по взвешенным веществам)

Осадок механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15% – 72310202394.

Количество осадков исходной влажности очистных сооружений, т/год, определяется по формуле:

$$Q_{oc\ w} = W / (100 - P_{oc}) \times 10^4,$$

где: W – количество образующегося осадка в сухой массе, т/год;

Рос – исходная влажность осадка, %.

$$W = q_w \times (C_{BX} - C_{BMX}),$$

где: q_w – объем сточных вод, поступающих на очистные сооружения, м 3 /год;

 $C_{\text{вх}}$ – концентрация загрязняющих веществ при поступлении на очистные сооружения, мг/л;

 $C_{\text{вых}}$ – концентрация загрязняющих веществ при выпуске с очистных сооружений, мг/л.

Количество подсушенного осадка составит:

$$Q_{oc.\pi} = Q_{oc w} \times (100 - P_{oc}) / (100 - P_{oc.\pi}),$$

где: Рос. п – влажность подсушенного осадка, %.

$$W=9022,046\times(1000-2^1)=9004001,908$$
 т/год $Q_{oc\ w}=9004001,908$ / $(100-99)\times10^4=900,400$ т/год $Q_{oc.\pi}=900,400\times(100-99)$ / $(100-70)=$ **30,013** т/год.

Расчет количества нефтепродуктов, улавливаемых маслобензоотделителем

Всплывшие нефтепродукты из нефтеловушек и аналогичных сооружений – 40635001313.

Количество обводненных нефтепродуктов, т/год, определяется по формуле:

$$Q_{\text{п.не}\phi} = W \times (C_{\text{вх}} - C_{\text{вых}}) / (100 - P_{\text{не}\phi}) \times 10^4,$$

где: W – количество стоков, поступающих на очистные сооружения, т/год;

 $C_{\text{вх}}$ – концентрация нефтепродуктов в стоках при поступлении на очистные сооружения, мг/л;

 $C_{\text{вых}}$ – концентрация нефтепродуктов при выпуске с очистных сооружений, мг/л; $P_{\text{неф}}$ – процент обводненности нефтепродуктов, %.

Норма образования отхода составит:

$$M = 9022,046 \times (100 - 0,04^1) / (100 - 70) \times 10^4 = 3,006$$
 т/год.

1.2. Расчет отходов от очистки ливнестоков с участка обезвреживания органических отходов IV-V класса.

Очистка ливнестоков с территории участка обезвреживания органических отходов IV-V класса также осуществляется на локальных очистных сооружениях серии Fibrand производительностью $10~\rm{n/c}$ ($36~\rm{m^3/vac}$). Исходные данные для расчета количества отходов осадка и нефтепродуктов приняты в соответствии с коммерческим предложением поставщика оборудования.

Среднегодовое количество ливневых вод (дождевых, талых и поливомоечных) составит $2964,77 \text{ м}^3$.

Расчет количества отходов проводится в соответствии с «Методическими рекомендациями по оценке объемов образования отходов производства и потребления». М.: ГУ ${\rm H}$ НИЦПУРО. – 2003г.

<u>Расчет количества осадка, улавливаемого пескоуловителем и маслобензоотделите-</u> лем (по взвешенным веществам)

Осадок механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15% – 72310202394.

Количество осадков исходной влажности очистных сооружений, т/год, определяется по формуле:

$$Q_{oc w} = W / (100 - P_{oc}) \times 10^4$$

где: W – количество образующегося осадка в сухой массе, т/год; P_{oc} – исходная влажность осадка, %.

$$W = q_w \times (C_{BX} - C_{BMX}),$$

¹ В соответствии с КП поставщика оборудования принят усредненный показатель.

где: q_w – объем сточных вод, поступающих на очистные сооружения, M^3 /год;

 $C_{\text{вх}}$ – концентрация загрязняющих веществ при поступлении на очистные сооружения, мг/л;

 $C_{\text{вых}}$ – концентрация загрязняющих веществ при выпуске с очистных сооружений, мг/л.

Количество подсушенного осадка составит:

$$Q_{\text{oc.}\Pi} = Q_{\text{oc w}} \times (100 - P_{\text{oc}}) / (100 - P_{\text{oc.}\Pi}),$$

где: Рос.п – влажность подсушенного осадка, %.

$$W = 2964,77 \times (1000 - 2) = 2958840,46 \text{ т/год}$$
 $Q_{oc\ w} = 2958840,46 / (100 - 99) \times 10^4 = 295,884 \text{ т/год}$ $Q_{oc.\Pi} = 295,884 \times (100 - 99) / (100 - 70) = 9,863 \text{ т/год}.$

Расчет количества нефтепродуктов, улавливаемых маслобензоотделителем

Всплывшие нефтепродукты из нефтеловушек и аналогичных сооружений – 40635001313.

Количество обводненных нефтепродуктов, т/год, определяется по формуле:

$$Q_{\text{п.не}\phi} = W \times (C_{\text{вх}} - C_{\text{вых}}) / (100 - P_{\text{не}\phi}) \times 10^4$$

где: W – количество стоков, поступающих на очистные сооружения, т/год;

 $C_{\text{вх}}$ – концентрация нефтепродуктов в стоках при поступлении на очистные сооружения, мг/л;

 $C_{\text{вых}}$ – концентрация нефтепродуктов при выпуске с очистных сооружений, мг/л;

Р_{неф} – процент обводненности нефтепродуктов, %.

Норма образования отхода составит:

$$M = 2964,77 \times (100 - 0,04) / (100 - 70) \times 10^4 = 0,988$$
 т/год.

1.3. Расчет количества отработанной фильтрующей загрузки

В структуре ЛОС установлен фильтр грубой очистки типа ОТН-10 с полимерной загрузкой и фильтр сорбционный безнапорный типа ФСБ-10 с угольной загрузкой. Замена фильтрующей загрузки осуществляется 1 раз в 5 лет.

Фильтрующая загрузка из разнородных полимерных материалов, загрязненная нефтепродуктами (содержание нефтепродуктов менее 15%) - 44372182524.

Объем фильтрующей полимерной загрузки составляет 0,2 м³.

Грязеемкость -40 кг/м^3 .

Количество отработанной фильтрующей загрузки с учетом загрязнений составит:

$$M = 0.2 \times 40 \times 10^{-3} = 0.008$$
 т/год.

Фильтрующая загрузка на основе угля активированного, загрязненная нефтепродуктами (содержание нефтепродуктов менее 15%) - 44371113204.

Объем фильтрующей угольной загрузки составляет 80 кг.

Грязеемкость — 1,5 г/г.

Количество отработанной фильтрующей загрузки с учетом загрязнений составит:

$$M = 0.080 + (1.5 \times 80000 / 10^6) = 0.200$$
 т/год.

1.4. Расчет количества тары из-под фильтрующей загрузки

Упаковка полипропиленовая, загрязненная нерастворимыми или малорастворимыми неорганическими веществами природного происхождения – 43812281514.

Норма образования отхода составит:

$$P = \sum Q_i / M_i \times m_i \times 10^{-3},$$
 т/год

где: Q_і – расход сырья і-го вида, кг/год;

M_i – вес сырья i-го вида в единице упаковки, кг;

m_i – вес единицы пустой упаковки из-под сырья і-го вида, кг;

10-3 – коэффициент перевода кг в тонны.

Фильтрующая полимерная загрузка поступает на объект в полипропиленовых мешках.

Вес пустого полипропиленового мешка вместимостью 7 кг составляет 0,15 кг.

Норма образования отхода составит:

$$P = (0.2 \times 300^2) / 7 \times 0.15 \times 10^{-3} = 0.001 \text{ т/год.}$$

Активированный уголь поступает на объект в полипропиленовых мешках.

Вес пустого полипропиленового мешка вместимостью 25 кг составляет 0,5 кг.

Норма образования отхода составит:

$$P = 80 / 25 \times 0.5 \times 10^{-3} = 0.002$$
 т/год.

Общее количество отхода составит 0,003 т/год.

1.5. Расчет количества ламп от блока комплексной установки УФ-обеззараживания

Лампы амальгамные бактерицидные, утратившие потребительские свойства — 47110211523.

В комплексной установке УФ-обеззараживания установлены бактерицидные лампы марки ДБ-200 в количестве 4 шт. Согласно техническим параметрам ламп срок службы составляет 12000 часов. Вес лампы – 195 грамм.

«Чистое» время работы очистных сооружений определяется соотношением годового объема сточных вод к производительности очистных сооружений: (9022,046 + 2964,77) $\,\mathrm{m}^3$ /год / 36 $\,\mathrm{m}^3$ /час ≈ 333 час/год.

Отход образуется при замене перегоревших бактерицидных ламп. Расчет проводится аналогично ртутным лампам по «Сборнику методик по расчету объемов образования отходов. Методика расчета объемов образования отходов МРО-6-99. Отработанные ртутьсодержащие лампы». СПб, 2004г. Норматив образования отхода рассчитывается по формуле:

$$N = \sum n_i \times m_i \times t_i \times 10^{-6} / k_i$$
, т/год

где: n_i – количество установленных ламп i-той марки, шт.;

t_i – фактическое количество часов работы ламп i-той марки, час/год;

k_i – эксплуатационный срок службы ламп i-той марки, час;

m_i – вес одной лампы, г;

10-6 – коэффициент перевода грамм в тонны.

² 300 – насыпная плотность полимерной фильтрующей загрузки, кг/м³.

Норма образования отхода составит:

Наименование объекта	Кол-во, шт.	Среднее время ра- боты, час/год	Вес 1-й лампы, г	Нормативный срок службы 1- й лампы, час	Вес от- хода, т/год
Блок УФ-обеззараживания очистных сооружений ливневых стоков	4	333	195	12000	0,00002
				Итого:	0,00002

Поскольку суммарный вес всех УФ-ламп превышает полученное значение веса отходов, и утилизация отхода будет производиться в целостном состоянии, условно принимаем годовой норматив образования отхода, равный суммарному весу всех ламп (4×195 грамм) – 0.001 т/год.

2.1. Расчет отходов от очистки ливнестоков с участка захоронения ПО.

Очистка ливнестоков с территории участка захоронения ПО осуществляется на локальных очистных сооружениях серии Fibrand производительностью 5 л/с (18 м³/час). Исходные данные для расчета количества отходов осадка и нефтепродуктов приняты в соответствии с коммерческим предложением поставщика оборудования.

Среднегодовое количество ливневых вод (дождевых, талых и поливомоечных) составит $7603,55 \text{ м}^3$.

Расчет количества отходов проводится в соответствии с «Методическими рекомендациями по оценке объемов образования отходов производства и потребления». М.: ГУ ${\rm H}$ НИЦПУРО. – 2003 г.

<u>Расчет количества осадка, улавливаемого пескоуловителем и маслобензоотделите-</u> <u>лем (по взвешенным веществам)</u>

Осадок механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15% – 72310202394.

Количество осадков исходной влажности очистных сооружений, т/год, определяется по формуле:

$$Q_{oc w} = W / (100 - P_{oc}) \times 10^4$$

где: W – количество образующегося осадка в сухой массе, т/год; P_{oc} – исходная влажность осадка, %.

$$W = q_w \times (C_{BX} - C_{BMX}),$$

где: q_w – объем сточных вод, поступающих на очистные сооружения, m^3 /год; $C_{\rm Bx}$ – концентрация загрязняющих веществ при поступлении на очистные сооружения. $m_{\rm F}/n$:

 $C_{\text{вых}}$ – концентрация загрязняющих веществ при выпуске с очистных сооружений, мг/л.

Количество подсушенного осадка составит:

$$Q_{oc.\pi} = Q_{oc w} \times (100 - P_{oc}) / (100 - P_{oc.\pi}),$$

где: $P_{\text{ос.п}}$ – влажность подсушенного осадка, %.

W = 7603,55 × (1000 – 2) = 7588342,9 т/год
$$Q_{oc\ w}$$
 = 7588342,9 / (100 – 99) × 10^4 = 758,834 т/год $Q_{oc.\pi}$ = 758,834 × (100 – 99) / (100 – 70) = **25,294** т/год.

Расчет количества нефтепродуктов, улавливаемых маслобензоотделителем

Всплывшие нефтепродукты из нефтеловушек и аналогичных сооружений – 40635001313.

Количество обводненных нефтепродуктов, т/год, определяется по формуле:

$$Q_{\text{п.неф}} = W \times (C_{\text{вх}} - C_{\text{вых}}) / (100 - P_{\text{неф}}) \times 10^4$$

где: W – количество стоков, поступающих на очистные сооружения, т/год;

 $C_{\text{вх}}$ – концентрация нефтепродуктов в стоках при поступлении на очистные сооружения, мг/л;

 $C_{\text{вых}}$ – концентрация нефтепродуктов при выпуске с очистных сооружений, мг/л;

 $P_{\text{неф}}$ – процент обводненности нефтепродуктов, %.

Норма образования отхода составит:

$$M = 7603,55 \times (100 - 0.04) / (100 - 70) \times 10^4 = 2,534$$
 т/год.

2.2. Расчет количества отработанной фильтрующей загрузки

В структуре ЛОС установлен фильтр грубой очистки типа ОТН-10 с полимерной загрузкой и фильтр сорбционный безнапорный типа ФСБ-10 с угольной загрузкой. Замена фильтрующей загрузки осуществляется 1 раз в 5 лет.

Фильтрующая загрузка из разнородных полимерных материалов, загрязненная нефтепродуктами (содержание нефтепродуктов менее 15%) – 44372182524.

Объем фильтрующей полимерной загрузки составляет 0,1 м³.

Грязеемкость – 40 кг/м^3 .

Количество отработанной фильтрующей загрузки с учетом загрязнений составит:

$$M = 0.1 \times 40 \times 10^{-3} = 0.004$$
 т/год.

Фильтрующая загрузка на основе угля активированного, загрязненная нефтепродуктами (содержание нефтепродуктов менее 15%) – 44371113204.

Объем фильтрующей угольной загрузки составляет 40 кг.

Грязеемкость — 1,5 г/г.

Количество отработанной фильтрующей загрузки с учетом загрязнений составит:

$$M = 0.040 + (1.5 \times 40000 / 10^6) = 0.100$$
 т/год.

2.3. Расчет количества тары из-под фильтрующей загрузки

Упаковка полипропиленовая, загрязненная нерастворимыми или малорастворимыми неорганическими веществами природного происхождения – 43812281514.

Норма образования отхода составит:

$$P = \sum Q_i / M_i \times m_i \times 10^{-3},$$
 т/год

где: Q_і – расход сырья і-го вида, кг/год;

M_i – вес сырья i-го вида в единице упаковки, кг;

 m_i – вес единицы пустой упаковки из-под сырья і-го вида, кг;

10-3 – коэффициент перевода кг в тонны.

Фильтрующая полимерная загрузка поступает на объект в полипропиленовых мешках.

Вес пустого полипропиленового мешка вместимостью 7 кг составляет 0,15 кг.

Норма образования отхода составит:

$$P = (0.1 \times 300) / 7 \times 0.15 \times 10^{-3} = 0.001 \text{ т/год.}$$

Активированный уголь поступает на объект в полипропиленовых мешках.

Вес пустого полипропиленового мешка вместимостью 25 кг составляет 0,5 кг.

Норма образования отхода составит:

$$P = 40 / 25 \times 0.5 \times 10^{-3} = 0.001$$
 т/год.

Общее количество отхода составит 0,002 т/год.

2.4. Расчет количества ламп от блока комплексной установки УФ-обеззараживания

Лампы амальгамные бактерицидные, утратившие потребительские свойства — 47110211523.

В комплексной установке УФ-обеззараживания установлены бактерицидные лампы марки ДБ-200 в количестве 4 шт. Согласно техническим параметрам ламп срок службы составляет 12000 часов. Вес лампы – 195 грамм.

«Чистое» время работы очистных сооружений определяется соотношением годового объема сточных вод к производительности очистных сооружений: $7603,55 \text{ m}^3/\text{год} / 18 \text{ m}^3/\text{час} \approx 423 \text{ час/год}.$

Отход образуется при замене перегоревших бактерицидных ламп. Расчет проводится аналогично ртутным лампам по «Сборнику методик по расчету объемов образования отходов. Методика расчета объемов образования отходов МРО-6-99. Отработанные ртутьсодержащие лампы». СПб, 2004г. Норматив образования отхода рассчитывается по формуле:

$$N = \sum n_i \times m_i \times t_i \times 10^{-6} / k_i$$
, т/год

где: n_i – количество установленных ламп i-той марки, шт.;

t_i – фактическое количество часов работы ламп i-той марки, час/год;

k_i – эксплуатационный срок службы ламп i-той марки, час;

m_i – вес одной лампы, г;

10-6 – коэффициент перевода грамм в тонны.

Норма образования отхода составит:

Наименование объекта	Кол-во, шт.	Среднее время ра- боты, час/год	Вес 1-й лампы, г	Нормативный срок службы 1- й лампы, час	Вес от- хода, т/год
Блок УФ-обеззараживания очистных сооружений ливневых стоков	4	423	195	12000	0,00003
				Итого:	0,00003

Поскольку суммарный вес всех УФ-ламп превышает полученное значение веса отходов, и утилизация отхода будет производиться в целостном состоянии, условно принимаем годовой норматив образования отхода, равный суммарному весу всех ламп (4×195 грамм) – 0.001 т/год.

Отходы от котельной.

Отходы золы от сжигания древесных пеллет

Зола от сжигания древесного топлива умеренно опасная – 61190001404.

Предусмотрена установка в котельной трех котлов «Светлобор ЭКО-300», работающих на твердом топливе – древесных пеллетах. Годовой расход пеллет составляет 1842,228 тонн.

Котлы снабжены мультициклоном для улавливания золы и искр в дымогарных газах. Расчет ведется согласно «Сборнику методик по расчету выбросов в атмосферу загрязняющих веществ различными производствами», Л., Гидрометеоиздат, 1986г.

Качественные характеристики древесных пеллет приняты для расчета в соответствии с рекомендациями к качеству пеллет «Паспорта и инструкции по эксплуатации на универсальный котел «Светлобор ЭКО-300»: зольность не более 1%, низшая теплота сгорания топлива 16900 кДж/кг (4039 ккал/кг).

Расчет образования количества золы древесной при сжигании твердого топлива в отопительных печах выполняется по формуле:

$$M_{30\pi, \text{древ}} = B \times \{A_p + [(q_4 \times Q_{HP}) / 8100]\} \times 0.01, \text{ т/год,}$$

где: В – расход топлива, т/год;

 A_{p} – зольность топлива; = 1%;

 q_4 – потери тепла с механическим недожогом топлива; = 2%;

 Q_{HP} — низшая теплота сгорания топлива; = 16900 кДж/кг (4039 ккал/кг).

Расчет количества твердых частиц (золы древесной), выброшенной в атмосферу бытовыми печами, с учетом частиц, уловленных золоулавливающими оборудованием, выполняется по формуле:

$$M_{TB} = B \times A_p \times 0.005 \times (1 - P/100), T/год,$$

где: 0,005 – коэффициент, зависящий от типа топки и топлива; Р – доля твердых частиц, улавливаемых в золоуловителях; = 85%.

$$M_{\scriptscriptstyle 3ОЛ.Древ.} = 1842,228 \times \{1 + [(2 \times 4039) / 8100]\} \times 0,01 = 36,795$$
 т/год $M_{\scriptscriptstyle TB} = 1842,228 \times 1 \times 0,005 \times (1 - 85/100) = 1,382$ т/год

Количество образующейся золы древесной составит:

$$M = M_{30л,древ.}$$
 - $M_{TB} = 36,795 - 1,382 = 35,413$ т/год.

Расчет количества тары из-под древесных пеллет

Отходы пленки полиэтилена и изделий из нее незагрязненные – 43411002295.

Древесные пеллеты поступают на объект в полиэтиленовых мешках.

Вес пустого полиэтиленового мешка вместимостью 20 кг составляет 0,4 кг.

Норма образования отхода составит:

$$P = \sum Q_i / M_i \times m_i \times 10^{-3},$$
 т/год

где: Q_i – расход сырья i-го вида, кг/год;

Мі – вес сырья і-го вида в единице упаковки, кг;

m_i – вес единицы пустой упаковки из-под сырья і-го вида, кг;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

$$P = 1842228 / 20 \times 0,4 \times 10^{-3} = 36,845$$
 т/год.

Отходы от водоподготовки

Исходные данные для расчетов приняты в соответствии с технико-коммерческим предложением на систему водоподготовки поставщика оборудования.

В системе водоподготовки процесс удаления солей жесткости из воды осуществляется методом ионного обмена путем фильтрования на установке умягчения воды «Акваюнит» серии ASW. Установка умягчения состоит из двух фильтров, загруженных ионообменной смолой в Na-форме (один фильтр в работе, другой в стадии регенерации или режиме ожидания), клапана управления и солевого бака.

Примечание: для расчета условно принимаем, что в течение одного года будет полностью проведена замена ионита.

Расчет количества отходов фильтрующей загрузки

Ионообменные смолы отработанные при водоподготовке – 71021101205.

Количество отработанной фильтрующей ионитовой загрузки определяется по формуле:

$$N = V \times \rho \times 10^{-3}$$
, т/год

где: V – объем загрузки ионитового фильтра, л;

р – плотность ионита в рабочем (выгруженном) состоянии, кг/л;

 10^{-3} – коэффициент перевода кг в тонны.

Количество отхода составит:

$$N = 75 \times 1.3 \times 10^{-3} = 0.098$$
 т/год.

Гравийная загрузка фильтров подготовки технической воды отработанная малоопасная — 71021021214.

Количество отработанной фильтрующей ионитовой загрузки определяется по формуле:

$$N = V \times 10^{-3}$$
, $T/год$

где: V – объем загрузки ионитового фильтра, кг; 10^{-3} – коэффициент перевода кг в тонны.

Количество отхода составит:

$$N = 15 \times 10^{-3} =$$
0,015 т/год.

Расчет количества тары из-под ионообменных смол

Отходы упаковки из бумаги и картона, загрязненной ионообменными смолами – 40591913604.

Ионообменные смолы поступают на объект в бумажных мешках.

Вес пустого бумажного мешка вместимостью 19 кг составляет 0,4 кг.

Норма образования отхода составит:

$$P = \sum Q_i / M_i \times m_i \times 10^{-3}$$
, т/год

где: Q_і – расход сырья і-го вида, кг/год;

M_i – вес сырья i-го вида в единице упаковки, кг;

m_i – вес единицы пустой упаковки из-под сырья і-го вида, кг;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

$$P = (75 \text{ л} \times 1.3 \text{ кг/л}) / 19 \times 0.4 \times 10^{-3} = 0.002 \text{ т/год.}$$

Примечание: плотность ионита составляет 1.3 кг/л.

Расчет количества тары из-под гравия

Упаковка полипропиленовая, загрязненная нерастворимыми или малорастворимыми неорганическими веществами природного происхождения — 43812281514.

Гравий поступает на объект в полипропиленовых мешках.

Вес пустого полипропиленового мешка вместимостью 25 кг составляет 0,5 кг.

Норма образования отхода составит:

$$P = \sum Q_i / M_i \times m_i \times 10^{-3}$$
, т/год

где: Q_i – расход сырья i-го вида, кг/год;

M_i – вес сырья і-го вида в единице упаковки, кг;

m_i – вес единицы пустой упаковки из-под сырья і-го вида, кг;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

$$P = 15 / 25 \times 0.5 \times 10^{-3} = 0.0003$$
 т/год.

Расчет количества тары из-под поваренной соли

Упаковка полиэтиленовая, загрязненная неорганическими хлоридами и/или сульфатами — 43811215514.

Поваренная соль поступает на объект в полиэтиленовых мешках.

Вес пустого полиэтиленового мешка вместимостью 25 кг составляет 0,5 кг.

Норма образования отхода составит:

$$P = \sum Q_i / M_i \times m_i \times 10^{-3}$$
, $T/\Gamma O J$

где: Q_і – расход сырья і-го вида, кг/год;

M_i – вес сырья i-го вида в единице упаковки, кг;

m_i – вес единицы пустой упаковки из-под сырья і-го вида, кг;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

$$P = (1008 \text{ кг} \times 12) / 25 \times 0.5 \times 10^{-3} = 0.242 \text{ т/год,}$$

где: 1008 – месячный расход поваренной соли, кг.

Расчет количества тары из-под реагента Аминат КО-2Н

Процесс предотвращения кислородной коррозии осуществляется путем добавления в воду реагента Аминат КО-2H с помощью установки дозирования «Акваюнит» серии AD.

Упаковка полиэтиленовая, загрязненная реагентами для водоподготовки — 43811913514.

Реагент Аминат КО-2Н поступает на объект в полиэтиленовых канистрах.

Вес полиэтиленовой канистры вместимостью 22 кг составляет 1 кг.

Норма образования отхода составит:

$$P = \sum Q_i \ / \ M_i imes m_i imes 10^{\text{-3}},$$
 $_{\text{T}}$ /год

где: Q_i – расход сырья i-го вида, кг/год;

Мі – вес сырья і-го вида в единице упаковки, кг;

m_i – вес единицы пустой упаковки из-под сырья і-го вида, кг;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

$$P = 1064.4 / 22 \times 1 \times 10^{-3} = 0.048 \text{ т/год.}$$

Примечание: годовой расход реагента Аминат КО-2Н условно определяем методом пропорции, согласно данным спецификации технико-коммерческого предложения на систему водоподготовки поставщика оборудования:

- на запуск и наладку системы водоподготовки требуется 250 кг поваренной соли, месячный ее расход 1008 кг;
- на запуск и наладку системы водоподготовки требуется 22 кг реагента Аминат КО-2H, месячный расход его составит 88,704 кг, годовой расход — 1064,4 кг.

Отходы от сварочных работ.

Шлак сварочный с преимущественным содержанием диоксида кремния — 91911121204.

Остатки и огарки стальных сварочных электродов – 91910001205.

В боксе для ремонта спецтехники осуществляются сварочные работы.

Общая потребность в электродах составляет 50 кг/год. Длина электродов — 400мм, диаметр стержня — 4мм.

Типовые нормы трудноустранимых потерь и отходов материалов и изделий в процессе строительного производства для электродов с диаметром стержня свыше 3 мм составляют 6,5% (согласно Приложению О «Правил разработки и применения нормативов трудноустранимых потерь и отходов материалов в строительстве (РДС 82-202-96)» М., 1996г., утв. Постановлением Минстроя РФ от 8 августа 1996г. №18-65).

Согласно РД 153-34.1-02.207-00, пункт 5.19, отход в виде шлака сварочного равен 10% массы электродов ($M_{\tiny эл}$).

Норма образования отхода составит:

ттории образования отмоде	· · · · · · · · · · · · · · · · · · ·			
Наименование отхода по	Код по ФККО	Типовые	Количество	Количество
ФККО		нормы	электродов,	отхода,
		потерь	тонн	т/год
Остатки и огарки стальных	91910001205	6,5%	0,050	0,003
сварочных электродов				
Шлак сварочный с пре-	91911121204	10%	0,050	0,005
имущественным содержа-				
нием диоксида кремния				

Расчет количества тары из-под сварочных электродов

Отходы упаковочного картона незагрязненные – 40518301605.

Сварочные электроды поступают на объект в картонных коробках. Вес пустой картонной коробки вместимостью 5 кг составляет 0,1 кг. Норма образования отхода составит:

$$P = \sum Q_i / M_i \times m_i \times 10^{-3}$$
, т/год

где: Q_i – расход сырья i-го вида, кг/год;

M_i – вес сырья і-го вида в единице упаковки, кг;

m_i – вес единицы пустой упаковки из-под сырья і-го вида, кг;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

$$P = 50 / 5 \times 0.1 \times 10^{-3} = 0.001$$
 т/год.

Отходы от резки и шлифовки металла.

Абразивные круги отработанные, лом отработанных абразивных кругов — 45610001515.

Пыль (порошок) от шлифования черных металлов с содержанием металла 50% и более – 36122101424.

В боксе для ремонта спецтехники осуществляется резка и шлифовка металла с использованием угловой шлифовальной машинки (болгарки). На машинке установлен шлифовальный круг диаметром 200 мм.

Расчет ведется согласно «Методическим рекомендациям по разработке проекта нормативов предельного размещения отходов для теплоэлектростанций, теплоэлектроцентралей, промышленных и отопительных котельных», СПб, 1998 г.

Расчет количества абразивных кругов

Норма образования отхода определяется по формуле:

$$N = n \times m \times 10^{-3}$$
, $T/\Gamma O J$

где: n — количество использованных абразивных кругов в год, шт.; m — масса остатка одного круга, принимается 33% от массы круга, кг; 10^{-3} — коэффициент перевода кг в тонны.

Норма образования отхода составит:

Проектируемый объект	Диаметр круга, мм	n	Масса одного круга, кг	m	10-3	N
Бокс для ремонта спецтехники	200	1	2	0,6600	0,001	0,00066
					Итого:	0,001

Расчет количества пыли от шлифования черных металлов

Норма образования отхода определяется по формуле:

$$M = n \times (M_0 - M_{\text{oct.}}) \times 10^{-3}$$
, $T/\Gamma O D$

где: п – количество использованных абразивных кругов в год, шт.;

 M_0 – масса абразивного круга, кг;

 $M_{\text{ост.}}$ – остаточная масса круга (33% от массы круга), кг;

 10^{-3} – коэффициент перевода кг в тонны.

Норма образования отхода составит:

Проектируемый объект	Диаметр круга, мм	n	M_0	M_{ocm}	10-3	N
Бокс для ремонта спецтехники	200	1	2	0,6600	0,001	0,00134
					Итого:	0,001

Отходы от технического обслуживания сортировочного комплекса.

Расчет количества образующихся отходов от линии сортировки.

Отходы синтетических и полусинтетических масел индустриальных — 41320001313.

Примечание: расчет количества отходов ведем в соответствии с аналогами производственного оборудования.

Согласно технологическому паспорту на линию сортировки для работы редуктора сепаратора применяется синтетическое индустриальное масло. Принимаем, что через каждые 1000 часов работы сепаратора потребуется замена индустриального масла. Количество отхода при замене масла составит:

$$M = S \times (n \times N / T) \times V \times \rho \times 10^{-3}$$
, т/год

где: S – количество единиц оборудования (сепараторов), шт.;

n – время работы, час/сут;

N – число рабочих суток в году, шт.;

Т – нормативное время до замены масла, часов;

V – объем масляной системы, литров (принимаем усредненное значение для всех сепараторов разного типа);

 ρ – плотность масла, т/м³;

 10^{-3} – коэффициент перевода л в м³.

Норма образования отхода составит:

$$M = 17 \times (12 \times 365 / 1000) \times 12,2 \times 0,883 \times 10^{-3} = 0,802 \text{ т/год.}$$

Лента конвейерная резинотканевая, утратившая потребительские свойства, незагрязненная — 43112211524.

Эксплуатация конвейеров предусмотрена с периодическим ремонтом конвейерных лент. Замена прорванных в результате аварийных ситуаций (падение тяжелых грузов, застревание различных элементов в теле оборудования) конвейерных лент производится согласно норме расхода материалов. Для расчета условно принимаем, что замена конвейерных лент производится один раз в год. Тип ленты — резиновая на тканевой основе. Плотность материала ленты составляет 400 г/м². Согласно технологическому паспорту на линию сортировки в ее структуре предусмотрены конвейерные ленты с параметрами:

Тип конвейера	Кол-во	Ширина, мм	Длина, м	Длина (с уче- том длины конвейера), м
Конвейер цепной, поз.1010, , ; Арт:20.088.07.1010	1	1270	12,950	25,900
Конвейер цепной, поз.1020, , ; Арт:20.088.07.1020	1	1270	15,500	31,000
Конвейер цепной, поз.1030, , ; Арт:20.088.07.1030	1	1270	12,950	25,900
Конвейер цепной, поз.1040, , ; Арт:20.088.07.1040	1	1270	15,500	31,000
Конвейер ленточный, поз.2010, , ; Арт:20.088.07.2010	1	1300	23,950	47,900
Конвейер ленточный, поз.2020, , ; Арт:20.088.07.2020	1	1300	23,950	47,900
Конвейер ленточный, поз.2030, , ; Арт:20.088.07.2030	1	1300	8,700	17,400
Конвейер ленточный, поз.2040, , ; Арт:20.088.07.2040	1	1300	8,700	17,400
Конвейер ленточный, поз.2050, , ; Арт:20.088.07.2050	1	500	14,850	29,700
Конвейер ленточный, поз.2060, , ; Арт:20.088.07.2060	1	500	14,850	29,700
Конвейер ленточный, поз.2070, , ; Арт:20.088.07.2070	1	500	14,850	29,700

Конвейер ленточный, поз.2080, , ; Арт:20.088.07.2080	1	900	14,850	29,700
Конвейер ленточный, поз.2090, , ; Арт:20.088.07.2090	1	500	11,250	22,500
Конвейер ленточный, поз.2100, , ; Арт:20.088.07.2100	1	500	11,250	22,500
Конвейер ленточный, поз.2110, , ; Арт:20.088.07.2110	1	500	11,250	22,500
Конвейер ленточный, поз.2120, , ; Арт:20.088.07.2120	1	900	11,250	22,500
Конвейер дозатор, поз.2130, , ; Арт:20.088.07.2130	1	1300	10,500	21,000
Конвейер дозатор, поз.2140, , ; Арт:20.088.07.2140	1	1300	10,500	21,000
Конвейер ленточный, поз.3030, , ; Арт:20.088.07.3030	1	900	13,050	26,100
Конвейер ленточный, поз.3040, , ; Арт:20.088.07.3040	1	900	13,050	26,100
Конвейер ленточный, поз.3050, , ; Арт:20.088.07.3050	1	700	6,150	12,300
Конвейер ленточный, поз.3060, , ; Арт:20.088.07.3060	1	700	18,850	37,700
Конвейер ленточный, реверсивный, поз.3070, , ; Арт:20.088.07.3070	1	700	5,8	11,600
Конвейер ленточный, поз.3100, , ; Арт:20.088.07.3100	1	1100	8,000	16,000
Конвейер ленточный, поз.3110, , ; Арт:20.088.07.3110	1	1100	8,000	16,000
Конвейер ленточный, поз.3140, , ; Арт:20.088.07.3140	1	1100	6,900	13,800
Конвейер ленточный, поз.3150, , ; Арт:20.088.07.3150	1	1100	6,900	13,800
Конвейер ленточный, поз.3160, , ; Арт:20.088.07.3160	1	1100	8,700	17,400
Конвейер ленточный, поз.3170, , ; Арт:20.088.07.3170	1	1100	8,700	17,400
Конвейер ленточный, поз.3180, , ; Арт:20.088.07.3180	1	1100	10,900	21,800
Конвейер ленточный, поз.3210, , ; Арт:20.088.07.3210	1	500	11,250	22,500
Конвейер ленточный, поз.3220, , ; Арт:20.088.07.3220	1	1100	13,800	27,600
Конвейер ленточный, поз.3230, , ; Арт:20.088.07.3230	1	1100	13,800	27,600
Конвейер ленточный, поз.4050, , ; Арт:20.088.07.4050	1	1300	21,750	43,500

Конвейер ленточный, поз.4060, , ; Арт:20.088.07.4060	1	1300	14,850	29,700
Конвейер ленточный, поз.4070, , ; Арт:20.088.07.4070	1	1300	10,500	21,000
Конвейер ленточный, поз.4080, , ; Арт:20.088.07.4080	1	1300	10,500	21,000
Конвейер ленточный, поз.4090, , ; Арт:20.088.07.4090	1	1100	10,150	20,300
Конвейер ленточный, поз.4100, , ; Арт:20.088.07.4100	1	1100	21,750	43,500
Конвейер ленточный, поз.4110, , ; Арт:20.088.07.4110	1	500	15,250	30,500
Конвейер ленточный, поз.4130, , ; Арт:20.088.07.4130	1	1100	6,900	13,800
Конвейер ленточный, поз.4140, , ; Арт:20.088.07.4140	1	1100	11,250	22,500
Конвейер ленточный, поз.4150, , ; Арт:20.088.07.4150	1	1100	15,250	30,500
Конвейер ленточный, поз.4160, , ; Арт:20.088.07.4160	1	1100	11,950	23,900
Конвейер ленточный, поз.4170, , ; Арт:20.088.07.4170	1	1100	14,850	29,700
Конвейер ленточный, поз.4190, разгонный 2800, EMG; Арт:20.088.07.4190	1	1100	6,000	12,000
Конвейер ленточный, поз.4200, разгонный 2800, EMG; Арт:20.088.07.4200	1	1100	6,000	12,000
Конвейер ленточный, поз.4210, разгонный 2800, EMG; Арт:20.088.07.4210	1	1100	6,000	12,000
Конвейер ленточный, поз.4220, разгонный 2800, EMG; Арт:20.088.07.4220	1	1100	6,000	12,000
Конвейер ленточный, поз.5020, , ; Арт:20.088.07.5020	1	1100	5,100	10,200
Конвейер ленточный, поз.5030, , ; Арт:20.088.07.5030	1	1100	20,300	40,600
Конвейер ленточный, поз.5040, , ; Арт:20.088.07.5040	1	900	17,750	35,500
Конвейер ленточный, поз.5050, , ; Арт:20.088.07.5050	1	900	7,600	15,200
Конвейер ленточный, поз.5060, , ; Арт:20.088.07.5060	1	1100	5,100	10,200
Конвейер ленточный, поз.5070, , ; Арт:20.088.07.5070	1	1100	13,800	27,600
Конвейер ленточный, поз.5080, , ; Арт:20.088.07.5080	1	1100	3,650	7,300
Конвейер ленточный, поз.6030, , ; Арт:20.088.07.6030	1	1100	10,900	21,800

Конвейер ленточный, поз.6040, , ; Арт:20.088.07.6040	1	1100	6,150	12,300
Конвейер ленточный, поз.6050, , ; Арт:20.088.07.6050	1	1100	5,450	10,900
Конвейер ленточный, поз.6060, , ; Арт:20.088.07.6060	1	1100	5,450	10,900
Конвейер ленточный, поз.6070, , ; Арт:20.088.07.6070	1	1100	5,450	10,900
Конвейер ленточный, поз.6080, , ; Арт:20.088.07.6080	1	1100	5,450	10,900
Конвейер ленточный, поз.6090, , ; Арт:20.088.07.6090	1	1300	6,900	13,800
Конвейер ленточный, поз.6100, , ; Арт:20.088.07.6100	1	1300	6,900	13,800
Конвейер ленточный, поз.6110, , ; Арт:20.088.07.6110	1	1100	6,900	13,800
Конвейер ленточный, поз.6120, , ; Арт:20.088.07.6120	1	1100	11,600	23,200
Конвейер ленточный, поз.6130, , ; Арт:20.088.07.6130	1	1100	14,850	29,700
Конвейер ленточный, поз.6140, , ; Арт:20.088.07.6140	1	1100	11,600	23,200
Конвейер ленточный, поз.6150, , ; Арт:20.088.07.6150	1	900	6,900	13,800
Конвейер ленточный, поз.6160, , ; Арт:20.088.07.6160	1	900	9,050	18,100
Конвейер ленточный, поз.6170, , ; Арт:20.088.07.6170	1	900	20,650	41,300
Конвейер ленточный, поз.6180, , ; Арт:20.088.07.6180	1	900	8,700	17,400
Конвейер ленточный, поз.6190, , ; Арт:20.088.07.6190	1	900	18,150	36,300
Конвейер ленточный, реверсивный, поз.6200, , ; Арт:20.088.07.6200	1	900	22	44,000
Конвейер ленточный, реверсивный, поз.6210, , ; Арт:20.088.07.6210	1	900	5,8	11,600
Конвейер ленточный, поз.6220, , ; Арт:20.088.07.6220	1	500	10,900	21,800
Конвейер ленточный, поз.6230, , ; Арт:20.088.07.6230	1	500	40,250	80,500
Конвейер ленточный, поз.6240, , ; Арт:20.088.07.6240	1	900	8,350	16,700
Конвейер ленточный, поз.6250, , ; Арт:20.088.07.6250	1	900	28,650	57,300
Конвейер ленточный, поз.6260, , ; Арт:20.088.07.6260	1	900	24,650	49,300

Конвейер ленточный, реверсивный, поз.6270, , ; Арт:20.088.07.6270	1	900	9,050	18,100
Конвейер ленточный, реверсивный, поз.6280, , ; Арт:20.088.07.6280	1	1100	5,8	11,600
Конвейер ленточный, поз.6320, , ; Арт:20.088.07.6320	1	900	10,500	21,000
Конвейер ленточный, поз.6330, , ; Арт:20.088.07.6330	1	900	6,650	13,300
Конвейер ленточный, поз.6340, , ; Арт:20.088.07.6340	1	700	14,500	29,000
Конвейер ленточный, поз.6350, , ; Арт:20.088.07.6350	1	700	5,800	11,600
Конвейер ленточный, поз.6370, разгонный 1400, EMG; Арт:20.088.07.6370	1	1400	5,800	11,600
Конвейер ленточный, поз.6380, разгонный 2800, EMG; Арт:20.088.07.6380	1	2800	5,800	11,600
Конвейер цепной, поз.7010, , ; Арт:20.088.07.7010	1	1070	25,65	51,300
Конвейер цепной, поз.7020, , ; Арт:20.088.07.7020	1	1070	18,8	37,600
Конвейер цепной, поз.7030, , ; Арт:20.088.07.7030	1	1070	22,4	44,800
Конвейер цепной, поз.7040, , ; Арт:20.088.07.7040	1	1070	9	18,000
Конвейер цепной, поз.7050, , ; Арт:20.088.07.7050	1	1070	10,8	21,600
Конвейер цепной, поз.7060, , ; Арт:20.088.07.7060	1	1070	22	44,000
Конвейер цепной, поз.7070, , ; Арт:20.088.07.7070	1	1070	23,4	46,800
Конвейер цепной, реверсивный, поз.7080, , ; Арт:20.088.07.7080	1	1070	5,45	10,900
Конвейер цепной, реверсивный, поз.7090, , ; Арт:20.088.07.7090	1	1070	5,45	10,900

Норма образования отхода определяется по формуле:

$$M = S \times N \times n \times \rho \times 10^{-6}$$
, т/год

где: S – количество единиц оборудования (конвейерный лент), шт.;

N – длина конвейерной ленты, м;

n — ширина конвейерной ленты, м; ρ — плотность материала ленты, r/m^2 ; 10^{-6} — коэффициент перевода грамм в тонны.

