РОССИЯ

Краснодарский край г. Краснодар ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ

«НК «РОСНЕФТЬ» - НАУЧНО-ТЕХНИЧЕСКИЙ ЦЕНТР»

СРО Союз «РН-Проектирование», СРО-П-124-25012010, р.н. 044-2009

Заказчик - ООО «РН-Уватнефтегаз»

КУСТ СКВАЖИН №1-БИС СЕВЕРО-ТЯМКИНСКОГО МЕСТОРОЖДЕНИЯ. ОБУСТРОЙСТВО

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 5. Сведения об инженерном оборудовании, о сетях инженерно-технического обеспечения, перечень инженерно-технических мероприятий, содержание технологических решений Подраздел 3. Система водоотведения

1750620/0817Д-П-007.016.000-ИОС3-01

Том 5.3

РОССИЯ

Краснодарский край г. Краснодар ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ

«НК «РОСНЕФТЬ» - НАУЧНО-ТЕХНИЧЕСКИЙ ЦЕНТР»

СРО Союз «РН-Проектирование», СРО-П-124-25012010, р.н. 044-2009

Заказчик - ООО «РН-Уватнефтегаз»

КУСТ СКВАЖИН №1-БИС СЕВЕРО-ТЯМКИНСКОГО МЕСТОРОЖДЕНИЯ. ОБУСТРОЙСТВО

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 5. Сведения об инженерном оборудовании, о сетях инженерно-технического обеспечения, перечень инженерно-технических мероприятий, содержание технологических решений Подраздел 3. Система водоотведения

1750620/0817Д-П-007.016.000-ИОС3-01

Том 5.3

:	B3aM. MHB. №	Главный инженер	А.А. Попов
T		Главный инженер проекта	А.Ю. Гусев
ı	подп. и дата	Начальник отдела ВиП	О.А. Перевозчиков
\[\] =	. Ng подл.		2021

Формат А4

1750620_0817D-P-007_016_000-IOS3-01-rC01_Tom_5_3.docx

3 СОДЕРЖАНИЕ 1 Исходные данные 2 Сведения о существующих и проектируемых системах канализации, водоотведения и станциях очистки сточных вод 5 5 2.1 Существующее положение Информация, содержащаяся в документе, может быть 2.2 5 Документ разработан ООО «НК «Роснефть» - НТЦ». Сведения о проектируемых системах канализации Разработчиком и Заказчиком 3 Обоснование принятых систем сбора и отвода сточных вод, объема сточных раскрыта или передана третьим лицам только по соглашению между Разработчиком и Заказчик вод, концентраций их загрязнений, способов предварительной очистки, применяемых реагентов, оборудования и аппаратуры 6 4 Обоснование принятого порядка сбора, утилизации и захоронения отходовдля объектов производственного значения 8 Описание и обоснование схемы прокладки канализационных трубопроводов, условия их прокладки, оборудование, сведения о материале трубопроводов и колодцев, способы их защиты от агрессивного воздействия грунтов и грунтовых вод 9 Решения в отношении ливневой канализации и расчетного объема дождевых 10 Стоков 6.1 Расчет среднегодового объема поверхностных сточных вод 10 Расчет суточного объема поверхностных сточных вод 11 7 17 Решения по сбору и отводу дренажных вод 8 Ссылочные нормативные документы 18 13.08.27 Приложение А (обязательное) Технические условия на водоснабжение и водоотведение (на 1 листе) 19 Таблица регистрации изменений 20 Сокол Согласовано л. спец Взам. инв Подп. и дата 1750620/0817Д-П-007.016.000-ИОС3-01 Изм. Кол.уч Лист № док Подп. Дата Разраб. Пенькова 13.08.2 Стадия Лист Листов Сведения об инженерном Инв. № подл 13.08.21 оборудовании, о сетях инженерно-18 30058/□ Зав. гр. Кизюн П технического обеспечения, перечень Нач.отд. Перевозчиков 13.08.21 инженерно-технических мероприятий, ООО «НК «Роснефть» -Н. контр. Кудря 13.08.21 содержание технологических решений НТЦ» Система водоотведения ГИП Гусев 13.08.21

Формат А4

1750620_0817D-P-007_016_000-IOS3-01-rC01_Tom_5_3.docx

1 ИСХОДНЫЕ ДАННЫЕ

В рамках данного проекта предусматривается разработка решений по системе дождевой канализации объекта.

Проектом предусматривается возможность поэтапного обустройства куста скважин, с учетом ввода в эксплуатацию каждой группы скважин отдельно. Этапы строительства приняты согласно п. 10 Задания на проектирование и приведены в томе 1.

Данный раздел разработан на основании:

- Задания на проектирование объекта «Куст скважин №1-бис Северо-Тямкинского месторождения. Обустройство» от 10.03.2021г;
- Технических условий на водоснабжение и водоотведение по объекту: «Куст скважин
 № 1 бис Северо-Тямкинского месторождения. Обустройство». (Приложение А).

В настоящем томе проектной документации учтены требования следующих нормативных документов:

- № 384-ФЗ от 30.12.2009 г. «Технический регламент о безопасности зданий и сооружений»;
- № 123-ФЗ от 22.07.2008 г. «Технический регламент о требованиях пожарной безопасности»;
- Постановление правительства Российской Федерации от 16.02.2008 № 87 «О составе разделов проектной документации и требованиях к их содержанию».
- СП 32.13330.2018 «Канализация. Наружные сети и сооружения СНиП 2.04.03-85».

