ИНН 0274170029 | КПП 027801001 | ОГРН 1120280040946

8 (347) 295-97-88 bgi_gk2022@mail.ru

Отделение-НБ Республика Башкортостан Банка России//УФК по РБ г. Уфа р/сч 0322564380000000102 | л/сч 712НЖШЯ5001 к/сч 40102810045370000067 | БИК 018073401

Заказчик – ГКУ УКС РБ

Реконструкция биологических очистных сооружений в городе Нефтекамск РБ

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 6 «Технологические решения» Подраздел 1. «Технологические решения»

 $04/2022-151-\Pi-01000-TX1$

Tom 6.1

г. Уфа 2023

ИНН 0274170029 | КПП 027801001 | ОГРН 1120280040946

8 (347) 295-97-88 bgi_gk2022@mail.ru

Отделение-НБ Республика Башкортостан Банка России//УФК по РБ г. Уфа р/сч 0322564380000000102 | л/сч 712НЖШЯ5001 к/сч 40102810045370000067 | БИК 018073401

Заказчик – ГКУ УКС РБ

Реконструкция биологических очистных сооружений в городе Нефтекамск РБ

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 6 «Технологические решения» Подраздел 1. «Технологические решения»

 $04/2022-151-\Pi-01000-TX1$

Tom 6.1

Директор

Исламов И.А.

20.12.2023

20.12.2023

Главный инженер проекта

Гараев И.Ф.

г. Уфа 2023

Содержание

	1 и	Ісход	ные д	цанны	e					3
	2 0	Сведе	ения	о пр	оизводс	твенн	ной программе и номенклатуре	продукции,	характе	ристике
							емы производства в целом и	-		
	техн	ЮЛОГ	ическ	ого п	роцесса	, треб	бования к организации производст	ва, данные	о трудо	емкости
					-	- -				
							новных видах ресурсов для техноло			
				•			ения сырья и материалов – для о	·		
						•		•		
							аметрам и качественным характер			
				-		-	' ' начения		-	
			•				карактеристик (на основе сравните			
							·		,	
				-			и типов вспомогательного обор			
							י транспортных средств и механизмо	•		
							обеспечению выполнения требо			
		•		•	•		удованию, зданиям, строениям и	•		
				•		-	я объектов производственного назн			
	l -						атов соответствия требованиям пр			
_	1				•	•	ехнологического оборудования и т			
		-			-		производственного назначения		•	• •
				,			нисленности, профессионально-к			
					-		р группам производственных проце	-		
	'						производственного назначения		•	
					-		спечивающих соблюдение требов			
		-		-	-		и непроизводственных объектов к			•
		•	•	•					•	
					,		х систем, используемых в производ			
					•		нестве и составе вредных выбросо	•		
		•		•			ым цехам, производственным соо	-	. •	•
					•			,		
	_						редотвращению (сокращению) вы			
		•		-	•			•	•	•
			•	,	, ,	,				
	<u> </u>	I								
	$\vdash \vdash$						ļ 04/2022-151-Π-0	1000-TX1	-ТЧ	
	Изм. К	ол.уч.	Лист	№док.	Подп.	Дата	3 3 1			
	Разраб.	+	Сюнді			20.12.23		Стадия	Лист	Листов
	Пров.		Шкода	1		20.12.23	Текстовая часть	П	1	123
								000 «Б	урГеоИн	жиниринг»
	ГИП		Гарае	В		20.12.23				

Согласовано

Взам. инв. №

Подп. и дата

Инв. № подл.

Инв. № подл. и дата Взам. инв. №

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

1 Исходные данные

Основаниемдляразработкипроектныхрешенийпообъекту «Реконструкция биологических сооружений Нефтекамск очистных В городе РБ»являетсятехническоезаданиена выполнение инженерных (или) изысканий проектированиепо государственному контракту на выполнение работ и оказание услуг, связанных свыполнением инженерных изысканий, подготовкой проектной документации, разработкой рабочейдокументации, выполнением работ по строительству объекта капитального строительства, поставкойоборудования, необходимого для обеспечения эксплуатации объекта «Реконструкция биологическихочистных сооружений в городе Нефтекамск РБ».

Проектная документация выполнена согласно постановлению Правительства № 87 и в соответствии с составом проектной документации, представленным отдельным томом.

Проектная документация разработана в соответствии с градостроительным планом земельного участка, заданием на проектирование, документами об использовании земельного участка для строительства, техническими регламентами, в том числе устанавливающими требования по обеспечению безопасной эксплуатации зданий, строений, сооружений и безопасного использования прилегающих к ним территорий, и с соблюдением технических условий.

Принятые проектные решения, применяемое оборудование и материалы соответствуют положениям Федерального закона Российской Федерации № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности, и о внесении изменений в отдельные законодательные акты Российской Федерации», соответствуют требованиям экологических, санитарно-гигиенических, противопожарных и других норм, действующих на территории Российской Федерации, и обеспечивают безопасную для жизни и здоровья людей эксплуатацию объекта при соблюдении предусмотренных проектом мероприятий.

Вид строительства – новое строительство.

Принятые технологии очистки сточных вод входят в перечень наилучших доступных технологий (Информационно-технический справочник по НДТ «ИТС 10- 2015. Очистка сточных вод с использованием централизованных систем водоотведения поселений, городских округов»).

Основные исходные данные, использованные в проекте, приведены в задании на проектирование (Приложение 1).

Взам. инв. №	
Подп. и дата	
Инв. № подл.	

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

2 Сведения о производственной программе и номенклатуре продукции, характеристике принятой технологической схемы производства в целом и отдельных параметров технологического процесса, требования к организации производства, данные о трудоемкости изготовления продукции

Целью проекта является реконструкция существующего комплекса биологических очистных сооружений, с увеличениемпроизводительности, с использованием наилучших доступныхтехнологий, а также достижение требуемых нормативных параметровочистки и стабильной работы сооружений по очистке стоков.

Район работ в административном отношении находится в республике Башкортостан, г. Нефтекамск.

Согласно заданию на проектирование, предусматривается реконструкция очистных сооружений о тдельными этапами (пусковыми комплексами) без остановки действующих сооружений.

I этап — строительство и ввод в эксплуатацию нового комплекса биологических очистных сооружений.

II этап – реконструкция существующего комплекса БОС, объединение сооружений I–го и II-го этапов в единый технологический комплекс очистных сооружений.

Среднесуточная производительность биологическихочистных сооружений – 41200 м³/сут. (I этап -19500 м³/сут., II этап -21700 м³/сут.).

Схема движения стока представлена на рисунке 1.

Основной процесс очистки воды происходит в самотечном режиме, что снижает эксплуатационные затраты.

Требования к организации технологического процесса очистки сточных вод:

- непрерывность очистки сточных вод;
- соответствие очищенных сточных вод ПДК;
- оптимальное расположение оборудования;
- выбор рационального технологического решения.

В проекте разработаны решения по очистке бытовых стоков на очистных сооружениях и сбросу очищенных сточных вод вреку Каму.

Проектируемый комплекс очистных сооружений обеспечивает прием бытовых стоков, подачу их на очистные сооружения, очистку стоков до нормативов ПДК для водоемов рыбохозяйственного назначенияНижнекамское водохранилище согласно приказа №212 от 17.10.2019г..

Взам. инв. №	
Подп. и дата	
Инв. № подл.	