Норма образования отхода составит:

Тип конвейера	Кол-	Ширина,	Длина, м	Длина (с уче-	Кол-во от-
	во	MM		том длины конвейера), м	хода, т/год
Конвейер цепной, поз.1010, , ; Арт:20.088.07.1010	1	1270	12,950	25,900	0,01316
Конвейер цепной, поз.1020, , ; Арт:20.088.07.1020	1	1270	15,500	31,000	0,01575
Конвейер цепной, поз.1030, , ; Арт:20.088.07.1030	1	1270	12,950	25,900	0,01316
Конвейер цепной, поз.1040, , ; Арт:20.088.07.1040	1	1270	15,500	31,000	0,01575
Конвейер ленточный, поз.2010, , ; Арт:20.088.07.2010	1	1300	23,950	47,900	0,02491
Конвейер ленточный, поз.2020, , ; Арт:20.088.07.2020	1	1300	23,950	47,900	0,02491
Конвейер ленточный, поз.2030, , ; Арт:20.088.07.2030	1	1300	8,700	17,400	0,00905
Конвейер ленточный, поз.2040, , ; Арт:20.088.07.2040	1	1300	8,700	17,400	0,00905
Конвейер ленточный, поз.2050, , ; Арт:20.088.07.2050	1	500	14,850	29,700	0,00594
Конвейер ленточный, поз.2060, , ; Арт:20.088.07.2060	1	500	14,850	29,700	0,00594
Конвейер ленточный, поз.2070, , ; Арт:20.088.07.2070	1	500	14,850	29,700	0,00594
Конвейер ленточный, поз.2080, , ; Арт:20.088.07.2080	1	900	14,850	29,700	0,01069
Конвейер ленточный, поз.2090, , ; Арт:20.088.07.2090	1	500	11,250	22,500	0,00450
Конвейер ленточный, поз.2100, , ; Арт:20.088.07.2100	1	500	11,250	22,500	0,00450
Конвейер ленточный, поз.2110, , ; Арт:20.088.07.2110	1	500	11,250	22,500	0,00450
Конвейер ленточный, поз.2120, , ; Арт:20.088.07.2120	1	900	11,250	22,500	0,00810
Конвейер дозатор, поз.2130, , ; Арт:20.088.07.2130	1	1300	10,500	21,000	0,01092
Конвейер дозатор, поз.2140, , ; Арт:20.088.07.2140	1	1300	10,500	21,000	0,01092
Конвейер ленточный, поз.3030, , ; Арт:20.088.07.3030	1	900	13,050	26,100	0,00940
Конвейер ленточный, поз.3040, , ; Арт:20.088.07.3040	1	900	13,050	26,100	0,00940
Конвейер ленточный, поз.3050, , ; Арт:20.088.07.3050	1	700	6,150	12,300	0,00344

Конвейер ленточный, поз.3060, , ; Арт:20.088.07.3060	1	700	18,850	37,700	0,01056
Конвейер ленточный, реверсивный, поз.3070, , ; Арт:20.088.07.3070	1	700	5,8	11,600	0,00325
Конвейер ленточный, поз.3100, , ; Арт:20.088.07.3100	1	1100	8,000	16,000	0,00704
Конвейер ленточный, поз.3110, , ; Арт:20.088.07.3110	1	1100	8,000	16,000	0,00704
Конвейер ленточный, поз.3140, , ; Арт:20.088.07.3140	1	1100	6,900	13,800	0,00607
Конвейер ленточный, поз.3150, , ; Арт:20.088.07.3150	1	1100	6,900	13,800	0,00607
Конвейер ленточный, поз.3160, , ; Арт:20.088.07.3160	1	1100	8,700	17,400	0,00766
Конвейер ленточный, поз.3170, , ; Арт:20.088.07.3170	1	1100	8,700	17,400	0,00766
Конвейер ленточный, поз.3180, , ; Арт:20.088.07.3180	1	1100	10,900	21,800	0,00959
Конвейер ленточный, поз.3210, , ; Арт:20.088.07.3210	1	500	11,250	22,500	0,00450
Конвейер ленточный, поз.3220, , ; Арт:20.088.07.3220	1	1100	13,800	27,600	0,01214
Конвейер ленточный, поз.3230, , ; Арт:20.088.07.3230	1	1100	13,800	27,600	0,01214
Конвейер ленточный, поз.4050, , ; Арт:20.088.07.4050	1	1300	21,750	43,500	0,02262
Конвейер ленточный, поз.4060, , ; Арт:20.088.07.4060	1	1300	14,850	29,700	0,01544
Конвейер ленточный, поз.4070, , ; Арт:20.088.07.4070	1	1300	10,500	21,000	0,01092
Конвейер ленточный, поз.4080, , ; Арт:20.088.07.4080	1	1300	10,500	21,000	0,01092
Конвейер ленточный, поз.4090, , ; Арт:20.088.07.4090	1	1100	10,150	20,300	0,00893
Конвейер ленточный, поз.4100, , ; Арт:20.088.07.4100	1	1100	21,750	43,500	0,01914
Конвейер ленточный, поз.4110, , ; Арт:20.088.07.4110	1	500	15,250	30,500	0,00610
Конвейер ленточный, поз.4130, , ; Арт:20.088.07.4130	1	1100	6,900	13,800	0,00607
Конвейер ленточный, поз.4140, , ; Арт:20.088.07.4140	1	1100	11,250	22,500	0,00990
Конвейер ленточный, поз.4150, , ; Арт:20.088.07.4150	1	1100	15,250	30,500	0,01342
Конвейер ленточный, поз.4160, , ; Арт:20.088.07.4160	1	1100	11,950	23,900	0,01052

Конвейер ленточный, поз.4170, , ; Арт:20.088.07.4170	1	1100	14,850	29,700	0,01307
Конвейер ленточный, поз.4190, раз- гонный 2800, EMG; Арт:20.088.07.4190	1	1100	6,000	12,000	0,00528
Конвейер ленточный, поз.4200, раз- гонный 2800, EMG; Арт:20.088.07.4200	1	1100	6,000	12,000	0,00528
Конвейер ленточный, поз.4210, раз- гонный 2800, EMG; Арт:20.088.07.4210	1	1100	6,000	12,000	0,00528
Конвейер ленточный, поз.4220, раз- гонный 2800, EMG; Арт:20.088.07.4220	1	1100	6,000	12,000	0,00528
Конвейер ленточный, поз.5020, , ; Арт:20.088.07.5020	1	1100	5,100	10,200	0,00449
Конвейер ленточный, поз.5030, , ; Арт:20.088.07.5030	1	1100	20,300	40,600	0,01786
Конвейер ленточный, поз.5040, , ; Арт:20.088.07.5040	1	900	17,750	35,500	0,01278
Конвейер ленточный, поз.5050, , ; Арт:20.088.07.5050	1	900	7,600	15,200	0,00547
Конвейер ленточный, поз.5060, , ; Арт:20.088.07.5060	1	1100	5,100	10,200	0,00449
Конвейер ленточный, поз.5070, , ; Арт:20.088.07.5070	1	1100	13,800	27,600	0,01214
Конвейер ленточный, поз.5080, , ; Арт:20.088.07.5080	1	1100	3,650	7,300	0,00321
Конвейер ленточный, поз.6030, , ; Арт:20.088.07.6030	1	1100	10,900	21,800	0,00959
Конвейер ленточный, поз.6040, , ; Арт:20.088.07.6040	1	1100	6,150	12,300	0,00541
Конвейер ленточный, поз.6050, , ; Арт:20.088.07.6050	1	1100	5,450	10,900	0,00480
Конвейер ленточный, поз.6060, , ; Арт:20.088.07.6060	1	1100	5,450	10,900	0,00480
Конвейер ленточный, поз.6070, , ; Арт:20.088.07.6070	1	1100	5,450	10,900	0,00480
Конвейер ленточный, поз.6080, , ; Арт:20.088.07.6080	1	1100	5,450	10,900	0,00480
Конвейер ленточный, поз.6090, , ; Арт:20.088.07.6090	1	1300	6,900	13,800	0,00718
Конвейер ленточный, поз.6100, , ; Арт:20.088.07.6100	1	1300	6,900	13,800	0,00718
Конвейер ленточный, поз.6110, , ; Арт:20.088.07.6110	1	1100	6,900	13,800	0,00607
Конвейер ленточный, поз.6120, , ; Арт:20.088.07.6120	1	1100	11,600	23,200	0,01021

Конвейер ленточный, поз.6130, , ; Арт:20.088.07.6130	1	1100	14,850	29,700	0,01307
Конвейер ленточный, поз.6140, , ; Арт:20.088.07.6140	1	1100	11,600	23,200	0,01021
Конвейер ленточный, поз.6150, , ; Арт:20.088.07.6150	1	900	6,900	13,800	0,00497
Конвейер ленточный, поз.6160, , ; Арт:20.088.07.6160	1	900	9,050	18,100	0,00652
Конвейер ленточный, поз.6170, , ; Арт:20.088.07.6170	1	900	20,650	41,300	0,01487
Конвейер ленточный, поз.6180, , ; Арт:20.088.07.6180	1	900	8,700	17,400	0,00626
Конвейер ленточный, поз.6190, , ; Арт:20.088.07.6190	1	900	18,150	36,300	0,01307
Конвейер ленточный, реверсивный, поз.6200, , ; Арт:20.088.07.6200	1	900	22	44,000	0,01584
Конвейер ленточный, реверсивный, поз.6210, , ; Арт:20.088.07.6210	1	900	5,8	11,600	0,00418
Конвейер ленточный, поз.6220, , ; Арт:20.088.07.6220	1	500	10,900	21,800	0,00436
Конвейер ленточный, поз.6230, , ; Арт:20.088.07.6230	1	500	40,250	80,500	0,01610
Конвейер ленточный, поз.6240, , ; Арт:20.088.07.6240	1	900	8,350	16,700	0,00601
Конвейер ленточный, поз.6250, , ; Арт:20.088.07.6250	1	900	28,650	57,300	0,02063
Конвейер ленточный, поз.6260, , ; Арт:20.088.07.6260	1	900	24,650	49,300	0,01775
Конвейер ленточный, реверсивный, поз.6270, , ; Арт:20.088.07.6270	1	900	9,050	18,100	0,00652
Конвейер ленточный, реверсивный, поз.6280, , ; Арт:20.088.07.6280	1	1100	5,8	11,600	0,00510
Конвейер ленточный, поз.6320, , ; Арт:20.088.07.6320	1	900	10,500	21,000	0,00756
Конвейер ленточный, поз.6330, , ; Арт:20.088.07.6330	1	900	6,650	13,300	0,00479
Конвейер ленточный, поз.6340, , ; Арт:20.088.07.6340	1	700	14,500	29,000	0,00812
Конвейер ленточный, поз.6350, , ; Арт:20.088.07.6350	1	700	5,800	11,600	0,00325
Конвейер ленточный, поз.6370, раз- гонный 1400, EMG; Арт:20.088.07.6370	1	1400	5,800	11,600	0,00650
Конвейер ленточный, поз.6380, раз- гонный 2800, EMG; Арт:20.088.07.6380	1	2800	5,800	11,600	0,01299
Конвейер цепной, поз.7010, , ; Арт:20.088.07.7010	1	1070	25,65	51,300	0,02196

Конвейер цепной, поз.7020, , ; Арт:20.088.07.7020	1	1070	18,8	37,600	0,01609
Конвейер цепной, поз.7030, , ; Арт:20.088.07.7030	1	1070	22,4	44,800	0,01917
Конвейер цепной, поз.7040, , ; Арт:20.088.07.7040	1	1070	9	18,000	0,00770
Конвейер цепной, поз.7050, , ; Арт:20.088.07.7050	1	1070	10,8	21,600	0,00924
Конвейер цепной, поз.7060, , ; Арт:20.088.07.7060	1	1070	22	44,000	0,01883
Конвейер цепной, поз.7070, , ; Арт:20.088.07.7070	1	1070	23,4	46,800	0,02003
Конвейер цепной, реверсивный, поз.7080, , ; Арт:20.088.07.7080	1	1070	5,45	10,900	0,00467
Конвейер цепной, реверсивный, поз.7090, , ; Арт:20.088.07.7090	1	1070	5,45	10,900	0,00467
				итого:	0,938

Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%) – 91920402604.

Данный вид отхода образуется при текущем обслуживании и периодическом ремонте технологического оборудования (*линии сортировки*).

Количество данного вида отхода определяется по формуле:

$$M_{\text{ветошь}} = H_{\text{уд.ветошь}} \times N \times D \times 10^{-3}$$
,

где: $H_{\text{уд.ветошь}}$ — удельный норматив ветоши на 1 работающего = 0,1 кг/сут. («Оценка количеств образующихся отходов производства и потребления», СПб, 1997г.);

N – количество рабочих, использующих ветошь, чел/сут.;

D – число рабочих дней в году, сут;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

$$M_{\text{ветошь}} = 0.1 \times 1 \times 365 \times 10^{-3} = 0.037$$
 т/год.

<u>Расчет количества образующихся отходов от автоматических горизонтальных</u> прессов Presona LP-50 EH1.

Примечание: расчет количества отходов ведем в соответствии с аналогами производственного оборудования.

Отходы минеральных масел гидравлических, не содержащих галогены – 40612001313.

Согласно руководству по эксплуатации, через каждые 6 месяцев (≈ 2200 часов работы пресса) потребуется замена масла. Количество отхода при замене масла составит:

$$M = S \times (n \times N / T) \times V \times \rho \times 10^{-3}$$
, т/год

где: S – количество единиц оборудования (прессов), шт.;

n – время работы, час/сут;

N – число рабочих суток в году, шт.;

Т – нормативное время до замены масла, часов;

V – объем масляной системы, литров;

 ρ – плотность масла, T/M^3 ;

 10^{-3} – коэффициент перевода л в м³.

Норма образования отхода составит:

$$M = 2 \times (12 \times 365 / 2200) \times 600 \times 0.890 \times 10^{-3} = 2.126$$
 т/год.

Фильтры очистки масла гидравлических прессов – 91890811523.

Согласно руководству по эксплуатации, через каждые 6 месяцев (≈ 2200 часов работы пресса) потребуется замена масляных фильтров. Количество отхода при замене масляных фильтров составит:

$$M = S \times (n \times N / T) \times V \times m \times 10^{-6},$$
 т/год

где: S – количество единиц оборудования (прессов), шт.;

n – время работы, час/сут;

N – число рабочих суток в году, шт.;

Т – нормативное время до замены фильтра, часов;

V – количество фильтров, шт.;

т – вес фильтра, грамм;

10-6 – коэффициент перевода грамм в тонны.

Норма образования отхода составит:

$$M = 2 \times (12 \times 365 / 2200) \times 1 \times 700 \times 10^{-6} = 0,003$$
 т/год.

Лента конвейерная резинотканевая, утратившая потребительские свойства, незагрязненная – 43112211524.

Эксплуатация конвейеров предусмотрена с периодическим ремонтом конвейерных лент. Замена прорванных в результате аварийных ситуаций (падение тяжелых грузов, застревание различных элементов в теле оборудования) конвейерных лент производится согласно норме расхода материалов. Для расчета условно принимаем, что замена конвейерных лент производится один раз в год. Тип ленты — резиновая на тканевой основе. Плотность материала ленты составляет 400 г/м². Согласно руководству по эксплуатации и обслуживанию на установку, в структуре загрузочного транспортера пресса предусмотрена конвейерная лента с параметрами: ширина — 1250 мм, длина — 9760 мм (при длине загрузочного транспортера в рабочем положении 4880 мм).

Норма образования отхода составляет:

$$M = S \times N \times n \times \rho \times 10^{-6} = 2 \times 9,76 \times 1,25 \times 400 \times 10^{-6} = 0,010$$
 т/год,

где: S – количество единиц оборудования, шт.;

N – длина конвейерной ленты, м;

n – ширина конвейерной ленты, м;

 ρ – плотность материала ленты, г/м²;

10-6 – коэффициент перевода грамм в тонны.

Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%) – 91920402604.

Данный вид отхода образуется при текущем обслуживании и периодическом ремонте технологического оборудования (*автоматических прессов*).

Количество данного вида отхода определяется по формуле:

$$M_{\text{ветошь}} = H_{\text{уд.ветошь}} \times N \times D \times 10^{-3},$$

где: $H_{\text{уд.ветошь}}$ — удельный норматив ветоши на 1 работающего = 0,1 кг/сут. («Оценка количеств образующихся отходов производства и потребления», СПб, 1997г.);

N – количество рабочих, использующих ветошь, чел/сут.;

D – число рабочих дней в году, сут;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

$$M_{\text{ветошь}} = 0.1 \times 1 \times 365 \times 10^{-3} = 0.037$$
 т/год.

Отходы от технического обслуживания измельчителя HAMMEL VB 650D, двухроторных шредеров С-ШР-2.420, щековой дробилки Nordmann K-750 на площадке обработки и утилизации КГО и ПО.

Примечание: расчет количества отходов ведем в соответствии с аналогами производственного оборудования.

Отходы синтетических и полусинтетических масел моторных – 41310001313.

Согласно руководству по эксплуатации и обслуживанию на установку, для работы редуктора применяется моторное масло. Согласно графику технического обслуживания, через каждые 500 часов работы установки требуется замена моторного масла в редукторе. Количество отхода при замене масла составит:

$$M = S \times (n \times N / T) \times V \times \rho \times 10^{-3},$$
 т/год

где: S – количество единиц оборудования, шт.;

n – время работы, час/сут;

N – число рабочих суток в году, шт.;

Т – нормативное время до замены масла, часов;

V – объем масляной системы, литров (принимаем по аналогии с другими марками оборудования);

 ρ – плотность масла, T/M^3 ;

 10^{-3} – коэффициент перевода л в м³.

Норма образования отхода составит:

$$M = 4 \times (12 \times 365 / 500) \times 60 \times 0.93 \times 10^{-3} = 1.955$$
 т/год.

Согласно руководству по эксплуатации и обслуживанию на установку, для работы выгрузного транспортера применяется моторное масло. Согласно графику технического обслуживания, через каждые 2300 часов работы установки требуется замена моторного масла в выгрузном транспортере. Количество отхода при замене масла составит:

$$M = S \times (n \times N / T) \times V \times \rho \times 10^{-3},$$
 т/год

где: S – количество единиц оборудования, шт.;

n – время работы, час/сут;

N – число рабочих суток в году, шт.;

Т – нормативное время до замены масла, часов;

V – объем масляной системы, литров (принимаем по аналогии с другими мар-

ками оборудования); ρ – плотность масла, τ/m^3 ; 10^{-3} – коэффициент перевода л в m^3 .

Норма образования отхода составит:

$$M = 4 \times (12 \times 365 / 2300) \times 28 \times 0.93 \times 10^{-3} = 0.198 \text{ т/год.}$$

Общее количество отхода составит 2,153 т/год.

Отходы минеральных масел гидравлических, не содержащих галогены – 40612001313.

Согласно руководству по эксплуатации и обслуживанию на установку, для работы гидравлики применяется гидравлическое масло. Согласно графику технического обслуживания, через каждые 500 часов работы установки требуется замена гидравлического масла в гидравлике. Количество отхода при замене масла составит:

$$M = S \times (n \times N / T) \times V \times \rho \times 10^{-3}$$
, т/год

где: S – количество единиц оборудования, шт.;

n – время работы, час/сут;

N – число рабочих суток в году, шт.;

Т – нормативное время до замены масла, часов;

V – объем масляной системы, литров (принимаем по аналогии с другими марками оборудования);

 ρ – плотность масла, т/м³;

 10^{-3} – коэффициент перевода л в м³.

Норма образования отхода составит:

$$M = 4 \times (12 \times 365 / 500) \times 100 \times 0,890 \times 10^{-3} = 3,119$$
 т/год.

Фильтры очистки масла дизельных двигателей отработанные – 91890521523.

Согласно руководству по эксплуатации и обслуживанию на установку, рекомендуется замена масляных фильтров через каждые 500 часов работы. Количество отхода при замене масляных фильтров составит:

$$M = S \times (n \times N / T) \times V \times m \times 10^{-6}$$
, т/год

где: S – количество единиц оборудования, шт.;

n – время работы, час/сут;

N – число рабочих суток в году, шт.;

Т – нормативное время до замены фильтра, часов;

V – количество фильтров, шт. (принимаем по аналогии с другими марками оборудования);

m – вес фильтра, грамм (принимаем по аналогии с другими марками оборудования);

10-6 – коэффициент перевода грамм в тонны.

Норма образования отхода составит:

$$M = 4 \times (12 \times 365 / 500) \times 1 \times 700 \times 10^{-6} = 0.025$$
 т/год.

Фильтры воздушные дизельных двигателей отработанные – 91890511524.

Согласно руководству по эксплуатации и обслуживанию на установку, рекомендуется замена воздушных фильтров 1 раз в год. Количество отхода при замене воздушных фильтров составит:

$$M = S \times V \times m \times 10^{-6}$$
, $T/\Gamma O J$

где: S – количество единиц оборудования, шт.;

V – количество фильтров, шт. (принимаем по аналогии с другими марками оборудования);

m – вес фильтра, грамм (принимаем по аналогии с другими марками оборудования);

10-6 – коэффициент перевода грамм в тонны.

Норма образования отхода составит:

 $M = 4 \times 1 \times 2000 \times 10^{-6} = 0.008$ т/год.

Отходы антифризов на основе этиленгликоля – 92121001313.

Согласно руководству по эксплуатации и обслуживанию на установку, для работы системы охлаждения применяется охлаждающая жидкость (антифриз). Согласно графику технического обслуживания, через каждые 3000 часов работы установки требуется замена охлаждающей жидкости в системе охлаждения. Количество отхода при замене охлаждающей жидкости составит:

$$M = S \times (n \times N / T) \times V \times \rho \times 10^{-3},$$
 т/год

где: S – количество единиц оборудования, шт.;

n — время работы, час/сут;

N – число рабочих суток в году, шт.;

Т – нормативное время до замены охлаждающей жидкости, часов;

V – объем системы охлаждения, литров (принимаем по аналогии с другими марками оборудования);

 ρ – плотность ОЖ (этиленгликоля), т/м³;

 10^{-3} – коэффициент перевода л в м³.

Норма образования отхода составит:

$$M = 4 \times (12 \times 365 / 3000) \times 25,8 \times 1,113 \times 10^{-3} = 0,168$$
 т/год.

Лента конвейерная резинотканевая, утратившая потребительские свойства, незагрязненная – 43112211524.

Эксплуатация конвейеров предусмотрена с периодическим ремонтом конвейерных лент. Замена прорванных в результате аварийных ситуаций (падение тяжелых грузов, застревание различных элементов в теле оборудования) конвейерных лент производится согласно норме расхода материалов. Для расчета условно принимаем, что замена конвейерных лент производится один раз в год. Тип ленты — резиновая на тканевой основе. Плотность материала ленты составляет 400 г/м². Согласно руководству по эксплуатации и обслуживанию на установку, в структуре выгрузного транспортера измельчителя предусмотрена конвейерная лента с параметрами: ширина — 1400 мм, длина — 28800 мм (при длине выгрузного транспортера в рабочем положении 14400 мм).

Норма образования отхода составляет:

$$M = S \times N \times n \times \rho \times 10^{-6} = 4 \times 28.8 \times 1.4 \times 400 \times 10^{-6} = 0.065$$
 т/год,

где: S – количество единиц оборудования, шт.;

N – длина конвейерной ленты, м;

n – ширина конвейерной ленты, м;

 ρ – плотность материала ленты, г/м²;

10-6 – коэффициент перевода грамм в тонны.

Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%) – 91920402604.

Данный вид отхода образуется при текущем обслуживании и периодическом ремонте технологического оборудования (измельчителя КГО, шредеров для измельчения ПО, щековой дробилки для измельчения строительных отходов).

Количество данного вида отхода определяется по формуле:

$$M_{\text{ветошь}} = H_{\text{уд.ветошь}} \times N \times D \times 10^{-3}$$
,

где: $H_{\text{уд.ветошь}}$ — удельный норматив ветоши на 1 работающего = 0,1 кг/сут. («Оценка количеств образующихся отходов производства и потребления», СПб, 1997г.);

N – количество рабочих, использующих ветошь, чел/сут.;

D – число рабочих дней в году, сут;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

 $M_{\text{ветошь}} = 0.1 \times 3 \times 365 \times 10^{-3} = 0.110$ т/год.

Отходы от технического обслуживания контейнерного грохота RESTA ТК6 на площадке обработки и утилизации КГО и ПО.

Примечание: расчет количества отходов ведем в соответствии с аналогами производственного оборудования.

Отходы синтетических и полусинтетических масел моторных – 41310001313.

Согласно руководству по эксплуатации и обслуживанию на установку, для работы мотора применяется моторное масло. Принимаем, что через каждые 1000 часов работы установки потребуется замена моторного масла. Количество отхода при замене масла составит:

$$M = S \times (n \times N / T) \times V \times \rho \times 10^{-3},$$
 т/год

где: S – количество единиц оборудования, шт.;

n – время работы, час/сут;

N – число рабочих суток в году, шт.;

Т – нормативное время до замены масла, часов;

V – объем масляной системы, литров;

 ρ – плотность масла, т/м³;

 10^{-3} – коэффициент перевода л в м³.

Норма образования отхода составит:

$$M = 1 \times (12 \times 365 / 1000) \times 18 \times 0.93 \times 10^{-3} = 0.073$$
 т/год.

Отходы минеральных масел гидравлических, не содержащих галогены – 40612001313.

Согласно руководству по эксплуатации и обслуживанию на установку, для работы гидравлической системы применяется гидравлическое масло. Принимаем, что через каж-

дые 1000 часов работы установки потребуется замена гидравлического масла. Количество отхода при замене масла составит:

$$M = S \times (n \times N / T) \times V \times \rho \times 10^{-3}$$
, т/год

где: S – количество единиц оборудования, шт.;

n – время работы, час/сут;

N – число рабочих суток в году, шт.;

Т – нормативное время до замены масла, часов;

V – объем масляной системы, литров;

 ρ – плотность масла, т/м³;

 10^{-3} – коэффициент перевода л в м³.

Норма образования отхода составит:

$$M = 1 \times (12 \times 365 / 1000) \times 130 \times 0,890 \times 10^{-3} = 0,507$$
 т/год.

Лента конвейерная резинотканевая, утратившая потребительские свойства, незагрязненная – 43112211524.

Эксплуатация конвейеров предусмотрена с периодическим ремонтом конвейерных лент. Замена прорванных в результате аварийных ситуаций (падение тяжелых грузов, застревание различных элементов в теле оборудования) конвейерных лент производится согласно норме расхода материалов. Для расчета условно принимаем, что замена конвейерных лент производится один раз в год. Тип ленты — резиновая на тканевой основе. Плотность материала ленты составляет 400 г/м². Согласно руководству по эксплуатации и обслуживанию на установку, в структуре трех ленточных конвейеров контейнерного грохота предусмотрена конвейерная лента с параметрами: ширина — 500 мм, длина — 12000 мм (при длине ленточного конвейера в рабочем положении 6000 мм).

Норма образования отхода составляет:

$$M = S \times N \times n \times \rho \times 10^{-6} = 3 \times 12 \times 0.5 \times 400 \times 10^{-6} = 0.007$$
 т/год,

где: S – количество единиц оборудования, шт.;

N – длина конвейерной ленты, м;

n – ширина конвейерной ленты, м;

 ρ – плотность материала ленты, г/м²;

10-6 – коэффициент перевода грамм в тонны.

Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%) – 91920402604.

Данный вид отхода образуется при текущем обслуживании и периодическом ремонте технологического оборудования (контейнерного грохота).

Количество данного вида отхода определяется по формуле:

$$M_{\text{ветошь}} = H_{\text{уд.ветошь}} \times N \times D \times 10^{-3},$$

где: Н_{уд.ветошь} – удельный норматив ветоши на 1 работающего = 0,1 кг/сут. («Оценка количеств образующихся отходов производства и потребления», СПб, 1997г.);

N – количество рабочих, использующих ветошь, чел/сут.;

D – число рабочих дней в году, сут;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

 $M_{\text{ветошь}} = 0.1 \times 1 \times 365 \times 10^{-3} = 0.037$ т/год.

Отходы от технического обслуживания барабанного грохота Doppstadt 518 Flex на участке обезвреживания органических отходов IV-V класса.

Примечание: расчет количества отходов ведем в соответствии с аналогами производственного оборудования.

Отходы синтетических и полусинтетических масел моторных – 41310001313.

Согласно руководству по эксплуатации и обслуживанию на установку, для работы мотора применяется моторное масло. Принимаем, что через каждые 1000 часов работы установки потребуется замена моторного масла. Количество отхода при замене масла составит:

$$M = S \times (n \times N / T) \times V \times \rho \times 10^{-3},$$
 т/год

где: S – количество единиц оборудования, шт.;

n – время работы, час/сут;

N – число рабочих суток в году, шт.;

Т – нормативное время до замены масла, часов;

V – объем масляной системы, литров;

 ρ – плотность масла, т/м³;

 10^{-3} – коэффициент перевода л в м³.

Норма образования отхода составит:

 $M = 1 \times (12 \times 365 / 1000) \times 18 \times 0.93 \times 10^{-3} = 0.073$ т/год.

Отходы минеральных масел гидравлических, не содержащих галогены – 40612001313.

Согласно руководству по эксплуатации и обслуживанию на установку, для работы гидравлической системы применяется гидравлическое масло. Принимаем, что через каждые 1000 часов работы установки потребуется замена гидравлического масла. Количество отхода при замене масла составит:

$$M = S \times (n \times N / T) \times V \times \rho \times 10^{-3},$$
 т/год

где: S – количество единиц оборудования, шт.;

n – время работы, час/сут;

N – число рабочих суток в году, шт.;

Т – нормативное время до замены масла, часов;

V – объем масляной системы, литров;

 ρ – плотность масла, T/M^3 ;

 10^{-3} – коэффициент перевода л в м³.

Норма образования отхода составит:

$$M = 1 \times (12 \times 365 / 1000) \times 130 \times 0.890 \times 10^{-3} = 0.507$$
 т/год.

Лента конвейерная резинотканевая, утратившая потребительские свойства, незагрязненная — 43112211524.

Эксплуатация конвейеров предусмотрена с периодическим ремонтом конвейерных лент. Замена прорванных в результате аварийных ситуаций (падение тяжелых грузов, застревание различных элементов в теле оборудования) конвейерных лент производится со-

гласно норме расхода материалов. Для расчета условно принимаем, что замена конвейерных лент производится один раз в год. Тип ленты — резиновая на тканевой основе. Плотность материала ленты составляет 400 г/м^2 . Согласно руководству по эксплуатации и обслуживанию на установку, в структуре барабанного грохота предусмотрены конвейерные ленты с параметрами:

- 1. ширина 1200 мм, длина 20000 мм (при длине нижнего разгрузочного конвейера 10000 мм);
- 2. ширина -800 мм, длина -8000 мм (при длине бокового разгрузочного конвейера -4000 мм).

Норма образования отхода составляет:

$$M_1 = S \times N \times n \times \rho \times 10^{-6} = 1 \times 20 \times 1,2 \times 400 \times 10^{-6} = 0,010$$
 т/год $M_2 = S \times N \times n \times \rho \times 10^{-6} = 1 \times 8 \times 0,8 \times 400 \times 10^{-6} = 0,003$ т/год

где: S – количество единиц оборудования, шт.;

N – длина конвейерной ленты, м;

n – ширина конвейерной ленты, м;

 ρ – плотность материала ленты, г/м²;

10-6 – коэффициент перевода грамм в тонны.

Общее количество отхода составит: 0,013 т/год.

Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%) – 91920402604.

Данный вид отхода образуется при текущем обслуживании и периодическом ремонте технологического оборудования (барабанного грохота).

Количество данного вида отхода определяется по формуле:

$$M_{\text{ветошь}} = H_{\text{уд.ветошь}} \times N \times D \times 10^{-3}$$
,

где: Н_{уд.ветошь} – удельный норматив ветоши на 1 работающего = 0,1 кг/сут. («Оценка количеств образующихся отходов производства и потребления», СПб, 1997г.);

N – количество рабочих, использующих ветошь, чел/сут.;

D – число рабочих дней в году, сут;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

$$M_{\text{ветошь}} = 0.1 \times 1 \times 365 \times 10^{-3} = 0.037$$
 т/год.

Отходы от обезвреживания отходов ІІІ класса.

Золы и шлаки от инсинераторов и установок термической обработки отходов – 74798199204.

Количество золы, образующейся при сжигании отходов III класса опасности в инсинераторной установке, составит **200,000** т/год.

Приложение 76

Расчет образования отходов при технической рекультивации.

(Технический этап рекультивации – продолжительность 1 год)

Отходы от строительных работ.

Отходы песка незагрязненные - 81910001495.

Нормы потерь и отходов согласно Приложению Д РДС 82-202-96 составляют 0,7%. Количество используемого при рекультивации песка составляет 23860 м^3 (31018 т при плотности песка, равной 1,3 т/м^3).

Норма образования отхода составит:

 $M = 31018 \times 0,007 = 217,126$ т/период.

Отходы строительного щебня незагрязненные – 81910003215.

Нормы потерь и отходов согласно Приложению Д РДС 82-202-96 составляют 0,4%. Количество используемого при рекультивации щебня составляет 1267 м^3 (1773,8 т при плотности щебня, равной 1,4 т/ м^3).

Норма образования отхода составит:

 $M = 1773.8 \times 0.004 = 7.095$ т/период.

Отходы полимерных материалов при устройстве защитного экрана поверхности участка захоронения ТКО, участка захоронения ПО.

Расчет количества образующихся отходов дренажных матов.

Лом и отходы изделий из полиэтилена незагрязненные (кроме тары) — 43411003515.

Лом и отходы изделий из полипропилена незагрязненные (кроме тары) — 43412003515.

Согласно нормам Дополнений к РДС 82-202-96 (Таблица 1) потери рулонных материалов при изоляции поверхностей составят 4% от общего количества используемого материала.

Для устройства защитного экрана поверхности участка захоронения ТКО проектом предусмотрено использование дренажных матов Гидромат марки (2D)» толщиной 10 мм в количестве 243617 м 2 .