		_	СП (32.13	330.20	18 «Кан	ализа	ция. Наружные сети и сооружения СНиП 2.04.03-85»	٠.
_									
Взам. инв. №									
I HB									
am.									
ä									
_									
Подп. и дата									
Z									
년									
-									
-									
5	\[\]								
Инв. № подл.	30058/⊓							4750000000475 5 007 040 000 442 52 04	Лист
<u>₽</u>	3(Изм.	Кол.уч.	Пист	№ док.	Подп.	Дата	1750620/0817Д-П-007.016.000-ИОС3-01	2
		VISIVI.	KOJI.y4.	TIVICT	№ док.	подп.	дата	Форм	<u></u> ыат А4
								·	

2 СВЕДЕНИЯ О СУЩЕСТВУЮЩИХ И ПРОЕКТИРУЕМЫХ СИСТЕМАХ КАНАЛИЗАЦИИ, ВОДООТВЕДЕНИЯ И СТАНЦИЯХ ОЧИСТКИ СТОЧНЫХ ВОД

2.1 Существующее положение

В непосредственной близости от проектируемого объекта существующие сети и сооружения систем канализации отсутствуют.

2.2 Сведения о проектируемых системах канализации

На проектируемой площадке куста скважин № 1-бис предусматривается сбор дождевых и талых сточных вод.

Строительство системы водоотведения на проектируемой площадке куста скважин предполагается в два этапа:

- на этапе строительства «Куст скважин № 1-бис Северо-Тямкинского месторождения. Основание площадки» (стадия инженерной подготовки) отвод сточных вод решается вертикальной планировкой со сбором дождевых и талых вод в амбары №№ 1, 2 (см. том 1750620/0817Д-П-007.016.000-ПЗУ1-01).
- на этапе строительства «Куст скважин № 1-бис Северо-Тямкинского месторождения. Обустройство. (Скважина первой позиции)» отвод сточных вод решается вертикальной планировкой со сбором дождевых и талых вод в амбары №№ 1, 2 (см. том 1750620/0817Д-П-007.016.000-ПЗУ1-01).

По мере наполнения амбаров, дождевые сточные воды откачиваются передвижными средствами и вывозятся на площадку ЦПС Тямкинского месторождения для совместной очистки и подготовки с пластовой водой и последующего использования в системе поддержания пластового давления (ТУ см. Приложение A).

На кустовой площадке постоянного присутствия обслуживающего персонала и зданий с санитарно-бытовым обеспечением не предусмотрено, система бытовой канализации не проектируется.

Сбор производственных стоков на кустовой площадке не требуется.

Взам. инв. №		
Подп. и дата		
Инв. № подл.	30058/⊓	

ı						
ı						
ı						
	Изм.	Кол.уч.	Лист	№ док.	Подп.	Дата

1750620/0817Д-П-007.016.000-ИОС3-01

Документ разработан ООО «НК «Роснефть» - НТЦ». Информация, содержащаяся в документе, может быть раскрыта или передана третьим пицам только по соглашению между Разработчиком и Заказчиком

Взам. инв.

Подп. и дата

3 ОБОСНОВАНИЕ ПРИНЯТЫХ СИСТЕМ СБОРА И ОТВОДА СТОЧНЫХ ВОД, ОБЪЕМА СТОЧНЫХ ВОД, КОНЦЕНТРАЦИЙ ИХ ЗАГРЯЗНЕНИЙ, СПОСОБОВ ПРЕДВАРИТЕЛЬНОЙ ОЧИСТКИ, ПРИМЕНЯЕМЫХ РЕАГЕНТОВ, ОБОРУДОВАНИЯ И АППАРАТУРЫ

Учитывая регламент работ на площадке, характеристику технологического процесса и технологического оборудования, утечек нефти и появления нефтесодержащих стоков на проектируемой кустовой площадке в основном режиме работы нет.

При ремонте сбор загрязненных стоков осуществляется в инвентарные поддоны и емкости. Эксплуатационная служба укомплектована всеми необходимыми техническими средствами, инструментами, техникой, расходными материалами для проведения работ по обслуживанию площадок. Обслуживание кустовой площадки производится существующей службой эксплуатации, с использованием имеющихся в наличии ресурсов, в том числе, автотранспорт с санитарно-бытовым обеспечением выездных бригад.

Отвод сточных вод на этапе «Куст скважин № 1-бис Северо-Тямкинского месторождения. Основание площадки» (стадия инженерной подготовки) решается вертикальной планировкой со сбором стоков в амбары №№ 1, 2 для сбора дождевых и талых вод.

Отвод сточных вод на этапе «Куст скважин № 1-бис Северо-Тямкинского месторождения. Обустройство. (Скважина первой позиции)» решается вертикальной планировкой со сбором стоков в амбары №№ 1, 2 для сбора дождевых и талых вод.

Для этапов «Куст скважин № 1-бис Северо-Тямкинского месторождения. Обустройство» отвод сточных вод решается вертикальной планировкой со сбором стоков в амбары №№ 1, 2 для сбора дождевых и талых вод.

После этапа основания площадки (стадия инженерной подготовки), амбар №2 переустраивается с учетом границ площадки на этапах обустройства.

Мониторинг за наполнением амбаров будет осуществлять служба эксплуатации Северо-Тямкинского месторождения с выездом на площадку куста скважин № 1-бис по мере выпадения осадков и снеготаяния.

Контроль за наполнением амбаров осуществляется визуально.

По мере наполнения амбаров, сточные воды откачиваются передвижными средствами и вывозятся на площадку ЦПС Тямкинского месторождения для совместной очистки и подготовки с пластовой водой и последующего использования в системе поддержания пластового давления (ТУ см. Приложение A).

Планы с решениями по системе отвода дождевых сточных вод для стадии инженерной подготовки и обустройства представлены на чертежах 1750620/0817Д-П-007.016.000-НК-01-Ч-001, 1750620/0817Д-П-007.016.000-НК-01-Ч-002.