			·		
Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

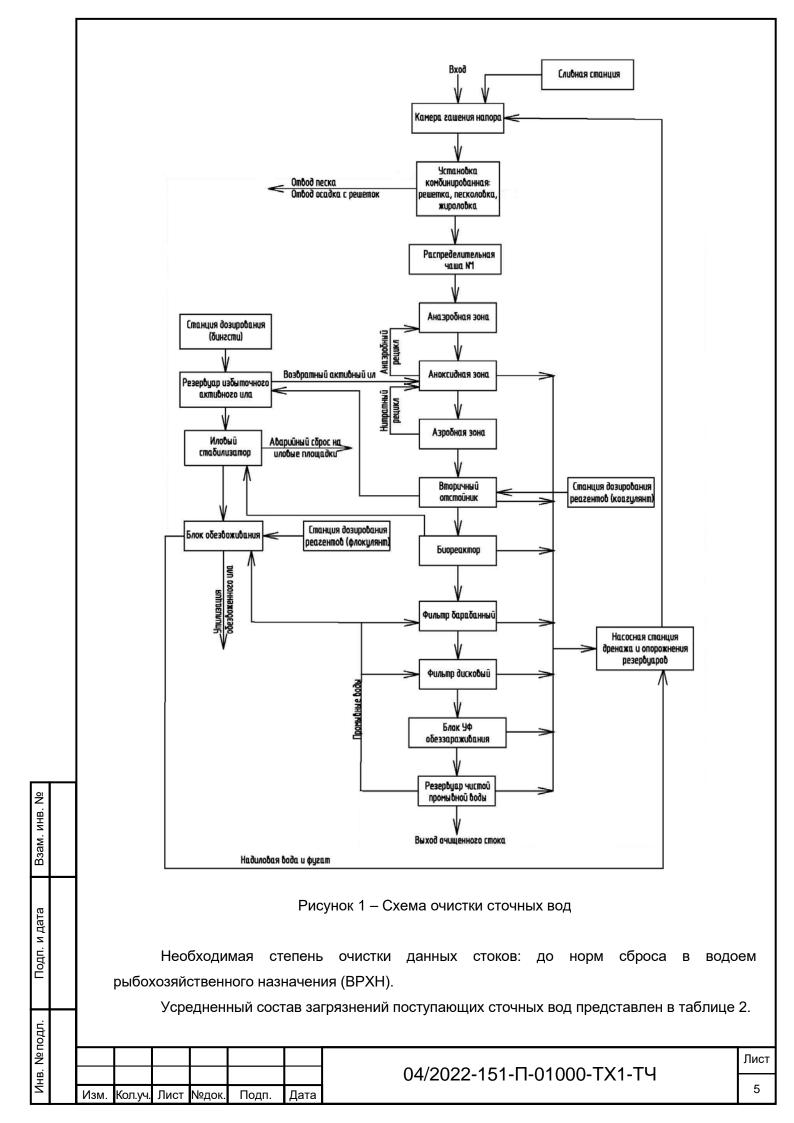


Таблица 2 – Усредненный состав загрязнений, поступающих в стоках

Наименование загрязняющего компонента	Концентрации, мг/л
1	2
Взвешенные вещества	254,033
БПК полн.	254,653
БПК5	178,079
ХПК	535,431
Общий азот	63,655
Аммоний-ион	67,839
Общий фосфор	9,049
Фосфаты (по Р)	5,301

К проектированию приняты следующие сооружения для очистки стоков:

- Сливная станция для приема стоков от передвижной техники и подачи их на очистку;
- <u>Камера гашения напора</u>
 для приема сточных вод, поступающих на очистныесооружения от главной канализационной насосной станции, гашенияскорости потока жидкости и сопряжения трубопроводов с открытымлотком;
- <u>Блок механической очистки (здание решеток)</u> установка комбинированной очистки от песка, жира и твердых отходовдля улавливания крупных органических и неорганических загрязнений;
- <u>Блок биологической очистки (денитрификатор и аэротенк-нитрификатор)</u>
 в качестве основной ступени биологической очистки;
- Вторичные радиальные отстойники для осветления сточных вод, прошедших биологическую очистку;
- <u>Блок доочистки (фильтры барабанные, фильтры дисковые) с Уфобеззараживанием</u>для механическойдоочистки от взвешенных веществ и обеззараживания сточных вод;
- **Биореактор** для биологической доочистки осветленных вод и исключения выноса активного ила на последующие сооружения.

В качестве сооружений по обработке осадка используютсястабилизатор активного ила, установка обезвоживания. Выбранные сооружения обоснованы составомисходных сточных вод и требуемым качеством очистки сточных вод.Сертификаты используемого оборудования представлены вприложениях к данному тому.

2.1. Сливные станции (2 шт.)

Сливные станции предназначены для приема жидких фракций бытовых стоков, доставляемых ассенизационным транспортом, расположена в непосредственной близости от очистных сооружений.

Взам.	
Подп. и дата	
Инв. № подл.	

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Сливная станция является блочно-комплектным оборудованием полной заводской готовности, в соответствии с опросным листом. В состав станции входит:

- горизонтальный подземный резервуар, с установленным насосным оборудованием для подачи стока на очистные сооружения;
- приемный узел, быстроразъёмное соединение;
- система подачи и учёта воды на разбавление стока;
- расходомер для учета объёма поступивших стоков;
- блок грубой механической очистки (решетки);
- контейнер для уловленного мусора;
- система автоматического управления;
- система вентиляции блока механической очистки.

Разбавление привозных стоков осуществляется технической водой через сеть ВЗН в пропорции 1:3.

Расчет разбавления стоков

Принято две сливные станции объемом резервуара 100м³ и производительностью 75 м³/ч каждая.

2.2. Камера гашения напора

Городские бытовые сточные воды, в количестве 41200 м³/сут., поступают на очистные сооружения подвумнапорным стальным коллекторам Ø600 мм и одному напорному коллектору Ø100 мм ГОСТ 20295-85 вкамеру гашения напора (поз. 1). В камере гашения напора происходит гашение скорости потока жидкости, сопряжение трубопроводов с открытым лотком, переход на безнапорныйрежим.

В целях экономической целесообразности основные сооружения подвижению воды предусмотрены в самотечном режиме.

2.3. Блок механической очистки, здание решеток

Для задержания песка предусмотрена установка комбинированной очистки от песка, жира и твердых отходов.

Проектом предусмотрено пять установок комбинированных (далее по тексту установка) чистки стока. Производительность одной установки при разных режимах работы указано в таблице 3.

Взам. инв. №	
Подп. и дата	
Инв. № подл.	

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Режим работы	Производительность одной	Примечание
	установки	
Номинальный	режим работы 1 и 2 очередь 412	200 м ³ /сутки
Максимальный режим 4	2492,6 / 4 = 623,15 м ³ /час	4 установки в работе, 1 в
установки в работе, м³/час		резерве
Номинальный режим 4	1716,7 / 4 = 429,2 м ³ /час	4 установки в работе, 1 в
установки в работе, м³/час		резерве
Минимальный режим 4	331,66 / 4 = 82,9	4 установки в работе, 1 в
установки в работе, м³/час		резерве
Номинальны	й режим работы 1 очередь 1950	0 м ³ /сутки
Максимальный режим 2	1190,4 / 2 = 595,2 м ³ /час	2 установки в работе, 1 в
установки в работе, м³/час		резерве
Номинальный режим 2	812,5 / 2 = 406,25 м ³ /час	2 установки в работе, 1 в
установки в работе, м³/час		резерве
Минимальный режим 2	152,4 / 2 = 76,2 м ³ /час	2 установки в работе, 1 в
установки в работе, м³/час		резерве

Как видно из таблицы: производительность одной установки комбинированной должна лежать в диапазоне от 76,2 м³/час до 623,15 м³/час в зависимости от режима работы очистных сооружений. В состав комбинированной установки входит две ступени очистки: первая – решетка прозором 10 мм, вторая – барабанная решетка прозором 3 мм.

Суточное количество обезвоженных отбросов с решетки блока механической очистки 1 очереди строительства составит 1,3 тонн или 1300 кг/сутки. Влажность отбросов 60%, плотность 0,75 т/м³. Суточное количество обезвоженных отбросов с решетки блока механической очистки 2 очереди строительства составит 1,44 тонн или 1440 кг/сутки. Влажность отбросов 60%, плотность 0,75 т/м³. При накоплении свыше 2 суток — отходы присыпаются обеззараживающим реагентом. Накопление отбросов свыше 5 суток запрещается.

Для первой очереди строительства объем песка, улавливаемый за сутки, составит:

V= Nnp
$$\cdot$$
 0,02/1000=65975 \cdot 0,02/1000= 1,32 M^3

Масса песка:

$$M = 1.32 \cdot 1.5 = 2.0 \text{ T/cyt.}$$

Количество песка годовое определено в соответствии с пунктом ГЗ.3 СП 32.13330:

M год =
$$365 \cdot 0.7 \cdot 2.0 = 511.0$$
 т/год

V год =
$$365 \cdot 0.7 \cdot 1.32 = 337.3 \text{ м}^3/\text{год}$$

Для второй очереди строительства объем песка, улавливаемый за сутки, составит:

V= Nnp
$$\cdot$$
 0,02/1000=73418 \cdot 0,02/1000= 1,47 M^3

Масса песка:

Взам. инв.

Подп. и дата

Инв. № подл

$$M = 1,47 \cdot 1,5 = 2,2 \text{ T/cyt.}$$

2.4. Блок биологической очистки

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

04/2022-151-Π-01000-TX1-TY

Лист

№ подл. и дата Взам. инв. №

В качестве схемы очистки сточных вод принята схема с предвключенной денитрификацией UCT (University of Cape Town). В процессе UCT возвратный активный ил поступает в зону денитрификации, куда так же попадает иловая смесь из анаэробной зоны. Эта иловая смесь содержит как органические вещества, используемые для удаления азота нитратов, так и активный ил, содержащий ФАО, уже накопившие внутриклеточные органические вещества, которые так же используются при денитрификации.