Согласно СТО 56910145-005-2011 дренажный мат Гидромат представляет собой геокомпозитный материал, состоящий из высокопористого сердечника и соединенных с ним методом термоскрепления наружных оболочек — фильтров из нетканого геотекстиля. Полимерная сетка (сердцевина) изготавливается из полиэтилена низкого давления ПЭНД или композиции ПЭНД с линейным полиэтиленом LLDPE с термо и светостабилизирующими добавками. Геотекстиль состоит из 100%-ного полипропилена. Технические характеристики:

- полимерная сетка (сердечник) (поверхностная плотность ≈ 0.94 г/см 3 в соответствии с ГОСТ 16338-85, толщина 3 мм)
 - геотекстиль (поверхностная плотность $500 \ \text{г/м}^2$, толщина $3,5 \ \text{мм}$).

Норма образования отхода составит:

 $M_{\text{полим.сетка}} = 243617 \times 0{,}003 \times 0{,}94 \times 0{,}04 =$ **27,480 т/период** - *отходы полиэтилена*

 $M_{\text{геотекстиль}} = 243617 \times 500 \times 0.04 \times 10^{-6} = 4.872$ т/период — omxodы полипропилена.

Расчет количества образующихся отходов геомембраны CTAБAPM HDPE.

Лом и отходы изделий из полиэтилена незагрязненные (кроме тары) – 43411003515.

Согласно нормам Дополнений к РДС 82-202-96 (Таблица 1) потери рулонных материалов при изоляции поверхностей составят 4% от общего количества используемого материала.

Для устройства защитного экрана поверхности участка захоронения ТКО проектом предусмотрено использование геомембраны СТАБАРМ HDPE в количестве 122788 м².

Согласно СТО 30978849.0008-2016 «Рулонный полимерный изолирующий материал Геомембрана «СТАБАРМ» применяемая в дорожном строительстве. Геомембрана композиционная «СТАБАРМ». Технические условия», плотность геомембраны СТАБАРМ HDPE составляет 0,94 г/см³, толщина геомембраны – 1,5 мм.

Норма образования отхода составит:

 $M = 122788 \times 0.0015 \times 0.94 \times 0.04 = 6.925$ т/период.

Расчет количества образующихся отходов геотекстиля.

Лом и отходы изделий из полипропилена незагрязненные (кроме тары) – 43412003515.

Согласно нормам Дополнений к РДС 82-202-96 (Таблица 1) потери рулонных материалов при изоляции поверхностей составят 4% от общего количества используемого материала.

Для устройства защитного экрана поверхности участка захоронения ТКО проектом предусмотрено использование геотекстиля в количестве 2410 м^2 (плотностью 200 г/м^2).

Норма образования отхода составит:

 $M = 2410 \times 200 \times 0.04 \times 10^{-6} = 0.019$ т/период.

Расчет количества образующихся отходов бентонитовых матов.

Лом и отходы изделий из полипропилена незагрязненные (кроме тары) — 43412003515.

Отходы бентонитовой глины при ремонтно-строительных работах — 82451111205.

Согласно нормам Дополнений к РДС 82-202-96 (Таблица 1) потери рулонных материалов при изоляции поверхностей составят 4% от общего количества используемого материала.

Для устройства защитного экрана поверхности участка захоронения ПО проектом предусмотрено использование бентонитовых матов Bentofix NSP 4900 в количестве 50110 m^2 .

Согласно Техническим характеристикам структура бентонитового мата Bentofix следующая:

- покрывающий материал (геотекстиль из полипропилена) (масса на единицу поверхности 220 гр/м^2)
- несущий материал (тканое геополотно из полипропилена) (масса на единицу поверхности $110 \ {\rm гp/m^2})$
- слой бентонитовой глины (натриевый бентонит (порошок)) (масса на единицу поверхности $4670 \; \text{гр/м}^2$)

Норма образования отхода составит:

 $M_{\pi\pi}=[(50110\times 220)+(50110\times 110)]\times 0,04\times 10^{-6}=$ 0,661 т/период - отходы полипропилена

 $M_{rn} = 50110 \times 4670 \times 0.04 \times 10^{-6} = 9.361$ т/период — отходы бентонитовой глины.

Отходы труб от прокладки трубопроводов при устройстве защитного экрана поверхности участка захоронения ТКО.

Лом и отходы изделий из полиэтилена незагрязненные (кроме тары) – 43411003515.

Согласно нормам РДС 82-202-96 (Приложение 3) потери труб при прокладке трубопроводов составят:

- 2,5% от общего количества используемого материала (внутренние сети);
- 2,5% от общего количества используемого материала (наружные сети).

Для отвода поверхностного стока проектом предусмотрена прокладка перфорированной трубы из полиэтилена низкого давления диаметром 300 мм протяженностью 1475 мп. Вес 1 мп трубы из ПНД d=300мм в среднем составляет 25,7 кг.

Норма образования отхода составит:

 $M = 1475 \times 25,7 \times 0,025 \times 10^{-3} = 0,948$ т/период.

Отходы строительных материалов при устройстве газовых скважин для отвода биогаза.

Лом бетонных изделий, отходы бетона в кусковой форме – 82220101215.

Нормы потерь и отходов согласно Приложению Л РДС 82-202-96 составляют 2%. Количество используемого при рекультивации бетона составляет 4 m^3 (8 т при плотности бетона, равной 2 т/m^3).

Норма образования отхода составит:

 $M = 8 \times 0.02 = 0.160$ т/период.

Отходы керамзита в кусковой форме – 34241001215.

Нормы потерь и отходов согласно Приложению Л РДС 82-202-96 составляют 0,4%. Количество используемого при рекультивации керамзитового гравия составляет 43 м^3 $(30,1 \text{ т при плотности керамзитового гравия, равной <math>0,7 \text{ т/м}^3$).

Норма образования отхода составит:

 $M = 30.1 \times 0.004 = 0.120$ т/период.

Лом и отходы изделий из полиэтилена незагрязненные (кроме тары) – 43411003515.

Согласно нормам РДС 82-202-96 (Приложение 3) потери труб при прокладке трубопроводов составят:

- 2,5% от общего количества используемого материала (внутренние сети);
- 2,5% от общего количества используемого материала (наружные сети).

Для отвода биогаза проектом предусмотрена установка газовых скважин - труб в количестве 48 шт. из полиэтилена низкого давления диаметром d=20см, h=4,7м. Вес 1 м трубы из ПНД d=20см в среднем составляет 10,4 кг.

Норма образования отхода составит:

 $M = 48 \times 4.7 \times 10.4 \times 0.025 \times 10^{-3} = 0.059$ т/период.

Отходы от жизнедеятельности рабочих.

Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный) – 73310001724.

Расчет нормы образования отхода проводится по «Сборнику удельных показателей образования отходов производства и потребления», 1999г., таблица 3.2., пункт 6. Среднегодовой норматив образования отходов составляет 40-70 кг/год на одного человека. Для

расчета принято максимальное значение в 70 кг/год. На момент технического этапа рекультивации предусмотрено 5 человек.

Норма образования отхода составит:

$$M = 5 \times 70 \times 10^{-3} = 0,350$$
 т/период,

где: 10^{-3} – коэффициент перевода кг в тонны.

Пищевые отходы кухонь и организаций общественного питания несортированные – 73610001305.

Отход образуется от приёма пищи. Предусмотрен привоз готовой пищи высокой степени готовности в пластиковой упаковке и раздача её рабочим.

Согласно «Методическим рекомендациям по разработке проекта нормативов предельного размещения отходов для теплоэлектростанций, теплоэлектроцентралей, промышленных и отопительных котельных», СПб, 1998 г. норма образования отходов (М) рассчитывается, исходя из среднесуточной нормы накопления на 1 блюдо - $0,0001 \,\mathrm{m}^3$, числа рабочих дней за период (n), числа блюд на одного человека (m) и числа работающих (z). Плотность отходов (ρ) - $0,3 \,\mathrm{T/m}^3$.

$$M = 0.0001 \times n \times m \times z \times \rho$$
, т/период

Норма образования отхода составит:

 $M = 0,0001 \times 252 \times 3 \times 5 \times 0,3 = 0,113$ т/период.

Отходы посуды одноразовой из разнородных полимерных материалов, загрязненной пищевыми продуктами — 43894111524.

Отход образуется от приёма пищи. Норма образования отхода определяется, исходя из количества единиц одноразовой посуды на 1 рабочего, ее веса (в граммах), количества рабочих и числа рабочих суток за период:

$$M = 4 \times 10 \times 5 \times 252 \times 10^{-6} = 0,050$$
 т/период,

где: 4 – количество единиц одноразовой посуды на 1 рабочего (три тарелки и один стакан), шт.;

10 – средний вес одной единицы одноразовой посуды, грамм;

10-6 – коэффициент перевода грамм в тонны.

Отходы от замены спецодежды, спецобуви и средств защиты.

Спецодежда из хлопчатобумажного и смешанных волокон, утратившая потребительские свойства, незагрязненная – 40211001624.

Отход образуется при замене изношенных хлопчатобумажных комплектов и костю-

мов, рукавиц комбинированных, а также верхней одежды.

Наименование спец- одежды	Количество рабочих	Норма выдачи спецодежды, раз/период	Вес еди- ницы спец- одежды, кг	Нормативная масса образования отхода, т/период
Комплект х/б	5	1	0,45	$M = 5 \times 1 \times 0.45 \times 10^{-3} = 0.002$
Костюм х/б с водооттал- кивающей пропиткой	5	1	2,4	$M = 5 \times 1 \times 2,4 \times 10^{-3} = 0,012$
Рукавицы комбиниро- ванные	5	1	0,3	$M = 5 \times 1 \times 0.3 \times 10^{-3} = 0.002$
Куртка на утепляющей подкладке	5	1	2,5	$M = 5 \times 1 \times 2,5 \times 10^{-3} = 0,013$
Брюки на утепляющей	5	1	2,8	$M = 5 \times 1 \times 2.8 \times 10^{-3} = 0.014$

подкладке			
		Итого:	0,043 т/период

Спецодежда из брезентовых тканей, утратившая потребительские свойства – 40212112605.

Отход образуется при замене изношенных брезентовых костюмов.

			P	
Наименование спец- одежды	Количество рабочих	Норма выдачи спецодежды, раз/период	Вес еди- ницы спец- одежды,	Нормативная масса образования отхода, т/период
			кг	
Брезентовый костюм	5	1	2,8	$M = 5 \times 1 \times 2.8 \times 10^{-3} = 0.014$
			Итого:	0,014 т/период

Обувь кожаная рабочая, утратившая потребительские свойства – 40310100524.

Отход образуется при замене кожаной спецобуви.

Наименование спецобуви	Количество рабочих	Норма выдачи спецобуви, раз/период	Вес пары спецобуви, кг	Нормативная масса образования отхода, т/период
Ботинки кожаные	5	1	2,0	$M = 5 \times 1 \times 2,0 \times 10^{-3} = 0,010$
			Итого:	0,010 т/период

Резиновые перчатки, утратившие потребительские свойства, незагрязненные – 43114101204.

Отход образуется при замене резиновых перчаток.

защиты рабочих резиновых пер- резиновых отхода, т/период чаток, перчаток, раз/период кг				Итого:	0,004 т/период
защиты рабочих резиновых пер- резиновых отхода, т/период чаток, перчаток,	Резиновые перчатки	5	12	0,06	$M = 5 \times 12 \times 0.06 \times 10^{-3} = 0.004$
защиты рабочих резиновых пер- резиновых отхода, т/период			раз/период	кг	
			чаток,	перчаток,	
Наименование среоств Количество Норма выоачи Вес пары Нормативная масса ооразовс	защиты	рабочих	резиновых пер-	резиновых	отхода, т/период
	Наименование средств	Количество	Норма выдачи	Вес пары	Нормативная масса образования

Резиновая обувь отработанная, утратившая потребительские свойства, незагрязненная — 43114102204.

Отход образуется при замене резиновой спецобуви.

Наименование средств	Количество	Норма выдачи	Вес пары	Нормативная масса образования
защиты	рабочих	резиновых са-	резиновых	отхода, т/период
		пог, раз/период	сапог, кг	
Резиновые сапоги	5	1	1,6	$M = 5 \times 1 \times 1,6 \times 10^{-3} = 0,008$
			Итого:	0,008 т/период

Отходы от эксплуатации сетей внутреннего и наружного освещения.

Светильники со светодиодными элементами в сборе, утратившие потребительские свойства – 48242711524.

Отход образуется при замене перегоревших светодиодных светильников. Расчет проводится аналогично ртутным лампам по «Сборнику методик по расчету объемов образования отходов. Методика расчета объемов образования отходов МРО-6-99. Отработанные ртутьсодержащие лампы». СПб, 2004г. Норматив образования отхода рассчитывается по формуле:

$$N = \sum n_i \times m_i \times t_i \times 10^{-6} / k_i$$
, т/период

где: n_i – количество установленных светильников і-той марки, шт.;

t_i – фактическое количество часов работы светильников i-той марки, час/период;

k_i – эксплуатационный срок службы светильников i-той марки, час;

 m_i – вес одного светильника, г;

10-6 – коэффициент перевода грамм в тонны.

Норма образования отхода составит:

Наименование объекта	Кол-во, шт.	Среднее время ра- боты, час/сут	Число рабо- чих суток за период, шт.	Вес 1-й лампы, г	Нормативный срок службы 1-й лампы, час	Вес от- хода, т/период
Площадка ре- культивации	50	8	252	500	10000	0,00504
					Итого:	0,005

Отходы от ремонта автотранспорта.

Расчет количества отходов проводится в соответствии со «Сборником удельных показателей образования отходов производства и потребления». Государственный комитет Российской Федерации по охране окружающей среды. Москва, 1999г.

Отходы изделий технического назначения из вулканизированной резины незагрязненные в смеси – 43119981724.

Количество отходов резинотехнических материалов, образующихся при проведении вулканизационных работ для автомобилей, определяется из расчета:

- 0,2 кг на 10 000 км пробега для грузовых автомобилей.

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/период
KAMA3-65111-50	1	9000	0,2	10000	0,00018
Бурильно-крановая машина БМ-802C на базе КРАЗ-257	1	600	0,2	10000	0,00001
				Итого:	0,0002

Покрышки пневматических шин с металлическим кордом отработанные – 92113002504.

Количество отработанных покрышек определяется исходя из значения удельного показателя образования отходов:

- 19,1 кг на 10 000 км пробега для грузовых автомобилей.

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/период
KAMA3-65111-50	1	9000	19,1	10000	0,01719
Бурильно-крановая машина БМ-802C на базе КРАЗ-257	1	600	19,1	10000	0,00115
				Итого:	0,018

Аккумуляторы свинцовые отработанные неповрежденные, с электролитом – 92011001532.

Количество лома отработанных свинцовых аккумуляторов определяется исходя из значения удельного показателя образования отходов:

- 4,18 кг на 10 000 км пробега для грузовых автомобилей.

Количество отработанного электролита определяется исходя из значения удельного показателя образования отходов:

- 2,7 л на 10 000 км пробега для грузовых автомобилей.

Расчет количества лома аккумуляторов свинцовых отработанных

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/период
Бульдозер Б10ПМ	1	500	4,18	10000	0,00021
KAMA3-65111-50	1	9000	4,18	10000	0,00376
Бурильно-крановая машина БМ-802C на базе КРАЗ-257	1	600	4,18	10000	0,00025
				Итого:	0,004

Расчет количества сернокислотного электролита

Марка автотранс- порта	Кол- во	Пробег одной еди- ницы, км/период	Значение удельного показателя, л	Коэффициент перевода л в м ³	Плотность электролита, т/м³	Нормативный пробег, км	Вес от- хода, т/период
Бульдозер Б10ПМ	1	500	2,7	0,001	1,2	10000	0,00016
KAMA3-65111-50	1	9000	2,7	0,001	1,2	10000	0,00292
Бурильно-крановая машина БМ-802С на базе КРАЗ-257	1	600	2,7	0,001	1,2	10000	0,00019
						Итого:	0,003

Количество отхода составит 0,007 т/период.

Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%) – 91920402604.

Согласно нормам расхода материалов на ремонт и эксплуатацию автомашин количество обтирочного материала, загрязненными маслами, определяется из расчета:

- 2,18 кг на 10 000 км пробега для грузовых автомобилей.

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Вес отхо- да, т/период
Бульдозер Б10ПМ	1	500	2,18	10000	0,00011
KAMA3-65111-50	1	9000	2,18	10000	0,00196
Бурильно-крановая машина БМ-802С на базе КРАЗ-257	1	600	2,18	10000	0,00013
				Итого:	0,002

Отходы синтетических и полусинтетических масел моторных - 41310001313.

Количество отработанного моторного масла рассчитывается исходя из значения удельного показателя образования отходов:

- 1,17 л на 100 л израсходованного топлива для внедорожных автомобилей – самосвалов и другой подобной техники, работающей на дизельном топливе.

Марка автотранс- порта	Кол- во	Расход топ- лива одной единицы, л/период	Значение удельного показателя, л	Нормативный расход топ- лива, л	Коэффициент перевода л в м3	Плотность масла, т/м3	Вес от- хода, т/период
Бульдозер Б10ПМ	1	15000	1,17	100	0,001	0,93	0,16322
KAMA3-65111-50	1	7200	1,17	100	0,001	0,93	0,07834
Бурильно-крановая машина БМ-802С на базе КРАЗ-257	1	4100	1,17	100	0,001	0,93	0,04461
	•			•		Итого:	0,286

Отходы минеральных масел трансмиссионных – 40615001313.

Количество отработанного трансмиссионного масла рассчитывается исходя из значения удельного показателя образования отходов:

- 1,17 л на 100 л израсходованного топлива для внедорожных автомобилей – самосвалов и другой подобной техники, работающей на дизельном топливе.

Марка автотранс- порта	Кол- во	Расход топ- лива одной единицы, л/период	Значение удельного показателя, л	Нормативный расход топ- лива, л	Коэффициент перевода л в м3	Плотность масла, т/м3	Вес от- хода, т/период
Бульдозер Б10ПМ	1	15000	1,17	100	0,001	0,885	0,15532
KAMA3-65111-50	1	7200	1,17	100	0,001	0,885	0,07455
Бурильно-крановая машина БМ-802С на базе КРАЗ-257	1	4100	1,17	100	0,001	0,885	0,04245
						Итого:	0,272

Отходы минеральных масел гидравлических, не содержащих галогены – 40612001313.

Количество отработанного гидравлического масла рассчитывается исходя из значения удельного показателя образования отходов:

- 0,6 л на 100 л израсходованного топлива для внедорожных автомобилей – самосвалов и другой подобной техники.

Марка автотранс- порта	Кол- во	Расход топ- лива одной единицы, л/период	Значение удельного показателя, л	Нормативный расход топ- лива, л	Коэффициент перевода л в м3	Плотность масла, т/м3	Вес от- хода, т/период
Бульдозер Б10ПМ	1	15000	0,6	100	0,001	0,890	0,08010
KAMA3-65111-50	1	7200	0,6	100	0,001	0,890	0,03845
Бурильно-крановая машина БМ-802С на	1	4100	0,6	100	0,001	0,890	0,02189

базе КРАЗ-257				
			Итого:	0,140

Фильтры очистки масла автотранспортных средств отработанные - 92130201523.

Норматив образования отработанных фильтров, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{Hi} \times 10^{-3},$$
 т/период

гле:

N_i – количество автомашин i-й марки, шт.;

 n_i – количество фильтров, установленных на автомашине i-й марки, шт.; от 1 до 4 фильтров (в среднем n_i = 2 фильтра);

m_i – вес одного фильтра на автомашине і-й марки, кг;

 L_i – средний пробег автомобиля і-й марки, тыс.км/период (или среднее время работы спецтехники і-й марки, час/период);

 $L_{\text{ні}}$ — норма пробега подвижного состава і-ой марки до замены фильтровальных элементов, тыс.км (или норма времени до замены фильтров, час);

10-3 – коэффициент перевода кг в тонны.

Замена масляных фильтров производится через 10 тыс.км пробега. В среднем вес одного масляного фильтра на грузовых машинах составляет 1,5 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Бульдозер Б10ПМ	1	2	1,5	0,500	10	0,00015
KAMA3-65111-50	1	2	1,5	9,000	10	0,00270
Бурильно-крановая машина БМ-802С на базе КРАЗ-257	1	2	1,5	0,600	10	0,00018
					Итого:	0,003

Фильтры воздушные автотранспортных средств отработанные – 92130101524.

Норматив образования отработанных фильтров, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{\text{H}i} \times 10^{-3},$$
 т/период

где:

N_i – количество автомашин i-й марки, шт.;

 n_i – количество фильтров, установленных на автомашине i-й марки, шт.; от 1 до 4 фильтров (в среднем n_i = 2 фильтра);

m_i – вес одного фильтра на автомашине і-й марки, кг;

 L_i – средний пробег автомобиля і-й марки, тыс.км/период (или среднее время работы спецтехники і-й марки, час/период);

 $L_{\text{ні}}$ — норма пробега подвижного состава і-ой марки до замены фильтровальных элементов, тыс.км (или норма времени до замены фильтров, час);

10-3 – коэффициент перевода кг в тонны.

Замена воздушных фильтров производится через 20 тыс.км пробега. В среднем вес одного воздушного фильтра на грузовых машинах составляет 0,5 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Бульдозер Б10ПМ	1	2	0,5	0,500	20	0,00003
KAMA3-65111-50	1	2	0,5	9,000	20	0,00045
Бурильно-крановая машина БМ-802С на базе КРАЗ-257	1	2	0,5	0,600	20	0,00003
					Итого:	0,001

Фильтры очистки топлива автотранспортных средств отработанные – 92130301523.

Норматив образования отработанных фильтров, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{Hi} \times 10^{-3},$$
 т/период

где:

N_i – количество автомашин і-й марки, шт.;

 n_i – количество фильтров, установленных на автомашине i-й марки, шт.; от 1 до 4 фильтров (в среднем n_i = 2 фильтра);

m_i – вес одного фильтра на автомашине і-й марки, кг;

 L_i — средний пробег автомобиля і-й марки, тыс.км/период (или среднее время работы спецтехники і-й марки, час/период);

 $L_{\text{ні}}$ — норма пробега подвижного состава і-ой марки до замены фильтровальных элементов, тыс.км (или норма времени до замены фильтров, час);

 10^{-3} – коэффициент перевода кг в тонны.

Замена топливных фильтров производится через 10 тыс.км пробега. В среднем вес одного топливного фильтра на грузовых машинах составляет 0,1 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Бульдозер Б10ПМ	1	2	0,1	0,500	10	0,00001
KAMA3-65111-50	1	2	0,1	9,000	10	0,00018
Бурильно-крановая машина БМ-802С на базе КРАЗ-257	1	2	0,1	0,600	10	0,00001
					Итого:	0,0002

Тормозные колодки отработанные без накладок асбестовых – 92031001525.

Норматив образования отработанных тормозных колодок, образующихся при эксплуатации автотранспорта, производится по формуле («Методические рекомендации по расчету нормативов образования отходов для автотранспортных предприятий». СПб, 2003г.):

$$M = \sum N_i \times n_i \times m_i \times L_i / L_{{\scriptscriptstyle H}i} \times 10^{\text{-3}},$$
 т/период

где:

N_i – количество автомашин і-й марки, шт.;

 n_i – количество тормозных колодок, установленных на автомашине i-й марки, шт.;

m_i – вес одной тормозной колодки на автомашине i-й марки, кг;

 L_i — средний пробег автомобиля і-й марки, тыс.км/период (или среднее время работы спецтехники і-й марки, час/период);

 $L_{\text{ні}}$ — норма пробега подвижного состава і-ой марки до замены тормозных колодок, тыс.км (или норма времени до замены фильтров, час);

 10^{-3} – коэффициент перевода кг в тонны.

Замена тормозных колодок для грузовых автомобилей производится через 10 тыс.км пробега. В среднем вес одной тормозной колодки на грузовых машинах составляет 0,53 кг.

Марка автотранспорта	Ni	ni	mi	Li	Lнi	Вес отхода, т/период
Бульдозер Б10ПМ	1	8	0,53	0,500	10	0,00021
KAMA3-65111-50	1	8	0,53	9,000	10	0,00382
Бурильно-крановая машина БМ-802С на базе КРАЗ- 257	1	8	0,53	0,600	10	0,00025
					Итого:	0,004

Примечание: отходы черных и цветных металлов при ремонте автотранспорта на объекте не образуются, т.к. ремонт подвижного состава, связанного с заменой узлов, агрегатов и пр. планируется осуществлять на специализированных предприятиях.

Отходы от мойки колес автотранспорта.

Расчет количества отходов проводится в соответствии со «Сборником удельных показателей образования отходов производства и потребления». Государственный комитет Российской Федерации по охране окружающей среды. Москва, 1999г.

Осадок механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15% – 72310202394.

Количество осадка сточных вод (влажностью 95-98%) от мойки грузовых автомобилей определяется исходя из значения удельного показателя образования отходов:

- 146,3 кг на 10 000 км пробега (сухого вещества без учета массы воды).

Норма образования отхода составит:

$$M = [(146,3 \times 9000 / 10000) + (146,3 \times 600 / 10000)] \times 10^{-3} = 0,140$$
 т/период,

где: 9000, 600 - пробег 2-x единиц автотранспорта, км/период; $10^{-3} - \text{коэффициент}$ перевода кг в тонны.

Всплывшие нефтепродукты из нефтеловушек и аналогичных сооружений – 40635001313.

Количество маслонефтеотходов, обводненных (80%) от мойки грузовых автомобилей определяется исходя из значения удельного показателя образования отходов:

- 2,99 кг на 10 000 км пробега (сухого вещества без учета массы воды).

Норма образования отхода составит:

$$M = [(2.99 \times 9000 / 10000) + (2.99 \times 600 / 10000)] \times 10^{-3} = 0.003$$
 т/период,

где: 9000, 600 – пробег 2-х единиц автотранспорта, км/период; 10^{-3} – коэффициент перевода кг в тонны.

Расчет образования отходов при биологической рекультивации.

(Биологический этап рекультивации – продолжительность 4 года)

Отходы от жизнедеятельности рабочих.

Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный) – 73310001724.

Примечание: биологический этап рекультивации - продолжительность 48 месяцев, при расчетах видов отходов с применением годового удельного норматива принимаем коэффициент 4.

Расчет нормы образования отхода проводится по «Сборнику удельных показателей образования отходов производства и потребления», 1999г., таблица 3.2., пункт 6. Среднегодовой норматив образования отходов составляет 40-70 кг/год на одного человека. Для расчета принято максимальное значение в 70 кг/год. На момент биологического этапа рекультивации предусмотрено 5 человек.

Норма образования отхода составит:

$$M = 5 \times 70 \times 4 \times 10^{-3} = 1,400$$
 т/период,

где: 10^{-3} – коэффициент перевода кг в тонны.

Пищевые отходы кухонь и организаций общественного питания несортированные – 73610001305.

Отход образуется от приёма пищи.

Согласно «Методическим рекомендациям по разработке проекта нормативов предельного размещения отходов для теплоэлектростанций, теплоэлектроцентралей, промышленных и отопительных котельных», СПб, 1998 г. норма образования отходов (М) рассчитывается, исходя из среднесуточной нормы накопления на 1 блюдо - $0,0001 \,\mathrm{m}^3$, числа рабочих дней за период (n), числа блюд на одного человека (m) и числа работающих (z). Плотность отходов (ρ) - $0,3 \,\mathrm{T/m}^3$.

$$M = 0.0001 \times n \times m \times z \times \rho$$
, т/период

Норма образования отхода составит:

$$M = 0,0001 \times (252 \times 4 \text{ года}) \times 3 \times 5 \times 0,3 = 0,454 \text{ т/период.}$$

Отходы от замены спецодежды, спецобуви и средств защиты.

Спецодежда из хлопчатобумажного и смешанных волокон, утратившая потребительские свойства, незагрязненная – 40211001624.

Отход образуется при замене изношенных хлопчатобумажных комплектов и костюмов, рукавиц комбинированных, а также верхней одежды.

Наименование спец- одежды	Количество рабочих	Норма выдачи спецодежды, раз/период	Вес еди- ницы спец- одежды,	Нормативная масса образования отхода, т/период
Комплект х/б	5	4	κε 0,45	$M = 5 \times 4 \times 0.45 \times 10^{-3} = 0.009$
Костюм x/б с водооттал- кивающей пропиткой	5	4	2,4	$M = 5 \times 4 \times 2,4 \times 10^{-3} = 0,048$
Рукавицы комбиниро- ванные	5	4	0,3	$M = 5 \times 4 \times 0.3 \times 10^{-3} = 0.006$
Куртка на утепляющей подкладке	5	4	2,5	$M = 5 \times 4 \times 2,5 \times 10^{-3} = 0,050$

			Итого:	0.169 т/период
подкладке				
Брюки на утепляющей	5	4	2,8	$M = 5 \times 4 \times 2.8 \times 10^{-3} = 0.056$

Спецодежда из брезентовых тканей, утратившая потребительские свойства – 40212112605.

Отход образуется при замене изношенных брезентовых костюмов.

o mog oopusjen	on inpin sumerio	institution comment	Pesentobbi	i Rocifoliob.
Наименование спец-	Количество	Норма выдачи	Вес еди-	Нормативная масса образования
одежды	рабочих	спецодежды,	ницы	отхода, т/период
		раз/период	спец-	
			одежды,	
			кг	
Брезентовый костюм	5	4	2,8	$M = 5 \times 4 \times 2.8 \times 10^{-3} = 0.056$
			Итого:	0,056 т/период

Обувь кожаная рабочая, утратившая потребительские свойства – 40310100524.

Отход образуется при замене кожаной спецобуви.

o many or production			J = ·	
Наименование спецобуви	Количество	Норма выдачи	Вес пары	Нормативная масса образования
	рабочих	спецобуви,	спецобуви,	отхода, т/период
		раз/период	кг	
Ботинки кожаные	5	4	2,0	$M = 5 \times 4 \times 2,0 \times 10^{-3} = 0,040$
			Итого:	0,040 т/период

Резиновые перчатки, утратившие потребительские свойства, незагрязненные – 43114101204.

Отход образуется при замене резиновых перчаток.

			Итого:	0,014 т/период
Резиновые перчатки	5	48	0.06	$M = 5 \times 48 \times 0.06 \times 10^{-3} = 0.014$
		раз/период	кг	
		чаток,	перчаток,	
защиты	рабочих	резиновых пер-	резиновых	отхода, т/период
Наименование средств	Количество	Норма выдачи	Вес пары	Нормативная масса образования

Резиновая обувь отработанная, утратившая потребительские свойства, незагрязненная — 43114102204.

Отход образуется при замене резиновой спецобуви.

Наименование средств	Количество	Норма выдачи	Вес пары	Нормативная масса образования
защиты	рабочих	резиновых са-	резиновых	отхода, т/период
		пог, раз/период	сапог, кг	
Резиновые сапоги	5	4	1,6	$M = 5 \times 4 \times 1,6 \times 10^{-3} = 0,032$
			Итого:	0,032 т/период

Отходы от технического обслуживания автотранспорта.

Расчет количества отходов проводится в соответствии со «Сборником удельных показателей образования отходов производства и потребления». Государственный комитет Российской Федерации по охране окружающей среды. Москва, 1999г.

Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%) – 91920402604.

Согласно нормам расхода материалов на ремонт и эксплуатацию автомашин количество обтирочного материала, загрязненными маслами, определяется из расчета:

- 2,18 кг на 10 000 км пробега для грузовых автомобилей.

Марка автотранспорта	Кол-во	Пробег одной единицы, км/период	Значение удельного по- казателя, кг	Нормативный пробег, км	Bec omxo- да, m/nepuoд
Беларус МТЗ-82К	1	3120	2,18	10000	0,00068
Поливомоечная машина КО-823-01 на базе КА- MA3-65115	1	37200	2,18	10000	0,00811
		•		Итого:	0,009

Примечание: отходы покрышек, аккумуляторов, масел, фильтров, тормозных колодок, черных и цветных металлов при ремонте автотранспорта на объекте не образуются, т.к. ремонт подвижного состава планируется осуществлять на специализированных предприятиях.

Отходы от посева травосмеси и применения минеральных и органических удобрений.

Расчет количества образующейся упаковки от травосмеси.

Многолетние травы (мятлик луговой, райграс пастбищный, овсяница луговая) поступают на территорию площадки рекультивации в полипропиленовых мешках вместимостью 25 кг.

Количество многолетних трав для биологического этапа рекультивации составит: мятлик луговой -141.5 кг; райграс пастбищный -212.3 кг; овсяница луговая -192.5 кг.

Упаковка полипропиленовая отработанная незагрязненная – 43412311514.

Норма образования отхода составит:

$$P = \sum Q_i / M_i \times m_i \times 10^{-3}$$
, т/период

где: Qі – расход сырья і-го вида, кг/период;

Мі – вес сырья і-го вида в единице упаковки, кг;

m_i – вес единицы пустой упаковки из-под сырья і-го вида, кг;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

$$P = 546,3 / 25 \times 0,5 \times 10^{-3} = 0,011$$
 т/период,

где: 0.5 – вес единицы пустой упаковки, кг; 10^{-3} – коэффициент перевода кг в тонны.

Расчет количества образующейся упаковки от удобрений.

Минеральные удобрения (азотные, фосфорные, калийные, древесная зола) и органические удобрения поступают на территорию площадки рекультивации в бумажных мешках с полиэтиленовым вкладышем вместимостью 25 кг.

Количество удобрений для биологического этапа рекультивации составит:

Азотные: подкормка на 2-й, 3-й, 4-й годы — $(642 \times 3 \text{ года})$ кг;

Фосфорные: основное допосевное внесение — 963,5 кг; подкормка на 2-й, 3-й, 4-й годы — $(899 \times 3 \text{ года})$ кг;

Калийные: основное допосевное внесение — 899 кг; подкормка на 2-й, 3-й, 4-й годы — $(642 \times 3 \ \text{года})$ кг;

Древесная зола: основное допосевное внесение – 7704 кг;

Органические: при завозе плодородного грунта и распределении по поверхности — 5,41 тонн; последующий год освоения — 2,71 тонн.

Упаковка из бумаги и/или картона, загрязненная органоминеральными удобрениями – 40591972604.

Норма образования отхода составит:

$$P = \sum Q_i / M_i \times m_i \times 10^{-3}$$
, т/период

где: Q_і – расход сырья і-го вида, кг/период;

M_i – вес сырья i-го вида в единице упаковки, кг;

m_i – вес единицы пустой упаковки из-под сырья і-го вида, кг;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

$$P = 16123,62 / 25 \times 0,5 \times 10^{-3} = 0,322$$
 т/период

где: 0,5 – вес единицы пустой упаковки, кг.

Упаковка полиэтиленовая, загрязненная органо-минеральными удобрениями – 43811921514.

Норма образования отхода составит:

$$P = \sum Q_i / M_i \times m_i \times 10^{-3}$$
, т/период

где: Q_i – расход сырья i-го вида, кг/период;

M_i – вес сырья і-го вида в единице упаковки, кг;

m_i – вес единицы пустой упаковки из-под сырья і-го вида, кг;

10-3 – коэффициент перевода кг в тонны.

Норма образования отхода составит:

$$P = 16123,62 / 25 \times 0,1 \times 10^{-3} = 0,064$$
 т/период

где: 0,1 – вес единицы пустого полиэтиленового вкладыша, кг.

Результаты расчетов

1. Производственная база

Источник 1 (Гараж)

Токсичные газы выделяются при выезде автотранспортных средств из гаража и возврате, при проведении мелкосрочного ремонта, когда автомобили перемещаются по помещению бокса с помощью собственных двигателей, а также при перемещении автотранспортных средств по территории предприятия. Перечень автомобилей с характеристиками приведен в Приложении 2.

Расчет произведен программой "АТП-Эколог", версия 3.10.18.0 от 24.06.2014 Copyright© 1995-2014 ФИРМА "ИНТЕГРАЛ"

Программа основана на следующих методических документах:

- 1. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом). М., 1998 г.
- 2. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для авторемонтных предприятий (расчетным методом). М., 1998 г.
- 3. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом). М., 1998 г.
 - 4. Дополнения (приложения №№ 1-3) к вышеперечисленным методикам.
- 5. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух. СПб, 2012 г.
 - 6. Письмо НИИ Атмосфера №07-2-263/13-0 от 25.04.2013 г.

Расшифровка кодов топлива и графы "О/Г/К" для таблиц "Характеристики автомобилей..." Код топлива может принимать следующие значения

- 1 Бензин АИ-93 и аналогичные по содержанию свинца;
- 2 Бензины А-92, А-76 и аналогичные по содержанию свинца;
- 3 Дизельное топливо;
- 4 Сжатый газ;
- 5 Неэтилированный бензин;
- 6 Сжиженный нефтяной газ.