Средняя концентрация загрязнений в дождевых стоках принята в соответствии с ГОСТ Р 58367-2019 п.6.7.3.4 и составляет:

- взвешенные вещества - 300 мг/л;

힏	8/⊓						
흿)58						
9.	30(
		Изм.	Кол.уч.	Лист	№ док.	Подп.	Дата

1750620/0817Д-П-007.016.000-ИОС3-01

Документ разработан ООО «НК «Роснефть» - НТЦ». Информация, содержащаяся в документе, может быть	раскрыта или переоана третьим лицам только по соелашению между Разработчиком и Заказчиком				епрод 20 мг/	уктов - !	50 мг/л	/n;	7
Взам. инв. №									
Подп. и дата									
ИНВ. № подл.	30058/⊓	Изм. К	ол.уч.	Лист	№ док.	Подп.	Дата		Лист 5 ормат А4

8

4 ОБОСНОВАНИЕ ПРИНЯТОГО ПОРЯДКА СБОРА, УТИЛИЗАЦИИ И ЗАХОРОНЕНИЯ ОТХОДОВ- ДЛЯ ОБЪЕКТОВ ПРОИЗВОДСТВЕННОГО ЗНАЧЕНИЯ

Решения по сбору, утилизации и захоронения отходов в данном проекте не рассматриваются. Раздел не разрабатывается.

Информация, содержащаяся в документе, может быть раскрыта или передана третым лицам только по соглашению между Разработчиком и Заказчиком Документ разработан ООО «НК «Роснефть» - НТЦ». Взам. инв. № Подп. и дата Инв. № подл. 30058/□ Лист 1750620/0817Д-П-007.016.000-ИОС3-01 6 Кол.уч Лист № док Подп. Дата Формат А4

9

5 ОПИСАНИЕ И ОБОСНОВАНИЕ СХЕМЫ ПРОКЛАДКИ **КАНАЛИЗАЦИОННЫХ** ТРУБОПРОВОДОВ, **УСЛОВИЯ** ИХ ПРОКЛАДКИ, ОБОРУДОВАНИЕ, СВЕДЕНИЯ 0 **МАТЕРИАЛЕ** ТРУБОПРОВОДОВ И КОЛОДЦЕВ, СПОСОБЫ ИХ ЗАЩИТЫ ОТ АГРЕССИВНОГО ВОЗДЕЙСТВИЯ ГРУНТОВ И ГРУНТОВЫХ ВОД

Данным проектом прокладка трубопроводов не предусматривается. Раздел не разрабатывается.

Информация, содержащаяся в документе, может быть Документ разработан ООО «НК «Роснефть» - НТЦ». раскрыта или передана третьим лицам только по соелашению между Разработчиком и Заказчиком Взам. инв. Подп. и дата Инв. № подл. 30058/□ Лист 1750620/0817Д-П-007.016.000-ИОС3-01 7 № док Кол.уч Лист Подп. Дата Формат А4

읟

NHB.

Взам.

Тодп. и дата

Для этапа «Куст скважин № 1-бис Северо-Тямкинского месторождения. Обустройство. Основание площадки» (стадия инженерной подготовки) сбор поверхностных сточных вод с площадки куста скважин осуществляется согласно планировочным отметкам в амбары №№ 1, 2 для сбора дождевых и талых вод.

Для этапа «Куст скважин № 1-бис Северо-Тямкинского месторождения. Обустройство. (Скважина первой позиции)» сбор поверхностных сточных вод с площадки куста скважин осуществляется согласно планировочным отметкам в амбары №№ 1, 2 для сбора дождевых и талых вод.

6.1 Расчет среднегодового объема поверхностных сточных вод

Среднегодовой объем поверхностных сточных вод определяется согласно СП 32.13330.2018 по формуле:

$$W_{\Gamma} = W_{\Lambda} + W_{\mathrm{T}} + W_{\mathrm{M}} \tag{6.1}$$

где $W_{\!_{\rm I\!\!\! J}}, W_{\!_{\rm T}}, W_{\!_{\rm M}}$ – среднегодовой объем дождевых, талых и поливомоечных вод соответственно, м 3

С учётом отсутствия поливомоечных мероприятий на проектируемом объекте, объём поливомоечных вод не определяется.

Среднегодовой объем дождевых и талых сточных вод определяется согласно СП 32.13330.2018 по формулам:

$$W_{\pi} = 10 \cdot h_{\pi} \cdot \psi_{\pi} \cdot F \tag{6.2}$$

$$W_{\rm T} = 10 \cdot h_{\rm T} \cdot \psi_{\rm T} \cdot F \cdot K_{\rm v} \tag{6.3}$$

где F — площадь стока, га;

- $h_{\rm д}$ слой осадка за теплый период года, согласно инженерногидрометеорологическим изысканиям 377 мм;
- $h_{\scriptscriptstyle
 m T}$ слой осадка за холодный период года, согласно инженерногидрометеорологическим изысканиям 149 мм;
- $\psi_{\rm д}$ коэффициент стока дождевых сточных вод (для грунтовых поверхностей 0,2; для водонепроницаемых покрытий –0,8, для щебеночных покрытий, не обработанных вяжущими-0,4 принимается в пределах значений, указанных в п.7.1.4 МП «НИИ ВОДГЕО»);
- $\psi_{\scriptscriptstyle \rm T}$ коэффициент стока талых вод (0,6 принимается в пределах значений, указанных в п.7.1.5 МП «НИИ ВОДГЕО»);

ПОДЛ	1/8						
<u>§</u>	058						
1HB.	30(
ΙŽ		Изм.	Кол.уч.	Лист	№ док.	Подп.	Дата

1750620/0817Д-П-007.016.000-ИОС3-01

Подп. и дата

 $K_{\rm y}$ — коэффициент, учитывающий частичный вывоз и уборку снега (0,5-принимается в пределах значений, указанных в п.6.2.9 МП «НИИ ВОД-ГЕО»).