В анаэробную зону направляется рецикл иловой смеси после денитрификатора, содержащий минимум нитратов. Таким образом в данных процессах достигается высокая защищенность анаэробной зоны от воздействия нитратов (страница 43 Д.А. Данилович, А.Н. Эпов «Расчет и технологическое проектирование процессов и сооружений удаления азота и фосфора из городских сточных вод»).

Данная схема доказала свою эффективность и стабильность, при удалении фосфора из сточных вод, хорошее удаление азота.

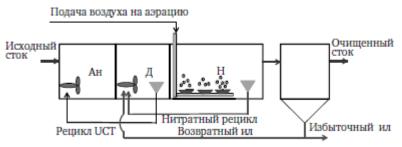


Рисунок 2 - схема с предвключенной денитрификацией UCT (University of Cape Town).

Согласно ИТС 10-2019 таблица 4.8 принята технология очистки с биологическим удалением азота и биолого-химическим удалением фосфора (БНДБХФ). Даная технология гарантированно решает задачу удаления азота и фосфора.

Дополнительно предусмотрена доочистки на фильтрах (Ф), что обеспечивает удаление взвешенных веществ до 3-5 мг/л, а также снижение БПК около 0,3-0,5 мл/л удаленной взвеси и тяжелых металлов на 15-30% за счет удаления вместе со взвесью.

Завершающей стадией является обеззараживание, где применена технология Уфоблучения (УФ). Таким образом достигается полная эффективность обеззараживания по всем микробиологическим загрязнениям, которые необходимо удалить в данном процессе, а также отсутствие каких-либо побочных негативных последствий для окружающей среды.

Для сокращения объема осадка, образующегося в процессе очистки сточных вод предусмотрено механическое обезвоживание (МО), что позволяет быстро и эффективно уменьшить массу осадка, при это отсутствуют негативные воздействия на окружающую среду.

Принятая технология – БНДБХФ + Ф позволяет получить качество воды пригодное для отведения в водный объект категории «А».

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Данным проектом не предусматривается наличие первичного осветления (отстойника) ввиду дефицита органической составляющей сточных вод по отношению к общему азоту. А именно БПК5/Nобщ=178,08/63,655=2,79.

Объёмы зон биологической очистки представлены в таблице 4.

Таблица 4 – Объёмы зон биологической очистки

Наименование зоны биологии	Ед. изм	Объем
1.Аноксидная зона, общий объем	M ³	6214,3
Первая очередь	M ³	2941,3
Первая линия	M ³	1470,6
Вторая линия	M ³	1470,6
Вторая очередь	M ³	3273,1
Первая линия	M ³	1636,5
Вторая линия	M ³	1636,5
2.Анаэробная зона, общий объем	M ³	2492,5
Первая очередь	M ³	1190,5
Первая линия	M ³	595,25
Вторая линия	M ³	595,25
Вторая очередь	M ³	1302,0
Первая линия	M ³	651,0
Вторая линия	M ³	651,0
3.Аэробная зона, общий объем	M ³	26093,3
Первая очередь	M ³	12350,0
Первая линия	M ³	6175,0
Вторая линия	M ³	6175,0
Вторая очередь	M ³	13743,3
Первая линия	M ³	6871,65
Вторая линия	M ³	6871,65

2.5. Вторичные радиальные отстойники

После аэротенков смесь сточной воды и активного ила самотеком потрубопроводу поступает в распределительную чашу вторичныхотстойников, откуда подается в центральную часть рабочего отстойника - распределитель. Сбор осветлённой воды в отстойнике осуществляется через водосливысборным кольцевым лотком, расположенным в отстойнике на некоторомрасстоянии от стены отстойника.

Из сборного лотка осветлённая вода поступает в существующуювыпускную камеру отстойника и далее отводится за пределы отстойников. На площадке очистных сооружений располагаются два вторичныхотстойника диаметром 33 м.

Согласно п.6.161 [2] вторичные отстойники всех типов после аэротенков надлежит рассчитывать по гидравлической нагрузке с учетом концентрации активного ила в аэротенке, его илового индекса (при низких нагрузках, обеспечивающих нитрификацию) и концентрации ила в осветленной воде.

Взам. инв. N	
Подп. и дата	
Инв. № подл.	

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

$$q_{ssa} = \frac{_{4,5 \cdot K_{SS} \cdot H_{set}^{0,8}}}{_{(0,1 \cdot J_i \cdot a_i)^{0,5-0,01a_t}}} = \frac{_{4,5 \cdot 0,4 \cdot 4^{0,8}}}{_{(0,1 \cdot 100 \cdot 3,45)^{0,5-0,01 \cdot 10}}} = 1,32 \text{ m}^3/\text{m}^2 \cdot \text{y},$$

где K_{SS} - коэффициент использования объема зоны отстаивания, принимаемый для радиальных отстойников - 0,4;

 J_{i} - иловый индекс, см³/г;

 a_i - концентрация активного ила на выходе из аэротенка - 3,45 г/дм³;

 a_t - концентрация активного ила в осветленной воде - 10 мг/дм 3 ;

 H_{set} расчетная глубина отстойника, м.

Площадь одного отстойника:

Средний расход: 41200 м³/сут / 2 отстойника /24 часа = 858,4 м3/час

$$F_{ssa} = q_{max} / q_{ssa} = 858,4 / 1,32 = 650,3 \text{ M}^2$$

где: q_{max} – максимальный часовой расход сточных вод, м³/ч;

Принимаем диаметр одного отстойника 33 метра, рабочую глубину 4 метра.

При этом запас по площади отстойника, согласно расчету, составит 24%.

Фактическое значение гидравлической нагрузки на вторичные отстойники равно расчетному. Незначительное увеличение илового индекса со 150 см³/г до 180 см³/г не приведет к выносу активного ила из вторичного отстойника.

2.6. Биореактор доочистки

Биореактор доочистки является завершающей ступенью биологической очистки сточных вод, где происходит удаление органических загрязнений и доочистка азота аммонийного при помощи прилепленной биомассы, иммобилизованной на поверхности загрузки:

- средний расход обрабатываемых сточных вод: Q=41200 м³/сут.;
- концентрация растворенного кислорода: Со = 3 мг/л;
- максимальная скорость окисления: ρ _{max}= 70 мг/(г·час);
- зольность активного ила: S=0,3;
- константа, характеризующая свойства органических загрязняющих веществ: Kl=65 мг БПК_п/л:
 - константа, характеризующая влияние кислорода: Ко = 0,625 мгО₂/л;

 $\mathsf{БПK}_{\mathsf{п}}$ поступающей в биореактор сточной воды принята 9 мгО₂/л.

Принятая доза ила в биореакторе с закрепленной биозагрузкой 8 г/л. (согласно статье «Очистка сточных вод в биореакторе с переменным количеством носителей иммобилизованного ила» В.Н. Кульков, Е.Ю. Солопанов)

Определяем удельную скорость окисления:

Взам. инв. №	
Подп. и дата	
Инв. № подл.	

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

$$\rho = \frac{\rho_{\text{max}} \cdot L_{ex} \cdot C_0}{L_{ex} \cdot C_0 + K_1 \cdot C_0 + K_0 \cdot L_{ex}} \cdot \frac{1}{(1 + 0.07a)}$$

$$\rho = \frac{70 \cdot 3 \cdot 3}{3 \cdot 3 + 65 \cdot 3 + 0.625 \cdot 3} \cdot \frac{1}{(1 + 0.07 \cdot 8)} = 2$$

Определяем время пребывания:

$$t = rac{L_{en} - L_{ex}}{a(1-s)
ho}$$
 $t = rac{9-3}{8\cdot (1-0.3)\cdot 2} = 0.5$ ч

Определяем общий объем биореактора доочистки первой очереди строительства:

$$W = \frac{t \cdot Q}{24} = 0.5 \cdot \frac{19500}{24} = 406.3 \text{ m}3$$

Определяем общий объем биореактора доочистки второй очереди строительства:

$$W = \frac{t \cdot Q}{24} = 0.5 \cdot \frac{21700}{24} = 452.1 \text{ m}3$$

Общий объем составит: 406,3 + 452,1 = 858,4 м3

Габариты (ДхШхВ)м = 18х12х4,5м. Рабочая глубина – 4 метра.

Габариты одной секции(ДхШхВ)м = 9х12х4,5м. Рабочая глубина – 4 метра.

В процессе прироста активного ила в биореакторах происходит параллельное изъятие азота и фосфора, идущих на построение клеточного вещества.

2.7. Сооружения доочистки

Доочистка сточных вод после блока биологической очистки осуществляется в два этапа:

1 этап – барабанные фильтры;

2 этап – дисковые фильтры.

№док.

Подп.

Дата

Технологической схемой очистки предусмотрено 3 фильтра 1525БК. В первой очереди строительства – 1 рабочий, 1 резервный, во второй очереди строительства – 1 рабочий, резервный общий.