Значения в графе "О/Г/К" имеют следующий смысл

- 1. Для легковых автомобилей рабочий объем ДВС:
- 1 до 1.2 л
- 2 свыше 1.2 до 1.8 л
- 3 свыше 1.8 до 3.5 л
- 4 свыше 3.5 л
 - 2. Для грузовых автомобилей грузоподъемность:
- 1 до 2 т
- 2 свыше 2 до 5 т
- 3 свыше 5 до 8 т
- 4 свыше 8 до 16 т
- 5 свыше 16 т
 - 3. Для автобусов класс (габаритная длина) автобуса:
- 1 Особо малый (до 5.5 м)
- 2 Малый (6.0-7.5 м)
- 3 Средний (8.0-10.0 м)
- 4 Большой (10.5-12.0 м)
- 5 Особо большой (16.5-24.0 м)

Челябинск: среднемесячная и средняя минимальная температура воздуха, °С

Характеристики	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
Среднемесячная температура, °С	-15.8	-14.3	-7.4	3.9	11.9	16.8	18.4	16.2	10.7	2.4	-6.2	-12.9
Расчетные периоды года	X	X	X	П	Т	Т	Т	Т	Т	П	X	X
Средняя минимальная температура, °С	-15.8	-14.3	-7.4	3.9	11.9	16.8	18.4	16.2	10.7	2.4	-6.2	-12.9
Расчетные периоды года	X	X	X	П	T	Т	Т	Т	Т	П	X	X

В следующих месяцах значения среднемесячной и средней минимальной температур совпадают: Январь, Февраль, Март, Апрель, Май, Июнь, Июль, Август, Сентябрь, Октябрь, Ноябрь, Декабрь

Характеристики периодов года для расчета валовых выбросов загрязняющих веществ

Период года	Месяцы	Всего дней
Теплый	Май; Июнь; Июль; Август; Сентябрь;	153
Переходный	Апрель; Октябрь;	61
Холодный	Январь; Февраль; Март; Ноябрь; Декабрь;	151
Всего за год	Январь-Декабрь	365

1). Въезд-выезд автомобилей из гаража

тип - 3 - Теплая закрытая стоянка (гараж)

Общее описание участка

Пробег автомобиля до выезда со стоянки (км)

- от ближайшего к выезду места стоянки:

0.001

- от наиболее удаленного от выезда места стоянки:

0.020

Пробег автомобиля от въезда на стоянку (км)

- до ближайшего к въезду места стоянки:

0.001

- до наиболее удаленного от въезда места стоянки:

0.020

- среднее время выезда (мин.): 40.0

Характеристики автомобилей на участке

Марка автомобиля	Категория	Место пр-ва	Ο/Γ/Κ	Тип	Код топл.	Экокон-	Нейтра-	Кол-во в	Кол-во
				двиг.		троль	лизатор	сутки	в час
грузовой дизельный 2-5т	Грузовой	СНГ	2	Диз.	3	нет	нет	1.00	1
грузовой дизельный 5-8т	Грузовой	СНГ	3	Диз.	3	нет	нет	2.00	2
грузовой дизельный 8-16т	Грузовой	СНГ	4	Диз.	3	нет	нет	7.00	7
грузовой бензиновый 2-5т	Грузовой	СНГ	2	Карб.	5	нет	нет	3.00	3
грузовой бензиновый 5-8т	Грузовой	СНГ	3	Карб.	5	нет	нет	3.00	3
легковой	Легковой	СНГ	2	Карб.	5	нет	нет	3.00	1

Выбросы участка

Код в-ва	Название вещества	Макс. выброс (г/с)	Валовый выброс (т/год)
	Оксиды азота (NO _x)*	0.0105331	0.009043
	В том числе:		
0301	*Азота диоксид (Азот (IV) оксид)	0.0084265	0.007235
0304	*Азот (II) оксид (Азота оксид)	0.0013693	0.001176
0328	Углерод (Сажа)	0.0003873	0.000332
0330	Сера диоксид-Ангидрид сернистый	0.0012370	0.001062
0337	Углерод оксид	0.1260153	0.109440
0401	Углеводороды**	0.0172808	0.015257
	В том числе:		
2704	**Бензин (нефтяной, малосернистый)	0.0131184	0.011682
2732	**Керосин	0.0041624	0.003576

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13

 $NO_2 - 0.80$

2. Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Расшифровка выбросов по веществам: Выбрасываемое вещество - 0337 - Углерод оксид

Марка автомобиля	Валовый выброс (тонн/год)
грузовой дизельный 2-5т	0.001493
грузовой дизельный 5-8т	0.004993
грузовой дизельный 8-16т	0.018395
грузовой бензиновый 2-5т	0.032904
грузовой бензиновый 5-8т	0.041577
легковой	0.010079
ВСЕГО:	0.109440

Максимальный выброс составляет: 0.1260153 г/с.

Здесь и далее:

Расчет валовых выбросов производился по формуле:

 $M_i = \Sigma ((M_1 + M_2) \cdot N_B \cdot D_D \cdot 10^{-6})$, где

 M_1 - выброс вещества в день при выезде (г);

 M_2 - выброс вещества в день при въезде (г);

 $\mathsf{M}_1 = \mathsf{M}_{\mathsf{\Pi}\mathsf{p}} \cdot \mathsf{T}_{\mathsf{\Pi}\mathsf{p}} \cdot \mathsf{K}_{\mathfrak{I}} \cdot \mathsf{K}_{\mathsf{H}\mathsf{T}\mathsf{p}} \mathsf{\Pi}\mathsf{p} + \mathsf{M}_1 \cdot \mathsf{L}_1 \cdot \mathsf{K}_{\mathsf{H}\mathsf{T}\mathsf{p}} + \mathsf{M}_{\mathsf{X}\mathsf{X}} \cdot \mathsf{T}_{\mathsf{X}\mathsf{X}} \cdot \mathsf{K}_{\mathfrak{I}} \cdot \mathsf{K}_{\mathsf{H}\mathsf{T}\mathsf{p}};$

Для маршрутных автобусов при температуре ниже -10 град.С:

 $\mathbf{M}_{1} = \mathbf{M}_{np} \cdot (8 + 15 \cdot \mathbf{n}) \cdot \mathbf{K}_{9} \cdot \mathbf{K}_{HTp} \mathbf{np} + \mathbf{M}_{1} \cdot \mathbf{L}_{1} \cdot \mathbf{K}_{HTp} + \mathbf{M}_{xx} \cdot \mathbf{T}_{xx} \cdot \mathbf{K}_{9} \cdot \mathbf{K}_{HTp},$

где п - число периодических прогревов в течение суток;

 $M_2=M_1 \cdot L_2 \cdot K_{HTD}+M_{XX} \cdot T_{XX} \cdot K_3 \cdot K_{HTD};$

 $N_{\text{в}}$ - среднее количество автомобилей данной группы, выезжающих в течение суток;

 $D_{\rm p}$ - количество дней работы в расчетном периоде.

Расчет максимально разовых выбросов производился по формуле:

 $G_i = (M_{np} \cdot T_{np} \cdot K_{\mathfrak{I}} \cdot K_{\mathfrak{I}} \cdot K_{\mathfrak{I}} + M_{1} \cdot L_{1} \cdot K_{\mathfrak{I}} + M_{xx} \cdot T_{xx} \cdot K_{\mathfrak{I}} \cdot K_{\mathfrak{I}}) \cdot \mathbb{N}' / T_{cp} \cdot \mathbb{P}/\mathbb{C} \quad (*),$

С учетом синхронности работы: $G_{\text{max}} = \Sigma \left(G_{\text{i}} \right)$;

 M_{np} - удельный выброс при прогреве двигателя (г/мин.);

 T_{np} - время прогрева двигателя (мин.);

 K_{9} - коэффициент, учитывающий снижение выброса при проведении экологического контроля;

 $K_{\text{нтрПр}}$ - коэффициент, учитывающий снижение выброса при прогреве двигателя при установленном нейтрализаторе;

 M_1 - пробеговый удельный выброс (г/км);

 $L_1 = (L_{16} + L_{1\pi})/2 = 0.011$ км - средний пробег при выезде со стоянки;

 $L_2 = (L_{26} + L_{2\pi})/2 = 0.011$ км - средний пробег при въезде на стоянку;

 $K_{\text{нтр}}$ - коэффициент, учитывающий снижение выброса при установленном нейтрализаторе (пробег и холостой ход);

 M_{xx} - удельный выброс автомобиля на холостом ходу (г/мин.);

 $T_{xx}=1$ мин. - время работы двигателя на холостом ходу;

 ${\tt N'}$ - наибольшее количество автомобилей, выезжающих со стоянки в течение времени ${\tt Тср}$, характеризующегося максимальной интенсивностью выезда;

(*) В соответствии с методическим пособием по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, СПб, 2012 г. T_{cp} =2400 сек - среднее время выезда всей техники со стоянки.

Наименование	Мпр	Tnp	Кэ	КнтрПр	Mi	Кнтр	Mxx	Схр	Выброс (г/с)
грузовой дизельный 2-5т (д)	1.900	1.5	1.0	1.0	3.500	1.0	1.500	да	0.0018278
грузовой дизельный 5-8т (д)	2.800	1.5	1.0	1.0	5.100	1.0	2.800	да	0.0058780
грузовой дизельный 8-16т (д)	3.000	1.5	1.0	1.0	6.100	1.0	2.900	да	0.0217701
грузовой бензиновый 2-5т (б)	15.000	1.5	1.0	1.0	29.700	1.0	10.200	да	0.0412648
грузовой бензиновый 5-8т (б)	18.000	1.5	1.0	1.0	47.400	1.0	13.500	да	0.0512471
легковой (б)	4.000	1.5	1.0	1.0	15.800	1.0	3.500	да	0.0040275

Выбрасываемое вещество - 0401 - Углеводороды Валовые выбросы

Марка автомобиля	Валовый выброс (тонн/год)							
грузовой дизельный 2-5т	0.000243							
грузовой дизельный 5-8т	0.000650							
грузовой дизельный 8-16т	0.002683							
грузовой бензиновый 2-5т	0.004359							
грузовой бензиновый 5-8т	0.006413							
легковой	0.000910							
ВСЕГО:	0.015257							

Максимальный выброс составляет: 0.0172808 г/с.

 Наименование	Mnp	Тпр	Кэ	КитрПр	MI	Китр	Mxx	Cxp	Выброс (г/с)
грузовой дизельный 2-5т (д)	0.300	1.5	1.0	1.0	0.700	1.0	0.250	да	0.0002947
грузовой дизельный 5-8т (д)	0.380	1.5	1.0	1.0	0.900	1.0	0.350	да	0.0007745

Наименование	Мпр	Tnp	Кэ	КитрПр	MI	Кнтр	Mxx	Cxp	Выброс (г/с)
грузовой дизельный 8-16т (д)	0.400	1.5	1.0	1.0	1.000	1.0	0.450	да	0.0030931
грузовой бензиновый 2-5т (б)	1.500	1.5	1.0	1.0	5.500	1.0	1.700	да	0.0050097
грузовой бензиновый 5-8т (б)	2.600	1.5	1.0	1.0	8.700	1.0	2.200	да	0.0077392
легковой (б)	0.380	1.5	1.0	1.0	1.600	1.0	0.300	да	0.0003695

Выбрасываемое вещество - Оксиды азота (NO_x)

Вал		

Марка автомобиля	Валовый выброс (тонн/год)
грузовой дизельный 2-5т	0.000455
грузовой дизельный 5-8т	0.001095
грузовой дизельный 8-16т	0.006322
грузовой бензиновый 2-5т	0.000542
грузовой бензиновый 5-8т	0.000545
легковой	0.000084
ВСЕГО:	0.009043

Максимальный выброс составляет: 0.0105331 г/с.

Наименование	Мпр	Тпр	Кэ	КнтрПр	MI	Китр	Mxx	Схр	Выброс (г/с)
грузовой дизельный 2-5т (д)	0.500	1.5	1.0	1.0	2.600	1.0	0.500	да	0.0005322
грузовой дизельный 5-8т (д)	0.600	1.5	1.0	1.0	3.500	1.0	0.600	да	0.0012806
грузовой дизельный 8-16т (д)	1.000	1.5	1.0	1.0	4.000	1.0	1.000	да	0.0074142
грузовой бензиновый 2-5т (б)	0.200	1.5	1.0	1.0	0.800	1.0	0.200	да	0.0006355
грузовой бензиновый 5-8т (б)	0.200	1.5	1.0	1.0	1.000	1.0	0.200	да	0.0006381
легковой (б)	0.030	1.5	1.0	1.0	0.280	1.0	0.030	да	0.0000325

Выбрасываемое вещество - 0328 - Углерод (Сажа)

Валовые выбросы

Марка автомобиля	Валовый выброс (тонн/год)
грузовой дизельный 2-5т	0.000019
грузовой дизельный 5-8т	0.000056
грузовой дизельный 8-16т	0.000258
ВСЕГО:	0.000332

Максимальный выброс составляет: 0.0003873 г/с.

Наименование	Мпр	Тпр	Кэ	КнтрПр	Ml	Кнтр	Mxx	Схр	Выброс (г/с)
грузовой дизельный 2-5т (д)	0.020	1.5	1.0	1.0	0.200	1.0	0.020	да	0.0000217
грузовой дизельный 5-8т (д)	0.030	1.5	1.0	1.0	0.250	1.0	0.030	да	0.0000647
грузовой дизельный 8-16т (д)	0.040	1.5	1.0	1.0	0.300	1.0	0.040	да	0.0003009

Выбрасываемое вещество - 0330 - Сера диоксид-Ангидрид сернистый

Валовые выбросы

Марка автомобиля	Валовый выброс (тонн/год)
грузовой дизельный 2-5т	0.000066
грузовой дизельный 5-8т	0.000164
грузовой дизельный 8-16т	0.000672
грузовой бензиновый 2-5т	0.000055
грузовой бензиновый 5-8т	0.000078
легковой	0.000027
ВСЕГО:	0.001062

Максимальный выброс составляет: 0.0012370 г/с.

Наименование	Мпр	Тпр	Кэ	КнтрПр	MI	Кнтр	Mxx	Схр	Выброс (г/с)
грузовой дизельный 2-5т (д)	0.072	1.5	1.0	1.0	0.390	1.0	0.072	да	0.0000767
грузовой дизельный 5-8т (д)	0.090	1.5	1.0	1.0	0.450	1.0	0.090	да	0.0001914
грузовой дизельный 8-16т (д)	0.113	1.5	1.0	1.0	0.540	1.0	0.100	да	0.0008026
грузовой бензиновый 2-5т (б)	0.020	1.5	1.0	1.0	0.150	1.0	0.020	да	0.0000645
грузовой бензиновый 5-8т (б)	0.028	1.5	1.0	1.0	0.180	1.0	0.029	да	0.0000911
легковой (б)	0.010	1.5	1.0	1.0	0.060	1.0	0.010	да	0.0000107

Трансформация оксидов азота Выбрасываемое вещество - 0301 - Азота диоксид (Азот (IV) оксид) Коэффициент трансформации - 0.8

Валовые выбросы

SHITODOLE BUILD FORDS						
Марка автомобиля	Валовый выброс (тонн/год)					
грузовой дизельный 2-5т	0.000364					
грузовой дизельный 5-8т	0.000876					
грузовой дизельный 8-16т	0.005058					
грузовой бензиновый 2-5т	0.000434					
грузовой бензиновый 5-8т	0.000436					
легковой	0.000067					
ВСЕГО:	0.007235					

Максимальный выброс составляет: 0.0084265 г/с.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азота оксид) Коэффициент трансформации - 0.13

Валовые выбросы

Марка автомобиля	Валовый выброс (тонн/год)
грузовой дизельный 2-5т	0.000059
грузовой дизельный 5-8т	0.000142
грузовой дизельный 8-16т	0.000822
грузовой бензиновый 2-5т	0.000070
грузовой бензиновый 5-8т	0.000071
легковой	0.000011
ВСЕГО:	0.001176

Максимальный выброс составляет: 0.0013693 г/с.

Распределение углеводородов Выбрасываемое вещество - 2704 - Бензин (нефтяной, малосернистый) Валовые выбросы

Марка автомобиля	Валовый выброс (тонн/год)
грузовой бензиновый 2-5т	0.004359
грузовой бензиновый 5-8т	0.006413
легковой	0.000910
ВСЕГО:	0.011682

Максимальный выброс составляет: 0.0131184 г/с.

Наименование	Мпр	Tnp	Кэ	КнтрПр	Mi	Кнтр	Mxx	%%	Схр	Выброс (г/с)
грузовой бензиновый 2-5т (б)	1.500	1.5	1.0	1.0	5.500	1.0	1.700	100.0	да	0.0050097
грузовой бензиновый 5-8т (б)	2.600	1.5	1.0	1.0	8.700	1.0	2.200	100.0	да	0.0077392
легковой (б)	0.380	1.5	1.0	1.0	1.600	1.0	0.300	100.0	да	0.0003695

Выбрасываемое вещество - 2732 - Керосин

Валовые выбросы

David Date Date poedi						
Марка автомобиля	Валовый выброс (тонн/год)					
грузовой дизельный 2-5т	0.000243					
грузовой дизельный 5-8т	0.000650					
грузовой дизельный 8-16т	0.002683					
ВСЕГО:	0.003576					

Максимальный выброс составляет: 0.0041624 г/с.

Наименование	Мпр	Тпр	Кэ	КнтрПр	MI	Кнтр	Mxx	%%	Схр	Выброс (г/с)
грузовой дизельный 2-5т (д)	0.300	1.5	1.0	1.0	0.700	1.0	0.250	100.0	да	0.0002947
грузовой дизельный 5-8т (д)	0.380	1.5	1.0	1.0	0.900	1.0	0.350	100.0	да	0.0007745
грузовой дизельный 8-16т (д)	0.400	1.5	1.0	1.0	1.000	1.0	0.450	100.0	да	0.0030931

2). Мелкосрочный ремонт

тип - 10 - Участок техобслуживания и текущего ремонта автомобилей

Общее описание участка Подтип - зона ТО и ТР с тупиковыми постами

Расстояние от ворот помещения до поста ТО и ТР (км):

0.020

2

Наибольшее количество автомобилей, въезжающих

в зону и выезжающих из зоны ТО и ТР в течение 1 часа:

	Aapakie	ристики ав						
Марка автомобиля	Категория	Место пр-ва	Ο/Γ/Κ	Тип двиг.	Код топл.	Экокон- троль	Нейтрали- затор	Кол-во (тп)
грузовой бензиновый 2-5т	Грузовой	СНГ	2	Карб.	5	нет	нет	10
грузовой бензиновый 5-8т	Грузовой	СНГ	3	Карб.	5	нет	нет	10
грузовой дизельный 2-5т	Грузовой	СНГ	2	Диз.	3	нет	нет	5
грузовой дизельный 5-8т	Грузовой	СНГ	3	Диз.	3	нет	нет	10
грузовой дизельный 8-16т	Грузовой	СНГ	4	Диз.	3	нет	нет	25
легковой	Легковой	СНГ	2	Карб.	5	нет	нет	5

Выбросы участка

Код в-ва	Название вещества	Макс. выброс (г/с)	Валовый выброс (т/год		
	Оксиды азота $(NO_x)^*$	0.0004611	0.000063		
	В том числе:				
0301	*Азота диоксид (Азот (IV) оксид)	0.0003689	0.000051		
0304	*Азот (II) оксид (Азота оксид)	0.0000599	0.000008		
0328	Углерод (Сажа)	0.0000200	0.000003		
0330	Сера диоксид-Ангидрид сернистый	0.0000531	0.000008		
0337	Углерод оксид	0.0080267	0.000737		
0401	Углеводороды**	0.0011800	0.000095		
	В том числе:				
2704	**Бензин (нефтяной, малосернистый)	0.0011800	0.000070		
2732	**Керосин	0.0001778	0.000024		

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13

 $NO_2 - 0.80$

2. Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Расшифровка выбросов по веществам: Выбрасываемое вещество - 0337 - Углерод оксид

Валовые выбросы

Danobbie Dio Joesi						
Марка автомобиля	Валовый выброс (тонн/год)					
грузовой бензиновый 2-5т	0.000237					
грузовой бензиновый 5-8т	0.000289					
грузовой дизельный 2-5т	0.000015					
грузовой дизельный 5-8т	0.000044					
грузовой дизельный 8-16т	0.000119					
легковой	0.000033					
ВСЕГО:	0.000737					

Максимальный выброс составляет: 0.0080267 г/с.

Здесь и далее:

Расчет валовых выбросов производился по формуле:

Подтип - зона ТО и ТР с тупиковыми постами

 $\text{M}_{\text{Ti}} {=} \Sigma \, (\, (\, 2\text{M}_{\text{l}} \cdot \text{S}_{\text{T}} {+} \text{M}_{\text{np}} \cdot \text{T}_{\text{np}}) \, \cdot \text{N}_{\text{Tk}} \cdot 10^{-6}) \, \text{,} \, \, \text{где}$

 $N_{ extsf{TK}}$ - количество ТО и ТР, проведенных в течение года для автомобилей данной группы.

Расчет максимально разовых выбросов производился по формуле:

 $G_T = (M_1 \cdot S_T + 0.5 \cdot M_{\pi p} \cdot T_{\pi p}) \cdot N'_T / 3600$ г/с, где

 M_1 - пробеговый удельный выброс (г/км);

 S_T =0.020 - расстояние от ворот до поста ТО и ТР (км);

 M_{np} - удельный выброс при прогреве двигателя (г/мин.);

 T_{mp} =1.5 мин. - время прогрева двигателя;

 $N'_{T}=2$ - наибольшее количество автомобилей, въезжающих в зону и выезжающих из зоны TO и TP в течение 1 часа.

Наименование	Мпр	MI	NΤκ	Max	Выброс (г/с)
грузовой бензиновый 2-5т (б)	15.000	29.700	10		0.0065800
грузовой бензиновый 5-8т (б)	18.000	47.400	10	*	0.0080267
грузовой дизельный 2-5т (д)	1.900	3.500	5		0.0008306
грузовой дизельный 5-8т (д)	2.800	5.100	10		0.0012233
грузовой дизельный 8-16т (д)	3.000	6.100	25		0.0013178
легковой (б)	4.000	15.800	5		0.0018422

Выбрасываемое вещество - 0401 - Углеводороды

Валовые выбросы

Марка автомобиля	Валовый выброс (тонн/год)
грузовой бензиновый 2-5т	0.000025
грузовой бензиновый 5-8т	0.000042
грузовой дизельный 2-5т	0.000002
грузовой дизельный 5-8т	0.000006
грузовой дизельный 8-16т	0.000016
легковой	0.000003
ВСЕГО:	0.000095

Максимальный выброс составляет: 0.0011800 г/с.

Наименование	Мпр	MI	NΤκ	Max	Выброс (г/с)
грузовой бензиновый 2-5т (б)	1.500	5.500	10		0.0006861
грузовой бензиновый 5-8т (б)	2.600	8.700	10	*	0.0011800
грузовой дизельный 2-5т (д)	0.300	0.700	5		0.0001328
грузовой дизельный 5-8т (д)	0.380	0.900	10		0.0001683
грузовой дизельный 8-16т (д)	0.400	1.000	25		0.0001778
легковой (б)	0.380	1.600	5		0.0001761

Выбрасываемое вещество - Оксиды азота (NO_x)

Валовые выбросы

Dutto Date Date Date		
Марка автомобиля	Валовый выброс (тонн/год)	
грузовой бензиновый 2-5т	0.000003	
грузовой бензиновый 5-8т	0.000003	
грузовой дизельный 2-5т	0.000004	
грузовой дизельный 5-8т	0.000010	
грузовой дизельный 8-16т	0.000041	
легковой	2.8E-7	
ВСЕГО:	0.000063	

Максимальный выброс составляет: 0.0004611 г/с.

Наименование	Мпр	MI	NΤκ	Max	Выброс (г/с)
грузовой бензиновый 2-5т (б)	0.200	0.800	10		0.0000922
грузовой бензиновый 5-8т (б)	0.200	1.000	10		0.0000944
грузовой дизельный 2-5т (д)	0.500	2.600	5		0.0002372
грузовой дизельный 5-8т (д)	0.600	3.500	10		0.0002889
грузовой дизельный 8-16т (д)	1.000	4.000	25	*	0.0004611
легковой (б)	0.030	0.280	5		0.0000156

Выбрасываемое вещество - 0328 - Углерод (Сажа)

Валовые выбросы

Марка автомобиля	Валовый выброс (тонн/год)
грузовой дизельный 2-5т	1.9E-7
грузовой дизельный 5-8т	5.5E-7
грузовой дизельный 8-16т	0.000002
ВСЕГО:	0.000003

Максимальный выброс составляет: 0.0000200 г/с.

Наименование	Mnp	MI	NΤκ	Max	Выброс (г/с)
грузовой дизельный 2-5т (д)	0.020	0.200	5	_	0.0000106
грузовой дизельный 5-8т (д)	0.030	0.250	10		0.0000153
грузовой дизельный 8-16т (д)	0.040	0.300	25	*	0.0000200

Выбрасываемое вещество - 0330 - Сера диоксид-Ангидрид сернистый

Валовые выбросы

Марка автомобиля	Валовый выброс (тонн/год)		
грузовой бензиновый 2-5т	3.6E-7		
грузовой бензиновый 5-8т	4.9E-7		
грузовой дизельный 2-5т	6.2E-7		
грузовой дизельный 5-8т	0.000002		
грузовой дизельный 8-16т	0.000005		
легковой	8.7E-8		
ВСЕГО:	0.000008		

Максимальный выброс составляет: 0.0000531 г/с.

Наименование	Мпр	MI	NΤκ	Max	Выброс (г/с)
грузовой бензиновый 2-5т (б)	0.020	0.150	10		0.0000100
грузовой бензиновый 5-8т (б)	0.028	0.180	10		0.0000137
грузовой дизельный 2-5т (д)	0.072	0.390	5		0.0000343
грузовой дизельный 5-8т (д)	0.090	0.450	10		0.0000425
грузовой дизельный 8-16т (д)	0.113	0.540	25	*	0.0000531
легковой (б)	0.010	0.060	5		0.0000048

Трансформация оксидов азота Выбрасываемое вещество - 0301 - Азота диоксид (Азот (IV) оксид) Коэффициент трансформации - 0.8

Валовые выбросы

Марка автомобиля	Валовый выброс (тонн/год)
грузовой бензиновый 2-5т	0.000003
грузовой бензиновый 5-8т	0.000003
грузовой дизельный 2-5т	0.000003
грузовой дизельный 5-8т	0.000008
грузовой дизельный 8-16т	0.000033
легковой	2.2E-7
ВСЕГО:	0.000051

Максимальный выброс составляет: 0.0003689 г/с.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азота оксид) Коэффициент трансформации - 0.13

Валовые выбросы

Марка автомобиля	Валовый выброс (тонн/год)		
грузовой бензиновый 2-5т	4.3E-7		
грузовой бензиновый 5-8т	4.4E-7		
грузовой дизельный 2-5т	5.6E-7		
грузовой дизельный 5-8т	0.000001		
грузовой дизельный 8-16т	0.000005		
легковой	3.7E-8		
BCETO:	0.000008		

Максимальный выброс составляет: 0.0000599 г/с.

Распределение углеводородов Выбрасываемое вещество - 2704 - Бензин (нефтяной, малосернистый) Валовые выбросы

Datio Date Date South			
Марка автомобиля	Валовый выброс (тонн/год)		
грузовой бензиновый 2-5т	0.000025		
грузовой бензиновый 5-8т	0.000042		
легковой	0.000003		
ВСЕГО:	0.000070		

Максимальный выброс составляет: 0.0011800 г/с.

Наименование	Мпр	MI	NΤκ	%%	Max	Выброс (г/с)
грузовой бензиновый 2-5т (б)	1.500	5.500	10	100.0		0.0006861
грузовой бензиновый 5-8т (б)	2.600	8.700	10	100.0	*	0.0011800
легковой (б)	0.380	1.600	5	100.0		0.0001761

Выбрасываемое вещество - 2732 - Керосин Валовые выбросы

Марка автомобиля	Валовый выброс (тонн/год)
грузовой дизельный 2-5т	0.000002
грузовой дизельный 5-8т	0.000006
грузовой дизельный 8-16т	0.000016
ВСЕГО:	0.000024

Максимальный выброс составляет: 0.0001778 г/с.

Наименование	Мпр	MI	NTĸ	%%	Max	Выброс (г/с)
грузовой дизельный 2-5т (д)	0.300	0.700	5	100.0		0.0001328
грузовой дизельный 5-8т (д)	0.380	0.900	10	100.0		0.0001683
грузовой дизельный 8-16т (д)	0.400	1.000	25	100.0	*	0.0001778

3). Внутренний проезд

тип - 7 - Внутренний проезд

Общее описание участка

Протяженность внутреннего проезда (км): 0.070

- среднее время выезда (мин.): 30.0

Характеристики автомобилей на участке

Марка автомобиля	Категория	Место пр-ва	О/Г/К	Тип двиг.	Код топл.	Нейтрализатор
грузовой бензиновый 2-5т	Грузовой	СНГ	2	Карб.	5	нет
грузовой бензиновый 5-8т	Грузовой	СНГ	3	Карб.	5	нет
грузовой дизельный 2-5т	Грузовой	СНГ	2	Диз.	3	нет
грузовой дизельный 5-8т	Грузовой	СНГ	3	Диз.	3	нет
грузовой дизельный 8-16т	Грузовой	СНГ	4	Диз.	3	нет
легковой	Легковой	СНГ	2	Карб.	5	нет

грузовой бензиновый 2-5т: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	3.00	3
Февраль	3.00	3
Март	3.00	3
Апрель	3.00	3
Май	3.00	3
Июнь	3.00	3
Июль	3.00	3
Август	3.00	3
Сентябрь	3.00	3
Октябрь	3.00	3
Ноябрь	3.00	3
Декабрь	3.00	3

грузовой бензиновый 5-8т: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	3.00	3
Февраль	3.00	3
Март	3.00	3
Апрель	3.00	3
Май	3.00	3
Июнь	3.00	3
Июль	3.00	3
Август	3.00	3
Сентябрь	3.00	3
Октябрь	3.00	3
Ноябрь	3.00	3
Декабрь	3.00	3

грузовой дизельный 2-5т: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	1.00	1
Февраль	1.00	1
Март	1.00	1
Апрель	1.00	. 1
Май	1.00	1
Июнь	1.00	1
Июль	1.00	1
Август	1.00	1
Сентябрь	1.00	1
Октябрь	1.00	1
Ноябрь	1.00	1
Декабрь	1.00	1

грузовой дизельный 5-8т: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	2.00	2
Февраль	2.00	2
Март	2.00	2
Апрель	2.00	2
Май	2.00	2
Июнь	2.00	2
Июль	2.00	2
Август	2.00	2
Сентябрь	2.00	2
Октябрь	2.00	2
Ноябрь	2.00	2
Декабрь	2.00	2

грузовой дизельный 8-16т: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	7.00	7
Февраль	7.00	7
Март	7.00	7
Апрель	7.00	7
Май	7.00	7
Июнь	7.00	7
Июль	7.00	7
Август	7.00	7
Сентябрь	7.00	7
Октябрь	7.00	7
Ноябрь	7.00	7
Декабрь	7.00	7

легковой: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	3.00	-1-11
Февраль	3.00	1
Март	3.00	1
Апрель	3.00	1
Май	3.00	1
Июнь	3.00	1
Июль	3.00	1
Август	3.00	1
Сентябрь	3.00	1
Октябрь	3.00	1
Ноябрь	3.00	
Декабрь	3.00	1

Выбросы участка

Код в-ва	Название вещества	Макс. выброс (г/с)	Валовый выброс (т/год)
	Оксиды азота $(NO_x)^*$	0.0010889	0.000773
	В том числе:		
0301	*Азота диоксид (Азот (IV) оксид)	0.0008711	0.000619
0304	*Азот (II) оксид (Азота оксид)	0.0001416	0.000101
0328	Углерод (Сажа)	0.0001089	0.000059
0330	Сера диоксид-Ангидрид сернистый	0.0001824	0.000123
0337	Углерод оксид	0.0069183	0.006638
0401	Углеводороды**	0.0012017	0.001117
	В том числе:		
2704	**Бензин (нефтяной, малосернистый)	0.0012017	0.000933
2732	**Керосин	0.0003267	0.000184

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13

 $NO_2 - 0.80$

2. Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Расшифровка выбросов по веществам: Выбрасываемое вещество - 0337 - Углерод оксид Валовые выбросы

Период года	Марка автомобиля	Валовый выброс (тонн/год)
Теплый	грузовой бензиновый 2-5т	0.000655
_	грузовой бензиновый 5-8т	0.001045
	грузовой дизельный 2-5т	0.000026
	грузовой дизельный 5-8т	0.000075
	грузовой дизельный 8-16т	0.000314
	легковой	0.000348
	ВСЕГО:	0.002463
Переходный	грузовой бензиновый 2-5т	0.000296
	грузовой бензиновый 5-8т	0.000471
	грузовой дизельный 2-5т	0.000011
	грузовой дизельный 5-8т	0.000033
	грузовой дизельный 8-16т	0.000137
	легковой	0.000157
	ВСЕГО:	0.001105

Период года	Марка автомобиля	Валовый выброс (тонн/год)
Холодный	грузовой бензиновый 2-5т	0.000822
	грузовой бензиновый 5-8т	0.001308
	грузовой дизельный 2-5т	0.000032
	грузовой дизельный 5-8т	0.000091
	грузовой дизельный 8-16т	0.000381
	легковой	0.000437
	ВСЕГО:	0.003070
Всего за год		0.006638

Максимальный выброс составляет: 0.0069183 г/с. Месяц достижения: Январь.

Здесь и далее:

Расчет валовых выбросов производился по формуле:

 $M_{i} = \Sigma \left(M_{l} \cdot L_{p} \cdot K_{\text{HTP}} \cdot N_{\text{KP}} \cdot D_{p} \cdot 10^{-6} \right)$, где

 $N_{\mbox{\scriptsize kp}}$ - количество автомобилей данной группы, проезжающих по проезду в сутки;

Dp - количество дней работы в расчетном периоде.

Расчет максимально разовых выбросов производился по формуле:

 $G_i=M_1 \cdot L_p \cdot K_{HTP} \cdot N' / T_{CP} r/c (*),$

С учетом синхронности работы: $G_{max} = \Sigma (G_i)$, где

 M_1 - пробеговый удельный выброс (г/км);

 $L_p = 0.070$ км - протяженность внутреннего проезда;

 $K_{\text{нтр}}$ - коэффициент, учитывающий снижение выброса при установленном нейтрализаторе (пробег и холостой ход);

N' - наибольшее количество автомобилей, проезжающих по проезду в течение времени Tcp, характеризующегося максимальной интенсивностью движения;

(*) В соответствии с методическим пособием по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, СПб, 2012 г.

 $T_{cp}=1800$ сек - среднее время наиболее интенсивного движения по проезду.

Наименование	MI	Китр	Схр	Выброс (г/с)
грузовой бензиновый 2-5т (б)	37.300	1.0	нет	0.0043517
грузовой бензиновый 5-8т (б)	59.300	1.0	нет	0.0069183
грузовой дизельный 2-5т (д)	4.300	1.0	нет	0.0001672
грузовой дизельный 5-8т (д)	6.200	1.0	нет	0.0004822
грузовой дизельный 8-16т (д)	7.400	1.0	нет	0.0020144
легковой (б)	19.800	1.0	нет	0.0007700

Выбрасываемое вещество - 0401 - Углеводороды Валовые выбросы

Период года Марка автомобиля Валовый выброс (тонн/год) Теплый грузовой бензиновый 2-5т 0.000121 грузовой бензиновый 5-8т 0.000192 грузовой дизельный 2-5т 0.000005 грузовой дизельный 5-8т 0.000013 грузовой дизельный 8-16т 0.000051 легковой 0.000035 ВСЕГО: 0.000418 Переходный грузовой бензиновый 2-5т 0.000055 грузовой бензиновый 5-8т 0.000082 грузовой дизельный 2-5т 0.000002 грузовой дизельный 5-8т 0.000006грузовой дизельный 8-16т 0.000022 легковой 0.000018 ВСЕГО: 0.000185

Период года	Марка автомобиля	Валовый выброс (тонн/год)
Холодный	грузовой бензиновый 2-5т	0.000152
	грузовой бензиновый 5-8т	0.000227
	грузовой дизельный 2-5т	0.000006
	грузовой дизельный 5-8т	0.000016
	грузовой дизельный 8-16т	0.000062
	легковой	0.000051
	ВСЕГО:	0.000514
Всего за год		0.001117

Максимальный выброс составляет: 0.0012017 г/с. Месяц достижения: Январь.

Наименование	MI	Китр	Схр	Выброс (г/с)
грузовой бензиновый 2-5т (б)	6.900	1.0	нет	0.0008050
грузовой бензиновый 5-8т (б)	10.300	1.0	нет	0.0012017
грузовой дизельный 2-5т (д)	0.800	1.0	нет	0.0000311
грузовой дизельный 5-8т (д)	1.100	1.0	нет	0.0000856
грузовой дизельный 8-16т (д)	1.200	1.0	нет	0.0003267
легковой (б)	2.300	1.0	нет	0.0000894

Выбрасываемое вещество - Оксиды азота (NO_x)

Валовые выбросы

Период года	Валовые выоросы Марка автомобиля	Валовый выброс (тонн/год)
Теплый	грузовой бензиновый 2-5т	0.000018
	грузовой бензиновый 5-8т	0.000022
	грузовой дизельный 2-5т	0.000019
	грузовой дизельный 5-8т	0.000051
	грузовой дизельный 8-16т	0.000206
	легковой	0.000006
	ВСЕГО:	0.000322
Переходный	грузовой бензиновый 2-5т	0.000007
	грузовой бензиновый 5-8т	0.000009
	грузовой дизельный 2-5т	0.000008
	грузовой дизельный 5-8т	0.000021
	грузовой дизельный 8-16т	0.000082
	легковой	0.000002
	ВСЕГО:	0.000129
Холодный	грузовой бензиновый 2-5т	0.000018
	грузовой бензиновый 5-8т	0.000022
	грузовой дизельный 2-5т	0.000019
	грузовой дизельный 5-8т	0.000051
	грузовой дизельный 8-16т	0.000206
	легковой	0.000006
	ВСЕГО:	0.000322
Всего за год		0.000773

Максимальный выброс составляет: 0.0010889 г/с. Месяц достижения: Январь.

Наименование	MI	Кнтр	Схр	Выброс (г/с)
грузовой бензиновый 2-5т (б)	0.800	1.0	нет	0.0000933
грузовой бензиновый 5-8т (б)	1.000	1.0	нет	0.0001167
грузовой дизельный 2-5т (д)	2.600	1.0	нет	0.0001011
грузовой дизельный 5-8т (д)	3.500	1.0	нет	0.0002722
грузовой дизельный 8-16т (д)	4.000	1.0	нет	0.0010889
легковой (б)	0.280	1.0	нет	0.0000109

Выбрасываемое вещество - 0328 - Углерод (Сажа)

Валовые выбросы

Период года	Марка автомобиля	Валовый выброс (тонн/год)
Теплый	грузовой дизельный 2-5т	0.000001
	грузовой дизельный 5-8т	0.000004
	грузовой дизельный 8-16т	0.000015
	ВСЕГО:	0.000021

Период года	Марка автомобиля	Валовый выброс (тонн/год)
Переходный	грузовой дизельный 2-5т	7.9E-7
	грузовой дизельный 5-8т	0.000002
	грузовой дизельный 8-16т	0.000007
	ВСЕГО:	0.000010
Холодный	грузовой дизельный 2-5т	0.000002
	грузовой дизельный 5-8т	0.000005
	грузовой дизельный 8-16т	0.000021
	ВСЕГО:	0.000028
Всего за год		0.000059

Максимальный выброс составляет: 0.0001089 г/с. Месяц достижения: Январь.