Расчетную площадь водосбора, с которой осуществляется отведение дождевых стоков в амбары в период инженерной подготовки и в период обустройства, см. таблицу 6.1

Таблица 6.1 – Расчетные площади водосбора в период инженерной подготовки и в период обустройства

Наименование	Площадь, м²				
Площадка куста скважин №1-бис					
(период инженерной подготовки, в амбары №№ 1, 2)					
Водонепроницаемые поверхности	16500				
Грунтовые поверхности (спланированные)	14500				
Площадка куста скважин №1-бис					
(период обустройства, в амбары №№ 1, 2)					
Водонепроницаемые поверхности	3600				
Грунтовые поверхности (спланированные)	10300				

В таблице 6.2 представлены результаты расчёта среднегодового объёма поверхностных сточных вод для стадии инженерной подготовки и стадии обустройства.

Таблица 6.2 – Среднегодовой объём поверхностных сточных вод в период инженерной подготовки и в период обустройства

Наименование	Среднегодовой объем дождевых сточных вод, W_{π} , M^3	Среднегодовой объем талых сточных вод, $W_{\tau,M}^3$	Среднегодовой объем поверхностных сточных вод, $W_{\rm p}$, ${\rm M}^3$	
Пл	ощадка куста скваж	ин №1-бис		
(период инже	нерной подготовки,	в амбары №№ 1, 2,	3)	
Водонепроницаемые поверхности	4976	1386	7455	
Грунтовые поверхности (спланированные)	1093	.000	00	
Пл	ощадка куста скваж	ин №1-бис		
(период	обустройства, в амб	бары №№ 1, 2, 3)		
Водонепроницаемые поверхности	1086	621	2484	
Грунтовые поверхности (спланированные)	777	<u></u>		

6.2 Расчет суточного объема поверхностных сточных вод

Расчет суточного расхода дождевых сточных вод выполнен по формуле из п.7.2.1 МП «НИИ ВОДГЕО»:

$$W_{\text{oc.q.}} = 10 \cdot h_{\text{a}} \cdot F \cdot \psi_{mid} \tag{6.4}$$

5	□,												
흳	058								Лист				
В.	30(1750620/0817Д-П-007.016.000-ИОС3-01					
Ξ	,,,	Изм.	Кол.уч.	Лист	№ док.	Подп.	Дата						
								Danua	Λ.4				

읟

Взам. инв.

Подп. и дата

где 10 – переводной коэффициент;

- $h_{\rm a}$ максимальный суточный слой осадков, *мм*, образующихся за дождь, сток от которого подвергается очистке в полном объёме, определяется в соответствии с п.7.2.2 и 7.2.3 МП «НИИ ВОДГЕО»;
- ψ_{mid} средний коэффициент стока для расчетного дождя, определяется как средневзвешенная величина в зависимости от постоянных значений коэффициента стока ψ_i для разного вида поверхностей (табл.10, п.6.2.6 МП «НИИ ВОДГЕО»);

F — общая площадь стока, ea.

Для предприятий второй группы величина максимального суточного слоя дождевых осадков h_a мм, сток от которого подвергается очистке в полном объеме, принимается равной максимальному за год суточному слою атмосферных осадков от дождей с периодом однократного превышения суточного слоя осадков $P \ge 1$ года, что соответствует обеспеченности 86% и менее.

Величина максимального суточного слоя дождевых осадков $h_{\rm a}$ мм определяется расчетным путем, согласно 2 способу расчета (п.7.2.4 МП «НИИ ВОДГЕО»):

$$H_{p} = H_{cp}(1 + c_{v} \cdot \Phi)$$
, мм, где (6.5)

 ${
m H_p}$ – максимальный суточный слой осадков требуемой обеспеченности, мм; ${
m H_p} = {\it h}_{
m a}$;

 ${
m H}_{
m cp}$ – значение среднего максимума суточного слоя осадков, мм;

- Φ нормированные отклонения от среднего значения при разных значениях обеспеченности p_{o6} ,%, и коэффициента асимметрии c_s ;
- с_v коэффициент вариации суточных осадков.

Параметры формулы (6.5) H, Φ , $c_{\rm v}$, и $c_{\rm s}$ определяем по Приложению Н МП «НИИ ВОД-ГЕО».

Согласно Приложения Н МП «НИИ ВОДГЕО», принимаем для Тобольска $H_{cp}=32.5$ мм, $c_v=0.38$, $c_s=0.5$.

По таблице Л.1 Приложения Л МП «НИИ ВОДГЕО», находим, что при значении коэффициента асимметрии $c_s = 0.5$ и обеспеченности $p_{o6} = 86\%$ (период однократного превышения расчетной интенсивности дождя принимается P=0.5 лет, согласно

СП 32.13330.2018 табл.10 с учетом интенсивности дождя q_{20} до 70 л/с), нормированное отклонение ординат от среднего значения составляет Φ = - 1,075.

Тогда расчетное значение суточного слоя осадков равно:

$$H_p = 32.5 \cdot (1 + 0.38 \cdot (-1.075)) = 19.22 \text{ mm}$$

Величина максимального суточного слоя дождя $H_p = \textbf{\textit{h}}_a = 19,22$ мм.