Производительность фильтра первой очереди строительства:

19500 $M^3/cyT / 24$ часа = 812,5 $M^3/vac / 1$ фильтр = 812,5 $M^3/vac / 1$

Производительность фильтра второй очереди строительства:

41200 $\text{м}^3/\text{сут}$ / 24 часа = 1716,7 $\text{м}^3/\text{час}$ / 2 фильтра = 858,35 $\text{м}^3/\text{час}$

Для унификации технологического оборудования барабанный фильтр должен работать в диапазоне производительности от 812,5 м³/час до 858,35 м³/час.

Подп. и дата		работ	' Д ат
Инв. № подл.			
N⊵			
HB.			
	Изм.	Кол.уч.	Л

Взам. инв. №

Эффективность очистки по взвешенным вещества должна быть не менее 70%.

Концентрация взвешенных веществ на входе в фильтр - 10 мг/л концентрация на выходе - 7 мг/п

Для доочистки сточных вод после блока барабанных фильтров предусмотрены дисковые фильтры.

Технологической схемой очистки предусмотрено 3 фильтра. В первой очереди строительства – 1 рабочий, 1 резервный, во второй очереди строительства – 1 рабочий, резервный общий.

Производительность фильтра первой очереди строительства:

19500 $M^3/\text{сут}$ / 24 часа = 812,5 $M^3/\text{час}$ / 1 фильтр = 812,5 $M^3/\text{час}$

Производительность второй очереди строительства:

41200 м 3 /сут / 24 часа = 1716,7 м 3 /час / 1 фильтр = 1716,7 м 3 /час

Для унификации технологического оборудования дисковый фильтр должен работать в диапазоне производительности от 812,5 м³/час до 1716,7 м³/час.

Эффективность очистки по взвешенным вещества должна быть не менее 72%. Концентрация взвешенных веществ на входе в фильтр - 7 мг/л концентрация на выходе –5,0 мг/л.

Для обеззараживания очищенных сточных вод принято использование ультрафиолетовых ламп.

После блока доочистки очистки стоки поступают самотеком в резервуар чистой воды (поз.32 на ГП) и далее с помощью насосов, установленных в комплектной блочной насосной станции очищенного стока (поз.33 по ГП).по напорному канализационному коллектору К1.6H dy 600мм отводятся на сброс.

В насоной станции очищенного стока приняты канализационные насосы «KQSNL350-M13-390» – 2 шт. (3 рабочий, 1 резервный) Производительность насоса составляет 812,5м³/ч с напором 50 м.

2.8. Блок обезвоживания осадка

Блок обезвоживания осадка состоит из емкости илового стабилизатора и установок механического обезвоживания осадка.

Согласно пункту 4.1 «Справочного пособия к СНиП 2.04.03-85» продолжительность гравитационного уплотнения не должна превышать 6 часов.

Объем емкости стабилизатор первой очереди строительства составит:

 $908,76 \text{ м}^3/\text{сутки} / 24 \text{ часа} \cdot 6 \text{ часов} = 227,2 \text{ м}^3$

Количество секций резервуара: 1 шт.Габаритные размеры одного резервуара (ДхШхВ)м: 12х6х4м. Рабочий уровень в резервуаре: 3,6 м от дна.

Объем емкости стабилизатора второй очереди строительства составит:

1011,289 M^3 /сутки / 24 часа · 6 часов = 252,8 M^3

Подп. и дата	
Инв. № подл.	

Ззам. инв. №

Изм.	Коп.уч.	Пист	№лок.	Полп.	Лата

Габаритные размеры одного резервуара (ДхШхВ)м: 12х6х4м. Рабочий уровень в резервуаре: 3,6 м от дна.

Первая очередь строительства

Часовой расход осадка подаваемого в блок обезвоживания:

$$908.76 / 24 = 37.9 \text{ m}^3/\text{yac}$$

Объем обезвоженного до 82% осадка составит:

$$V$$
обезв = V ос $\frac{100\% - 99,4\%}{100\% - 82\%} = 37,9 \cdot \frac{100 - 99,4}{100 - 82} = 1,26 \text{ м}^3/\text{час}.$

Суточный объем обезвоженного до 82% осадка составит:

$$V_{\text{обезв.ос}} = 1,26 \text{ м}^3/\text{час} \cdot 24 = 30,3 \text{ м}^3/\text{сутки}$$

Объем дренажной воды, образующейся от обезвоживания, составит:

$$37.9 - 1.26 = 36.6 \text{ m}^3/\text{yac}$$

$$36,6 \text{ м}^3/\text{час} \cdot 24 \text{ ч} = 878,5 \text{ м}^3/\text{сутки}.$$

Вторая очередь строительства

Часовой расход осадка подаваемого в блок обезвоживания:

$$1011.3 / 24 = 42.13 \text{ m}^3/\text{yac}$$

Объем обезвоженного до 82% осадка составит:

$$V$$
обезв = V ос $\frac{100\% - 99,4\%}{100\% - 82\%}$ = $42,13 \cdot \frac{100 - 99,4}{100 - 82}$ = $1,4 \text{ м}^3/\text{час}$.

Суточный объем обезвоженного до 82% осадка составит:

$$V_{\text{обезв.ос}} = 1,4 \text{ м}^3/\text{час} \cdot 24 = 33,7 \text{ м}^3/\text{сутки}$$

Объем дренажной воды, образующейся от обезвоживания, составит:

$$42,13 - 1,4 = 40,73 \text{ m}^3/\text{yac}$$

$$40,73 \text{ м}^3/\text{час} \cdot 24 \text{ ч} = 977,6 \text{ м}^3/\text{сутки}.$$

Технологической схемой предусмотрен блок обезвоживания осадка, состоящий из четырех обезвоживателей: для первой очереди строительства- 2 рабочих, 1 резервный, для второй очереди строительства - 1 рабочий, 1 резервный общий. Таким образом при запуске первой и второй очереди предусмотрено 3 рабочих обезвоживателя, 1 резервный.

Для унификации оборудования каждый обезвоживатель должен работать в диапазоне производительности от 18,9 м³/час до 26,7 м³/час.

Наружные сети производственной канализации

На площадке КОС предусматривается прокладка следующих технологических трубопроводов:

-К1.2- самотечный трубопровод подачи стока на биологическую очистку 1-ой очереди марки Мультиплекск СТРОНГ III ПЭ100RC SDR 17-560×33,2 «техническая» по ГОСТ 18599-2001(q= 225,7 л/c, h/dmin=0,5, Vmin=2,46, imin=0,007)

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Взам. инв. №

Подп. и дата

04/2022-151-Π-01000-TX1-TY

- -К1.2- самотечный трубопровод подачи стока на биологическую очистку 2-ой очереди марки Мультиплекск СТРОНГ III ПЭ100RC SDR 17-560×33,2 «техническая» по ГОСТ 18599-2001 (q= 251,1 π/c, h/dmin=0,55, Vmin=2,5, imin=0,007)
- -К1.8- самотечный трубопровод подачи стока на распределительную чашу №2 с блока биологической очистки 1-ой очереди марки Мультиплекск СТРОНГ III ПЭ100RC SDR 17-560×33,2 «техническая» по ГОСТ 18599-2001 (q= 225,7 л/с, h/dmin=0,5, Vmin=2,46, imin=0.007)
- -К1.8- самотечный трубопровод подачи стока на распределительную чашу №2 с блока биологической очистки 2-ой очереди марки Мультиплекск СТРОНГ III ПЭ100RC SDR 17-560×33,2 «техническая» по ГОСТ 18599-2001 (q= 251,1 л/с, h/dmin=0,55, Vmin=2,5, imin=0.007)
- -К1.9- самотечный трубопровод подачи стока с распределительной чаши №2 на ВРО ф920×10,0 по ГОСТ 10704-91(q= 238,4 л/с, h/dmin=0,3, Vmin=1,7, imin=0,007)
- -К1.4- самотечный трубопровод подачи стока с ВРО на биореактор марки Мультиплекск СТРОНГ III ПЭ100RC SDR 17-560×33,2 «техническая» по ГОСТ 18599-2001 (q= 238,4 π/c, h/dmin=0,55, Vmin=2,45, imin=0,007)
- -К1.5- самотечный трубопровод подачи стока с биореактора на доочистку марки Мультиплекск СТРОНГ III ПЭ100RC SDR 17-560×33,2 «техническая» по ГОСТ 18599-2001 (q= 238,4 π/c, h/dmin=0,55, Vmin=2,5, imin=0,007)
- -К1.6Н- напорный трубопровод подачи очищенного стока с НС на выпуск марки Мультиплекск СТРОНГ III ПЭ100RC SDR 17-710×42,1 «техническая» по ГОСТ 18599-2001 (q= 476.8 n/c, v=1.55, 1000i=2.65)
- -К1.10- самотечный трубопровод подачи в камеруотбора ила с BPOф530×8,0 по FOCT 10704-91 (q= 249,4 π /c, h/dmin=0,55, Vmin=2,50, imin=0,007)
- -К1.11- самотечный трубопровод подачи в камерувозвратного ила с ВРО марки Мультиплекск СТРОНГ III ПЭ100RC SDR 17-560×33,2 «техническая» по ГОСТ 18599-2001 (q= 249,4 π/c, h/dmin=0,55, Vmin=2,50, imin=0,007)
- -О4Н- напорный трубопровод отвода избыточного активного ила марки Мультиплекск СТРОНГ III ПЭ100RC SDR 17-180×10,7 «техническая» по ГОСТ 18599-2001 (q= 22,2 л/с, v=1,12, 1000i=8,1)
- -О5Н- напорный трубопровод отвода избыточного активного илаиз биореактора марки Мультиплекск СТРОНГ III ПЭ100RC SDR 17-180×10,7 «техническая» по ГОСТ 18599-2001 (q= 23.9 n/c, v=1.2, 1000i=9.1)
- -O7H- напорный трубопровод возвратного активного иласталь ф530×8,0 мм по FOCT 10704-91 (q= 251,1 π/c , v=1,21, 1000i=2,97)
- -Д1- самотечный трубопровод сброса дренажных и промывных вод с блока обезвоживания осадка марки Мультиплекск СТРОНГ III ПЭ100RC SDR 17-160x9,5 «техническая» по ГОСТ 18599-2001 (q= 11,3 л/с, h/dmin=0,65, Vmin=1.1, imin=0,007)