Наименование	MI	Кнтр	Схр	Выброс (г/с)
грузовой дизельный 2-5т (д)	0.300	1.0	нет	0.0000117
грузовой дизельный 5-8т (д)	0.350	1.0	нет	0.0000272
грузовой дизельный 8-16т (д)	0.400	1.0	нет	0.0001089

Выбрасываемое вещество - 0330 - Сера диоксид-Ангидрид сернистый

Период года	Марка автомобиля	Валовый выброс (тоин/год)
Теплый	грузовой бензиновый 2-5т	0.000003
	грузовой бензиновый 5-8т	0.000004
	грузовой дизельный 2-5т	0.000003
	грузовой дизельный 5-8т	0.000007
	грузовой дизельный 8-16т	0.000028
	легковой	0.000001
	ВСЕГО:	0.000046
Переходный	грузовой бензиновый 2-5т	0.000002
	грузовой бензиновый 5-8т	0.000002
	грузовой дизельный 2-5т	0.000001
	грузовой дизельный 5-8т	0.000003
	грузовой дизельный 8-16т	0.000012
	легковой	5.6E-7
	ВСЕГО:	0.000020
Холодный	грузовой бензиновый 2-5т	0.000004
	грузовой бензиновый 5-8т	0.000005
	грузовой дизельный 2-5т	0.000004
	грузовой дизельный 5-8т	0.000008
	грузовой дизельный 8-16т	0.000034
	легковой	0.000002
-	ВСЕГО:	0.000057
Всего за год		0.000123

Максимальный выброс составляет: 0.0001824 г/с. Месяц достижения: Январь.

Наименование	MI	Кнтр	Схр	Выброс (г/с)
грузовой бензиновый 2-5т (б)	0.190	1.0	нет	0.0000222
грузовой бензиновый 5-8т (б)	0.220	1.0	нет	0.0000257
грузовой дизельный 2-5т (д)	0.490	1.0	нет	0.0000191
грузовой дизельный 5-8т (д)	0.560	1.0	нет	0.0000436
грузовой дизельный 8-16т (д)	0.670	1.0	нет	0.0001824
легковой (б)	0.070	1.0	нет	0.0000027

Трансформация оксидов азота Выбрасываемое вещество - 0301 - Азота диоксид (Азот (IV) оксид) Коэффициент трансформации - 0.8 Валовые выбросы

Период года	Марка автомобиля	Валовый выброс (тонн/год)
Теплый	грузовой бензиновый 2-5т	0.000014
	грузовой бензиновый 5-8т	0.000018
	грузовой дизельный 2-5т	0.000015
	грузовой дизельный 5-8т	0.000041
	грузовой дизельный 8-16т	0.000165
	легковой	0.000005
	ВСЕГО:	0.000258
Переходный	грузовой бензиновый 2-5т	0.000006
	грузовой бензиновый 5-8т	0.000007
	грузовой дизельный 2-5т	0.000006
	грузовой дизельный 5-8т	0.000016
	грузовой дизельный 8-16т	0.000066
	легковой	0.000002
	ВСЕГО:	0.000103
Холодный	грузовой бензиновый 2-5т	0.000014
	грузовой бензиновый 5-8т	0.000018
	грузовой дизельный 2-5т	0.000015
	грузовой дизельный 5-8т	0.000041
	грузовой дизельный 8-16т	0.000165
	легковой	0.000005
	ВСЕГО:	0.000258
Всего за год		0.000619

Максимальный выброс составляет: 0.0008711 г/с. Месяц достижения: Январь.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азота оксид) Коэффициент трансформации - 0.13 Валовые выбросы

Период года	Марка автомобиля	Валовый выброс (тонн/год)
Теплый	грузовой бензиновый 2-5т	0.000002
	грузовой бензиновый 5-8т	0.000003
	грузовой дизельный 2-5т	0.000002
	грузовой дизельный 5-8т	0.000007
	грузовой дизельный 8-16т	0.000027
	легковой	8.0E-7
	ВСЕГО:	0.000042
Переходный	грузовой бензиновый 2-5т	9.2E-7
	грузовой бензиновый 5-8т	0.000001
	грузовой дизельный 2-5т	9.9E-7
	грузовой дизельный 5-8т	0.000003
	грузовой дизельный 8-16т	0.000011
	легковой	3.2E-7
	ВСЕГО:	0.000017
Холодный	грузовой бензиновый 2-5т	0.000002
	грузовой бензиновый 5-8т	0.000003
	грузовой дизельный 2-5т	0.000002
	грузовой дизельный 5-8т	0.000007
	грузовой дизельный 8-16т	0.000027
	легковой	8.0E-7
	ВСЕГО:	0.000042
Всего за год		0.000101

Максимальный выброс составляет: 0.0001416 г/с. Месяц достижения: Январь.

Распределение углеводородов Выбрасываемое вещество - 2704 - Бензин (нефтяной, малосернистый)

Вяловые	выбросы

Период года	Марка автомобиля	Валовый выброс (тонн/год)
Теплый	грузовой бензиновый 2-5т	0.000121
	грузовой бензиновый 5-8т	0.000192
	легковой	0.000035
	ВСЕГО:	0.000348
Переходный	грузовой бензиновый 2-5т	0.000055
	грузовой бензиновый 5-8т	0.000082
	легковой	0.000018
	ВСЕГО:	0.000155
Холодный	грузовой бензиновый 2-5т	0.000152
	грузовой бензиновый 5-8т	0.000227
	легковой	0.000051
	ВСЕГО:	0.000430
Всего за год		0.000933

Максимальный выброс составляет: 0.0012017 г/с. Месяц достижения: Январь.

Наименование	Ml	Кнтр	%%%	Схр	Выброс (г/с)
грузовой бензиновый 2-5т (б)	6.900	1.0	100.0	нет	0.0008050
грузовой бензиновый 5-8т (б)	10.300	1.0	100.0	нет	0.0012017
легковой (б)	2.300	1.0	100.0	нет	0.0000894

Выбрасываемое вещество - 2732 - Керосин

Валовые выбросы

Период года	Марка автомобиля	Валовый выброс (тонн/год)
Теплый	грузовой дизельный 2-5т	0.000005
	грузовой дизельный 5-8т	0.000013
	грузовой дизельный 8-16т	0.000051
	ВСЕГО:	0.000070
Переходный	грузовой дизельный 2-5т	0.000002
	грузовой дизельный 5-8т	0.000006
	грузовой дизельный 8-16т	0.000022
	ВСЕГО:	0.000030
Холодный	грузовой дизельный 2-5т	0.000006
	грузовой дизельный 5-8т	0.000016
	грузовой дизельный 8-16т	0.000062
· · · · · ·	ВСЕГО:	0.000084
Всего за год		0.000184

Максимальный выброс составляет: 0.0003267 г/с. Месяц достижения: Январь.

Наименование	MI	Кнтр	%%	Схр	Выброс (г/с)
грузовой дизельный 2-5т (д)	0.800	1.0	100.0	нет	0.0000311
грузовой дизельный 5-8т (д)	1.100	1.0	100.0	нет	0.0000856
грузовой дизельный 8-16т (д)	1.200	1.0	100.0	нет	0.0003267

Суммарные выбросы по предприятию

Код в-ва	Название вещества	Валовый выброс (т/год)
0301	Азота диоксид (Азот (IV) оксид)	0.007904
0304	Азот (II) оксид (Азота оксид)	0.001284
0328	Углерод (Сажа)	0.000393
0330	Сера диоксид-Ангидрид сернистый	0.001193
0337	Углерод оксид	0.116815
0401	Углеводороды	0.016469

Расшифровка суммарного выброса углеводородов (код 0401)

	THE MIT OF THE PROTECT OF THE DOTAL OF THE D					
Код в-ва	Название вещества	Валовый выброс (т/год)				
2704	Бензин (нефтяной, малосернистый)	0.012685				
2732	Керосин	0.003784				

Источник 2 (Гараж)

Загрязняющие вещества выделяются от поста электродуговой сварки. В гараже организована общеобменная вытяжная вентиляция с естественным побуждением (дефлекторы).

$$T = 3 \times 250 = 750 \text{ ч/год.}$$

За год расходуют до 0,6 т сварочных электродов марки ОЗС-4. Максимальный расход электродов 1 кг в час.

Расчет производился по [16] по формулам:

$$\begin{split} \mathbf{M} &= \mathbf{q} \times \mathbf{Q} \times \mathbf{10}^{-6} \times (\mathbf{1}\text{-}\mathbf{\eta}) \times (\mathbf{1}\text{-}\mathbf{n}) \times \mathbf{\kappa}_{\text{попр}}, \text{ т/год} \\ \mathbf{G} &= \frac{\mathbf{q} \times \mathbf{Q}' \times (\mathbf{1} - \mathbf{\eta}) \times (\mathbf{1} - \mathbf{n}) \times \mathbf{\kappa}_{\text{попр}}}{\mathbf{3600}}, \text{ г/c} \end{split}$$

где q - удельное выделение вредного вещества, г/кг;

Q - количество израсходованного материала, кг/год;

Q' - количество израсходованного материала, кг/ч;

 η — степень очистки воздуха в пылеуловителе, в долях. В нашем случае η = 0 (пылеуловитель отсутствует);

n – норматив образования огарков при сварке, в долях. Согласно [11], раздел 1.6.10, п. 2 принимаем равным 0.15;

 $\kappa_{\text{попр}}$ - поправочный коэффициент, учитывающий осаждение частиц в помещении за счет сил гравитации согласно [11], раздел 1.6, п. 18. В нашем случае $\kappa_{\text{попр}}$ =0,4 для твердых компонентов сварочного аэрозоля (выбросы через систему общеобменной вентиляции).

$$\begin{split} \mathbf{M_{FeO}} &= 9,63 \times 600 \times (1\text{-}0) \times (1\text{-}0,15) \times 10^{\text{-}6} \times 0,4 = 0,001964 \text{ т/год;} \\ \mathbf{G_{FeO}} &= \frac{9,63 \times 1 \times (1-0) \times (1-0,15) \times 0,4}{3600} = 0,0009095 \text{ г/с;} \\ \mathbf{M_{Mn}} &= 1,27 \times 600 \times (1\text{-}0) \times (1\text{-}0,15) \times 10^{\text{-}6} \times 0,4 = 0,000259 \text{ т/год;} \\ \mathbf{G_{Mn}} &= \frac{1,27 \times 1 \times (1-0) \times (1-0,15) \times 0,4}{3600} = 0,0001199 \text{ г/с.} \end{split}$$

Источник 3 (Гараж)

В помещении гаража установлен заточной станок. Загрязняющие вещества выделяются при механической обработке (заточке инструмента) на этом станке. В гараже организована общеобменная вытяжная вентиляция с естественным побуждением (дефлекторы).

Расчет произведен программой "Металлообработка" версия 3.0.24 от 09.06.2017

Программа основана на следующих методических документах:

- 1. "Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при механической обработке металлов (материалов) (по величинам удельных выделений)", НИИ Атмосфера, Санкт-Петербург, 2015
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012
- 3. Расчетная инструкция (методика) "Удельные показатели образования вредных веществ, выделяющихся в атмосферу от основных видов технологического оборудования предприятий радиоэлектронного комплекса", Санкт-Петербург, 2006
 - 4. Информационное письмо НИИ Атмосфера №2. Исх. 07-2-200/16-0 от 28.04.2016
 - 5. Информационное письмо НИИ Атмосфера №4. Исх. 07-2-650/16-0 от 07.09.2016

Copyright© 1997-2017 Фирма "Интеграл"

Результаты расчетов

	1 cojumita pue ieros							
Код	Название вещества	Без учета очистки		Без учета очистки		Очистка (ј)	С учетом	очистки
		r/e	т/год	%	г/с	т/год		
2930	Пыль абразивная (Корунд белый, Монокорунд)	0.0005500	0.001980	0	0.0005500	0.001980		
0123	диЖелезо триоксид (Железа оксид) (в пересчете	0.008000	0.002880	0	0.008000	0.002880		
	на железо)							

Расчетные формулы (расчет выброса пыли):

Максимальный выброс ($\mathbf{M}_{\mathbf{B}}^{\mathbf{yer}}$)

для и ИЗА, работающего менее 20-ти минут

$$\mathbf{M}_{\rm B} = \mathbf{n} \cdot \mathbf{K}_{\rm rp} \cdot \mathbf{q}_{\rm i} \cdot \mathbf{t}_{\rm i} / 1200, \ r/c \ (3.5, 3.6 \ [1])$$

$$\mathbf{M}_{\rm B}^{\rm yor} = \mathbf{M}_{\rm B} \cdot (1-i), \, r/c \, (3.15 \, [1])$$

Валовый выброс $(\mathbf{M}^{\mathsf{yorr}_{\mathsf{B}}})$

 $\mathbf{M}_{B}^{r} = 3.6 \cdot \mathbf{n} \cdot \mathbf{q}_{i} \cdot \mathbf{K}_{rp} \cdot \mathbf{T} \cdot \mathbf{10}^{-3}, \text{ T/rod } (3.13, 3.14 [1])$ $\mathbf{M}_{B}^{\text{yorr}} = \mathbf{M}_{B}^{r} \cdot (1-\mathbf{j}), \text{ T/rod } (3.16 [1])$

Вид оборудования: Заточные станки (Диаметр круга 250 мм)

Тип охлаждения: Охлаждение отсутствует

Количество станков (п): 1 шт.

Поправочный коэффициент, учитывающий гравитационное осаждение крупнодисперсных твердых частиц (K_{rp}). Для металлической и абразивной пыли 0.2, для других твердых компонентов (и компонентов СОЖ) 0.4

Время работы станка за год (Т): 250 ч

Продолжительность производственного цикла (t_i): 5 мин. (300 с)

Удельные выделения загрязняющих веществ

Код	Название вещества	q _i , r/c
2930	Пыль абразивная (Корунд белый, Монокорунд)	0.0110000
	Пыль металлическая	0.0160000

Состав металлической пыли

Код	Название вещества	Содержание компонента, %
0123	диЖелезо триоксид (Железа оксид) (в пересчете на железо)	100.0

Источник 4 (Металлообрабатывающий участок)

Загрязняющие вещества выделяются при механической обработке деталей на расточном станке. На участке организована местная вытяжная вентиляция с механическим побуждением, станок оборудован местным отсосом.

Расчет произведен программой "Металлообработка" версия 3.0.24 от 09.06.2017

Программа основана на следующих методических документах:

- 1. "Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при механической обработке металлов (материалов) (по величинам удельных выделений)", НИИ Атмосфера, Санкт-Петербург, 2015
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012
- 3. Расчетная инструкция (методика) "Удельные показатели образования вредных веществ, выделяющихся в атмосферу от основных видов технологического оборудования предприятий радиоэлектронного комплекса", Санкт-Петербург, 2006
 - 4. Информационное письмо НИИ Атмосфера №2. Исх. 07-2-200/16-0 от 28.04.2016
 - 5. Информационное письмо НИИ Атмосфера №4. Исх. 07-2-650/16-0 от 07.09.2016

Copyright© 1997-2017 Фирма "Интеграл"

Результаты расчетов

Код	Название вещества	Без учета очистки		Очистка (ј)	С учетом	очистки
		г/с	т/год	%	г/с	т/год
0123	диЖелезо триоксид (Железа оксид) (в пересчете	0.0010500	0.001890	0	0.0010500	0.001890
	на железо)					

Расчетные формулы (расчет выброса пыли):

Максимальный выброс ($M_{\rm B}^{\rm yor}$)

для и ИЗА, работающего менее 20-ти минут

 $M_{\rm B} = n \cdot q_i \cdot t_i / 1200$, Γ/c (3.2 [1])

 $\mathbf{M}_{\rm B} = \mathbf{M}_{\rm B} \cdot \mathbf{K}_{\rm 0}, \ r/c \ (3.10 \ [1])$

 $\mathbf{M}_{\rm B}^{\rm yer} = \mathbf{M}_{\rm B} \cdot (1-\mathbf{j}), \, r/c \, (3.15 \, [1])$

Валовый выброс ($\mathbf{M}^{\mathsf{yorr}}_{\mathsf{B}}$)

 $\mathbf{M}_{B}^{r} = 3.6 \cdot \mathbf{n} \cdot \mathbf{q}_{i} \cdot \mathbf{K}_{0} \cdot \mathbf{T} \cdot \mathbf{10}^{-3}$, т/год (3.13, 3.14 [1])

 $\mathbf{M}^{\text{уог } \Gamma}_{\mathbf{B}} = \mathbf{M}^{\Gamma}_{\mathbf{B}} \cdot (1-\mathbf{j}), \text{ т/год } (3.16 [1])$

Вид оборудования: Обработка резанием чугунных деталей без применения СОЖ (расточные станки)

Тип охлаждения: Охлаждение отсутствует

Количество станков (п): 1 шт.

Эффективность местных отсосов (\mathbf{K}_0): 1

Время работы станка за год (Т): 250 ч

Продолжительность производственного цикла (t_i) : 10 мин. (600 c)

Удельные выделения загрязняющих веществ

Код	Название вещества	q _i , r/e
0123	диЖелезо триоксид (Железа оксид) (в пересчете на железо)	0.0021000

Источник 6005 (Металлообрабатывающий участок)

Кроме расточного станка на участке эксплуатируют еще 3 металлообрабатывающих станка (см. Таблицу ниже).

№ п/п	Наименование оборудования, тип, модель	Выделение пыли
1	Станок токарный 1К62	нет
2	Станок вертикально-сверлильный	нет
3	Станок точильно-шлифовальный	есть

На всех станках обрабатывают сталь без применения СОЖ. Согласно [11], раздел 1.6.6, п. 6 выделения вредных веществ от сверлильных, токарных и фрезерных станков не происходит.

Загрязняющие вещества выделяются при механической обработке деталей на точильношлифовальном станке, поступают в помещение участка и удаляются в атмосферу естественным образом через оконный проем.

Расчет произведен программой "Металлообработка" версия 3.0.24 от 09.06.2017

Программа основана на следующих методических документах:

- 1. "Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при механической обработке металлов (материалов) (по величинам удельных выделений)", НИИ Атмосфера, Санкт-Петербург, 2015
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012
- 3. Расчетная инструкция (методика) "Удельные показатели образования вредных веществ, выделяющихся в атмосферу от основных видов технологического оборудования предприятий радиоэлектронного комплекса", Санкт-Петербург, 2006
 - 4. Информационное письмо НИИ Атмосфера №2. Исх. 07-2-200/16-0 от 28.04.2016
 - 5. Информационное письмо НИИ Атмосфера №4. Исх. 07-2-650/16-0 от 07.09.2016

Copyright© 1997-2017 Фирма "Интеграл"

Результаты расчетов

Код	Название вещества	Без учета очистки		Очистка (ј)	С учетом	очистки
		г/с	т/год	%	r/c	т/год
2930	Пыль абразивная (Корунд белый, Монокорунд)	0.0001800	0.000972	0.00	0.0001800	0.000972
0123	диЖелезо триоксид (Железа оксид) (в пересчете	0.0004100	0.002214	0.00	0.0004100	0.002214
	на железо)					

Расчетные формулы (расчет выброса пыли):

Максимальный выброс ($\mathbf{M}_{\mathbf{B}}^{\mathbf{yor}}$)

для и ИЗА, работающего менее 20-ти минут

 $\mathbf{M}_{\rm B} = \mathbf{n} \cdot \mathbf{K}_{\rm FP} \cdot \mathbf{q}_{\rm i} \cdot \mathbf{t}_{\rm i} / 1200, \ \Gamma/c \ (3.5, 3.6 \ [1])$

 $\mathbf{M}_{\rm B}^{\rm yor} = \mathbf{M}_{\rm B} \cdot (1-\mathbf{j}), \, r/c \, (3.15 \, [1])$

Валовый выброс $(\mathbf{M}^{\mathsf{yor}\,\mathsf{r}_{\mathsf{B}}})$

 $\mathbf{M}_{p}^{r} = 3.6 \cdot \mathbf{n} \cdot \mathbf{q}_{i} \cdot \mathbf{K}_{rp} \cdot \mathbf{T} \cdot \mathbf{10}^{-3}$, т/год (3.13, 3.14 [1])

 $\mathbf{M}^{\text{уог } r}_{\mathbf{B}} = \mathbf{M}^{r}_{\mathbf{B}} \cdot (1-\mathbf{j}), \text{ т/год } (3.16 [1])$

Вид оборудования: 3Б34 (черновая заточка сверл, резцов и др. инструментов абразивным кругом)

Тип охлаждения: Охлаждение отсутствует

Количество станков (п): 1 шт.

Поправочный коэффициент, учитывающий гравитационное осаждение крупнодисперсных твердых частиц ($K_{\rm rp.}$). Для металлической и абразивной пыли 0.2, для других твердых компонентов (и компонентов СОЖ) 0.4

Время работы станка за год (Т): 375 ч

Продолжительность производственного цикла (t_i) : 5 мин. (300 с)

Удельные выделения загрязняющих веществ

Код	Название вещества	q _i , r/c
2930	Пыль абразивная (Корунд белый, Монокорунд)	0.0082000
	Пыль металлическая	0.0036000

Состав металлической пыли

Код	Название вещества	Содержание компонента, %
0123	диЖелезо триоксид (Железа оксид) (в пересчете на железо)	100.0

Источник 6 (Аккумуляторный участок)

Загрязняющие вещества выделяются при зарядке аккумуляторов автомобилей на зарядном устройстве. Максимальная емкость аккумуляторных батарей 190 А×ч. Одновременно могут заряжаться не более 2 аккумуляторов.

В помещении участка организована система местной вытяжной вентиляции с механическим побуждением.

Расчет производился по [12].

Валовый выброс серной кислоты рассчитывается по формуле:

$$\mathbf{M}_{i}^{A} = 0.9 \times \mathbf{g} \times (\mathbf{Q}_{1} \times \mathbf{a}_{1} + \mathbf{Q}_{2} \times \mathbf{a}_{2} + \dots + \mathbf{Q}_{n} \times \mathbf{a}_{n}) \times 10^{-9}, \text{ т/год}$$

где **g** - удельное выделение серной кислоты , принятое равным 1 мг/А×ч;

 Q_{1+n} - номинальная емкость каждого типа аккумуляторных батарей, имеющихся на предприятии, $A \times q$;

 ${\bf a_{1+n}}$ - количество проверенных зарядок батарей соответствующей емкости за год.

Расчет максимально разового выброса:

$$M_{\text{cyr.}}^{\text{A}} = 0.9 \times \text{g} \times (\text{Q} \times \text{n'}) \times 10^{-6}$$
, кг/день

где \mathbf{Q} - номинальная емкость наиболее емких аккумуляторных батарей, $\mathbf{A} \times \mathbf{q}$:

п' - количество вышеуказанных батарей, которые можно одновременно подсоединить к зарядному устройству.

$$G_{H_2SO_4} = \frac{M_{cyr.}^A \times 10^3}{3600 \times m}, r/c$$

где \mathbf{m} - цикл проведения зарядки в день. Принимаем $\mathbf{m} = 10$ ч.

$$\mathbf{M}_{\mathbf{H_2SO_4}} = 0.9 \times 1 \times 190 \times 200 \times 10^{-9} = 0.000034 \text{ т/год;}$$

$$G_{\text{H}_2\text{SO}_4} = \frac{0.9 \times 1 \times 190 \times 2 \times 10^{-6} \times 10^3}{3600 \times 10} = 0,0000095 \text{ r/c}.$$

Источники 7, 8 (Котельная)

Загрязняющие вещества выделяются при сжигании природного газа в топках двух водогрейных котлов Compact A400. Котлы работают только в отопительный период. Время работы $\mathbf{T} = 5\,232\,$ ч/год.

Годовой расход природного газа на каждый котел составляет до 100 тыс. $м^3$. Максимальный расход газа $70 \, \text{м}^3/\text{ч}$ или $20 \, \text{л/c}$ (по паспорту на горелку).

Каждый котел оснащен дымовой трубой, загрязняющие вещества удаляются естественным образом.

Расчет выброса загрязняющих веществ при сжигании топлива в котлах производительностью до 30 т/ч.

Программа реализует "Методику определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час", Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г.

Программа учитывает методическое письмо НИИ Атмосфера № 335/33-07 от 17.05.2000 "О проведении расчетов выбросов вредных веществ в атмосферу по "Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час".

Программа учитывает методическое письмо НИИ Атмосфера № 838/33-07 от 11.09.2001 "Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000".

Программа учитывает "Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное)", НИИ Атмосфера, Санкт-Петербург, 2005 год.

(с) ИНТЕГРАЛ 1996-2010 "Котельные" (Версия 3.4)

Результаты расчётов:

Код	Наименование выброса	Максимально-разовый выброс [г/с]	Валовой выброс [т/год]
0301	Азот (IV) оксид (Азота диоксид)	0.0456974	0.201458
0304	Азот (II) оксид (Азота оксид)	0.0074258	0.032737
0337	Углерод оксид	0.0734400	0.367200
0703	Бенз/а/пирен (3, 4-Бензпирен)	0.0000001816	0.00000009071

```
Исходные данные.
```

Наименование топлива: Газопровод Бухара-Урал Тип топлива: Газ Характер топлива: Газ Фактический расход топлива (В, В'). $B = 100[\text{тыс.м}^3/\text{год}]$ $B' = 20[\pi/c]$ Котел водогрейный.

Расчетные формулы:

1. Расчет выбросов оксидов азота при сжигании природного газа.

```
Расчетный расход топлива (Вр, Вр').
  Bp = B = 100[тыс.м^3/год]
  Bp' = B' = 20[\pi/c] = 0.02[m^3/c]
Нившая теплота сгорания топлива (Qr).
  Qr = 36.72 [M Д ж / M^3]
Удельный выброс оксидов авота при сжигании газа (Kno_2, Kno_2).
```

Котел водогрейный.

Время работы котла за год Time = 5232[ч] Фактическая тепловая мощность котла по введенному в топку теплу (Qт, Qт'): $Q_T = Bp/Time/3.6*Qr = 0.19495[MBT]$

 $Q_{T'} = Bp'*Qr = 0.7344[MB_{T}]$ $Kno_2 = 0.0113*(QT**0.5)+0.03 = 0.0349894[r/MДж]$ $Kno_2' = 0.0113*(Qr'**0.5)+0.03 = 0.0396838[r/MДж]$

Коэффициент, учитывающий температуру воздуха (β_t).

Температура горячего воздуха trв = 30[°C]

 $\beta_{t} = 1+0.002*(trB-30) = 1$

Коэффициент, учитывающий влияние избытка воздужа на образование оксидов азота (β_a) .

Общий случай (котел не работает в соответствии с режимной картой).

 $\beta_{a} = 1.225$

Коэффициент, учитывающий влияние рециркуляции дымовых газов через горелки на обравование оксидов авота (β_r).

Степень рециркуляции дымовых газов r= 0[%]

 $\beta_r = 0.16*(r**0.5) = 0$

Коэффициент, учитывающий ступенчатый ввод воздуха в топочную камеру (β_d).

Доля воздуха, подаваемого в промежуточную факельную зону $\delta = 0\,[\%]$

 $\beta_d = 0.022 * \delta = 0$

Выброс оксидов авота (Mnox, Mnox', Mno, Mno', Mno2, Mno2').

kп = 0.001 (для валового)

1 (для максимально-разового)

 $Mno_x = Bp*Qr*Kno_2*\beta_k*\beta_t*\beta_a*(1-\beta_r)*(1-\beta_d)*kn = 100*36.72*0.0349894*1.6*1*$

1.225(1-0)*(1-0)*0.001=0.2518226 [т/год]

 $\text{Mno}_{\mathbf{x}'} = \text{Bp'*Qr*Kno}_{\mathbf{z}'} * \beta_{\mathbf{k}} * \beta_{\mathbf{t}} * \beta_{\mathbf{a}} * (1 - \beta_{\mathbf{r}}) * (1 - \beta_{\mathbf{d}}) * \mathbf{k} \pi = 0.02 * 36.72 * 0.0396838 * 1.6 * 1 *$ *1.225*(1-0)*(1-0)=0.0571218 [r/c]

 $Mno = 0.13 * Mno_x = 0.0327369 [т/год]$

 $Mno' = 0.13 * Mno_{x}' = 0.0074258 [r/c]$

 $Mno_2 = 0.8 * Mno_x = 0.2014581 [т/год]$

 $Mno_{2}' = 0.8 * Mno_{x}' = 0.0456974 [r/c]$

2. Расчет выбросов оксида углерода.

Расход натурального топлива за рассматриваемый период (В, В').

 $B = 100[\text{тыс.м}^3/\text{год}]$

 $B' = 20 [\pi/c] = 0.02 [m^3/c]$

Выход оксида углерода при сжигании топлива (Ссо).

Потери тепла вследствие химической неполноты сгорания топлива (q_3) : 0.2[%] Коэффициент, учитывающий долю потери тепла вследствие химической неполноты сгорания топлива, обусловленную наличием в продуктах неполного сгорания оксида углерода (R):

Газ. R=0.5

Низшая теплота сгорания топлива (Qr): 36.72 [МДж/кг (МДж/нм³)]

 $Cco = q_3*R*Qr = 3.672 [r/кг (r/нм³) или кг/т (кг/тыс.нм³)]$

Потери тепла вследствие механической неполноты сгорания топлива $(q_a): 0[%]$ Выброс оксида углерода (Мсо, Мсо').

 $Mco = 0.001*B*Cco*(1-q_4/100) = 0.3672$ [т/год] $Mco' = B' * Cco * (1-q_4/100) = 0.07344 [r/c]$

3. Расчётное определение выбросов бенз (а) пирена водогрейными котлами.

Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (Кд).

Kд = 2.6-3.2*(Dотн-0.5) = 1

```
Коэффициент, учитывающий влияние рециркуляции дымовых газов
                                                                              концентрацию
бенз (а) пирена в продуктах сгорания (Кр).
  Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0[%]
  Kp = 4.15*0+1 = 1
Коэффициент,
               учитывающий
                                влияние
                                           ступенчатого
                                                            сжигания
                                                                              концентрацию
бенз (а) пирена в продуктах сгорания (Кст).
  Доля воздуха, подаваемая помимо горелок (над ними) Кст': 0
  KcT = KcT'/0.14+1 = 1
Теплонапряжение топочного объема (qv).
  Расчётный расход топлива на номинальной нагрузке (Вр):
  Bp = Bh*(1-q_4/100) = 0.02[\kappa r/c (m^3/c)];
  Фактический расход топлива на номинальной нагрузке (Bh): 0.02[\text{kr/c} (\text{м}^3/\text{c})];
  Низшая теплота сгорания топлива (Qr): 36720[кДж/кг (кДж/м³)];
  Объем топочной камеры (VT): 0.461[M^3];
  qv = Bp*Qr/Vr = 0.02*36720/0.461 = 1593.0585683[kBr/M<sup>3</sup>].
Концентрация бенз (а) пирена (Сбп').
  Коэффициент избытка воздуха на выходе из топки ({\alpha_{\mathtt{T}}}''): 1.2;
  C6\pi' = 0.000001*((0.11*qv-7)/Exp(3.5*(\alpha_T''-1)*K\pi*Kp*Kc\pi = 0.0000835 [MT/M³])
Концентрация бенэ (а) пирена, приведенная к избытку воздуха \alpha_{\rm o}=1.4 (Сбп).
  CG\Pi = CG\Pi' * \alpha_T' ' / \alpha_O = 0.0000716 [MF/M^3]
Расчет объёма сухих дымовых газов при нормальных условиях (lpha_o=1.4), образующихся
при полном сгорании 1кг (1нм<sup>3</sup>) топлива. (Vcr)
  Расчет производится по приближенной формуле.
  Коэффициент, учитывающий характер топлива (К): 0.345
  Низшая теплота сгорания топлива (Qr): 36.72 [МДж/кг (МДж/нм<sup>3</sup>)]
  Vcr = K*Qr = 12.6684 [м³/кг топлива] ([м³/м³ топлива])
Выброс бенз (а) пирена (Мбп, Мбп').
  Мбп = Сбп * Vcr * Вр * kп
  Расчетный расход топлива (Вр, Вр')
  Bp = B*(1-q_4/100) = 100[т/год] (тыс.м<sup>3</sup>/год)
  Bp' = B' * (1-q_4/100) * 0.0036 = 0.072[T/Y] (THC.M^3/Y)
  Cбп = 0.0000716 [Mr/M<sup>3</sup>]
  kп = 0.000001 (для валового)
```

2. Полигон ТКО

Источник 6011 (Полигон ТКО)

kn = 0.000278 (для максимально-разового)

 $M6\pi = 0.0000716*12.668*100*0.000001 = 0.00000009071 [T/rox]$ $M6\pi' = 0.0000716*12.668*0.072*0.000278 = 0.00000001816 [T/c]$

Загрязняющие вещества выделяются при биотермическом анаэробном процессе распада органической составляющей отходов на полигоне ТКО. Полигон введен в эксплуатацию в декабре 2000 г. Следовательно, на конец 2017 г. срок функционирования полигона составит 17 лет. Для расчета выбросов полигона на существующее положение (СП-2017) и на каждый год срока действия проекта ПДВ составляем Таблицу 1 с исходными данными для расчета на основании информации, полученной от предприятия (см. Приложение 14).

Исходные данные для расчета выбросов. Таблица 1.

		<u> </u>
Срок эксплуатации полигона для	Исходные	е данные предприятия
определения выбросов согласно Методике расчета (Т _{экс.} - 2), лет	Период эксплуатации полигона	Количество размещенных (накопленных) отходов на конец рассматриваемого периода эксплуатации, тыс. т
2	3	4
15	на 31.12.2015	270,980
16	на 31.12.2016	288,750
17	на 31.12.2017	328,750
18	на 31.12.2018	368,750
19	на 31.12.2019	408,750
20	на 31.12.2020	448,750
21	на 31.12.2021	488,750
22	на 31.12.2022	528,750
	определения выбросов согласно Методике расчета (Т _{экс.} - 2), лет 2 15 16 17 18 19 20 21	определения выбросов согласно Методике расчета (Тэкс 2), лет Период эксплуатации полигона 2 3 15 на 31.12.2015 16 на 31.12.2016 17 на 31.12.2017 18 на 31.12.2018 19 на 31.12.2019 20 на 31.12.2020 21 на 31.12.2021

Примечания:

^{1.} В столбце 4 для 2015 г. и 2016 г. указано фактическое количество отходов, размещенных по итогам каждого года, по данным предприятия.

^{2.} Для определения количества размещенных отходов по итогам каждого из 2017-2022 г.г. используем величину заявленной мощности полигона - 40 000 т/год.

Расчет произведен программой "Полигоны ТБО", версия 1.0.0.1 от 20.03.2007

Программа основана на следующих методических документах:

- 1. "Методика расчета количественных характеристик выбросов загрязняющих веществ в атмосферу от полигонов твердых бытовых и промышленных отходов (изд. дополненное и переработанное)", М., 2004г.
 - 2. Письмо НИИ Атмосфера 07-2/248-а от 16.03.2007 г.

Copyright© 2007 Фирма "ИНТЕГРАЛ"

Климатические условия:

 $t_{\rm cp.\ Tenn.} = 11.50^{\circ}{\rm C}$ - средняя из среднемесячных температура воздуха (учитываются месяцы со среднемесячной температурой выше 0°C).

 $T^*_{\text{тепл.}} = 151$ - количество дней в месяцах со среднемесячной температурой выше 8°С (теплый период).

 $T^*_{nepex.} = 56$ - количество дней в месяцах со среднемесячной температурой выше 0°С и не превышающей 8°С (переходный период).

 $T_{\text{тепл.}} = 207$ - количество дней в месяцах со среднемесячной температурой выше 0°С (переходный и теплый период).

а = 5 - количество месяцев со среднемесячной температурой выше 8°С (теплый период).

b = 2 - количество месяцев со среднемесячной температурой выше 0°C и не превышающей 8°C (переходный период).

Расчетные формулы, исходные данные:

Полигон: действующий.

1. Результаты анализов проб отходов:

R = 55.0 % - содержание органической составляющей в отходах.

Ж = 2.0 % - содержание жироподобных веществ в органике отходов.

 $\mathbf{y} = 83.0 \%$ - содержание углеводоподобных веществ в органике отходов.

 $\mathbf{F} = 15.0 \%$ - содержание белковых веществ в органике отходов.

W = 47.0 % - средняя влажность отходов.

2. Концентрации компонентов в биогазе (по результатам анализов проб)

Код в-ва	Название вещества	Сі, мг/м ³
	Оксиды азота (в пересчете на диоксид)	1392
0303	Аммиак	6659
0330	Сера диоксид-Ангидрид сернистый	878
0333	Дигидросульфид (Сероводород)	326
0337	Углерод оксид	3148
0380	Углерода диоксид	558958
0410	Метан	660908
0616	Диметилбензол (Ксилол)	5530
0621	Метилбензол (Толуол)	9029
0627	Этилбензол	1191
1325	Формальдегид	1204
	Итого:	1249223

- 3. $T_{2KC} = 17-24$ лет срок функционирования полигона.
- 4. М масса завозимых отходов, т/год.

Удельный выход биогаза за период его активного выделения определяется по формуле (2):

 $\mathbf{Q_w} = \mathbf{10^{-6} \cdot R \cdot (100 - W) \cdot (0.92 \cdot W + 0.62 \cdot Y + 0.34 \cdot E)} = 10^{-6} \cdot 55.0 \cdot (100 - 47.0) \cdot (0.92 \cdot 2.0 + 0.62 \cdot 83.0 + 0.34 \cdot 15.0) = 0.170236$ кг/кг отходов.

Период активного выделения биогаза по формуле (4) составляет:

 $t_{c6p.} = 10248/(T_{Tenn.} \cdot t_{cp. Tenn.}^{0.301966}) = 10248/(207 \cdot 11.50^{0.301966}) = 24 \text{ net.}$

Количественный выход биогаза за год, отнесенный к одной тонне захороненных отходов, определяется по формуле (3):

 $\mathbf{P}_{\mathbf{y} \mathbf{d}.} = \mathbf{10^3} \cdot \mathbf{Q_w} / \mathbf{t_{cop}} = 10^3 \cdot 0.170236/24 = 7.0932$ кг/т отходов в год.

Период полного сбраживания органической части отходов продолжительнее срока функционирования полигона, следовательно:

 $\Sigma D = (T_{DKC} - 2) \cdot M$, т - количество активных стабильно выделяющих биогаз отходов.

Плотность биогаза определяется по формуле (7): $\rho_{6,\Gamma} = 10^{-6} \cdot \Sigma C_i = 1.249223 \text{ кг/м}^3$.