ᅵ위	<u>,</u>						
o	58,						
Z	Ö						
انها	30						
I ፰ I	`				-		
Z		Изм.	Кол.уч.	Лист	№ док.	Подп.	Дата
$oldsymbol{\succeq}$		ИЗМ.	кол.уч.	ЛИСТ	№ док.	нодп.	дата

1750620/0817Д-П-007.016.000-ИОС3-01

Подп. и дата

Расчет среднего коэффициента стока для расчетного дождя ψ_{mid} выполнен по формуле (6.6) (согласно п.7.2.1 МП «НИИ ВОДГЕО»):

$$\psi_{mid} = \frac{\Sigma F_i \cdot \psi_i}{F} \tag{6.6}$$

где F_i – площадь участка канализуемой территории с соответствующим видом покрытия;

F – общая площадь стока, га;

 ψ_i — постоянный коэффициент дождевого стока для соответствующего вида покрытия (табл.10, п.6.2.6 МП «НИИ ВОДГЕО»).

В таблице 6.3 представлены коэффициенты для соответствующего вида покрытия определенной площади для периода инженерной подготовки.

Таблица 6.3 - Расчет среднего коэффициента стока для расчетного дождя для периода инженерной подготовки

Вид поверхности стока	Площадь, $F_i,$ га	Доля покрытия от общей площади стока F_i/F	Постоянный коэффициент стока, ψ_i	Коэффициент стока для расчетного дождя $\psi_i \cdot F_i/F$								
	Амбары №1, 2											
Водонепроницаемые поверхности: - кровли - а/б покрытия	1,65	0,53	0,95	0,506								
Грунтовые поверхности <i>(спланированные)</i>	1,45	0,47	0,20	0,094								
	$\Sigma F_i = 3,1$	$\Sigma F = 1,00$	ψ_{mid} :	$\psi_{mid} = 0,599$								
Амбар №1												
Водонепроницаемые поверхности: - кровли - а/б покрытия	0,72	0,56	0,95	0,534								
Грунтовые поверхности <i>(спланированные)</i>	0,56	0,44	0,2	0,088								
$\Sigma F_i = 1,28$ $\Sigma F = 1,00$ $\psi_{mid} = 0,622$												
Амбар №2												
Водонепроницаемые поверхности: - кровли - а/б покрытия	0,94	0,52	0,95	0,491								
Грунтовые поверхности <i>(спланированные)</i>	0,88	0,48	0,2	0,097								
	$\Sigma F_i = 1.82$	$\Sigma F_i = 1,00$	ψ_{mid} :	= 0,587								
				Пист								
	Водонепроницаемые поверхности: - кровли - а/б покрытия Грунтовые поверхности (спланированные) Водонепроницаемые поверхности: - кровли - а/б покрытия Грунтовые поверхности (спланированные) Водонепроницаемые поверхности (спланированные)	Вид поверхности стока F_i , га F	Вид поверхности стока F_i , га F_i , га F_i , га F_i от общей площади стока F_i/F F_i , га F_i/F F_i , га F_i/F F_i , га F_i/F F_i	Вид поверхности стока F_i , га F_i , от общей площади, стока F_i/F V_i								

USM. Кол.уч. Лист № док. Подп. Дата

1750620/0817Д-П-007.016.000-ИОС3-01

Тодп. и дата

В таблице 6.4 представлены коэффициенты для соответствующего вида покрытия определенной площади для периода обустройства.

Таблица 6.4 - Расчет среднего коэффициента стока для расчетного дождя для периода

обустройства

Обустройс				
Вид поверхности стока	Площадь, $F_i,$ га	Доля покрытия от общей площади стока F_i/F	Постоянный коэффициент стока, ψ_i	Коэффициент стока для расчетного дождя $\psi_i \cdot F_i/F$
	Д	мбары №1, 2		
Водонепроницаемые поверхности: - кровли - а/б покрытия	0,36	0,26	0,95	0,246
Грунтовые поверхности <i>(спланированные)</i>	1,03	0,74	0,2	0,148
	$\Sigma F_i = 1,39$	$\Sigma F = 1,00$	ψ_{mid} :	= 0,394
		Амбар №1		
Водонепроницаемые поверхности: - кровли - а/б покрытия	0,16	0,21	0,95	0,200
Грунтовые поверхности <i>(спланированные)</i>	0,60	0,79	0,2	0,158
	$\Sigma F_i = 0.76$	$\Sigma F = 1,00$	ψ_{mid} :	= 0,358
		Амбар №2		
Водонепроницаемые поверхности: - кровли - а/б покрытия	0,20	0,32	0,95	0,302
Грунтовые поверхности <i>(спланированные)</i>	0,43	0,68	0,2	0,137
•	$\Sigma F_i = 0.63$	$\Sigma F_i = 1,00$	ψ_{mid} :	= 0,438

Объем дождевого стока на проектируемом объекте в период инженерной подготовки составит:

$$W_{\text{ос.д.}} = 10 \cdot 19,22 \cdot 3,1 \cdot 0,599 = 357 \text{ m}^3.$$

Объем дождевого стока на проектируемом объекте в период обустройства составит:

$$W_{\text{ос.д.}} = 10 \cdot 19,22 \cdot 1,39 \cdot 0,394 = 105 \text{ m}^3.$$

	058/						
₩.	30						
ΙŻ		Изм.	Кол.уч.	Лист	№ док.	Подп.	Дата

1750620/0817Д-П-007.016.000-ИОС3-01

Подп. и дата

Отведение дождевых сточных вод со спланированной территории проектируемого объекта для этапов инженерной подготовки и обустройства предусматривается в амбары №№1, 2.

В таблице 6.5 представлены результаты расчёта суточного объёма дождевого стока для этапов инженерной подготовки и обустройства.