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

-Д- самотечный трубопровод сброса дренажных и промывных вод с здания доочистки марки Мультиплекск СТРОНГ III ПЭ100RC SDR 17-225×13,4 «техническая» по ГОСТ 18599-2001 (q= 27.8 л/c, h/dmin=0.6, Vmin=1.4, imin=0.007)

Трубопроводы К1H, К1.2, на подводящем трубопроводе к блоку механической и биологической очистки утепляются при помощи греющего кабеля SAMREG 17HTM2-CT саморегулирующегося и фольгопласта СПМП-10 - металлизированного самоклеющегося.

Кабель имеет фторополимерную оболочку, надежно защищающую от агрессивных веществ стоков. Удельная мощность 17 Ватт на погонный метр. Рассчитан на напряжение питания 220-230 В. Может нагреваться до 65 градусов Цельсия, а в кратковременном режиме до 85.

Полиэтиленовые трубы укладываются на грунтовое плоское основание.

При разработке в стесненных условиях, котлованы выполняются с вертикальными откосами и креплением откосов досками.

При укладке трубопроводов под твердыми покрытиями траншеи засыпаются на всю глубину песчаным грунтом.

На сетях устанавливаются колодцы из сборных железобетонных элементов ГОСТ 8020-90 по т.п.р. 901-09-11.84, 902-09-22.84.

Взам. инв. №									
Подп. и дата									
№ подл.	:								
B. No.								04/2022-151-Π-01000-TX1-TЧ	Лист
ZHB		Изм	Копуч	Пист	Молок	Полп	Лата	5 <u> </u>	16

Изм. Кол.уч. Лист №док.

Подп.

Дата

3 Обоснование потребности в основных видах ресурсов для технологических нужд

Основными ресурсами необходимыми для работы проектируемых очистных сооружений хозяйственно-бытовой канализации являются электроэнергия и реагенты.

3.1 Дозирование «Бингсти»

Расчет проведен для овицидного препарата «Бингсти». Согласно инструкции 1 литр 10% раствора дозируется на 600 м³ сточных вод.

Суточный расход препарата для первой очереди строительства:

19500 м
3
/сутки · 1 л / 600 м 3 = 32,5 л/сутки

Производительность одного насоса дозатор для первой очереди составит:

$$32,5$$
 л /сут. / $24 = 1,35$ л/час

Суточный расход препарата для второй очереди строительства:

21700
$$M^3$$
/сутки · 1 л / 600 M^3 = 36,2 л/сутки

Производительность одного насоса дозатор для второй очереди составит:

$$36,2$$
 л /сут. / $24 = 1,51$ л/час

Оборудование для дозирования реагента

Предусмотрена станция дозирования реагента. Дозирование осуществляется в резервуары активного ила.

Объем емкости для реагента:

$$(32,5+36,2)$$
 л/сут · 4 суток = 274,8 л.

Примем емкость объемом 300 литров. Одна рабочая, одна резервная.

Три насоса дозатора – 2 рабочих, один резервный, производительность каждого 1,5 л час, с возможность увеличения производительности до 2 литров в час. Давление на выходе насоса – 6 бар.

3.2 Дозирование флокулянта

В качестве флокулянта принят катионоактивный флокулянт на основе полиакриламида. Доза применяемого реагента составляет 2-6 кг на 1 тонну сухого вещества.

Таблица 5 – Характеристика осадка

Взам. инв. №

Подп. и дата

Инв. № подл.

Наименование	Ед. изм.	Первая очередь	Вторая очередь
Объем осадка	м ³ /час	1,26	1,4
Плотность осадка	тонн/м ³	1,3	1,3
Масса осадка	тонн/час	1,638	1,82
Количество реагента			
при дозе 2 кг/т	кг/час	3,276	3,64

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Лист

1	1		1
при дозе 3 кг/т	кг/час	4,914	5,46
при дозе 4 кг/т	кг/час	6,552	7,28
при дозе 5 кг/т	кг/час	8,19	9,1
при дозе 6 кг/т	кг/час	9,828	10,92

Расчет объема исходного раствора при максимальной дозе г кг/м³: принимаем 1% раствор, т.е. 10 г вещества в 1 литре воды.

Первая очередь строительства:

Вторая очередь строительства:

10920 г/час
$$\cdot$$
 1 л / 10 г = 1092 л /час 1% раствора

Концентрация раствора подбирается индивидуально при запуске сооружений в эксплуатацию.

3.3 Дозирование коагулянта

Для химического удаления фосфора из сточной воды дозируется коагулянт «Сульфат алюминия» высшего сорта. Доза коагулянта определена согласно пункту 9.2.5.7 СП 32.13330 и составляет: 0,87 кг алюминия на 1 кг фосфора. При это учитывается повышающий коэффициент 1,5 т.к. концентрация фосфатов на выходе должна быть менее 0,2 мг/л.

Доза коагулянта:

$$0.87 \cdot 1.5 \cdot 4.44 = 5.8 \text{ M}$$

Учитывая, что активная часть реагента всего 16 %, норма на 1 м³ сточной воды составит:

$$5.8 \cdot 100\% / 16\% = 36.2 \text{ M}\text{ }.$$

Объем реагента необходимый для удаления 4,44 мг/л фосфора в сутки:

- первая очередь строительства: $36.2 \text{ г/м}^3 \cdot 19500 \text{ м}^3/\text{сут} = 706.17 \text{ кг/сут};$
- вторая очередь строительства: $29,94 \text{ г/м}^3 \cdot 21700 \text{ м}^3/\text{сут} = 785,84 \text{ кг/сут}.$

Количество реагента, хранимого в пределах станции очистки, должен составлять не менее 30 суточного запаса. Таким образом, количество реагента на 30 суток составит:

Первая очередь строительства:

$$30 \cdot 706,17 = 21185,04$$
 кг (848 мешков по 25 кг)

Вторая очередь строительства:

$$30 \cdot 785,84 = 23575,15$$
 кг (943 мешка по 25 кг)

Расчет объема исходного раствора: принимаем 8% раствор, т.е. 80 г вещества в 1 литре воды.

Первая очередь строительства:

Вторая очередь строительства:

Подп. и дата	
Инв. № подл.	

Взам. инв. №

Изм	Коп уч	Пист	№лок	Полп	Лата

785838 г/сут · 1 л / 80 г = 9822,98 л /сутки 8% раствора 9,82 м³/сутки / 24 ч = 0,409 м³/час = 409 л/час

Концентрация раствора подбирается индивидуально при запуске сооружений в эксплуатацию.

3.4 Дозирование подкормки активного ила

Доза внешнего субстрата составит:

$$C_{CODadd}$$
= 5 · 14,882 = 74,41 мг/л ХПК

Для первой очереди строительства количество внешнего субстрата составит: $74,41 \text{ г/m}^3$ XПК 19500 м³/сут / 24 ч = 60 458,125 г/час XПК.

Для второй очереди строительства количество внешнего субстрата составит: $74,41 \text{ г/м}^3$ XПК 21700 м³/сут / 24 ч = 67 279,042 r/час XПК.

Тип питательного субстрата подбирается при проведении пусконаладочных работ.

В таблицах 6и 7 указано количество субстрата в зависимости от типа.