Весовое процентное содержание і-го компонента в биогазе по формуле (8) составляет:

 $C_{\text{Bec.}i} = 10^{-4} \cdot C_i / \rho_{\delta.\Gamma.}, \%.$

Весовое процентное содержание компонентов в биогазе

Код в-ва	Название вещества	Свес.і, %
	Оксиды азота (в пересчете на диоксид)	0.111
0303	Аммиак	0.533
0330	Сера диоксид-Ангидрид сернистый	0.070
0333	Дигидросульфид (Сероводород)	0.026
0337	Углерод оксид	0.252
0380	Углерода диоксид	44.744
0410	Метан	52.906
0616	Диметилбензол (Ксилол)	0.443
0621	Метилбензол (Толуол)	0.723
0627	Этилбензол	0.095
1325	Формальдегид	0.096

Максимально-разовый выброс і-го компонента биогаза определяется по формуле (10):

 $\mathbf{M_i} = 10^{-2} \cdot \mathbf{M_{cym.}} \cdot \mathbf{C_{Bec.i}}$ г/с, где

 $\mathbf{M}_{\text{сум.}} = \mathbf{P}_{\text{уд.}} \cdot \mathbf{\Sigma} \mathbf{D} / (\mathbf{86.4 \cdot T'}_{\text{тепл.}})$, г/с (10a с учетом письма 07-2/248-а от 16.03.2007 г.) - суммарный максимально-разовый выброс всех компонентов биогаза.

Валовый выброс і-го компонента биогаза определяется по формуле (11):

 $G_{i} = 10^{-2} \cdot G_{\text{сум.}} \cdot C_{\text{вес.}i}$ т/год, где

 $G_{\text{сум.}} = M_{\text{сум.}} \cdot 10^{-6} \cdot (a \cdot 365 \cdot 24 \cdot 3600/12 + b \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)),$ т/год (11a) - суммарный валовый выброс всех компонентов биогаза.

Результаты расчетов

на 31.12.2017 - СП

 T_{2KC} =17 лет - срок функционирования полигона.

М=18065 т/год - масса завозимых отходов.

 $\Sigma \mathbf{D} = (\mathbf{T}_{3KC_a} - \mathbf{2}) \cdot \mathbf{M} = (17 - 2) \cdot 18065 = \mathbf{270} \cdot 980 \, \mathbf{T}$ - количество активных стабильно выделяющих биогаз отходов.

 $\mathbf{M}_{\text{сум.}} = 7.0932 \cdot 270980/(86.4 \cdot 151) = 147.3284790$ г/с (10a с учетом письма 07-2/248-a от 16.03.2007г.) - суммарный максимально-разовый выброс всех компонентов биогаза.

 $G_{\text{сум.}} = 147.3284790 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/12 + 2 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 2531.556587 \text{ т/год (11a)}$ - суммарный валовый выброс всех компонентов биогаза.

на 31.12.2018 г.

 $T_{3\kappa c}$ =18 лет - срок функционирования полигона.

М=18047 т/год - масса завозимых отходов.

 $\Sigma D = (T_{3KC} - 2) \cdot M = (18 - 2) \cdot 18047 = 288750 \text{ т}$ - количество активных стабильно выделяющих биогаз отходов.

 $\mathbf{M}_{\text{сум.}} = 7.0932 \cdot 288750/(86.4 \cdot 151) = 156.9898114$ г/с (10a с учетом письма 07-2/248-a от 16.03.2007г.) - суммарный максимально-разовый выброс всех компонентов биогаза.

 $G_{\text{сум}_s} = 156.9898114 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/12 + 2 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 2697.568005 \text{ т/год (11a)} -$ суммарный валовый выброс всех компонентов биогаза.

на 31.12.2019 г.

Т_{экс.}=19 лет - срок функционирования полигона.

 $\Sigma D = 288750 + 40000 = 328750 \text{ т}$ - количество активных стабильно выделяющих биогаз отходов.

 $\mathbf{M}_{\text{сум.}} = 7.0932 \cdot 328750/(86.4 \cdot 151) = 178.7373150$ г/с (10а с учетом письма 07-2/248-а от 16.03.2007 г.) - суммарный максимально-разовый выброс всех компонентов биогаза.

 $G_{\text{сум.}} = 178.7373150 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/12 + 2 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3071.257032 \text{ т/год (11a)} -$ - суммарный валовый выброс всех компонентов биогаза.

на 31.12.2020 г.

Тэкс. = 20 лет - срок функционирования полигона.

 $\Sigma \mathbf{D} = 328750 + 40000 = 368750 \text{ т}$ - количество активных стабильно выделяющих биогаз отходов.

 $\mathbf{M}_{\text{сум.}} = 7.0932 \cdot 368750/(86.4 \cdot 151) = 200.4848230$ г/с (10a с учетом письма 07-2/248-a от 16.03.2007 г.) - суммарный максимально-разовый выброс всех компонентов биогаза.

 $G_{\text{сум.}} = 200.4848230 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/12 + 2 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.946135 \text{ т/год (11a)} - 120.4848230 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/12 + 2 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.946135 \text{ т/год (11a)} - 120.4848230 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/12 + 2 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.946135 \text{ т/год (11a)} - 120.4848230 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/12 + 2 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.946135 \text{ т/год (11a)} - 120.4848230 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/12 + 2 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.946135 \text{ т/год (11a)} - 120.4848230 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/12 + 2 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.946135 \text{ т/год (11a)} - 120.4848230 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/12 + 2 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.946135 \text{ т/год (11a)} - 120.4848230 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.946135 \text{ т/год (11a)} - 120.4848230 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.946135 \text{ т/год (11a)} - 120.4848230 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.946135 \text{ T/год (11a)} - 120.4848230 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.946135 \text{ T/год (11a)} - 120.4848230 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.946135 \text{ T/год (11a)} - 120.4848230 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.946135 \text{ T/год (11a)} - 120.4848230 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.946135 \text{ T/год (11a)} - 120.4848230 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.946135 \text{ T/год (11a)} - 120.4848230 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.946135 \text{ T/год (11a)} - 120.4848230 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.946135 \text{ T/год (11a)} - 120.4848230 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.946135 \text{ T/год (11a)} - 120.4848230 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.946135 \text{ T/год (11a)} - 120.4848230 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.946135 \cdot (5 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.946135 \cdot (5 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3444.9$

- суммарный валовый выброс всех компонентов биогаза.

на 31.12.2021 г.

Тэкс =21 лет - срок функционирования полигона.

 $\Sigma D = 368750 + 40000 = 408750 \text{ т}$ - количество активных стабильно выделяющих биогаз отходов.

 $\mathbf{M}_{\text{сум.}} = 7.0932 \cdot 408750/(86.4 \cdot 151) = 222.2323315 \, \text{г/c} (10a \, \text{с} \, \text{учетом} \, \text{письма} \, 07-2/248-\text{a} \, \text{от} \, 16.03.2007 \, \text{г.})$ - суммарный максимально-разовый выброс всех компонентов биогаза.

 $\mathbf{G}_{\text{сум.}} = 222.2323315 \cdot 10^{-6} \ (5 \cdot 365 \cdot 24 \cdot 3600/12 + 2 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 3818.635246 \ \text{т/год} \ (11a) - 1200 \ \text{сум.}$

- суммарный валовый выброс всех компонентов биогаза.

на 31.12.2022 г.

Тэкс =22 лет - срок функционирования полигона.

 $\Sigma D = 408750 + 40000 = 448750 \text{ т}$ - количество активных стабильно выделяющих биогаз отходов.

 $\mathbf{M}_{\mathbf{сум.}} = 7.0932 \cdot 448750/(86.4 \cdot 151) = 243.9798367$ г/с (10a с учетом письма 07-2/248-a от 16.03.2007 г.) - суммарный максимально-разовый выброс всех компонентов биогаза.

- суммарный валовый выброс всех компонентов биогаза.

на 31.12.2023 г.

Тэкс.=23 лет - срок функционирования полигона.

 $\Sigma D = 448750 + 40000 = 488750 \text{ т}$ - количество активных стабильно выделяющих биогаз отходов.

 $\mathbf{M}_{\text{сум.}} = 7.0932 \cdot 488750/(86.4 \cdot 151) = 265.7273485 \ г/c (10a с учетом письма 07-2/248-a от 16.03.2007 г.)$ - суммарный максимально-разовый выброс всех компонентов биогаза.

 $G_{\text{сум.}} = 265.7273485 \cdot 10^{-6} \cdot (5 \cdot 365 \cdot 24 \cdot 3600/12 + 2 \cdot 365 \cdot 24 \cdot 3600/(12 \cdot 1.3)) = 4566.013470 \text{ т/год (11a)} - 1266.013470 \text{ т/год (11a)} - 12666.013470 \text{ т/год (11a)} - 12666.013470 \text{ т/год (11a)} - 126666.013470 \text{ т/год (11a)} - 126666.013470 \text{ т/год (11a)} - 1266666.013470 \text{ т$

- суммарный валовый выброс всех компонентов биогаза.

на 31.12.2024 г.

 $T_{3\kappa c}$ =24 лет - срок функционирования полигона.

 $\Sigma D = 488750 + 40000 = 528750 \text{ т}$ - количество активных стабильно выделяющих биогаз отходов.

 $\mathbf{M}_{\text{сум.}} = 7.0932 \cdot 528750/(86.4 \cdot 151) = 287.4748505 \ г/c (10a с учетом письма 07-2/248-a от 16.03.2007 г.)$ - суммарный максимально-разовый выброс всех компонентов биогаза.

- суммарный валовый выброс всех компонентов биогаза.

Качественный и количественный состав выбросов от полигона ТКО на существующее положение (на 31.12.2017) и на каждый год срока действия проекта ПДВ приведен в Таблице 2 ниже.

Таблица 2: Выбросы от полигона ТКО на 2017 г. (СП) и каждый год эксплуатации 2018-2024 г.г.

Код	Название вещества	на 31.1	12.2017	на 31.12.2018		на 31.	12.2019	на 31.12.2020	
в-ва		Макс. выброс (Мі, г/с)	Валовый выброс (Gi, т/год)						
0301	Азота диоксид (Азот (IV) оксид)	0,1313336	2,256716	0,1399461	2,404704	0,1593325	2,737823	0,1787190	3,070943
0303	Аммиак	0,7853364	13,494496	0,8368363	14,379423	0,9527617	16,371377	1,0686870	18,363332
0304	Азот (II) оксид (Азота оксид)	0,0213417	0,366716	0,0227412	0,390764	0,0258915	0,444896	0,0290418	0,499028
0330	Сера диоксид-Ангидрид сернистый	0,1035479	1,779271	0,1103382	1,895950	0,1256232	2,158593	0,1409081	2,421235
0333	Дигидросульфид (Сероводород)	0,0384472	0,660641	0,0409684	0,703963	0,0466437	0,801482	0,0523190	0,899001
0337	Углерод оксид	0,3712628	6,379438	0,3956091	6,797781	0,4504120	7,739465	0,5052150	8,681149
0380	Углерода диоксид	65,9213222	1132,731151	70,2442326	1207,012052	79,9750342	1374,217164	89,7058377	1541,422309
0410	Метан	77,9449069	1339,333330	83,0562856	1427,162544	94,5619168	1624,864690	106,0675503	1822,566876
0616	Диметилбензол (Ксилол)	0,6521866	11,206572	0,6949549	11,941464	0,7912257	13,595692	0,8874965	15,249921
0621	Метилбензол (Толуол)	1,0648450	18,297313	1,1346741	19,497193	1,2918584	22,198102	1,4490427	24,899012
0627	Этилбензол	0,1404619	2,413567	0,1496729	2,571841	0,1704068	2,928114	0,1911408	3,284386
1325	Формальдегид	0,1419951	2,439912	0,1513066	2,599914	0,1722669	2,960075	0,1932271	3,320236

Коэффициенты трансформации оксидов азота: $\mathbf{K_{NO}} = 0.13$; $\mathbf{K_{NO_2}} = 0.8$

Продолжение Таблицы 2: Выбросы от полигона ТКО на 2017 г. (СП) и каждый год эксплуатации 2018-2024 г.г.

Код	Название вещества	на 31.1	12.2021	на 31.	12.2022	на 31.1	12.2023	на 31.	12.2024
в-ва		Макс. выброс (Мі, г/с)	Валовый выброс (Gi, т/год)						
0301	Азота диоксид (Азот (IV) оксид)	0,1981055	3,404062	0,2174919	3,737181	0,2368784	4,070300	0,2562649	4,403419
0303	Аммиак	1,1846124	20,355287	1,3005378	22,347241	1,4164632	24,339196	1,5323886	26,331150
0304	Азот (II) оксид (Азота оксид)	0,0321921	0,553160	0,0353424	0,607292	0,0384927	0,661424	0,0416430	0,715556
0330	Сера диоксид-Ангидрид сернистый	0,1561931	2,683878	0,1714780	2,946520	0,1867630	3,209163	0,2020479	3,471805
0333	Дигидросульфид (Сероводород)	0,0579942	0,996520	0,0636695	1,094038	0,0693448	1,191557	0,0750201	1,289076
0337	Углерод оксид	0,5600180	9,622833	0,6148210	10,564516	0,6696240	11,506201	0,7244270	12,447884
0380	Углерода диоксид	99,4366414	1708,627459	109,1674437	1875,832583	118,8982490	2043,037758	128,6290498	2210,242857
0410	Метан	117,5731841	2020,269066	129,0788161	2217,971227	140,5844516	2415,673447	152,0900820	2613,375578
0616	Диметилбензол (Ксилол)	0,9837673	16,904150	1,0800381	18,558379	1,1763090	20,212608	1,2725798	21,866836
0621	Метилбензол (Толуол)	1,6062270	27,599922	1,7634113	30,300832	1,9205956	33,001742	2,0777799	35,702652
0627	Этилбензол	0,2118747	3,640659	0,2326086	3,996931	0,2533425	4,353204	0,2740764	4,709476
1325	Формальдегид	0,2141873	3,680397	0,2351475	4,040558	0,2561078	4,400720	0,2770680	4,760881

Коэффициенты трансформации оксидов азота: $\mathbf{K_{NO}} = 0.13$; $\mathbf{K_{NO_2}} = 0.8$

Источник 6012 (Полигон ТКО)

Токсичные газы выделяются при работе спецтехники на полигоне. Ковшовые бульдозеры ДЗ-110 и Т-130 производят работы по разравниванию и уплотнению отходов на теле полигона, а грейферный погрузчик ПЭФ-1БМ на базе МТЗ-82 используется зимой для чистки снега на МСУ и дороги к полигону. Перечень спецтехники с характеристиками приведен в Приложении 2.

Расчет произведен программой "АТП-Эколог", версия 3.10.18.0 от 24.06.2014 Copyright© 1995-2014 ФИРМА "ИНТЕГРАЛ"

Программа основана на следующих методических документах:

- 1. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом). М., 1998 г.
- 2. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для авторемонтных предприятий (расчетным методом). М., 1998 г.
- 3. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом). М., 1998 г.
 - 4. Дополнения (приложения №№ 1-3) к вышеперечисленным методикам.
- 5. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух. СПб, 2012 г.
 - 6. Письмо НИИ Атмосфера №07-2-263/13-0 от 25.04.2013 г.

Расшифровка кодов топлива и графы "O/Г/К" для таблиц "Характеристики автомобилей..." Код топлива может принимать следующие значения

- 1 Бензин АИ-93 и аналогичные по содержанию свинца;
- 2 Бензины А-92, А-76 и аналогичные по содержанию свинца;
- 3 Дизельное топливо;
- 4 Сжатый газ;
- 5 Неэтилированный бензин;
- 6 Сжиженный нефтяной газ.

Значения в графе "О/Г/К" имеют следующий смысл

1. Для легковых автомобилей - рабочий объем ДВС:

- 1 до 1.2 л
- 2 свыше 1.2 до 1.8 л
- 3 свыше 1.8 до 3.5 л
- 4 свыше 3.5 л

2. Для грузовых автомобилей - грузоподъемность:

- 1 до 2 т
- 2 свыше 2 до 5 т
- 3 свыше 5 до 8 т
- 4 свыше 8 до 16 т
- 5 свыше 16 т

3. Для автобусов - класс (габаритная длина) автобуса:

- 1 Особо малый (до 5.5 м)
- 2 Малый (6.0-7.5 м)
- 3 Средний (8.0-10.0 м)
- 4 Большой (10.5-12.0 м)
- 5 Особо большой (16.5-24.0 м)

Челябинск: среднемесячная и средняя минимальная температура воздуха, °С

								v 1				
Характеристики		П	Ш	IV	V	VI	VII	VIII	IX	X	XI	XII
Среднемесячная температура, °С	-15.8	-14.3	-7.4	3.9	11.9	16.8	18.4	16.2	10.7	2.4	-6.2	-12.9
Расчетные периоды года	X	X	X	П	Т	T	Т	Т	Т	П	X	X
Средняя минимальная температура, °С	-15.8	-14.3	-7.4	3.9	11.9	16.8	18.4	16.2	10.7	2.4	-6.2	-12.9
Расчетные периоды года	X	X	X	П	Т	Т	Т	Т	Т	П	X	X

В следующих месяцах значения среднемесячной и средней минимальной температур совпадают: Январь, Февраль, Март, Апрель, Май, Июнь, Июль, Август, Сентябрь, Октябрь, Ноябрь, Декабрь

Характеристики периодов года для расчета валовых выбросов загрязняющих веществ

Период года	Месяцы	Всего дней
Теплый	Май; Июнь; Июль; Август; Сентябрь;	153
Переходный	Апрель; Октябрь;	61
Холодный	Январь; Февраль; Март; Ноябрь; Декабрь;	151
Всего за год	Январь-Декабрь	365

Общее описание участка Подтип - Нагрузочный режим (полный)

Характеристики дорожной техники на участке

Марка	Категория	Мощность двигателя	ЭС
Д3-110	Колесная	101-160 КВт (137-219 л.с.)	нет
T-130	Колесная	101-160 КВт (137-219 л.с.)	нет
MT3-82	Колесная	36-60 КВт (49-82 л.с.)	нет

ЛЗ-110: количество по месяцам

Месяц	Количество в сутки	Работающих в течение 30 мин.	Тсут	tдв	tнагр	txx
Январь	1.00	1	360	12	13	5
Февраль	1.00	1	360	12	13	5
Март	1.00	1	360	12	13	5
Апрель	1.00	1	360	12	13	5
Май	1.00	1	360	12	13	5
Июнь	1.00	1	360	12	13	5
Июль	1.00	1	360	12	13	5
Август	1.00	1	360	12	13	5
Сентябрь	1.00	1	360	12	13	5
Октябрь	1.00	1	360	12	13	5
Ноябрь	1.00	1	360	12	13	5
Декабрь	1.00	1	360	12	13	5

Т-130: количество по месяцам

Месяц	Количество в сутки	Работающих в течение 30 мин.	Тсут	tдв	tнагр	txx
Январь	1.00	1	360	12	13	5
Февраль	1.00	1	360	12	13	5
Март	1.00	1	360	12	13	5
Апрель	1.00	I	360	12	13	5
Май	1.00	1	360	12	13	5
Июнь	1.00	1	360	12	13	5
Июль	1.00	1	360	12	13	5
Август	1.00	1	360	12	13	5
Сентябрь	1.00	1	360	12	13	5
Октябрь	1.00	1	360	12	13	5
Ноябрь	1.00	1	360	12	13	5
Декабрь	1.00	1	360	12	13	5

МТЗ-82: количество по месяцам

Месяц	Количество в сутки	Работающих в течение 30 мин.	Тсут	tдв	tнагр	txx
Январь	1.00	1	360	12	13	5
Февраль	1.00	1	360	12	13	5
Март	1.00	1	360	12	13	5
Апрель	0.00	0	360	12	13	5
Май	0.00	0	360	12	13	5
Июнь	0.00	0	360	12	13	5
Июль	0.00	0	360	12	13	5
Август	0.00	0	360	12	13	5
Сентябрь	0.00	0	360	12	13	5
Октябрь	0.00	0	360	12	13	5
Ноябрь	1.00	1	360	12	13	5
Декабрь	1.00	1	360	12	13	5

Выбросы участка

Код в-ва	Название вещества	Макс. выброс (г/с)	Валовый выброс (т/год)
	Оксиды азота (NO _x)*	0.0912778	1.130006
	В том числе:		
0301	*Азота диоксид (Азот (IV) оксид)	0.0730222	0.904004
0304	*Азот (II) оксид (Азота оксид)	0.0118661	0.146901

Код в-ва	Название вещества	Макс. выброс (г/с)	Валовый выброс (т/год)
0328	Углерод (Сажа)	0.0136829	0.161273
0330	Сера диоксид-Ангидрид сернистый	0.0082641	0.102555
0337	Углерод оксид	0.0652916	0.819493
0401	Углеводороды**	0.0186231	0.236063
	В том числе:		
2732	**Керосин	0.0186231	0.236063

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13

 $NO_2 - 0.80$

2. Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Расшифровка выбросов по веществам: Выбрасываемое вещество - 0337 - Углерод оксид

Валовые выбросы

Период года	Марка дорожной техники	Валовый выброс (тонн/год)
Теплый	ДЗ-110	0.146790
	T-130	0.146790
	ВСЕГО:	0.293580
Переходный	ДЗ-110	0.062861
	T-130	0.062861
	ВСЕГО:	0.125722
Холодный	ДЗ-110	0.168960
	T-130	0.168960
	MT3-82	0.062271
	ВСЕГО:	0.400191
Всего за год		0.819493

Максимальный выброс составляет: 0.0652916 г/с. Месяц достижения: Январь.

Здесь и далее:

Расчет валовых выбросов производился по формуле:

 $M_i = (\Sigma (M_l \cdot t'_{\text{дв}} + 1.3 \cdot M_l \cdot t'_{\text{нагр}} + M_{xx} \cdot t'_{xx})) \cdot N_B \cdot D_p \cdot 10^{-6}$, где

 $N_{\text{в}}$ - среднее количество единиц техники данной группы, выезжающих в течение суток;

D_D - количество дней работы в расчетном периоде.

Расчет максимально разовых выбросов производился по формуле:

 $G_i = (M_l \cdot t_{AB} + 1.3 \cdot M_l \cdot t_{Harp} + M_{xx} \cdot t_{xx}) \cdot N' / 1800 r/c,$

С учетом синхронности работы: $G_{max}=\Sigma(G_i)$;

 M_{xx} - удельный выброс техники на холостом ходу (г/мин.);

 $M_{\rm дв} = M_{
m l}$ - пробеговый удельный выброс (г/км);

 ${
m M}_{
m MB.Tem.}$ - пробеговый удельный выброс в теплый период (г/км);

t_{дв} - движение техники без нагрузки (мин.);

t_{нагр} - движение техники с нагрузкой (мин.);

 t_{xx} - холостой ход (мин.);

 $t'_{\text{дв}} = (t_{\text{дв}} \cdot T_{\text{сут}})/30$ - суммарное время движения без нагрузки всей техники данного типа в течение рабочего дня (мин.);

 $t'_{\text{нагр}} = (t_{\text{нагр}} \cdot T_{\text{сут}})/30$ - суммарное время движения с нагрузкой всей техники данного типа в течение рабочего дня (мин.);

 $t'_{xx}=(t_{xx}\cdot T_{\text{сут}})/30$ - суммарное время холостого хода для всей техники данного типа в течение рабочего дня (мин.);

 $T_{\text{сут}}$ — среднее время работы всей техники указанного типа в течение суток (мин.);

 ${\tt N'}$ - наибольшее количество единиц техники, работающих одновременно в течение 30 минут.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние, определены, основываясь на средних минимальных температурах воздуха.

Наименование	MI	МІтеп.	Mxx	Схр	Выброс (г/с)
Д3-110	2.550	2.090	3.910	да	
	2.295	2.090	3.910	да	0.0477086
T-130	2.550	2.090	3.910	да	
	2.295	2.090	3.910	да	0.0477086
MT3-82	0.940	0.770	1.440	да	
	0.846	0.770	1.440	да	0.0175830

Выбрасываемое вещество - 0401 - Углеводороды

		Ba	ло	вые	выб	росы
--	--	----	----	-----	-----	------

Период года	Марка дорожной техники	Валовый выброс (тонн/год)
Теплый	Д3-110	0.042171
	T-130	0.042171
	ВСЕГО:	0.084342
Переходный	Д3-110	0.017977
	T-130	0.017977
	ВСЕГО:	0.035954
Холодный	Д3-110	0.048951
	T-130	0.048951
	MT3-82	0.017865
	ВСЕГО:	0.115767
Всего за год		0.236063

Максимальный выброс составляет: 0.0186231 г/с. Месяц достижения: Январь.

Наименование	MI	МІтеп.	Mxx	Схр	Выброс (г/с)
Д3-110	0.850	0.710	0.490	да	
	0.765	0.710	0.490	да	0.0136436
T-130	0.850	0.710	0.490	да	
	0.765	0.710	0.490	да	0.0136436
MT3-82	0.310	0.260	0.180	да	
	0.279	0.260	0.180	да	0.0049795

Выбрасываемое вещество - Оксиды азота (NO_x)

Валовые выбросы

Период года	Марка дорожной техники	Валовый выброс (тонн/год)
Теплый	Д3-110	0.219933
	T-130	0.219933
	ВСЕГО:	0.439865
Переходный	ДЗ-110	0.087686
	T-130	0.087686
	ВСЕГО:	0.175371
Холодный	Д3-110	0.217058
	T-130	0.217058
	MT3-82	0.080654
	ВСЕГО:	0.514769
Всего за год		1.130006

Максимальный выброс составляет: 0.0912778 г/с. Месяц достижения: Январь.

Наименование	MI	МІтеп.	Mxx	Схр	Выброс (г/с)
Д3-110	4.010	4.010	0.780	да	
	4.010	4.010	0.780	да	0.0665494
T-130	4.010	4.010	0.780	да	
	4.010	4.010	0.780	да	0.0665494
MT3-82	1.490	1.490	0.290	да	
	1.490	1.490	0.290	да	0.0247283

Выбрасываемое вещество - 0328 - Углерод (Сажа)

Валовые выбросы

Период года	Марка дорожной техники	Валовый выброс (тонн/год)
Теплый	ДЗ-110	0.024795
	T-130	0.024795
	ВСЕГО:	0.049590
Переходный	ДЗ-110	0.013122
	T-130	0.013122
	ВСЕГО:	0.026245
Холодный	ДЗ-110	0.035992
	T-130	0.035992
	MT3-82	0.013454
	ВСЕГО:	0.085438
Всего за год		0.161273

Максимальный выброс составляет: 0.0136829 г/с. Месяц достижения: Январь.

Наименование	MI	МІтеп.	Mxx	Схр	Выброс (г/с)
Д3-110	0.670	0.450	0.100	да	
	0.603	0.450	0.100	да	0.0099593
T-130	0.670	0.450	0.100	да	
	0.603	0.450	0.100	да	0.0099593
MT3-82	0.250	0.170	0.040	да	
	0.225	0.170	0.040	да	0.0037236

Выбрасываемое вещество - 0330 - Сера диоксид-Ангидрид сернистый Валовые выбросы

Период года	Марка дорожной техники	Валовый выброс (тонн/год)
Теплый	Д3-110	0.017918
	T-130	0.017918
	ВСЕГО:	0.035835
Переходный	Д3-110	0.007821
	T-130	0.007821
	ВСЕГО:	0.015641
Холодный	ДЗ-110	0.021349
	T-130	0.021349
	MT3-82	0.008381
	ВСЕГО:	0.051078
Всего за год		0.102555

Максимальный выброс составляет: 0.0082641 г/с. Месяц достижения: Январь.

Наименование	MI	МІтеп.	Mxx	Схр	Выброс (г/с)
Д3-110	0.380	0.310	0.160	да	
	0.342	0.310	0.160	да	0.0059354
T-130	0.380	0.310	0.160	да	
	0.342	0.310	0.160	да	0.0059354
MT3-82	0.150	0.120	0.058	да	
	0.135	0.120	0.058	да	0.0023286

Трансформация оксидов азота Выбрасываемое вещество - 0301 - Азота диоксид (Азот (IV) оксид) Коэффициент трансформации - 0.8

Валовые выбросы

Период года	Марка дорожной техники	Валовый выброс (тонн/год)
Теплый	ДЗ-110	0.175946
	T-130	0.175946
	ВСЕГО:	0.351892
Переходный	Д3-110	0.070148
	T-130	0.070148
	ВСЕГО:	0.140297

Период года	Марка дорожной техники	Валовый выброс (тонн/год)
Холодный	Д3-110	0.173646
	T-130	0.173646
	MT3-82	0.064523
	ВСЕГО:	0.411815
Всего за год		0.904004

Максимальный выброс составляет: 0.0730222 г/с. Месяц достижения: Январь.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азота оксид) Коэффициент трансформации - 0.13

Валовые выбросы

Период года	Марка дорожной техники	Валовый выброс (тонн/год)
Теплый	ДЗ-110	0.028591
	T-130	0.028591
	ВСЕГО:	0.057182
Переходный	ДЗ-110	0.011399
	T-130	0.011399
	ВСЕГО:	0.022798
Холодный	Д3-110	0.028217
	T-130	0.028217
	MT3-82	0.010485
	ВСЕГО:	0.066920
Всего за год		0.146901

Максимальный выброс составляет: 0.0118661 г/с. Месяц достижения: Январь.

Распределение углеводородов Выбрасываемое вещество - 2732 - Керосин

Валовые выбросы

Период года	Марка дорожной техники	Валовый выброс (тони/год)
Теплый	Д3-110	0.042171
	T-130	0.042171
	ВСЕГО:	0.084342
Переходный	Д3-110	0.017977
	T-130	0.017977
	ВСЕГО:	0.035954
Холодный	Д3-110	0.048951
	T-130	0.048951
	MT3-82	0.017865
	ВСЕГО:	0.115767
Всего за год		0.236063

Максимальный выброс составляет: 0.0186231 г/с. Месяц достижения: Январь.

Наименование	MI	МІтеп.	Mxx	%%	Схр	Выброс (г/с)
Д3-110	0.850	0.710	0.490	100.0	да	
	0.765	0.710	0.490	100.0	да	0.0136436
T-130	0.850	0.710	0.490	100.0	да	
	0.765	0.710	0.490	100.0	да	0.0136436
MT3-82	0.310	0.260	0.180	100.0	да	
	0.279	0.260	0.180	100.0	да	0.0049795

Источник 6013 (Полигон ТКО)

Токсичные газы выделяются при перемещении мусоровозов по территории полигона ТКО. Интенсивность движения составляет три автомобиля в час. Перечень мусоровозов с характеристиками приведен в Приложении 2. Кроме этого на полигоне используют поливомоечный автомобиль КО-002 на шасси ЗИЛ-130 для пожарных нужд и для полива дороги на полигон в теплое время года.

Расчет произведен программой "ATII-Эколог", версия 3.10.18.0 от 24.06.2014 Copyright© 1995-2014 ФИРМА "ИНТЕГРАЛ"

Программа основана на следующих методических документах:

- 1. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом). М., 1998 г.
- 2. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для авторемонтных предприятий (расчетным методом). М., 1998 г.
- 3. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом). М., 1998 г.
 - 4. Дополнения (приложения №№ 1-3) к вышеперечисленным методикам.
- 5. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух. СПб, 2012 г.
 - 6. Письмо НИИ Атмосфера №07-2-263/13-0 от 25.04.2013 г.

Расшифровка кодов топлива и графы "О/Г/К" для таблиц "Характеристики автомобилей..." Код топлива может принимать следующие значения

- 1 Бензин АИ-93 и аналогичные по содержанию свинца;
- 2 Бензины А-92, А-76 и аналогичные по содержанию свинца;
- 3 Дизельное топливо;
- 4 Сжатый газ;
- 5 Неэтилированный бензин;
- 6 Сжиженный нефтяной газ.

Значения в графе "О/Г/К" имеют следующий смысл

1. Для легковых автомобилей - рабочий объем ДВС:

- 1 до 1.2 л
- 2 свыше 1.2 до 1.8 л
- 3 свыше 1.8 до 3.5 л
- 4 свыше 3.5 л

2. Для грузовых автомобилей - грузоподъемность:

- 1 до 2 т
- 2 свыше 2 до 5 т
- 3 свыше 5 до 8 т
- 4 свыше 8 до 16 т
- 5 свыше 16 т

3. Для автобусов - класс (габаритная длина) автобуса:

- 1 Особо малый (до 5.5 м)
- 2 Малый (6.0-7.5 м)
- 3 Средний (8.0-10.0 м)
- 4 Большой (10.5-12.0 м)
- 5 Особо большой (16.5-24.0 м)

Челябинск: среднемесячная и средняя минимальная температура воздуха, °С

Характеристики	I	II	Ш	IV	V	VI	VII	VIII	IX	X	XI	XII
Среднемесячная температура, °С	-15.8	-14.3	-7.4	3.9	11.9	16.8	18.4	16.2	10.7	2.4	-6.2	-12.9
Расчетные периоды года	X	X	X	П	Т	T	Т	Т	Т	П	X	X
Средняя минимальная температура, °С	-15.8	-14.3	-7.4	3.9	11.9	16.8	18.4	16.2	10.7	2.4	-6.2	-12.9
Расчетные периоды года	X	X	X	П	Т	Т	Т	Т	Т	П	X	X

В следующих месяцах значения среднемесячной и средней минимальной температур совпадают: Январь, Февраль, Март, Апрель, Май, Июнь, Июль, Август, Сентябрь, Октябрь, Ноябрь, Декабрь

Характеристики периодов года для расчета валовых выбросов загрязняющих веществ

Период года	Месяцы	Всего дней
Теплый	Май; Июнь; Июль; Август; Сентябрь;	153
Переходный	Апрель; Октябрь;	61
Холодный	Январь; Февраль; Март; Ноябрь; Декабрь;	151
Всего за год	Январь-Декабрь	365

тип - 7 - Внутренний проезд Общее описание участка

Протяженность внутреннего проезда (км): 0.200

- среднее время выезда (мин.): 60.0

Характеристики автомобилей на участке

Марка автомобиля	Категория	Место пр-ва	Ο/Γ/Κ	Тип двиг.	Код топл.	Нейтрализатор
мусоровоз бензиновый 2-5т	Грузовой	СНГ	2	Карб.	5	нет
мусоровоз бензиновый 5-8т	Грузовой	СНГ	3	Карб.	5	нет
а/м поливомоечный бензиновый 5-8т	Грузовой	СНГ	3	Карб.	5	нет
мусоровоз дизельный 2-5т	Грузовой	СНГ	2	Диз.	3	нет
мусоровоз дизельный 5-8т	Грузовой	СНГ	3	Диз.	3	нет
мусоровоз дизельный 8-16т	Грузовой	СНГ	4	Диз.	3	нет

мусоровоз бензиновый 2-5т: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	9.00	0
Февраль	9.00	0
Март	9.00	0
Апрель	9.00	0
Май	9.00	0
Июнь	9.00	0
Июль	9.00	0
Август	9.00	0
Сентябрь	9.00	0
Октябрь	9.00	0
Ноябрь	9.00	0
Декабрь	9.00	0

мусоровоз бензиновый 5-8т: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	9.00	1
Февраль	9.00	1
Март	9.00	1
Апрель	9.00	1
Май	9.00	1
Июнь	9.00	1
Июль	9.00	1
Август	9.00	1
Сентябрь	9.00	1
Октябрь	9.00	1
Ноябрь	9.00	1
Декабрь	9.00	1

мусоровоз дизельный 2-5т: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	3.00	0
Февраль	3.00	0
Март	3.00	0
Апрель	3.00	0
Май	3.00	0
Июнь	3.00	0
Июль	3.00	0
Август	3.00	0
Сентябрь	3.00	0
Октябрь	3.00	0
Ноябрь	3.00	0
Декабрь	3.00	0

мусоровоз дизельный 5-8т: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	6.00	0
Февраль	6.00	0
Март	6.00	0
Апрель	6.00	0

Месяц	Количество в сутки	Количество выезжающих за время Тср
Май	6.00	0
Июнь	6.00	0
Июль	6.00	0
Август	6.00	0
Сентябрь	6.00	0
Октябрь	6.00	0
Ноябрь	6.00	0
Декабрь	6.00	0

мусоровоз дизельный 8-16т: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	21.00	2
Февраль	21.00	2
Март	21.00	2
Апрель	21.00	2
Май	21.00	2
Июнь	21.00	2
Июль	21.00	2
Август	21.00	2
Сентябрь	21.00	2
Октябрь	21.00	2
Ноябрь	21.00	2
Декабрь	21.00	2

а/м поливомоечный бензиновый 5-8т: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	0.00	0
Февраль	0.00	0
Март	0.00	0
Апрель	0.00	0
Май	1.00	1
Июнь	1.00	1
Июль	1.00	1
Август	1.00	1
Сентябрь	0.00	0
Октябрь	0.00	0
Ноябрь	0.00	0
Декабрь	0.00	0

Выбросы участка

Код в-ва	Название вещества	Макс. выброс (г/с)	Валовый выброс (т/год)
	Оксиды азота (NO _x)*	0.0008889	0.009442
	В том числе:		
0301	*Азота диоксид (Азот (IV) оксид)	0.0007111	0.007553
0304	*Азот (II) оксид (Азота оксид)	0.0001156	0.001227
0328	Углерод (Сажа)	0.0000889	0.000726
0330	Сера диоксид-Ангидрид сернистый	0.0001489	0.001491
0337	Углерод оксид	0.0065889	0.071841
0401	Углеводороды**	0.0011444	0.012780
	В том числе:		
2704	**Бензин (нефтяной, малосернистый)	0.0011444	0.010499
2732	**Керосин	0.0002667	0.002280

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13

 $NO_2 - 0.80$

2. Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Расшифровка выбросов по веществам: Выбрасываемое вещество - 0337 - Углерод оксид

Валовые выбросы

Период года	Марка автомобиля	Валовый выброс (тонн/год)
Теплый	мусоровоз бензиновый 2-5т	0.008179
	мусоровоз бензиновый 5-8т	0.013054
	а/м поливомоечный бензиновый 5-8т	0.001166
	мусоровоз дизельный 2-5т	0.000321
	мусоровоз дизельный 5-8т	0.000936
	мусоровоз дизельный 8-16т	0.003920
	ВСЕГО:	0.027577
Переходный	мусоровоз бензиновый 2-5т	0.003686
	мусоровоз бензиновый 5-8т	0.005860
	мусоровоз дизельный 2-5т	0.000142
	мусоровоз дизельный 5-8т	0.000408
	мусоровоз дизельный 8-16т	0.001706
	ВСЕГО:	0.011802
Холодный	мусоровоз бензиновый 2-5т	0.010138
	мусоровоз бензиновый 5-8т	0.016118
	мусоровоз дизельный 2-5т	0.000390
	мусоровоз дизельный 5-8т	0.001123
	мусоровоз дизельный 8-16т	0.004693
	ВСЕГО:	0.032462
Всего за год		0.071841

Максимальный выброс составляет: 0.0065889 г/с. Месяц достижения: Январь.