Таблица 6.5 – Суточный объём дождевого стока в период инженерной подготовки и в период обустройства

Наименование	Амбар №1	Амбар №2
	цка куста скважин №	
(период	ц инженерной подгот	овки)
Объем дождевых		
стоков, $W_{\rm p.д.}$, ${ m M}^3$	153	205
Площад	дка куста скважин №	1-бис
(пе	ериод обустройства)	
Объем дождевых		
стоков, $W_{\rm p.д.}$, ${ m M}^3$	52	53

Суточный объем талых вод, $W_{\rm T}^{\rm cyr.}$, отводимых на очистные сооружения с территории проектируемого объекта/площадки в середине периода весеннего снеготаяния, определяется по формуле:

$$W_{\rm T}^{\rm cyt.} = 10 \cdot h_c \cdot F \cdot \alpha \cdot \psi_{\rm T} \cdot K_{\rm y} \tag{6.7}$$

где 10 – переводной коэффициент;

 $h_{\rm c}$ — слой талых вод за 10 дневных часов заданной обеспеченности, ${\it mm}$. Согласно п.7.3.4 МП «НИИ ВОДГЕО» рекомендуется принимать при обеспеченности (вероятности превышения) в пределах 50-95%, что соответствует периоду однократного превышения P=0,33 - 1,0 года, по таблице 12 п. 6.2.9 МП;

 α — коэффициент, учитывающий неравномерность снеготаяния, допускается принимать 0.8:

 $\psi_{\scriptscriptstyle
m T}$ — общий коэффициент стока талых вод (принимается 0,5...0,8);

 $K_{\rm y}$ — коэффициент, учитывающий частичный вывоз и уборку снега (0,5-принимается в пределах значений, указанных в п.6.2.9 ПМ «НИИ ВОДГЕО»);

F — общая площадь стока, ea.

Согласно карте районирования, приведенной в Приложении Г МП «НИИ ВОДГЕО», проектируемый объект находится в 1 – м климатическом районе. Диапазон обеспеченно-

В. № пс	30058/1						
ĬΞ		Изм.	Кол.уч.	Лист	№ док.	Подп.	Дата

1750620/0817Д-П-007.016.000-ИОС3-01

Подп. и дата

сти принимается значение 86% и величина суточного слоя талых вод составит $h_{\rm c}=14$ мм.

Объем талых вод на проектируемом объекте в период инженерной подготовки:

$$W_{\rm T}^{\rm cyt.} = 10 \cdot 14 \cdot 3.1 \cdot 0.8 \cdot 0.6 \cdot 0.5 = 104 \,\rm M^3$$

Объем талых вод на проектируемом объекте в период обустройства:

$$W_{\rm T}^{\rm cyt.} = 10 \cdot 14 \cdot 1{,}39 \cdot 0{,}8 \cdot 0{,}6 \cdot 0{,}5 = 47 \text{ m}^3$$

В таблице 6.6 представлены результаты расчёта суточного объёма талых вод для этапов инженерной подготовки и обустройства.

Таблица 6.6 – Суточный объём талых вод в период инженерной подготовки и в период обустройства

Наименование	Амбар №1	Амбар №2
	адка куста скважин N s	
(пери	од инженерной подго	товки)
Объем талых		
вод, $W_{\scriptscriptstyle \mathrm{T.}}$, ${\scriptscriptstyle \mathrm{M}}^3$	43	61
Площ	адка куста скважин N	⊇1-бис
	период обустройства)
Объем талых		
вод, $W_{\scriptscriptstyle \mathrm{T.}}$, M^3	25	21

На основании проведенных расчетов рабочий объем амбаров принимается по наибольшим величинам дождевого стока на всех этапах строительства. Рабочий объем амбаров для площадки куста скважин № 1-бис принимается на 10% больше расчетной величины, следовательно, рабочий объем составит на этапе:

основание площадки:

- для амбара №1 W_{амб.} =1,1*153=168 м³;
- для амбара №2 W_{амб.} =1,1*205=225 м³.

обустройство:

- для амбара №1 W_{амб.} =1,1*153=168 м³ (принят по этапу основания площадки);
- для амбара №2 W_{амб.} =1,1*53=58 м³;

קל	8/⊓						
9)58						
B.	30(
Ξ		Изм.	Кол.уч.	Лист	№ док.	Подп.	Дата

1750620/0817Д-П-007.016.000-ИОС3-01

17	
----	--

7 РЕШЕНИЯ ПО СБОРУ И ОТВОДУ ДРЕНАЖНЫХ ВОД

Решения по сбору и отводу дренажных вод в данном проекте не рассматриваются. Раздел не разрабатывается.

Инв. № подл. Подп. и дата Взам. инв. № 30058/П

Информация, содержащаяся в документе, может быть раскрыта или передана третьим лицам только по соглашению между Разработчиком и Заказчиком

Документ разработан ООО «НК «Роснефть» - НТЦ».

Изм. Кол.уч. Лист № док. Подп. Дата

1750620/0817Д-П-007.016.000-ИОС3-01

18 8 ССЫЛОЧНЫЕ НОРМАТИВНЫЕ ДОКУМЕНТЫ Номер раздела, Обозначение документа, на который дана ссылка пункта, подпункта Информация, содержащаяся в документе, может быть тома Документ разработан ООО «НК «Роснефть» - НТЦ». раскрыта или передана третьим лицам только по соглашению между Разработчиком и Заказчиком № 123-Ф3 от 22.07.2008 г. Технический регламент о требованиях пожар-1 ной безопасности № 384-ФЗ от 30.12.2009 г. 1 Технический регламент о безопасности зданий и сооружений Постановление Правительства О составе разделов проектной документации 1 РФ от 16.02.2008 г. № 87 и требованиях к их содержанию СП 32.13330.2018 Канализация. Наружные сети и сооружения. 1 СНиП 2.04.03-85 ГОСТ Р 58367-2019 Обустройство месторождений нефти на суше. 3 Технологическое проектирование Методическое пособие. Рекомендации по рас-6.1 чету систем сбора, отведения и очистки поверхностного стока с селитебных территорий, площадок предприятий и определению условий выпуска его в водные объекты» «НИИ ВОДГЕО», Москва, 2015 Взам. инв. Подп. и дата Инв. № подл. 30058/□

Кол.уч

Лист

№ док

Подп.