Расчет проведен на основе таблицы 2.13 «Эффективная эксплуатация и расчет сооружений биологической очистки сточных вод» О.В. Харькина.

Таблица 6 – Количество питательного субстрата для первой очереди

Наименование		Первая очередь				
Значение ХПК необходополнительнос по расч	• •		60 458,	13		
Источник углерода	Значение ХПК, мг/л	Количество в час, л	Количество в сутки, л	Запас на 30 суток, м3	Запас на 1 год, м3	
Метанол (100%)	1188000	50,89	1221,38	36,64	445,80	
Этанол (100%)	1649000	36,66	879,92	26,40	321,17	
Уксусная кислота (100% концентрация)	1121000	53,93	1294,38	38,83	472,45	
Расвор уксусной кислоты (20% раствор)	219000	276,06	6625,55	198,77	2418,33	
Сахар (сироп) (50% концентрация)	685000	88,26	2118,24	63,55	773,16	
Глицерин (100%)	1538420	39,30	943,17	28,30	344,26	
Ацетат натрия (30%)	235558	256,66	6159,82	184,79	2248,33	
Сахароза (60%)	866006	69,81	1675,50	50,27	611,56	
Caxap (100%)	1777440	34,01	816,34	24,49	297,96	
Глюкоза (100%)	1647800	36,69	880,56	26,42	321,41	
Меласса (75%)	1006425	60,07	1441,73	43,25	526,23	

₽						
흳						
Инв. № подл.						
Z	Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Взам. инв. №

Тодп. и дата

Лист

Таблица 7 – Количество питательного субстрата для второй очереди

Наименование	•	Вторая очередь				
Значение ХПК необхо дополнительнос по расч		67 279,04				
Источник углерода	Значение ХПК, мг/л	Количество, час	Количество, сутки	Запас на 30 суток, м3	Запа на 1 год, м3	
Метанол (100%)	1188000	56,63	1359,17	40,78	496,10	
Этанол (100%)	1649000	40,80	979,20	29,38	357,41	
Уксусная кислота (100% концентрация)	1121000	60,02	1440,41	43,21	525,75	
Расвор уксусной кислоты (20% раствор)	219000	307,21	7373,05	221,19	2691,16	
Сахар (сироп) (50% концентрация)	685000	98,22	2357,22	70,72	860,39	
Глицерин (100%)	1538420	43,73	1049,58	31,49	383,10	
Ацетат натрия (30%)	235558	285,62	6854,77	205,64	2501,99	
Сахароза (60%)	866006	77,69	1864,53	55,94	680,55	
Caxap (100%)	1777440	37,85	908,44	27,25	331,58	
Глюкоза (100%)	1647800	40,83	979,91	29,40	357,67	
Меласса (75%)	1006425	66,85	1604,39	48,13	585,60	

Количество принятых насосных агрегатов 4 рабочих, 1 резервный.

Производительность одного насосного агрегата должна лежать в диапазоне от 17 до 154 л/час. Напор не менее 6 бар.

Изм. Кол.уч. Лист №док.

Подп.

Дата

04/2022-151-Π-01000-TX1-TY

Лист

20

Источником поступления сточных вод является городская канализационная хозяйственно-бытовая насосная станция.

Расчет проведен на основе данных технического задания на проектирование. Для первой очереди строительства принят расход сточных вод 19500 м³/сут, для второй очереди строительства принят расход21700 м³/сут. Общая суммарная производительность очистных сооружений составляет 41200 м³/сут. Средний расход при суммарной производительности первой и второй очереди строительства – 1716,6 м³/ч, 477 л/с.

Согласно пункту 9.1.3 ИТС 10-2019 определяем величину эквивалентного числа жителей (ЭЧЖ).

$$N_{peq} = 1000 \cdot B_{en5} / 60$$

где B_{en5} — максимальная средняя нагрузка по БПК₅ на ОС за 2 недели за 3-летний период наблюдений, кг O_2 /сут. (произведение расхода сточных вод в сутки на концентрацию данного загрязняющего вещества за три года);

60 – расчетное количество загрязнений по БПК5 от одного жителя, г О₂/чел в сутки.

$$N_{peq} = 1000 \cdot (0,203 \text{ кг/м}^3 \cdot 41200 \text{ м}^3/\text{сут.}) / 60 = 139394 \text{ человек}$$

Для первой очереди строительства:

$$N_{peq} = 1000 \cdot (0,203 \text{ кг/м}^3 \cdot 19500 \text{ м}^3/\text{сут}) / 60 = 65975 \text{ человек}$$

Для второй очереди строительства:

$$N_{peq} = 1000 \cdot (0,203 \text{ кг/м}^3 \cdot 21700 \text{ м}^3/\text{сут}) / 60 = 73418 \text{ человек}$$

По таблице 2 СП 31.13330.2021 определяем коэффициент, учитывающий число жителей:

Для первой очереди строительства при расходе 19500 м³/сутки:

$$B_{\text{max}} = 1.11$$

$$B_{\min} = 0.67$$

Для первой и второй очереди строительства при расходе 41200 м³/сутки:

$$B_{\text{max}} = 1.08$$

$$B_{\min} = 0.8$$

Согласно пункту 5.2 СП 31.13330.2021 определяем коэффициент часовой неравномерности:

$$K_{\text{u. max}} = \alpha_{\text{max}} \beta_{\text{max}};$$

 $K_{\text{u. min}} = \alpha_{\text{min}} \beta_{\text{min}}.$

где, а – коэффициент, учитывающий степень благоустройства зданий, режим работы производства и т.д.

Примем $a_{\text{max}} = 1,2, a_{\text{min}} = 0,4$

Для первой очереди строительства при расходе 19500 м³/сутки:

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Взам. инв.

Подп. и дата

Инв. № подл.

$\Omega A/2\Omega 22$	_1 <i>5</i> 1_[⅂₋Ⴖ1∩∩∩	-TX1-TY
ひみ/とひとと:	- 1 ショニ	1-0 1000	- / - -

$$K_{\text{u.max}} = 1,2 \cdot 1,11 = 1,332$$

$$K_{\text{u.min}} = 0.4 \cdot 0.67 = 0.268$$

Для первой и второй очереди строительства при расходе 41200 м³/сутки:

$$K_{\text{u.max}} = 1.2 \cdot 1.08 = 1.320$$

$$K_{\text{y.min}} = 0.4 \cdot 0.8 = 0.276$$

Определяем максимальные и минимальные суточные расходы воды:

$$\begin{split} &Q_{\text{cyt. max}} = K_{\text{cyt. max}} Q_{\text{cyt.m}}; \\ &Q_{\text{cyt. min}} = K_{\text{cyt. min}} Q_{\text{cyt.m}}. \end{split}$$

где, $K_{\text{сут}}$ - коэффициент суточной неравномерности.

Примем $K_{\text{сут max}} = 1,1, K_{\text{сут min}} = 0,7$

Для первой очереди строительства при расходе 19500 м³/сутки:

$$Q_{\text{сут max}}$$
= 1,1 · 19500 = 21450 м³/сутки

$$Q_{cyt min}$$
= 0,7 · 19500 = 13650 м³/сутки

Для первой и второй очереди строительства при расходе 41200 м³/сутки:

Q сут max =
$$1,1 \cdot 41200 = 45320 \text{ м}^3/\text{сутки}$$

Q сут min=
$$0.7 \cdot 41200 = 28840 \text{ м}^3/\text{сутки}$$

Определяем расчетные максимальные и минимальные часовые расходы воды:

$$q_{\text{u. max}} = K_{\text{u. max}} Q_{\text{cyr.max}} / 24;$$

 $q_{\text{u. min}} = K_{\text{u. min}} Q_{\text{cyr.min}} / 24.$

Для первой очереди строительства при расходе 19500 м³/сутки:

$$q_{\text{u.max}}$$
= 1,332 · 21450 /24 = 1190,475 m^3 /4ac

$$q_{\text{4. min}} = 0.268 \cdot 13650 / 24 = 152.4 \text{ m}^3 / \text{4ac}$$

Для первой и второй очереди строительства при расходе 41200 м³/сутки:

qu.
$$max = 1,296 \cdot 45320 / 24 = 2447,3 \text{ m} 3 / \text{q} ac$$

qч. min =
$$0.32 \cdot 28840 / 24 = 384.5 \text{ м3/час}$$

№ подл.	Подп. и дата	Взам. инв. №

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

~ 4	2022	4 - 4	\neg	1000	T\/4	T II
1/1/	じノいじご	161	1 1_/ \'	1 <i>1 11 11</i> 1	_ I Y 1	_ 1 U

Требования к параметрам и качественным характеристикам очищенных сточных вод на выпуске регламентируются нормами сброса в водоем рыбохозяйственного назначения Нижнекамское водохранилище согласно приказа №552 от 16.12.2016..