Здесь и далее:

Расчет валовых выбросов производился по формуле:

 $M_i = \Sigma (M_1 \cdot L_p \cdot K_{HTP} \cdot N_{KP} \cdot D_p \cdot 10^{-6})$, где

 $N_{\rm kp}$ - количество автомобилей данной группы, проезжающих по проезду в сутки;

D_p - количество дней работы в расчетном периоде.

Расчет максимально разовых выбросов производился по формуле:

 $G_i=M_l \cdot L_p \cdot K_{HTP} \cdot N' / T_{cp} \Gamma/c (*),$

С учетом синхронности работы: $G_{\text{max}} = \Sigma \left(G_i \right)$, где

 M_1 - пробеговый удельный выброс (г/км);

 $L_p = 0.200$ км - протяженность внутреннего проезда;

 $K_{\text{нтр}}$ - коэффициент, учитывающий снижение выброса при установленном нейтрализаторе (пробег и холостой ход);

N' - наибольшее количество автомобилей, проезжающих по проезду в течение времени Tcp, характеризующегося максимальной интенсивностью движения;

(*) В соответствии с методическим пособием по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, СПб, 2012 г.

 $T_{cp}=1800$ сек - среднее время наиболее интенсивного движения по проезду.

Наименование	MI	Кнтр	Схр	Выброс (г/с)
мусоровоз бензиновый 2-5т (б)	37.300	1.0	нет	0.0000000
мусоровоз бензиновый 5-8т (б)	59.300	1.0	нет	0.0065889
а/м поливомоечный бензиновый 5-8т (б)	59.300	1.0	нет	0.0000000
мусоровоз дизельный 2-5т (д)	4.300	1.0	нет	0.0000000
мусоровоз дизельный 5-8т (д)	6.200	1.0	нет	0.0000000
мусоровоз дизельный 8-16т (д)	7.400	1.0	нет	0.0016444

Выбрасываемое вещество - 0401 - Углеводороды

Валовые выбросы

Период года	Марка автомобиля	Валовый выброс (тонн/год)
Теплый	мусоровоз бензиновый 2-5т	0.001515
	мусоровоз бензиновый 5-8т	0.002396
	а/м поливомоечный бензиновый 5-8т	0.000214
	мусоровоз дизельный 2-5т	0.000064
	мусоровоз дизельный 5-8т	0.000165
	мусоровоз дизельный 8-16т	0.000643
	ВСЕГО:	0.004997

Период года	Марка автомобиля	Валовый выброс (тонн/год)
Переходный	мусоровоз бензиновый 2-5т	0.000682
	мусоровоз бензиновый 5-8т	0.001018
	мусоровоз дизельный 2-5т	0.000026
	мусоровоз дизельный 5-8т	0.000072
	мусоровоз дизельный 8-16т	0.000277
	ВСЕГО:	0.002075
Холодный	мусоровоз бензиновый 2-5т	0.001875
	мусоровоз бензиновый 5-8т	0.002800
	мусоровоз дизельный 2-5т	0.000072
	мусоровоз дизельный 5-8т	0.000199
	мусоровоз дизельный 8-16т	0.000761
	ВСЕГО:	0.005708
Всего за год		0.012780

Максимальный выброс составляет: 0.0011444 г/с. Месяц достижения: Январь.

Наименование	MI	Кнтр	Схр	Выброс (г/с)
мусоровоз бензиновый 2-5т (б)	6.900	1.0	нет	0.0000000
мусоровоз бензиновый 5-8т (б)	10.300	1.0	нет	0.0011444
а/м поливомоечный бензиновый 5-8т (б)	10.300	1.0	нет	0.0000000
мусоровоз дизельный 2-5т (д)	0.800	1.0	нет	0.0000000
мусоровоз дизельный 5-8т (д)	1.100	1.0	нет	0.0000000
мусоровоз дизельный 8-16т (д)	1.200	1.0	нет	0.0002667

Выбрасываемое вещество - Оксиды азота (NO_x)

Период года	Марка автомобиля	Валовый выброс (тонн/год)
Теплый	мусоровоз бензиновый 2-5т	0.000220
	мусоровоз бензиновый 5-8т	0.000275
	а/м поливомоечный бензиновый 5-8т	0.000025
	мусоровоз дизельный 2-5т	0.000239
	мусоровоз дизельный 5-8т	0.000643
	мусоровоз дизельный 8-16т	0.002570
	ВСЕГО:	0.003972
Переходный	мусоровоз бензиновый 2-5т	0.000088
	мусоровоз бензиновый 5-8т	0.000110
	мусоровоз дизельный 2-5т	0.000095
	мусоровоз дизельный 5-8т	0.000256
	мусоровоз дизельный 8-16т	0.001025
	ВСЕГО:	0.001574
Холодный	мусоровоз бензиновый 2-5т	0.000217
	мусоровоз бензиновый 5-8т	0.000272
	мусоровоз дизельный 2-5т	0.000236
	мусоровоз дизельный 5-8т	0.000634
	мусоровоз дизельный 8-16т	0.002537
	ВСЕГО:	0.003896
Всего за год		0.009442

Максимальный выброс составляет: 0.0008889 г/с. Месяц достижения: Январь.

Наименование	MI	Кнтр	Схр	Выброс (г/с)
мусоровоз бензиновый 2-5т (б)	0.800	1.0	нет	0.0000000
мусоровоз бензиновый 5-8т (б)	1.000	1.0	нет	0.0001111
а/м поливомоечный бензиновый 5-8т (б)	1.000	1.0	нет	0.0000000
мусоровоз дизельный 2-5т (д)	2.600	1.0	нет	0.0000000
мусоровоз дизельный 5-8т (д)	3.500	1.0	нет	0.0000000
мусоровоз дизельный 8-16т (д)	4.000	1.0	нет	0.0008889

Выбрасываемое вещество - 0328 - Углерод (Сажа)

Валовые выбросы

Период года	Марка автомобиля	Валовый выброс (тонн/год)
Теплый	мусоровоз дизельный 2-5т	0.000018
	мусоровоз дизельный 5-8т	0.000046
	мусоровоз дизельный 8-16т	0.000193
	ВСЕГО:	0.000257
Переходный	мусоровоз дизельный 2-5т	0.000010
	мусоровоз дизельный 5-8т	0.000023
	мусоровоз дизельный 8-16т	0.000092
	ВСЕГО:	0.000125
Холодный	мусоровоз дизельный 2-5т	0.000027
	мусоровоз дизельный 5-8т	0.000063
	мусоровоз дизельный 8-16т	0.000254
	ВСЕГО:	0.000344
Всего за год		0.000726

Максимальный выброс составляет: 0.0000889 г/с. Месяц достижения: Январь.

Наименование	MI	Кнтр	Схр	Выброс (г/с)
мусоровоз дизельный 2-5т (д)	0.300	1.0	нет	0.0000000
мусоровоз дизельный 5-8т (д)	0.350	1.0	нет	0.0000000
мусоровоз дизельный 8-16т (д)	0.400	1.0	нет	0.0000889

Выбрасываемое вещество - 0330 - Сера диоксид-Ангидрид сернистый

Период года	Марка автомобиля	Валовый выброс (тонн/год)
Теплый	мусоровоз бензиновый 2-5т	0.000041
	мусоровоз бензиновый 5-8т	0.000050
	а/м поливомоечный бензиновый 5-8т	0.000004
	мусоровоз дизельный 2-5т	0.000036
	мусоровоз дизельный 5-8т	0.000083
	мусоровоз дизельный 8-16т	0.000347
	ВСЕГО:	0.000561
Переходный	мусоровоз бензиновый 2-5т	0.000019
	мусоровоз бензиновый 5-8т	0.000022
	мусоровоз дизельный 2-5т	0.000016
	мусоровоз дизельный 5-8т	0.000037
	мусоровоз дизельный 8-16т	0.000154
	ВСЕГО:	0.000248
Холодный	мусоровоз бензиновый 2-5т	0.000052
	мусоровоз бензиновый 5-8т	0.000060
	мусоровоз дизельный 2-5т	0.000044
	мусоровоз дизельный 5-8т	0.000101
	мусоровоз дизельный 8-16т	0.000425
	ВСЕГО:	0.000682
Всего за год		0.001491

Максимальный выброс составляет: 0.0001489 г/с. Месяц достижения: Январь.

Наименование	MI	Кнтр	Схр	Выброс (г/с)
мусоровоз бензиновый 2-5т (б)	0.190	1.0	нет	0.0000000
мусоровоз бензиновый 5-8т (б)	0.220	1.0	нет	0.0000244
а/м поливомоечный бензиновый 5-8т (б)	0.220	1.0	нет	0.0000000
мусоровоз дизельный 2-5т (д)	0.490	1.0	нет	0.0000000
мусоровоз дизельный 5-8т (д)	0.560	1.0	нет	0.0000000
мусоровоз дизельный 8-16т (д)	0.670	1.0	нет	0.0001489

Трансформация оксидов азота Выбрасываемое вещество - 0301 - Азота диоксид (Азот (IV) оксид) Коэффициент трансформации - 0.8

Валовые выбросы

Период года	Марка автомобиля	Валовый выброс (тонн/год)
Теплый	мусоровоз бензиновый 2-5т	0.000176
	мусоровоз бензиновый 5-8т	0.000220
	а/м поливомоечный бензиновый 5-8т	0.000020
	мусоровоз дизельный 2-5т	0.000191
	мусоровоз дизельный 5-8т	0.000514
	мусоровоз дизельный 8-16т	0.002056
	ВСЕГО:	0.003178
Переходный	мусоровоз бензиновый 2-5т	0.000070
	мусоровоз бензиновый 5-8т	0.000088
	мусоровоз дизельный 2-5т	0.000076
	мусоровоз дизельный 5-8т	0.000205
	мусоровоз дизельный 8-16т	0.000820
	ВСЕГО:	0.001259
Холодный	мусоровоз бензиновый 2-5т	0.000174
	мусоровоз бензиновый 5-8т	0.000217
	мусоровоз дизельный 2-5т	0.000188
	мусоровоз дизельный 5-8т	0.000507
	мусоровоз дизельный 8-16т	0.002029
	ВСЕГО:	0.003117
Всего за год		0.007553

Максимальный выброс составляет: 0.0007111 г/с. Месяц достижения: Январь. Выбрасываемое вещество - 0304 - Азот (II) оксид (Азота оксид)

Коэффициент трансформации - 0.13 Валовые выбросы

Валовый выброс (тонн/год) Период года Марка автомобиля 0.000029 Теплый мусоровоз бензиновый 2-5т 0.000036 мусоровоз бензиновый 5-8т 0.000003 а/м поливомоечный бензиновый 5-8т 0.000031 мусоровоз дизельный 2-5т 0.000084мусоровоз дизельный 5-8т мусоровоз дизельный 8-16т 0.000334 0.000516 ВСЕГО: 0.000011 мусоровоз бензиновый 2-5т Переходный 0.000014 мусоровоз бензиновый 5-8т 0.000012 мусоровоз дизельный 2-5т 0.000033 мусоровоз дизельный 5-8т мусоровоз дизельный 8-16т 0.000133 0.000205 ВСЕГО: 0.000028 Холодный мусоровоз бензиновый 2-5т 0.000035 мусоровоз бензиновый 5-8т 0.000031мусоровоз дизельный 2-5т 0.000082 мусоровоз дизельный 5-8т 0.000330 мусоровоз дизельный 8-16т 0.000506 ВСЕГО: 0.001227 Всего за год

Максимальный выброс составляет: 0.0001156 г/с. Месяц достижения: Январь.

Распределение углеводородов Выбрасываемое вещество - 2704 - Бензин (нефтяной, малосернистый)

Валовые выбросы

Период года	Марка автомобиля	Валовый выброс (тонн/год)
Теплый	мусоровоз бензиновый 2-5т	0.001515
	мусоровоз бензиновый 5-8т	0.002396
	а/м поливомоечный бензиновый 5-8т	0.000214
	ВСЕГО:	0.004125

Период года	Марка автомобиля	Валовый выброс (тонн/год)
Переходный	мусоровоз бензиновый 2-5т	0.000682
	мусоровоз бензиновый 5-8т	0.001018
	ВСЕГО:	0.001700
Холодный	мусоровоз бензиновый 2-5т	0.001875
	мусоровоз бензиновый 5-8т	0.002800
	ВСЕГО:	0.004675
Всего за год		0.010499

Максимальный выброс составляет: 0.0011444 г/с. Месяц достижения: Январь.

Наименование	Ml	Китр	%%	Схр	Выброс (г/с)
мусоровоз бензиновый 2-5т (б)	6.900	1.0	100.0	нет	0.0000000
мусоровоз бензиновый 5-8т (б)	10.300	1.0	100.0	нет	0.0011444
а/м поливомоечный бензиновый 5-8т (б)	10.300	1.0	100.0	нет	0.0000000

Выбрасываемое вещество - 2732 - Керосин

Период года	Марка автомобиля	Валовый выброс (тонн/год)
Теплый	мусоровоз дизельный 2-5т	0.000064
	мусоровоз дизельный 5-8т	0.000165
	мусоровоз дизельный 8-16т	0.000643
	ВСЕГО:	0.000872
Переходный	мусоровоз дизельный 2-5т	0.000026
•	мусоровоз дизельный 5-8т	0.000072
	мусоровоз дизельный 8-16т	0.000277
	ВСЕГО:	0.000376
Холодный	мусоровоз дизельный 2-5т	0.000072
	мусоровоз дизельный 5-8т	0.000199
	мусоровоз дизельный 8-16т	0.000761
	ВСЕГО:	0.001033
Всего за год		0.002280

Максимальный выброс составляет: 0.0002667 г/с. Месяц достижения: Январь.

Наименование	MI	Кнтр	%%	Схр	Выброс (г/с)
мусоровоз дизельный 2-5т (д)	0.800	1.0	100.0	нет	0.0000000
мусоровоз дизельный 5-8т (д)	1.100	1.0	100.0	нет	0.0000000
мусоровоз дизельный 8-16т (д)	1.200	1.0	100.0	нет	0.0002667

3. Мусоросортировочный участок (МСУ)

Источник 21 (МСУ, пост обезвреживания отходов)

Загрязняющие вещества выделяются при термическом обезвреживании (сжигании) твердых бытовых и промышленных нефтесодержащих отходов в установке для сжигания отходов "Форсаж-2".

Показатели работы установки "Форсаж-2":

- время работы

 $4 \times 5 \times 52 = 1040$ ч/год ч/год;

- производительность

180 кг/ч.

В качестве теплоносителя используется дизельное топливо. За год расходуют до 14 т дизельного топлива. Максимальный расход 16,8 кг/ч (по паспорту на установку) или 4,7 г/с.

Процесс: сжигание отходов

Расчет произведен программой "Сжигание ТБО", версия 1.1.0.4 от 22.12.2008 Copyright© 2005-2008 Фирма "ИНТЕГРАЛ"

Расчет выбросов загрязняющих веществ в соответствии с "Методическими указаниями по расчету выбросов загрязняющих веществ в атмосферу от установок малой производительности по термической переработке твердых бытовых отходов и промотходов", Москва, ВНИИГАЗ, 1997 г.

Результаты расчета

Код в-ва	Название вещества	Макс. выброс (г/с)	Валовый выброс (т/год)
0110	диВанадий пентоксид (пыль)	0.0006011	0.002251
0301	Азота диоксид (Азот (IV) оксид)	0.1227105	0.459428
0304	Азот (II) оксид (Азота оксид)	0.0199405	0.074657
0316	Гидрохлорид (Водород хлористый)	0.0051777	0.019385
0330	Сера диоксид-Ангидрид сернистый	0.3057600	1.144765
0337	Углерод оксид	0.0016778	0.006282
0342	Гидрофторид	0.0107869	0.040386
2902	Взвешенные вещества	0.7390734	2.767091

Элементный состав

Компонент	%	Sp	Ap	HClp	HFp	Wp	- Qp	V
Бумага	10.000	0.140	15.000	0.012	0.025	25.000	9.490	0.190404
Текстиль	30.000	0.100	8.000	0.012	0.025	20.000	15.720	0.158051
Древесина	20.000	0.000	0.800	0.012	0.025	20.000	14.460	0.157163
Кожа, резина	20.000	0.670	11.600	0.012	0.025	5.000	25.790	0.054917
Прочее	20.000	0.200	11.700	0.012	0.025	8.000	18.140	0.054917
Общая масса	100	0.218	8.720	0.012	0.025	15.100	17.343	0.119855

 S_p – элементный состав серы в рабочей массе отходов, %

 ${
m A_p}$ - элементный состав золы в рабочей массе отходов, %

 HCl_p - содержание хлористого водорода в продуктах сгорания, г/м³

 HF_p - содержание фтористого водорода в продуктах сгорания, г/м³

Wp - содержание общей влаги в рабочей массе отходов, %

 $Q_{p[TEO]} = \Sigma Q p_n \cdot i_n = 17.34300$ - низшая теплота сгорания отходов, МДж/кг (18), где

Q_{pn} - низшая теплота сгорания отдельных компонентов, МДж/кг

i_n - доли компонентов в общей массе отходов

 $V = 0.278 \cdot B \cdot ((0.1 + 1.08 \cdot \alpha) \cdot (Qp + 6 \cdot Wp) / 1000 + 0.0124 \cdot Wp) \cdot (273 + t_r) / 273 = м^3/c$ - объем сухих продуктов сгорания (21)

Бумага (10.0%)

Код в-ва	Название вещества	Макс. выброс (г/с)	Валовый выброс (т/год)
0301	Азота диоксид (Азот (IV) оксид)	0.0061703	0.023102
0304	Азот (II) оксид (Азота оксид)	0.0010027	0.003754
0316	Гидрохлорид (Водород хлористый)	0.0008225	0.003080
0330	Сера диоксид-Ангидрид сернистый	0.0137200	0.051368
0337	Углерод оксид	0.0001678	0.000628
0342	Гидрофторид	0.0017136	0.006416
2902	Взвешенные вещества	0.1168532	0.437498

Текстиль (30.0%)

Код в-ва	Название вещества	Макс. выброс (г/с)	Валовый выброс (т/год)
0301	Азота диоксид (Азот (IV) оксид)	0.0306630	0.114802
0304	Азот (II) оксид (Азота оксид)	0.0049827	0.018655
0316	Гидрохлорид (Водород хлористый)	0.0020483	0.007669
0330	Сера диоксид-Ангидрид сернистый	0.0294000	0.110074
0337	Углерод оксид	0.0005033	0.001885
0342	Гидрофторид	0.0042674	0.015977
2902	Взвешенные вещества	0.2016330	0.754914

Древесина (20.0%)

Код в-ва	Название вещества	Макс. выброс (г/с)	Валовый выброс (т/год)
0301	Азота диоксид (Азот (IV) оксид)	0.0188035	0.070400
0304	Азот (II) оксид (Азота оксид)	0.0030556	0.011440
0316	Гидрохлорид (Водород хлористый)	0.0013579	0.005084
0337	Углерод оксид	0.0003356	0.001256
0342	Гидрофторид	0.0028289	0.010592
2902	Взвешенные вещества	0.0252661	0.094596

Кожа, резина (20.0%)

Код в-ва	Название вещества	Макс. выброс (г/с)	Валовый выброс (т/год)
0110	диВанадий пентоксид (пыль)	0.0003006	0.001125
0301	Азота диоксид (Азот (IV) оксид)	0.0335368	0.125562
0304	Азот (II) оксид (Азота оксид)	0.0054497	0.020404
0316	Гидрохлорид (Водород хлористый)	0.0004745	0.001776
0330	Сера диоксид-Ангидрид сернистый	0.1313200	0.491662
0337	Углерод оксид	0.0003356	0.001256
0342	Гидрофторид	0.0009885	0.003701
2902	Взвешенные вещества	0.1976606	0.740041

Прочее (20.0%)

Код в-ва	Название вещества	Макс. выброс (г/с)	Валовый выброс (т/год)
0110	диВанадий пентоксид (пыль)	0.0003006	0.001125
0301	Азота диоксид (Азот (IV) оксид)	0.0335368	0.125562
0304	Азот (II) оксид (Азота оксид)	0.0054497	0.020404
0316	Гидрохлорид (Водород хлористый)	0.0004745	0.001776
0330	Сера диоксид-Ангидрид сернистый	0.1313200	0.491662
0337	Углерод оксид	0.0003356	0.001256
0342	Гидрофторид	0.0009885	0.003701
2902	Взвешенные вещества	0.1976606	0.740041

Расчетные формулы, исходные данные:

Пылеуловители: отсутствуют

 ${f B} = 0.18~{
m T/u}$ - производительность установки для сжигания отходов

 ${f q_3} = 2.00\%$ - потери теплоты от химической неполноты сгорания отходов

 ${\bf q_4} = 2.00\%$ - потери теплоты от механической неполноты сгорания отходов

 $\tau = 1040.00$ ч/год - продолжительность работы установки

 $\alpha = 2.500$ - коэффициент избытка воздуха

 $t_r = 1100 {\rm ^{\circ}C}$ - температура продуктов сгорания

Валовый выброс загрязняющих веществ определяется по формуле:

 $\Pi = 0.0036 \cdot \tau \cdot \mathbf{M} \text{ т/год}$ (23)

Максимально-разовый выброс загрязняющих веществ определяется по формулам:

Летучая зола

$$\overline{\mathbf{M} = 10^3 \cdot \mathbf{a}_{\text{VH}}} \cdot (\mathbf{A}_{\text{p}} + \mathbf{q}_{\text{4}} \cdot (\mathbf{Q}_{\text{p}} / 32.7)) \cdot \mathbf{B} / (3.6 \cdot 100) \, \text{r/c}$$
 (24)

 $a_{VH} = 0.150$ - доля золы в уносе

Диоксид серы

 $M = 10^3 \cdot 0.02 \cdot B \cdot S_p \cdot (1 - \eta'_{SO2})/3.6 \text{ r/c}$ (25)

 $\eta_{SO2} = 0.020$ - доля диоксида серы, связываемого летучей золой отходов

Оксид углерода

 $\mathbf{M} = 0.001 \cdot \mathbf{C_{CO}} \cdot \mathbf{B} \cdot (1 - \mathbf{q_4}/100)/3.6 \text{ r/c}$ (26)

 $\mathbf{C}_{\mathrm{CO}} = \mathbf{q}_3 \cdot \mathbf{R} \cdot \mathbf{Q}_{\mathrm{p[TEO]}} / \mathbf{1013} = 34.24087 \ \mathrm{кг/r}$ - выход оксида углерода при сжигании отходов*) (27), где

R = 1.00 - коэффициент, учитывающий долю потери теплоты вследствие химической неполноты сгорания отходов, обусловленной содержанием оксида углерода в продуктах неполного сгорания

**)В соответствии с письмом НИИ Атмосфера №5/33-07 от 12.01.06 размерность Qp при расчете выбросов оксида углерода принимается в кДж/кг.

Оксиды азота

$$M = 0.16 \cdot B \cdot Q_{p} \cdot e^{0.012 \cdot \mathcal{H}_{HOM}} \cdot (1 - \eta_{1}) \cdot (1 - q_{4}100)/3.6 \text{ r/c} \quad (28-29)$$

 $\eta_1 = 0$ - коэффициент, учитывающий степень дожигания выбросов оксидов азота в результате примененных решений

Коэффициенты трансформации оксидов азота:

 $K_{NO} = 0.13$

 $\mathbf{K_{NO_2}} = 0.8$

Хлористый водород

 $M = 3.6 \text{ V HCl}_{\rm p} \, \Gamma/c$ (30)

Фтористый водород

 $\mathbf{M} = 3.6 \cdot \mathbf{V} \cdot \mathbf{H} \mathbf{F}_{p} \, \Gamma/c \quad (31)$

Оксиды ванадия

 $M = G_{V2O5} \cdot B \cdot (1-\eta_{oc}) \cdot (1-\eta_{v})/3600 \text{ r/c}$ (32)

Отсутствуют результаты анализа дополнительного топлива

 $G_{V2O5} = 95.4 \cdot S_p - 31.6 \ г/т$ - содержание пятиокиси ванадия в отходах (33)

 $\eta_{oc} = 0.070$ - коэффициент оседания пятиокиси ванадия на поверхности нагрева котловутилизаторов

 $\eta_y = 0$ - доля твердых частиц продуктов сгорания жидкого топлива, применяемого в качестве стабилизирующего топлива при сжигании отходов с пониженными теплотехническими свойствами, улавливаемых в устройствах по нейтрализации вредных выбросов после котлов-утилизаторов

Процесс: сжигание дизельного топлива

Расчет произведен программой "Котельные малой мощности", версия 1.0.2 от 02.03.2015

Программа основана на следующих методических документах:

- 1. "Методические указания по расчету выбросов загрязняющих веществ при сжигании топлива в котлах производительностью до 30 т/ч", Разработаны Институтом Горючих ископаемых Минуглепрома СССР, Всесоюзным теплотехническим институтом им. Ф.Э. Дзержинского Минэнерго СССР, Западно-Сибирским региональным институтом Госкомгидромета, Институтом санитарной техники и оборудования зданий и сооружений Минстройматериалов СССР. Утверждены Государственным комитетом СССР по гидрометеорологии и контролю природной среды. Москва, 1985 г.
- 2. "Методика определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час", Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г.
- 3. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012 г.

Copyright© 2014 Фирма "Интеграл"

Результаты расчетов по источнику выделения

Код	Название вещества	Максимальный выброс, г/с	Валовый выброс, т/год
301	Азот (IV) оксид (Азота диоксид)	0.0147197	0.043846
304	Азот (II) оксид (Азота оксид)	0.0023920	0.007125
328	Углерод (Сажа)	0.0011750	0.003500
330	Сера диоксид (Ангидрид сернистый)	0.0276360	0.082320
337	Углерод оксид	0.0646738	0.192645
703	Бенз/а/пирен (3, 4-Бензпирен)	0.00000024786	0.00000073771

Расчетные формулы, общие исходные данные:

Наименование топлива: дизельное топливо

Расход топлива:

Валовый расход топлива (В), т/год: 14

Максимальный расход топлива (В'), г/с: 4.7

Низшая теплота сгорания топлива (Q^r), МДж/кг: 42.5524

Потери тепла от механической неполноты сгорания топлива (q_4', q_4) :

Максимальный (q₄'), %: 0.5

Средний (q_4) , %: 0.5

Потери тепла от химической неполноты сгорания топлива (q_3', q_3) :

Максимальный (q₃'), %: 0.5

Средний (q₃), %: 0.5

Паропроизводительность котла ($\mathbf{D}_{\mathbf{H}}, \mathbf{D}_{\mathbf{\Phi}}', \mathbf{D}_{\mathbf{\Phi}}$):

Номинальная (\mathbf{D}_{H}), т/ч: 3

Максимальная (\mathbf{D}_{ϕ}), т/ч: 3

Средняя (\mathbf{D}_{ϕ}), т/ч: 3

Объем продуктов сгорания топлива при нормальных условиях (V_r), м³/кг: 15.131

Выброс оксидов азота

Максимальный выброс (M_{NOx} '), г/с

 $\mathbf{M}_{\text{NOx}}{}^{\text{!`}} = 0.001 \cdot \mathbf{B}{}^{\text{!`}} \cdot \mathbf{Q}^{\text{!`}} \cdot \mathbf{K}_{\text{NOx}} \cdot (1 \text{-b}) \cdot (\mathbf{D}_{\phi}{}^{\text{!`}} / \mathbf{D}_{\text{\tiny H}})^{0.25} \qquad (7 \text{ [1]})$

Валовый выброс (M_{NOx}), т/год

 $\mathbf{M}_{NOx} = 0.001 \cdot \mathbf{B} \cdot \mathbf{Q}^{r} \cdot \mathbf{K}_{NOx} \cdot (1-\mathbf{b}) \cdot (\mathbf{D}_{\phi}/\mathbf{D}_{H})^{0.25}$ (7 [1])

Коэффициент, учитывающий степень снижения выбросов оксидов азота в результате применения технических решений (b): 0

Параметр, характеризующий количество оксидов азота, образующихся на 1 ГДж тепла (\mathbf{K}_{NOx}), кг/ГДж: 0.092

Трансформация оксидов азота

Содержание диоксида азота (NO₂) в NO_x: 0.8

Содержание диоксида азота (NO) в NO_x: 0.13

Выброс оксида углерода

Максимальный выброс (M_{CO}), г/с

 $\mathbf{M}_{CO}' = 0.001 \cdot \mathbf{C}_{CO}' \cdot \mathbf{B}' \cdot (1 - \mathbf{q}_4'/100)$ (4 [1])

Валовый выброс (M_{CO}), т/год

 $\mathbf{M}_{CO} = 0.001 \cdot \mathbf{C}_{CO} \cdot \mathbf{B} \cdot (1 - q_4/100)$ (4 [1])

Выход оксида углерода при сжигании топлива, в кг на тонну или на тыс. м³ топлива (C_{CO} , C_{CO}):

Максимальный $\mathbf{C}_{CO}' = \mathbf{q}_3' \cdot \mathbf{R} \cdot \mathbf{Q}^r = 13.83 (5 [1])$

Средний $C_{CO} = q_3 \cdot \mathbf{R} \cdot \mathbf{Q}^r = 13.83 (5 [1])$

Коэффициент, учитывающий долю потери тепла вследствие химической неполноты сгорания топлива, обусловленную наличием в продуктах неполного сгорания оксида углерода (**R**): 0.65

Выброс оксида серы

Максимальный выброс (M_{SO2} '), г/с

 $\mathbf{M}_{SO2}' = 0.02 \cdot \mathbf{B'} \cdot \mathbf{S^{r_i}} \cdot (1 - \eta_{SO2}) \cdot (1 - \eta_{SO2}')$ (2 [1])

Валовый выброс (M_{SO2}), т/год

 $M_{SO2} = 0.02 \cdot B \cdot S' \cdot (1 - \eta_{SO2}) \cdot (1 - \eta_{SO2}')$ (2 [1])

Содержание серы в топливе на рабочую массу (S^r , S^r), %

Максимальный (S^{r_i}): 0.3

Среднее (S^r): 0.3

Доля оксидов серы, связываемых летучей золой топлива (η_{SO2}): 0.02

Доля оксидов серы, улавливаемых в золоуловителе (η_{SO2}): 0

Выброс твёрдых частиц

Максимальный выброс твердых частиц ($\mathbf{M}_{\scriptscriptstyle \mathsf{TB}}$, г/с

 $\mathbf{M}_{TB.}' = \mathbf{B}' \cdot \mathbf{A}' \cdot \mathbf{f} \cdot (1 - \eta_3)$ (1 [1])

Валовый выброс твердых частиц ($M_{тв}$), т/год

 $\mathbf{M}_{\mathbf{rB}_{1}} = \mathbf{B} \cdot \mathbf{A} \cdot \mathbf{f} \cdot (1 - \eta_{3}) \quad (1 [1])$

Зольность топлива на рабочую массу (А', А), %:

Максимальная (А'), %: 0.025

Средняя (А), %: 0.025

Доля твердых частиц, улавливаемых в золоуловителях (η_3): 0

Коэффициент (**f**): 0.01

Расчет бенз/а/пирена

Максимальный выброс бенз/а/пирена ($\mathbf{M}_{\text{бенз.}}$), г/с

 $\mathbf{M}_{\text{бенз.}}' = \mathbf{C}' \cdot \mathbf{V}_{\Gamma}' \cdot \mathbf{B}' \cdot 0.0036 \cdot (1 - \mathbf{q}_4' / 100) \cdot \mathbf{k}_{n} \quad (1 [2])$

Валовый выброс бенз/а/пирена ($M_{\text{бенз}}$), т/год

 $\mathbf{M}_{\text{бенз.}}' = \mathbf{C} \cdot \mathbf{V}_{\Gamma}' \cdot \mathbf{B} \cdot (1 - \mathbf{q}_4 / 100) \cdot \mathbf{k}_{\pi} \quad (1 [2])$

Объем продуктов сгорания топлива при нормальных условиях (V_r '), м³/кг топлива (м³/м³ топлива): 15.131

Содержание бенз/а/пирена в дымовых газах:

Максимальное (\mathbb{C}^{\dagger}): 350, мкг/($100 \cdot \text{м}^3$); 0.0035000, мг/м³

Среднее (C): 350, мкг/ (100°м^3) ; 0.0035000, мг/ м^3

Коэффициент пересчета ($\mathbf{k}_{\mathbf{n}}$):

Максимальный (\mathbf{k}_n): 0.000278

Валовый (\mathbf{k}_n): 0.000001

Выбросы источника №21

Код в-ва	Название вещества	Макс. выброс (г/с)	Валовый выброс (т/год)
0110	диВанадий пентоксид (пыль)	0.0006011	0.002251
0301	Азота диоксид (Азот (IV) оксид)	0.1374302	0.503274
0304	Азот (II) оксид (Азота оксид)	0.0223325	0.081782
0316	Гидрохлорид (Водород хлористый)	0.0051777	0.019385
0328	Углерод (Сажа)	0.0011750	0.003500
0330	Сера диоксид-Ангидрид сернистый	0.3333960	1.227085
0337	Углерод оксид	0.0663516	0.198927
0342	Гидрофторид	0.0107869	0.040386
0703	Бенз/а/пирен (3, 4-Бензпирен)	0.0000002	0.000001
2902	Взвешенные вещества	0.7390734	2.767091

Источник 22 (МСУ, котельная)

Загрязняющие вещества выделяются при сжигании дров в топке водогрейного котла "Буржуй-К Т-100А-2К". Котел работают только в отопительный период. Время работы $T = 5\,232\,$ ч/год.

Годовой расход дров составляет до 130 т. Максимальный расход 30 кг/ч или 8,5 г/с.

Котел оснащен дымовой трубой, загрязняющие вещества удаляются естественным образом.

Расчет выброса загрязняющих веществ при сжигании топлива в котлах производительностью до 30 т/ч.

Программа реализует "Методику определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час", Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г.

Программа учитывает методическое письмо НИИ Атмосфера № 335/33-07 от 17.05.2000 "О проведении расчетов выбросов вредных веществ в атмосферу по "Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час".

Программа учитывает методическое письмо НИИ Атмосфера № 838/33-07 от 11.09.2001 "Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000".

Программа учитывает "Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное)", НИИ Атмосфера, Санкт-Петербург, 2005 год.

(с) ИНТЕГРАЛ 1996-2010 "Котельные" (Версия 3.4)

Результаты расчётов:

Код	Наименование выброса	Максимально-разовый выброс [г/с]	Валовой выброс [т/год]
0301	Азот (IV) оксид (Азота диоксид)	0.0065630	0.095282
0304	Азот (II) оксид (Азота оксид)	0.0010665	0.015483
0328	Углерод (Сажа)	0.0532681	0.814688
0337	Углерод оксид	0.1705984	2.609152
0703	Бенз/а/пирен (3, 4-Бензпирен)	0.00000072598	0.00001109430
2902	Взвешенные вещества	0.0127500	0.195000

Исходные данные.

Наименование топлива: Дрова

Тип топлива: Дрова, опилки, щепа, дробные отходы

Характер топлива: Торф, дрова Φ актический расход топлива (B, B').

В = 130[т/год] В' = 8.5[г/с]

Котел водогрейный.

Расчетные формулы:

1. Расчет выбросов оксидов азота при сжигании природного газа.

Расчетный расход топлива (Вр, Вр').