Дата

Формат А4

1750620/0817Д-П-007.016.000-ИОС3-01

Лист

16

Подп. и дата

ПРИЛОЖЕНИЕ А (ОБЯЗАТЕЛЬНОЕ) ТЕХНИЧЕСКИЕ УСЛОВИЯ НА ВОДОСНАБЖЕНИЕ И ВОДООТВЕДЕНИЕ (НА 1 ЛИСТЕ)

УТВЕРЖДАЮ Начальник управления охраны окружающей среды ООО «РН-Унатнефтегаз»

И.Ф. Зайниев

2020 г.

Технические условия на водоснабжение и водоотведение по объекту: «Куст скважин № 1-бис Северо -Тямкинскго месторождения. Обустройство»

Технические решения по водоснабжению и водоотведению разработать в соответствии требованиям Положения Компании «Порядок принятия технических решений на этапе проектирования объектов капитального строительства и капитального ремонта Компании» № П2-01 Р-0161, требованиям экологических, санитарно-гигиенических, технологических и других норм, правил, стандартов, действующих на территории Российской Федерации.

Период эксплуатации

Водоснабжение

Для хозяйственно-питьевых нужд временно прибывающего обслуживающего персонала использовать привозную бутилированную воду, соответствующую требованиям 2.1.4.1116-02 «Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества». Бутилированная вода будет завозиться с ВЖК Тямкинского месторождения автотранспортом, которым будет снабжена служба эксплуатации Северо-Тямкинского месторождения.

Водоотведение

Объём образуемых поверхностных (дождевых и талых) сточных вод определить проектом. Сбор данных стоков с территории кустовой площадки организовать по спланированной территории со сбором в амбар дождевых и талых стоков.

Вывоз поверхностных сточных вод предусмотреть передвижными средствами на ЦПС Тямкинского месторождения для совместной очистки и подготовки с пластовой водой и последующего использования в системе поддержания пластового давления.

Служба эксплуатации Северо-Тямкинского месторождения будет обеспечена необходимым специализированным автотранспортом для возможности откачки и вывоза поверхностных сточных вод.

Концентрацию загрязняющих веществ в дождевых сточных водах принять согласно п. 6.7.3.4 FOCT P 58367-2019.

Срок действия ТУ – 3 года.

Исп. главный специалист отдела. природоохранных мероприятий Сулейманова 3.М.