Наименование загрязняющего	После очистки	ПДК
компонента		
1		
Взвешенные вещества	3,6	4,75*
БПК полн.	3,0	3,0
БПК5	2,0	2,0
ХПК	15,0	15
Общий азот	1,83	2,0
Аммоний-ион	0,5	0,5
Общий фосфор	0,2	0,2
Фосфаты (по Р)	0,2	0,2

^{*}Расчет ПДКвзв.=ПДКфон+0,25=4,5+0,25=4,75

Лабораторный контроль

Точками аналитического контроля являются места входа и выхода воды на соответствующие ступени очистки, а также река Кама на сбросе, выше сброса по течению и ниже сброса по течению. Схема аналитического контроля и методики проведения необходимых анализов сточной воды на всех этапах очистки будут проработаны в регламенте на пуско-наладочные работы.

Аналитический контроль и отбор проб осуществляет собственная аккредитованная лаборатория (аттестат аккредитации РОСС RU.0001.512257) в соответствии с графиком, утвержденным органами Роспотребнадзора. Лаборатория для проведения химических и гидробиологических анализов оснащена необходимым оборудованием и приборами: шкафами для реактивов, приборов и нагревательного оборудования, письменным, лабораторным столами, столом для весов и микроскопа, столом-мойкой.

Основными приборами для проведения анализов являются рН-метр, фотоколориметр, технические и аналитические весы, приборы для определения растворенного кислорода, температуры, рН, дифракционный измеритель взвешенных веществ (ДИВ), сушильный шкаф, микроскоп и аквадистиллятор.

В ΜУ 2.1.5.800-99 соответствии «Организация Госсанэпиднадзора С за обеззараживанием сточных вод. Методические указания» необходимо осуществлять хозяйственно-бытовых микробиологические исследования очищенных стоков присутствие патогенных микроорганизмов возбудителей кишечных инфекций, жизнеспособных яиц гельминтов и цист патогенных кишечных простейших) – 1 раз в

-14	[
1НВ. № ПОДЛ.	Подп. и дата	Взам. инв. №

						0
McN	Копли	Пист	Молок	Полп	Пата	

квартал, на содержание термотолерантных колиформных бактерий – по согласованию с Роспотребнадзором, общих колиформных бактерий, колифагов – 1 раз в неделю.

Изм. Кол.уч. Лист №док. Подп. Дата

Взам. инв.

Подп. и дата

Инв. № подл.

04/2022-151-Π-01000-TX1-TY

Лист

6 Обоснование показателей и характеристик (на основе сравнительного анализа) принятых технологических процессов и оборудования - для объектов производственного назначения

Принятые технологические решения соответствуют требуемым показателям на выходе. В случае отказа от какой-либо ступени очистки, требования очистки не будут удовлетворены.

При принятии лучшей системе очистки, на примере мембранной технологии, качество воды на выходе улучшилось бы на 10-15%, но стоимость реализации данной технологии в 5-10 раз выше. Таким образом, принятое технологическое решение является наиболее рациональным.

Взам. инв. № Подп. и дата Инв. № подл. 04/2022-151-Π-01000-TX1-TY

Изм. Кол.уч. Лист №док.

Подп.

Дата

Лист

25

7 Обоснование количества и типов вспомогательного оборудования, в том числе грузоподъемного оборудования, транспортных средств и механизмов

Вспомогательное оборудование требуется при производстве строительно-монтажных и ремонтных работ. Все строительно-монтажные работы на период строительстваосуществляются с помощью грузоподъемного оборудования, транспортных средств имеханизмов, зарегистрированных в территориальном органе Ростехнадзора и имеющих допускк работе.

Транспортные услуги по приемке, выгрузке, транспортировке на переработку отходов,погрузке для транспортировки (вывоза) конечного продукта будут осуществляться подряднойорганизацией (имеющей договор и соответствующую лицензию), выбранной на тендернойоснове.

Обоснование количества и типов вспомогательного оборудования, в том числегрузоподъемного оборудования, транспортных средств и механизмов на период проведениястроительства приведены в томе «Проект организации строительства».

В качестве вспомогательного оборудования используются два автомобильного прицепа для вывоза обезвоженного осадка. Для поднятия технологического оборудования (мешалки) из сооружений: блок биологической очистки используется грузоподъемное оборудование, поставляемое в комплексной поставке основного технологического оборудования.

Взам. ин				
Подп. и дата				
№ подл.				
1нв. №г				04/2022-151-П-01000-TX1-TЧ

Изм. Кол.уч. Лист №док. Подп. Дата

Очистные сооружения, как комплекс отдельных зданий и сооружений, связаны между собой технологическими коммуникациями.

Основной возможной причиной, способствующей возникновению аварий, является разгерметизация оборудования (трубопроводы с арматурой) вследствие:

- неплотности фланцевых и штуцерных соединений;
- коррозионного разрушения труб, дефектов металла;
- некачественной сварки;
- преднамеренного воздействия;
- неправильного проведения пусковых операций;
- неправильного проведения ремонтных работ.

Факторами, способствующими развитию аварии, являются:

- нарушение правил эксплуатации, правил противопожарной безопасности;
- складирование вблизи потенциальных мест возгорания горючих материалов;
- нарушение сроков очередных профилактических осмотров оборудования;
- неудовлетворительная организация технического обслуживания технологического оборудования и производства работ.

Безопасность и надежность эксплуатации трубопроводов, в пределах нормативного срока эксплуатации, обеспечивается за счет выполнения следующих мероприятий:

- выбором трассы и системы крепления трубопроводов, позволяющей скомпенсировать температурные деформации (при необходимости);
- для регулярного обслуживания трубопроводов и арматуры в труднодоступных местах предусмотрены площадки для обслуживания и проходные мостики из негорючих материалов. Для проведения работ по ремонту и обслуживанию оборудования трубопроводы снабжены запорной арматурой;
- трубопроводы высокого давления оснащены регулирующей арматурой, предохранительными устройствами, средствами защиты и измерений.

Безопасная и надежная эксплуатация обеспечивается организацией производственного контроля за исправным состоянием оборудования, измерительных приборов, тепловой изоляции, устройствами заземления, предохранительных устройств, наличия опознавательной окраски и маркировки трубопроводов и их элементов, работоспособностью приборов контроля состояния воздуха в рабочей зоне, наличием средств индивидуальной защиты, обеспечивающих безопасные условия труда, наличием производственных инструкций.

Взам. инв.	
Подп. и дата	
Инв. № подл.	

Эксплуатация и техническое обслуживание оборудования должны осуществляться персоналом, прошедшим обучение и аттестованным в установленном порядке, а также имеющим удостоверения установленного образца, соответствующую квалификационную группу по электробезопасности и не имеющим медицинских противопоказаний к выполняемой работе.

В проекте, В соответствующих разделах, предусмотрены мероприятия, обеспечивающие безопасную эксплуатацию, сохранность и безопасность населения и обслуживающего персонала, строений и сооружений, находящихся в непосредственной близости ОТ проектируемого объекта. Категории ПО взрывопожароопасности производственных помещений определены в проекте в соответствии с НПБ 105-2003 и РД 34.03.350-98, категории взрыво- и пожароопасных зон – в соответствии с Правилами устройства электроустановок (ПУЭ). Оборудование поставляется в соответствии со стандартами техническими условиями, утвержденными и согласованными установленном порядке.

Принятое при проектировании технологическое оборудование и трубопроводы удовлетворяют требованиям безопасности, прочности, коррозионной стойкости и надежности при эксплуатации при заданных параметрах и климатических условиях, отвечают требованиямПравил безопасности и другой нормативно - технической документации, действующей в РФ.

Защита от коррозии подземных трубопроводов предусматривается покрытием весьма усиленной изоляцией в соответствии с требованиями ГОСТ 9.602-2005.

Изоляция наземных трубопроводов предусматривается с тепловым носителем, что так же предупреждает коррозийные процессы.

В проекте предусматривается применение сертифицированного оборудования и материалов (в том числе и иностранного производства), соответствующих требованиям безопасности.

Взам. ин				
Подп. и дата				
№ подл.				
HB. №				04/2022-151-Π-01000-TX1-TЧ

Изм. Кол.уч. Лист №док.

Подп.

Дата

9 Сведения о наличии сертификатов соответствия требованиям промышленной безопасности и разрешений на применение технологического оборудования и технических устройств (при необходимости) – для объектов производственного назначения

Проектируемое оборудование принято с учетом требований промышленной безопасности, климатических условий района строительства и эксплуатационных характеристик оборудования, а также с учетом возможности его нормальной эксплуатации, осмотра и ремонта.

Для принятого в проекте технологического оборудования обязательным является наличие у производителей оборудования сертификатов соответствия и разрешений на применение, сертификатов соответствия требованиям Технического регламента Таможенного союза ТР ТС 012/2011 «О безопасности машин и оборудования». Окончательный выбор заводов-изготовителей будет производиться заказчиком по результатам тендера на поставку оборудования.