Потери тепла от механической неполноты сгорания q_4 = 2[%] Вр = $B*(1-q_4/100)$ = 127.4[т/год]

 $Bp' = B' * (1-q_4/100) = 0.00833[\kappa r/c]$

```
Низшая теплота сгорания топлива (Qr).
       Qr = 10.24 [MJx/kr]
    Коэффициент избытка воздуха в топке (\alpha_m).
    Коэффициент избытка воздуха в топке \alpha_m=1.4.
    Тепловое напряжение зеркала горения (qr, qr').
       Время работы котла за год Тіте = 5232[ч]
       Фактическая тепловая мощность котла по введенному в топку теплу (От, От'):
       QT = Bp/Time/3.6*Qr = 0.06926[MBT]
       Q_{T'} = Bp' * Qr = 0.0853[MB_{T}]
       Площадь горения F = 1 [M^2]
       qr = QT/F = 0.06926[MBT/M^2]
       qr' = Qr'/F = 0.0853[MBr/m^2]
    Удельный выброс оксидов азота при слоевом сжигании твердого топлива (Kno2, Kno2').
       Характеристика гранулометрического состава угля R6 = 0[%]
       Kno_2 = 0.011*\alpha_T*(1+5.46*(100-R_6)/100) * (Qr*qr)**0.25 = 0.0913[r/MHm]
       Kno_2' = 0.011*\alpha_m*(1+5.46*(100-R_6)/100) * (Or*qr')**0.25 = 0.09618[r/MIm]
    Коэффициент, учитывающий влияние рециркуляции дымовых газов, подаваемых в
    смеси с дутьевым воздухом под колосниковую решетку, на образование оксидов
    asora (\beta_r).
       Степень рециркуляции дымовых газов r=0[%]
       \beta_r = 1 - 0.075*(r**0.5) = 1
    Выброс оксидов авота (Mno_x, Mno_x', Mno, Mno', Mno_2, Mno_2').
       kп = 0.001 (для валового)
                1 (для максимально-разового)
       Mno_x = Bp*Qr*Kno_2*\beta_r*kn = 127.4*10.24*0.0912963*1*0.001 = 0.1191029 [r/rog]
       Mno_{*}' = Bp'*Qr*Kno_{2}'*\beta_{r}*k\pi = 0.00833*10.24*0.0961755*1 = 0.0082037 [r/c]
       Mno = 0.13 * Mno_x = 0.0154834 [т/год]
       Mno' = 0.13 * Mno_{x'} = 0.0010665 [r/c]
       Mno_2 = 0.8 * Mno_x = 0.0952823 [T/rox]
       Mno_2' = 0.8 * Mno_x' = 0.006563 [r/c]
2. Расчет выбросов оксида углерода.
    Расход натурального топлива за рассматриваемый период (В, В').
       В = 130 [т/год]
       B' = 8.5 [r/c]
    Выход оксида углерода при сжигании топлива (Ссо).
       Потери тепла вследствие химической неполноты сгорания топлива (q3): 2[%]
       Коэффициент, учитывающий долю потери тепла вследствие химической неполноты
       сгорания топлива, обусловленную наличием в продуктах неполного сгорания ок-
       сида углерода (R):
       Твердое топливо. R=1
       Низшая теплота сгорания топлива (Qr): 10.24 [МДж/кг (МДж/нм<sup>3</sup>)]
       Cco = q_3*R*Qr = 20.48 [r/кг (r/нм³) или кг/т (кг/тыс.нм³)]
    Потери тепла вследствие механической неполноты сгорания топлива (q_4): 2[%]
    Выброс оксида углерода (Мсо, Мсо').
       Mco = 0.001*B*Cco*(1-q_4/100) = 2.609152 [т/год]
       Mco' = 0.001*B'*Cco*(1-q_4/100) = 0.1705984 [r/c]
3. Расчет выбросов твердых частиц (теоретическим методом)
3.1. Данные для расчета количества твердых частиц.
    Расход натурального топлива (В, В').
       В = 130 [т/год]
       B' = 8.5 [r/c]
    Зольность топлива на рабочую массу (Ar, Ar'):
       Для валового выброса Ar = 0.6[%]
       Для максимально-разового выброса Ar' = 0.6[%]
    Доля волы, уносимой гавами ив котла Аун = 0.25
    Доля твердых частиц, улавливаемых в волоуловителях v_{\rm s}=0
    Потери тепла от механической неполноты сгорания топлива q_4 уноса = 2[\%]
    Низшая теплота сгорания топлива Qr = 10.24 [МДж/кг]
3.2. Расчет количества летучей волы (Мв, Мв').
       Ms = 0.01*B*Ar*AyH*(1-v_3) = 0.195 [т/год]
       Ms' = 0.01*B'*Ar'*AyH*(1-v_3) = 0.01275 [r/c]
3.3. Расчет количества коксовых остатков при сжигании твердого топлива (Мк, Мк').
       M\kappa = 0.01*B*(1-v_3)*(q_4 yhoca*Qr/32.68) = 0.8146879 [т/год]
       M_{K'} = 0.01*B'*(1-v_3)*(q_4 \text{ yhoca*Qr/32.68}) = 0.0532681 [r/c]
```

4. Расчётное определение выбросов бенз (а) пирена при сжигании твердых топлив. Коэффициент, учитывающий тип колосниковой решетки и вид топлива (А). Для углей и сланцев А=2.5; Температура насыщения при давлении в барабане паровых котлов или на выхоле из котла для водогрейных котлов (th). th=1[°C]; Коэффициент, жарактеризующий температурный уровень экранов (R). th<150°C; Коэффициент, учитывающий нагрузку котла (Кд). Kд = (1/Dотн)**(1.2) = 0.73;Коэффициент, учитывающий степень улавливания бенз (а) пирена золоуловителем (Кзу). Степень очистки газов в золоуловителе Nsy = 0; Коэффициент, учитывающий снижение улавливающей способности золоуловителем бенз (a) пирена z = 0.8;Ksy = 1-Nsy*z = 1;Концентрация бенэ(а)пирена, приведенная к избытку воздуха $lpha_0 = 1.4$ (Сбп). Коэффициент избытка воздуха на выходе из топки (α_{r}) : 1.2; $C6\pi = 0.001*(A*Or/exp(2.5*\alpha_{T}')+R/th)*K\pi*Ksy = 0.2126036 [MT/M³]$ Расчет объёма сухих дымовых газов при нормальных условиях ($lpha_o$ =1.4), образующихся при полном сгорании 1кг (1нм³) топлива (Vcr) Расчет производится по приближенной формуле. Коэффициент, учитывающий характер топлива (К): 0.4 Низшая теплота сгорания топлива (Qr): 10.24 [МДж/кг (МДж/нм³)] Vcr = K*Qr = 4.096 [м³/кг топлива] ([м³/м³ топлива])Выброс бенз (а) пирена (Мбп, Мбп'). Мбп = Сбп * Vcr * Вр * kп Расчетный расход топлива (Вр, Вр') $Bp = B*(1-q_4/100) = 127.4[т/год] (тыс.м³/год)$ $Bp' = B' * (1-q_4/100) * 0.0036 = 0.02999[T/Y] (THC.M^3/Y)$ Cбп = 0.2126036 [Mr/m³]

Источник 6023 (МСУ, линия по производству RDF-топлива)

Mon = 0.2126036*4.096*127.4*0.000001 = 0.000011094 [r/rog]M6n' = 0.2126036*4.096*0.029988*0.000278 = 0.00000072598 [r/c]

Загрязняющие вещества выделяются при работе оборудования линия по производству RDF-топлива. В состав RDF входят высококалорийные компоненты отходов, такие как пластик, бумага, картон, текстиль, резина, кожа, дерево и пр.

Крупногабаритные отходы подают в первичный измельчитель Hammel типа VB650D, который измельчает сырье до размеров, оптимальных для перемещения транспортерами и автоматизированной сортировки. Hammel приводится в работу с помощью дизельного двигателя (N=200 л.с.). Далее отходы подаются на две автоматические дробилки ZLP 1200 для дальнейшего измельчения до необходимой фракции (20-30 мм).

Выбросы пыли от линии классифицируем как пыль бумаги (более жесткий критерий качества атмосферного воздуха). В расчет пылевых выбросов принимаем только работу двух дробилок ZLP 1200.

Процесс: работа измельчителя *Hammel*

kп = 0.000001 (для валового)

kn = 0.000278 (для максимально-разового)

Расчет произведен программой "АТП-Эколог", версия 3.10.18.0 от 24.06.2014 Copyright© 1995-2014 ФИРМА "ИНТЕГРАЛ"

Программа основана на следующих методических документах:

- 1. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом). М., 1998 г.
- 2. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для авторемонтных предприятий (расчетным методом). М., 1998 г.
- 3. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом). М., 1998 г.
 - 4. Дополнения (приложения №№ 1-3) к вышеперечисленным методикам.
- 5. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух. СПб, 2012 г.
 - 6. Письмо НИИ Атмосфера №07-2-263/13-0 от 25.04.2013 г.

Расшифровка кодов топлива и графы "O/Г/К" для таблиц "Характеристики автомобилей..." Код топлива может принимать следующие значения

- 1 Бензин АИ-93 и аналогичные по содержанию свинца;
- 2 Бензины А-92, А-76 и аналогичные по содержанию свинца;
- 3 Дизельное топливо;
- 4 Сжатый газ;
- 5 Неэтилированный бензин;
- 6 Сжиженный нефтяной газ.

Значения в графе "О/Г/К" имеют следующий смысл

1. Для легковых автомобилей - рабочий объем ДВС:

- 1 по 1.2 л
- 2 свыше 1.2 до 1.8 л
- 3 свыше 1.8 до 3.5 л
- 4 свыше 3.5 л

2. Для грузовых автомобилей - грузоподъемность:

- 1 до 2 т
- 2 свыше 2 до 5 т
- 3 свыше 5 до 8 т
- 4 свыше 8 до 16 т
- 5 свыше 16 т

3. Для автобусов - класс (габаритная длина) автобуса:

- 1 Особо малый (до 5.5 м)
- 2 Малый (6.0-7.5 м)
- 3 Средний (8.0-10.0 м)
- 4 Большой (10.5-12.0 м)
- 5 Особо большой (16.5-24.0 м)

Челябинск: среднемесячная и средняя минимальная температура воздуха, °С

Характеристики	J	П	Ш	IV	V	VI	VII	VIII	IX	X	XI	XII
Среднемесячная температура, °С	-15.8	-14.3	-7.4	3.9	11.9	16.8	18.4	16.2	10.7	2.4	-6.2	-12.9
Расчетные периоды года	X	X	X	П	Т	Т	Т	T	Т	П	X	X
Средняя минимальная температура, °С	-15.8	-14.3	-7.4	3.9	11.9	16.8	18.4	16.2	10.7	2.4	-6.2	-12.9
Расчетные периоды года	X	X	X	П	T	T	T	Т	Т	П	X	X

В следующих месяцах значения среднемесячной и средней минимальной температур совпадают: Январь, Февраль, Март, Апрель, Май, Июнь, Июль, Август, Сентябрь, Октябрь, Ноябрь, Декабрь

Характеристики периодов года для расчета валовых выбросов загрязняющих веществ

Период года	Месяцы	Всего дней
Теплый	Май; Июнь; Июль; Август; Сентябрь;	153
Переходный	Апрель; Октябрь;	61
Холодный	Январь; Февраль; Март; Ноябрь; Декабрь;	151
Всего за год	Январь-Декабрь	365

Общее описание участка

Подтип - Только выбросы на холостом ходу

Характеристики дорожной техники на участке

Марка	Категория	Мощность двигателя				
измельчитель Hammel	Колесная	101-160 КВт (137-219 л.с.)	нет			

измельчитель Hammel: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	1.00	1
Февраль	1.00	1
Март	1.00	1
Апрель	1.00	1
Май	1.00	1
Июнь	1.00	1
Июль	1.00	1
Август	1.00	1
Сентябрь	1.00	1

Месяц	Количество в сутки	Количество выезжающих за время Тср				
Октябрь	1.00	1				
Ноябрь	1.00	1				
Декабрь	1.00	1				

Выбросы участка

Код в-ва	Название вещества	Макс. выброс (г/с)	Валовый выброс (т/год)
	Оксиды азота (NO_x)*	0.0260000	0.102492
	В том числе:		
0301	*Азота диоксид (Азот (IV) оксид)	0.0208000	0.081994
0304	*Азот (II) оксид (Азота оксид)	0.0033800	0.013324
0328	Углерод (Сажа)	0.0033333	0.013140
0330	Сера диоксид-Ангидрид сернистый	0.0053333	0.021024
0337	Углерод оксид	0.1303333	0.513774
0401	Углеводороды**	0.0163333	0.064386
	В том числе:		
2732	**Керосин	0.0163333	0.064386

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13

 $NO_2 - 0.80$

2. Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Расшифровка выбросов по веществам: Выбрасываемое вещество - 0337 - Углерод оксид

Валовые выбросы

Период года	Марка дорожной техники	Валовый выброс (тонн/год)					
Теплый	измельчитель Hammel	0.215363					
	ВСЕГО:	0.215363					
Переходный	измельчитель Hammel	0.085864					
	ВСЕГО:	0.085864					
Холодный	измельчитель Hammel	0.212548					
	ВСЕГО:	0.212548					
Всего за год		0.513774					

Максимальный выброс составляет: 0.1303333 г/с. Месяц достижения: Январь.

Здесь и далее:

Расчет валовых выбросов производился по формуле:

 $M_i = \sum (M_{xx} \cdot T_{xx} \cdot D_{dx} \cdot 10^{-6})$, где

 $D_{\Phi\kappa} = D_{\rm p} \cdot N_{\kappa}$ - суммарное количество дней работы в расчетном периоде.

 ${
m N}_{
m K}$ - количество ДМ данной группы, ежедневно выходящих на линию;

 D_{p} - количество рабочих дней в расчетном периоде.

Расчет максимально разовых выбросов производился по формуле:

 $G_i=60 \cdot M_{xx} \cdot N' / T_{cp} r/c (*),$

С учетом синхронности работы: $G_{\text{max}} = \Sigma \left(G_i \right)$, где

 T_{xx} =360 мин. - время работы двигателя на холостом ходу;

 M_{xx} - удельный выброс техники на холостом ходу (г/мин.);

- ${\tt N'}$ наибольшее количество техники, выезжающей со стоянки в течение времени ${\tt Тср}$, характеризующегося максимальной интенсивностью выезда.
- (*) В соответствии с методическим пособием по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, СПб, 2012 г. $T_{\rm cp} = 1800$ сек. среднее время выезда всей техники со стоянки.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименование	Mn	Тп	Мпр	Tnp	Мдв	Мдв.теп.	Vдв	Mxx	Схр	Выброс (г/с)
измельчитель Hammel	0.000	2.0	7.800	28.0	2.550	2.090	10	3.910	да	
	0.000	2.0	7.020	6.0	2.295	2.090	10	3.910	да	0.1303333

Выбрасываемое вещество - 0401 - Углеводороды

Валовые выбросы

Период года	Марка дорожной техники	Валовый выброс (тонн/год)
Теплый	измельчитель Hammel	0.026989
	ВСЕГО:	0.026989
Переходный	измельчитель Hammel	0.010760
	ВСЕГО:	0.010760
Холодный	измельчитель Hammel	0.026636
	ВСЕГО:	0.026636
Всего за год		0.064386

Максимальный выброс составляет: 0.0163333 г/с. Месяц достижения: Январь.

Наименование	Mn	Tn	Мпр	Tnp	Мдв	Мдв.теп.	Vдв	Mxx	Схр	Выброс (г/с)
измельчитель Hammel	0.000	2.0	1.270	28.0	0.850	0.710	10	0.490	да	
	0.000	2.0	1.143	6.0	0.765	0.710	10	0.490	да	0.0163333

Выбрасываемое вещество - Оксиды азота (NO_x)

Валовые выбросы

Период года	Период года Марка дорожной техники						
Теплый	измельчитель Hammel	0.042962					
	ВСЕГО:	0.042962					
Переходный	измельчитель Hammel	0.017129					
	ВСЕГО:	0.017129					
Холодный	измельчитель Hammel	0.042401					
	ВСЕГО:	0.042401					
Всего за год		0.102492					

Максимальный выброс составляет: 0.0260000 г/с. Месяц достижения: Январь.

Наименование	Mn_	Tn	Мпр	Тпр	Мдв	Мдв.теп.	Vдв	Mxx	Схр	Выброс (г/с)
измельчитель Hammel	0.000	2.0	1.170	28.0	4.010	4.010	10	0.780	да	
	0.000	2.0	1.170	6.0	4.010	4.010	10	0.780	да	0.0260000

Выбрасываемое вещество - 0328 - Углерод (Сажа)

Валовые выбросы

Период года	Марка дорожной техники	Валовый выброс (тонн/год)
Теплый	измельчитель Hammel	0.005508
	ВСЕГО:	0.005508
Переходный	измельчитель Hammel	0.002196
	ВСЕГО:	0.002196
Холодный	измельчитель Hammel	0.005436
	ВСЕГО:	0.005436
Всего за год		0.013140

Максимальный выброс составляет: 0.0033333 г/с. Месяц достижения: Январь.

Наименование	Mn	_Tn_	Мпр	Тпр	Мдв	Мдв.теп.	Vдв	Mxx	Схр	Выброс (г/с)
измельчитель Hammel	0.000	2.0	0.600	28.0	0.670	0.450	10	0.100	да	
	0.000	2.0	0.540	6.0	0.603	0.450	10	0.100	да	0.0033333

Выбрасываемое вещество - 0330 - Сера диоксид-Ангидрид сернистый Валовые выблосы

Период года	Марка дорожной техники	Валовый выброс (тонн/год)
Теплый	измельчитель Hammel	0.008813
	ВСЕГО:	0.008813
Переходный	измельчитель Hammel	0.003514
	ВСЕГО:	0.003514
Холодный	измельчитель Hammel	0.008698
	ВСЕГО:	0.008698
Всего за год		0.021024

Максимальный выброс составляет: 0.0053333 г/с. Месяц достижения: Январь.

Наименование	Мп	Tn	Мпр	Тпр	Мдв	Мдв.теп.	Vдв	Mxx	Схр	Выброс (г/с)
измельчитель Hammel	0.000	2.0	0.200	28.0	0.380	0.310	10	0.160	да	
	0.000	2.0	0.180	6.0	0.342	0.310	10	0.160	да	0.0053333

Трансформация оксидов азота Выбрасываемое вещество - 0301 - Азота диоксид (Азот (IV) оксид) Коэффициент трансформации - 0.8

Валовые выбросы

Период года	Марка дорожной техники	Валовый выброс (тонн/год)
Теплый	измельчитель Hammel	0.034370
	ВСЕГО:	0.034370
Переходный	измельчитель Hammel	0.013703
	ВСЕГО:	0.013703
Холодный	измельчитель Hammel	0.033921
	ВСЕГО:	0.033921
Всего за год		0.081994

Максимальный выброс составляет: 0.0208000 г/с. Месяц достижения: Январь.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азота оксид) Коэффициент трансформации - 0.13

Валовые выбросы

Период года	Марка дорожной техники	Валовый выброс (тонн/год)
Теплый	измельчитель Hammel	0.005585
	ВСЕГО:	0.005585
Переходный	измельчитель Hammel	0.002227
	ВСЕГО:	0.002227
Холодный	измельчитель Hammel	0.005512
	ВСЕГО:	0.005512
Всего за год		0.013324

Максимальный выброс составляет: 0.0033800 г/с. Месяц достижения: Январь.

Распределение углеводородов Выбрасываемое вещество - 2732 - Керосин

Валовые выбросы

Период года	Марка дорожной техники	Валовый выброс (тонн/год)
Теплый	измельчитель Hammel	0.026989
	ВСЕГО:	0.026989
Переходный	измельчитель Hammel	0.010760
	ВСЕГО:	0.010760
Холодный	измельчитель Hammel	0.026636
	ВСЕГО:	0.026636
Всего за год		0.064386

Максимальный выброс составляет: 0.0163333 г/с. Месяц достижения: Январь.

Наименование	Мп	Tn	%% пуск.	Мпр	Тпр	Мдв	Мдв.теп.	Vдв	Mxx	%% двиг.	Схр	Выброс (г/с)
измельчитель	0.000	2.0	0.0	1.270	28.0	0.850	0.710	10	0.490	100.0	да	
Hammel	0.000	2.0	0.0	1.143	6.0	0.765	0.710	10	0.490	100.0	да	0.0163333

Процесс: работа дробилок ZLP 1200

Расчет производился по [26] по формулам:

$$\mathbf{M}_{i} = \mathbf{q}_{y,u} \times \mathbf{Q} \times \mathbf{10}^{-6} \times \mathbf{\kappa}_{nonp}$$
, т/год

$$G_{\text{i}} = \frac{q_{\text{ya}} \times B \times \kappa_{\text{nonp}}}{3600} \text{ , r/c}$$

 G_i - количество i-того вредного вещества, выделяющегося от единицы оборудования, г/с; q_{yz} - удельный показатель выделения вещества от кг перерабатываемого материала, г/кг; B – расход перерабатываемого материала на оборудовании, кг/час;

Q - количество перерабатываемого материала за год, кг/год;

 $\kappa_{\text{попр}}$ - поправочный коэффициент, учитывающий осаждение частиц в помещении за счет сил гравитации согласно [11], раздел 1.6, п. 18. В нашем случае $\kappa_{\text{попр}}$ =0,4 для твердых компонентов сварочного аэрозоля (выбросы через систему общеобменной вентиляции).

$$\mathbf{q}_{\mathbf{y},\mathbf{q}} = 0.7\ \mathrm{r/kr}$$
 (Таблица 14.1, п.12) $\mathbf{B} = 3\ \mathrm{r/чac}$ $\mathbf{Q} = 12\ 000\ \mathrm{r/год}$ $\mathbf{M}_{\mathbf{пыль\ бумаги}} = 0.7\times 12000000\times 10^{-6}\times 0.4 = 3.360000\ \mathrm{r/год}$ $\mathbf{G}_{\mathbf{пыль\ бумаги}} = \frac{0.7\times 3000\times 0.4}{3600} = 0.23333333\ \mathrm{r/c}$

<u>Источник 6024</u> (МСУ, мусоросортировочный комплекс, линия по производству RDF-топлива)

Токсичные газы выделяются при работе погрузчиков. Перечень спецтехники с характеристиками приведен в Приложении 2.

Расчет произведен программой "АТП-Эколог", версия 3.10.18.0 от 24.06.2014 Copyright© 1995-2014 ФИРМА "ИНТЕГРАЛ"

Программа основана на следующих методических документах:

- 1. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом). М., 1998 г.
- 2. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для авторемонтных предприятий (расчетным методом). М., 1998 г.
- 3. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом). М., 1998 г.
 - 4. Дополнения (приложения №№ 1-3) к вышеперечисленным методикам.
- 5. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух. СПб, 2012 г.
 - 6. Письмо НИИ Атмосфера №07-2-263/13-0 от 25.04.2013 г.

Расшифровка кодов топлива и графы "O/Г/К" для таблиц "Характеристики автомобилей..." Код топлива может принимать следующие значения

- 1 Бензин АИ-93 и аналогичные по содержанию свинца;
- 2 Бензины А-92, А-76 и аналогичные по содержанию свинца;
- 3 Дизельное топливо;
- 4 Сжатый газ;
- 5 Неэтилированный бензин;
- 6 Сжиженный нефтяной газ.

Значения в графе "О/Г/К" имеют следующий смысл

1. Для легковых автомобилей - рабочий объем ДВС:

- 1 до 1.2 л 2 - свыше 1.2 до 1.8 л 3 - свыше 1.8 до 3.5 л
- 4 свыше 3.5 л

2. Для грузовых автомобилей - грузоподъемность:

- 1 до 2 т
- 2 свыше 2 до 5 т
- 3 свыше 5 до 8 т
- 4 свыше 8 до 16 т
- 5 свыше 16 т

3. Для автобусов - класс (габаритная длина) автобуса:

- 1 Особо малый (до 5.5 м)
- 2 Малый (6.0-7.5 м)
- 3 Средний (8.0-10.0 м)
- 4 Большой (10.5-12.0 м)
- 5 Особо большой (16.5-24.0 м)

Челябинск: среднемесячная и средняя минимальная температура воздуха, °С

Характеристики		H	Ш	IV	V	VI	VII	VIII	IX	X	XI	XII
Среднемесячная температура, °С		-14.3	-7.4	3.9	11.9	16.8	18.4	16.2	10.7	2.4	-6.2	-12.9
Расчетные периоды года		X	X	П	Т	T	Т	T	T	П	X	X
Средняя минимальная температура, °С		-14.3	-7.4	3.9	11.9	16.8	18.4	16.2	10.7	2.4	-6.2	-12.9
Расчетные периоды года		X	X	П	Т	Т	T	Т	T	П	X	X

В следующих месяцах значения среднемесячной и средней минимальной температур совпадают: Январь, Февраль, Март, Апрель, Май, Июнь, Июль, Август, Сентябрь, Октябрь, Ноябрь, Декабрь

Характеристики периодов года для расчета валовых выбросов загрязняющих веществ

Период года	Месяцы	Всего дней
Теплый	Май; Июнь; Июль; Август; Сентябрь;	153
Переходный	Апрель; Октябрь;	61
Холодный	Январь; Февраль; Март; Ноябрь; Декабрь;	151
Всего за год	Январь-Декабрь	365

Общее описание участка

Подтип - Нагрузочный режим (неполный)

Характеристики дорожной техники на участке						
Марка Категория Мощность двигателя						
Фронтальный погрузчик BULL SL9	Колесная	61-100 КВт (83-136 л.с.)	нет			
Вилочный погрузчик TCM FG1ON18	Колесная	61-100 КВт (83-136 л.с.)	нет			

	Фронтальный погрузчик BULL SL9: количество по месяцам					
Месяц	Количество в сутки	Работающих в течение 30 мин.	Тсут	tдв	tнагр	txx
Январь	1.00	1	360	12	13	5
Февраль	1.00	1	360	12	13	5
Март	1.00	1	360	12	13	5
Апрель	1.00	1	360	12	13	5
Май	1.00	1	360	12	13	5
Июнь	1.00	1	360	12	13	5
Июль	1.00	1	360	12	13	5
Август	1.00	1	360	12	13	5
Сентябрь	1.00	1	360	12	13	5
Октябрь	1.00	1	360	12	13	5
Ноябрь	1.00	1	360	12	13	5
Декабрь	1.00	1	360	12	13	5

	Вилочный погрузчик TCM FG10N18: количество по месяцам						
Месяц	Количество в сутки	Работающих в течение 30 мин.	Тсут	tдв	tнагр	txx	
Январь	1.00	1	360	12	13	5	
Февраль	1.00	1	360	12	13	5	
Март	1.00	1	360	12	13	5	
Апрель	1.00	1	360	12	13	5	
Май	1.00	1	360	12	13	5	
Июнь	1.00	1	360	12	13	5	
Июль	1.00	1	360	12	13	5	
Август	1.00	1	360	12	13	5	
Сентябрь	1.00	1	360	12	13	5	
Октябрь	1.00	1	360	12	13	5	
Ноябрь	1.00	1	360	12	13	5	
Декабрь	1.00	1	360	12	13	5	

Выбросы участка					
Код в-ва	Название вещества	Макс. выброс (г/с)	Валовый выброс (т/год)		
	Оксиды азота (NO _x)*	0.0819811	0.646339		
	В том числе:				
0301	*Азота диоксид (Азот (IV) оксид)	0.0655849	0.517071		
0304	*Азот (II) оксид (Азота оксид)	0.0106575	0.084024		
0328	Углерод (Сажа)	0.0121823	0.089834		
0330	Сера диоксид-Ангидрид сернистый	0.0071859	0.057258		
0337	Углерод оксид	0.0587063	0.466231		
0401	Углеводороды**	0.0164057	0.131606		
	В том числе:				
2732	**Керосин	0.0164057	0.131606		

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13

 $NO_2 - 0.80$

2. Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Расшифровка выбросов по веществам: Выбрасываемое вещество - 0337 - Углерод оксид

Валовые выбросы

Период года	Марка дорожной техники	Валовый выброс (тонн/год)
Теплый	Фронтальный погрузчик BULL SL9	0.090480
	Вилочный погрузчик TCM FG10N18	0.090480
	ВСЕГО:	0.180960
Переходный	Фронтальный погрузчик BULL SL9	0.038676
	Вилочный погрузчик TCM FG10N18	0.038676
	ВСЕГО:	0.077351
Холодный	Фронтальный погрузчик BULL SL9	0.103960
	Вилочный погрузчик TCM FG10N18	0.103960
	ВСЕГО:	0.207920
Всего за год		0.466231

Максимальный выброс составляет: 0.0587063 г/с. Месяц достижения: Январь.

Здесь и далее:

Расчет валовых выбросов производился по формуле:

 $M_i = (\Sigma (M_1 \cdot t'_{BB} + 1.3 \cdot M_1 \cdot t'_{BB} + M_{xx} \cdot t'_{xx})) \cdot N_B \cdot D_D \cdot 10^{-6}$, где

 ${
m N_{\scriptscriptstyle B}}$ - среднее количество единиц техники данной группы, выезжающих в течение суток;

Dp - количество дней работы в расчетном периоде.

Расчет максимально разовых выбросов производился по формуле:

 $G_i = (M_l \cdot t_{AB} + 1.3 \cdot M_l \cdot t_{Harp} + M_{xx} \cdot t_{xx}) \cdot N' / 1800 \text{ r/c},$

С учетом синхронности работы: $G_{max} = \Sigma (G_i)$;

 M_{xx} - удельный выброс техники на холостом ходу (г/мин.);

 $\mathbf{M}_{\mathtt{MB}} = \mathbf{M}_{\mathtt{l}}$ - пробеговый удельный выброс (г/км);

 $M_{\text{ЛВ. Теп.}}$ - пробеговый удельный выброс в теплый период (г/км);

t_{дв} - движение техники без нагрузки (мин.);

t_{натр} - движение техники с нагрузкой (мин.);

 t_{xx} - холостой ход (мин.);

 $t'_{\text{дв}} = (t_{\text{дв}} \cdot T_{\text{сут}})/30$ - суммарное время движения без нагрузки всей техники данного типа в течение рабочего дня (мин.);

 $t'_{\text{нагр}} = (t_{\text{нагр}} \cdot T_{\text{сут}})/30$ - суммарное время движения с нагрузкой всей техники данного типа в течение рабочего дня (мин.);

 $t'_{xx} = (t_{xx} \cdot T_{CVT})/30$ - суммарное время холостого хода для всей техники данного типа в течение рабочего дня (мин.);

 ${
m T_{\scriptscriptstyle {
m CVT}}}$ - среднее время работы всей техники указанного типа в течение су-TOK (MNH.);

N' - наибольшее количество единиц техники, работающих одновременно в течение 30 минут.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименование	MI	МІтеп.	Mxx	Схр	Выброс (г/с)
Фронтальный погрузчик BULL SL9	1.570	1.290	2.400	да	
	1.413	1.290	2.400	да	0.0293532
Вилочный погрузчик TCM FG1ON18	1.570	1.290	2.400	да	
	1.413	1.290	2.400	да	0.0293532

Выбрасываемое вещество - 0401 - Углеводороды

Валовые	выбросы
---------	---------

Период года	Марка дорожной техники	Валовый выброс (тонн/год)
Теплый	Фронтальный погрузчик BULL SL9	0.025570
	Вилочный погрузчик TCM FG10N18	0.025570
	ВСЕГО:	0.051140
Переходный	Фронтальный погрузчик BULL SL9	0.010808
	Вилочный погрузчик TCM FG10N18	0.010808
	ВСЕГО:	0.021616
Холодный	Фронтальный погрузчик BULL SL9	0.029425
	Вилочный погрузчик TCM FG1ON18	0.029425
	ВСЕГО:	0.058850
Всего за год		0.131606

Максимальный выброс составляет: 0.0164057 г/с. Месяц достижения: Январь.

Наименование	MI	Мітеп.	Mxx	Схр	Выброс (г/с)
Фронтальный погрузчик BULL SL9	0.510	0.430	0.300	да	
	0.459	0.430	0.300	да	0.0082028
Вилочный погрузчик TCM FG1ON18	0.510	0.430	0.300	да	
	0.459	0.430	0.300	да	0.0082028

Выбрасываемое вещество - Оксиды азота (NO_x)

Валовые выбросы

Период года	Марка дорожной техники	Валовый выброс (тонн/год)
Теплый	Фронтальный погрузчик BULL SL9	0.135466
	Вилочный погрузчик TCM FG1ON18	0.135466
	ВСЕГО:	0.270931
Переходный	Фронтальный погрузчик BULL SL9	0.054009
	Вилочный погрузчик TCM FG10N18	0.054009
	ВСЕГО:	0.108018
Холодный	Фронтальный погрузчик BULL SL9	0.133695
	Вилочный погрузчик TCM FG1ON18	0.133695
	ВСЕГО:	0.267390
Всего за год		0.646339

Максимальный выброс составляет: 0.0819811 г/с. Месяц достижения: Январь.

Наименование	MI	Mlren.	Mxx	Схр	Выброс (г/с)
Фронтальный погрузчик BULL SL9	2.470	2.470	0.480	да	
	2.470	2.470	0.480	да	0.0409906
Вилочный погрузчик TCM FG1ON18	2.470	2.470	0.480	да	
	2.470	2.470	0.480	да	0.0409906

Выбрасываемое вещество - 0328 - Углерод (Сажа)

Валовые выбросы

Период года	Марка дорожной техники	Валовый выброс (тонн/год)
Теплый	Фронтальный погрузчик BULL SL9	0.014877
	Вилочный погрузчик TCM FG10N18	0.014877
	ВСЕГО:	0.029754
Переходный	Фронтальный погрузчик BULL SL9	0.008026
	Вилочный погрузчик TCM FG1ON18	0.008026
	ВСЕГО:	0.016051
Холодный	Фронтальный погрузчик BULL SL9	0.022014
	Вилочный погрузчик TCM FG1ON18	0.022014
	ВСЕГО:	0.044028
Всего за год		0.089834

Максимальный выброс составляет: 0.0121823 г/с. Месяц достижения: Январь.

Наименование	Ml	МІтеп.	Mxx	Схр	Выброс (г/с)
Фронтальный погрузчик BULL SL9	0.410	0.270	0.060	да	
100	0.369	0.270	0.060	да	0.0060912
Вилочный погрузчик TCM FG1ON18	0.410	0.270	0.060	да	
	0.369	0.270	0.060	да	0.0060912

Выбрасываемое вещество - 0330 - Сера диоксид-Ангидрид сернистый Валовые выбросы

Период года	Марка дорожной техники	Валовый выброс (тонн/год)
Теплый	Фронтальный погрузчик BULL SL9	0.010972
	Вилочный погрузчик TCM FG1ON18	0.010972
	ВСЕГО:	0.021944
Переходный	Фронтальный погрузчик BULL SL9	0.004734
	Вилочный погрузчик TCM FG10N18	0.004734
	ВСЕГО:	0.009468
Холодный	Фронтальный погрузчик BULL SL9	0.012923
	Вилочный погрузчик TCM FG10N18	0.012923
	ВСЕГО:	0.025846
Всего за год		0.057258

Максимальный выброс составляет: 0.0071859 г/с. Месяц достижения: Январь.

Наименование	MI	МІтеп.	Mxx	Схр	Выброс (г/с)
Фронтальный погрузчик BULL SL9	0.230	0.190	0.097	да	-
	0.207	0.190	0.097	да	0.0035929
Вилочный погрузчик TCM FG10N18	0.230	0.190	0.097	да	
	0.207	0.190	0.097	да	0.0035929

Трансформация оксидов азота Выбрасываемое вещество - 0301 - Азота диоксид (Азот (IV) оксид) Коэффициент трансформации - 0.8

Валовые выбросы				
Период года	Марка дорожной техники	Валовый выброс (тонн/год)		
Теплый	Фронтальный погрузчик BULL SL9	0.108372		
	Вилочный погрузчик TCM FG1ON18	0.108372		
	ВСЕГО:	0.216745		
Переходный	Фронтальный погрузчик BULL SL9	0.043207		
	Вилочный погрузчик TCM FG10N18	0.043207		
	ВСЕГО:	0.086415		
Холодный	Фронтальный погрузчик BULL SL9	0.106956		
	Вилочный погрузчик TCM FG10N18	0.106956		
	ВСЕГО:	0.213912		
Всего за год		0.517071		

Максимальный выброс составляет: 0.0655849 г/с. Месяц достижения: Январь.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азота оксид) Коэффициент трансформации - 0.13 Валовые выбросы

Период года	Марка дорожной техники	Валовый выброс (тонн/год)		
Теплый	Фронтальный погрузчик BULL SL9	0.017611		
	Вилочный погрузчик TCM FG1ON18	0.017611		
	ВСЕГО:	0.035221		
Переходный	Фронтальный погрузчик BULL SL9	0.007021		
	Вилочный погрузчик TCM FG10N18	0.007021		
	ВСЕГО:	0.014042		
Холодный	Фронтальный погрузчик BULL SL9	0.017380		
	Вилочный погрузчик TCM FG10N18	0.017380		
	ВСЕГО:	0.034761		
Всего за год		0.084024		

Максимальный выброс составляет: 0.0106575 г/с. Месяц достижения: Январь.

Распределение углеводородов Выбрасываемое вещество - 2732 - Керосин

Валовые выбросы

Период года	Марка дорожной техники	Валовый выброс (тонн/год)		
Теплый	Фронтальный погрузчик BULL SL9	0.025570		
	Вилочный погрузчик TCM FG10N18	0.025570		
	ВСЕГО:	0.051140		
Переходный	Фронтальный погрузчик BULL SL9	0.010808		
	Вилочный погрузчик TCM FG10N18	0.010808		
	ВСЕГО:	0.021616		
Холодный	Фронтальный погрузчик BULL SL9	0.029425		
	Вилочный погрузчик TCM FG1ON18	0.029425		
	ВСЕГО:	0.058850		
Всего за год		0.131606		

Максимальный выброс составляет: 0.0164057 г/с. Месяц достижения: Январь.

Наименование	MI	МІтеп.	Mxx	%%	Схр	Выброс (г/с)
Фронтальный погрузчик BULL SL9	0.510	0.430	0.300	100.0	да	
	0.459	0.430	0.300	100.0	да	0.0082028
Вилочный погрузчик TCM FG1ON18	0.510	0.430	0.300	100.0	да	
	0.459	0.430	0.300	100.0	да	0.0082028

Источник 6025 (МСУ)

Загрязняющие вещества выделяются от передвижного поста электродуговой сварки. Работы производят на открытом воздухе

$$T = 1 \times 250 = 250 \text{ ч/год.}$$

За год расходуют до 180 кг сварочных электродов марки ОЗС-4. Максимальный расход электродов 1 кг в час.

Расчет производился по [16] по формулам:

$$\begin{split} M &= q \times Q \times 10^{-6} \times (1\text{-}\eta) \times (1\text{-}n) \times \kappa_{\text{попр}}, \text{ т/год} \\ G &= \frac{q \times Q' \times (1-\eta) \times (1-n) \times \kappa_{\text{попр}}}{3600}, \text{ г/c} \end{split}$$

где q - удельное выделение вредного вещества, г/кг;

Q - количество израсходованного материала, кг/год;

Q' - количество израсходованного материала, кг/ч;

 η — степень очистки воздуха в пылеуловителе, в долях. В нашем случае $\eta = 0$ (пылеуловитель отсутствует);

 ${\bf n}$ — норматив образования огарков при сварке, в долях. Согласно [11], раздел 1.6.10, п. 2 принимаем равным 0,15;

 $\kappa_{\text{попр}}$ - поправочный коэффициент, учитывающий осаждение частиц в помещении за счет сил гравитации согласно [11], раздел 1.6, п. 18. В нашем случае $\kappa_{\text{попр}}$ =0,4 для твердых компонентов сварочного аэрозоля (выбросы через систему общеобменной вентиляции).

$$\begin{split} \mathbf{M_{FeO}} &= 9,63 \times 180 \times (1\text{-}0) \times (1\text{-}0,15) \times 10^{\text{-}6} \times 0,4 = 0,000589 \text{ т/год;} \\ \mathbf{G_{FeO}} &= \frac{9,63 \times 1 \times (1-0) \times (1-0,15) \times 0,4}{3600} = 0,0009095 \text{ г/c;} \\ \mathbf{M_{Mn}} &= 1,27 \times 180 \times (1\text{-}0) \times (1\text{-}0,15) \times 10^{\text{-}6} \times 0,4 = 0,000078 \text{ т/год;} \\ \mathbf{G_{Mn}} &= \frac{1,27 \times 1 \times (1-0) \times (1-0,15) \times 0,4}{3600} = 0,0001199 \text{ г/c.} \end{split}$$