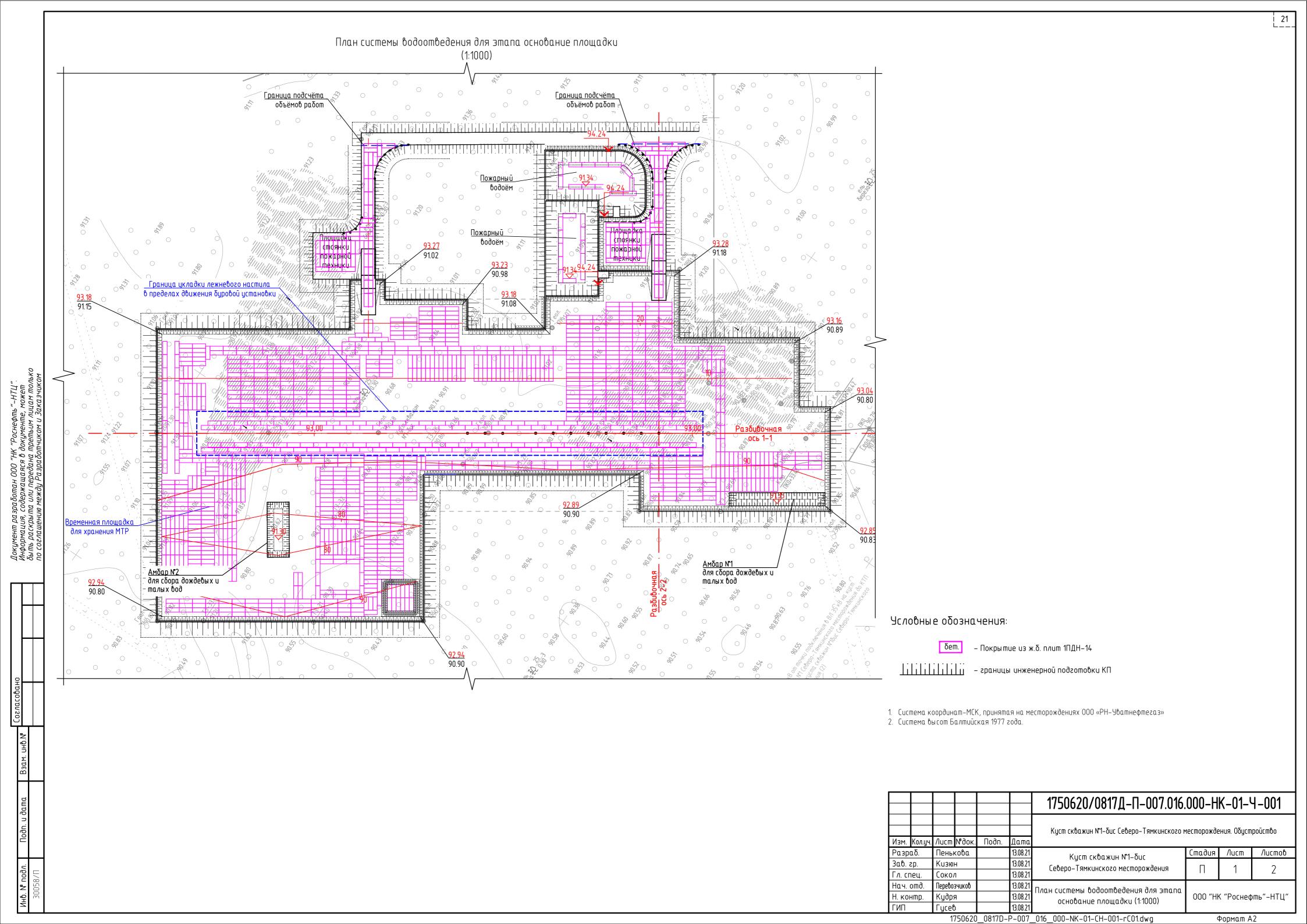
Тел. 8 (3452) 389999, доб. 1064

δĹ	8/⊓						
의)58						
B.	300						
Z		Изм.	Кол.уч.	Лист	№ док.	Подп.	Дата

1750620/0817Д-П-007.016.000-ИОС3-01

Лист 17

Формат А4


Т	
1	20
1	

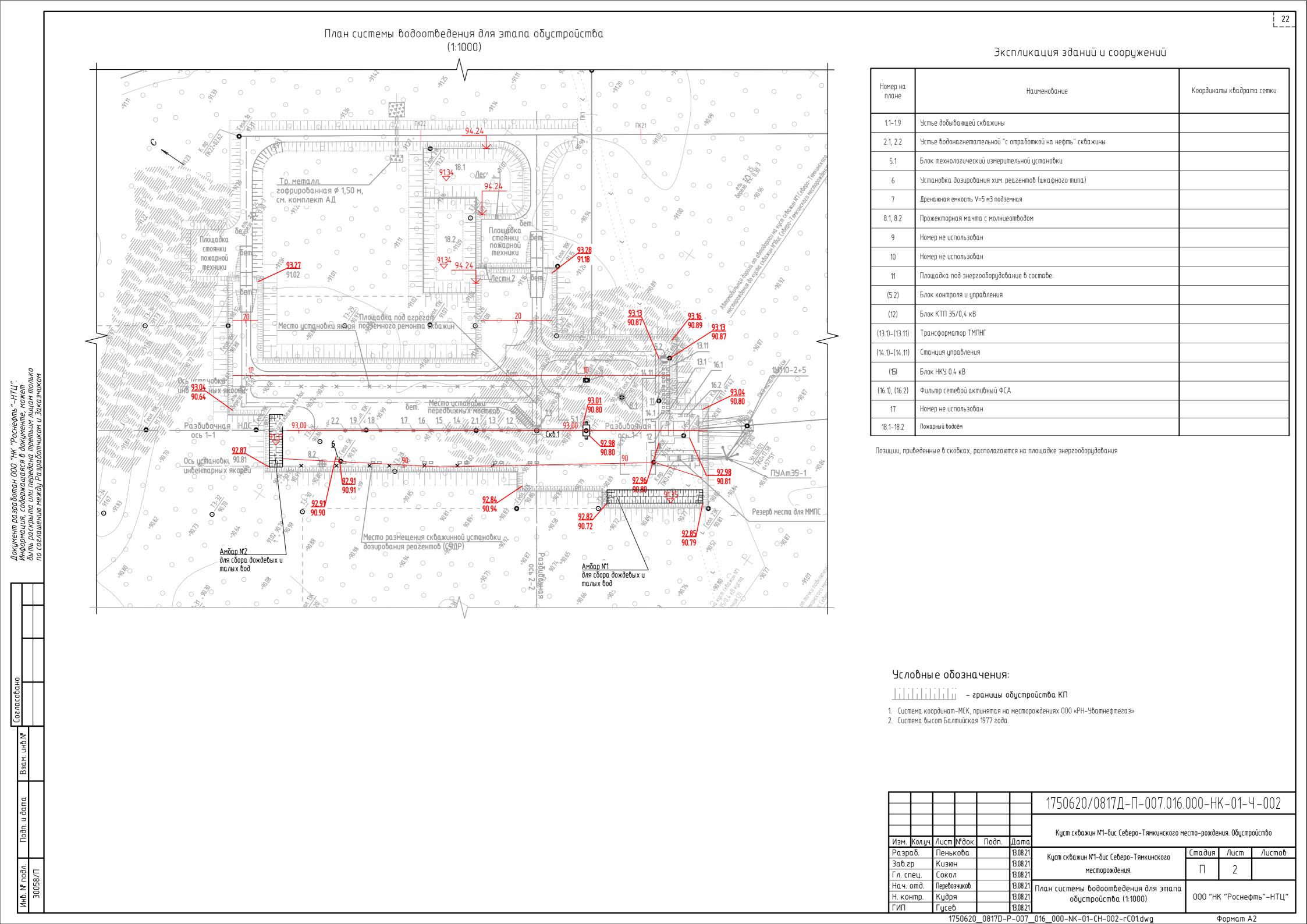

ТАБЛИЦА РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

Таблица регистрации изменений

		ŀ	Номера лист	ов (страниц)	Всего листов	Номер		
M	Изм.	изме- ненных	заме- ненных	НОВЫХ	аннули- рованных	(страниц) в док.	док.	Подп.	Дата
Заказчиком									
u 3aK									
чиком									
зработчиком									

№ ини мекв И они ини маке в вы выше в вы		раскрыта или пересана третьим пицам только по соелашению между Разработчиком и Заказчи						
	зам. инв.							
1750620/0817 II - II - 007 016 000 140 C3 01	B							