Все применяемое оборудование, трубы и трубопроводная арматура имеют сертификаты соответствия таможенным регламентам.

Взам. инв. №					
Подп. и дата					
№ подл.					
HB. Nº I				04/2022-151-Π-01000-TX1-TЧ	Лист

Изм. Кол.уч. Лист №док.

Подп.

Дата

29

Для организации обслуживания оборудования и управления технологическим процессом очистных сооружений предусматривается персонал, работающий посменно.

Основной формой организации труда по обслуживанию очистных сооружений является бригадная форма. Режим работы очистных сооружений постоянный круглосуточно, круглогодично, график работы - двухсменный.

Руководство эксплуатацией объектов выполняет начальник цеха водоотведения. Оперативно-диспетчерская связь и связь на время ЧС осуществляется посети радиотелефонной связи.

Для обслуживания проектируемых объектов создание дополнительных постоянных рабочих мест не требуется, достаточно имеющегося на площадке персонала. Размещение работников предусмотрено в существующем здании АБК.

Для обеспечения бытовых условий согласно СП 44.13330.2011, п.5.5 в здании АБК имеются гардеробные, душевые и столовая.

Профессионально-квалификационный состав персонала соответствует Общероссийскому классификатору профессийрабочих, должностей служащих и тарифных разрядов ОК 016-94 с учетом спецификипроизводства, в соответствии с ЕТКС, выпуском 36.

Рабочее время и время отдыха в пределах учетного периода регламентируется графикомработы, который утверждается работодателем. Работодатель ведет учет времени, фактически отработанного каждым работником. Графики работ составляются с указанием рабочих дней и дней отдыха в неделю, месяц и т.д., при этом продолжительность отдыха составляет не менее продолжительности работы.

Данные о численности работников рассчитаны по Типовым отраслевым нормам численности работников водопроводно-канализационного хозяйства от 23 марта 2020 года и приведены в таблице 8.

При необходимости проведения ремонтных работ по оборудованию привлекается квалифицированный персонал из других подразделений эксплуатирующей организации или сотрудники специализированных организаций на договорной основе.

Окончательное решение по штату персонала очистных сооружений принимается руководителем предприятия

Взам. инв. №	
Подп. и дата	
Инв. № подл.	

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Таблица 8 – Численность работников

			ŀ	Группапр				
Nº	Наименование	(смень	Ы	Под-		оизвод- ственных процессо в	
п/п	паименование	1		2	смен ы	Всего		
1	Начальникочистныхсооружений	1		-	-	1	1a	
2	Технолог	1		-	-	1	1a	
3	Инженер-энергетик	1		-	-	1	1a	
4	Начальник смены	1		-	-	1	1a	
5	Оператор очистных сооружений	3		3	2	8	16	
6	Оператор здания мех-очистки	1		1	1	3		
7	Оператор здания мех-обезвоживания осадка	1		1	1	3		
8	Электромонтерпообслуживаниюэлектрооб орудования и КИПиА.			1	1	3	1б	
9	Слесарь	2		1	1	3	1б	
10	МОП			-	-	1	1б	
11	Охранник			1	1	3	1a	
	ИТОГО			8	7	29		

Социально-бытовое обслуживание

Бытовое обслуживание персонала предусмотрено в здании АБК, где имеются все необходимые бытовые помещения согласно СП 44.13330.2011, в т.ч. организовано питание и оказание первой медицинской помощи. Дополнительно для работников, занятых на процессах, протекающих принеблагоприятных метеорологических условиях связанные с воздействием влаги, вызывающейнамокание спецодежды и/или при температуре воздуха до 10°С, включая работы на открытомвоздухе (группы производственных процессов 2в, 2г), предусмотрены помещения для обогреваи сушки спецодежды, гардеробные чистой и грязной одежды с душевыми.

Персонал обучен оказанию первой медицинской помощи, а рабочие места обеспеченыаптечками доврачебной помощи.

Качество воды, подаваемой на хозяйственно-питьевые нужны, соответствуеттребованиям СанПиН 2.1.3684-21.

Организация и оснащение рабочих мест

Основой организации трудового процесса на проектируемых объектах являетсяорганизация рабочих мест. Под рабочим местом понимаются все места, где работник долженнаходиться или куда ему необходимо следовать в связи с его работой и которые прямо

			·		
Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Взам. инв.

Подп. и дата

Инв. № подл.

иликосвенно находятся под контролем работодателя. Рабочие места могут быть постоянными илинепостоянными. Постоянное рабочее место – это место, на котором работающий находитсябольшую часть своего рабочего времени (более 50% или более 2 часов непрерывно). Если приэтом работа осуществляется в различных пунктах рабочей зоны, постоянным рабочим местомсчитается вся рабочая зона. В данной проектной документации предусмотрено созданиенепостоянных рабочих мест.

Рабочей зоной является пространство, ограниченное по высоте 2 м над уровнем пола илиплощадки, которых находятся места постоянного или непостоянного (временного)пребывания работающих. За каждым рабочим закреплена определенная зона обслуживания

Каждый рабочий обеспечивается необходимым инструментом, оборудованием, оргтехоснасткойи средствами связи в соответствии с инструкциями по видам работ и отраслевыми нормами.

Организация и оснащение рабочих мест и сфер обслуживания осуществляется с учетомих назначения: по квалификации и профессиям, числу работающих, уровню специализации, механизации автоматизации работ, количеству обслуживаемого оборудования и др.

сертифицированного Проектом предусматривается применение оборудования, коллективной механизмов. материалов, средств защиты, имеющих соответствующуютехническую документацию и, в необходимых случаях, разрешение.

обеспечен средствами Персонал производственными помещениями, связи, сигнализации, КИП и А и механизации, инструментом, материалами, инвентарем и др.

каждым рабочим закреплена определенная зона обслуживания. Каждый рабочийобеспечивается необходимым инструментом и оборудованием в соответствии с должностнымиинструкциями и отраслевыми нормами.

Рабочие места оснащены организационной оснасткой, при выборе которой необходимособлюдать следующие требования:

- удобный доступ к органам управления;
- соответствие оснастки её функциональному назначению;
- удобное размещение применяемой типовой или стандартной оснастки, предметовтруда;
 - соблюдение требований нормативных, правовых актов по охране труда.

Данные об оснащении рабочих мест приведены в таблице 9.

Подп. и дата Инв. № подл. Изм. Кол.уч. Лист №док. Подп. Дата

NHB.

Взам.

Лист

Профессия работающего	Оснащение рабочего места организационной оснасткой
Начальник	Набор офисной мебели для оснащения рабочего местаруководителя (стол
очистных	письменный, кресло поворотное, шкафдля документов, шкаф для одежды), стол
сооружений	компьютерный,компьютер, принтер, копировальный аппарат
Главный	Набор офисной мебели для оснащения рабочего местаруководителя (стол
технолог	письменный, кресло поворотное, шкафдля документов, шкаф для одежды), стол
Технолог	компьютерный,компьютер, принтер, копировальный аппарат
Главный	Набор офисной мебели для оснащения рабочего местаруководителя (стол
	письменный, кресло поворотное, шкафдля документов, шкаф для одежды), стол
механик	компьютерный,компьютер, принтер, копировальный аппарат
	Набор офисной мебели для оснащения рабочего местаруководителя (стол
Оператор	письменный, кресло поворотное, шкафдля документов, шкаф для одежды), стол
	компьютерный, компьютер. Приборы контроля.
Механик	Инвентарь, набор инструментов слесаря-ремонтника
Техник	Набор инструментов слесаря-ремонтника

Обслуживание рабочих мест

Под обслуживанием рабочего места понимается система мероприятий по обеспечениюрабочего места всеми видами услуг для своевременного и качественного выполненияпроизводственного задания.

Решения по обслуживанию рабочих мест должны отвечать следующим требованиям:

- -соблюдать чёткую специализацию исполнителей работ по функциям обслуживания иплановые сроки выполнения работ;
 - -обеспечивать экономичность, оперативность и надёжность обслуживания;
 - -определять состав служб, подразделений и трудоёмкость функций обслуживания.

К функциям обслуживания рабочих мест относятся:

- -производственно-подготовительная обеспечение бесперебойной работыоборудования, планирование комплектования материалов, запасных частей к оборудованиюи комплектующих изделий;
 - -наладочная оборудования и оснастки;
 - -энергетическая обеспечение всеми видами энергии (теплом, электроэнергией и др.);
- -контрольная контроль за производственным процессом, соблюдениемтехнологических требований;
- -социальное и производственное обслуживание бытовое обеспечение работниковпитанием, медицинскими, коммунальными, бытовыми услугами и др.

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Взам. инв.

Подп. и дата

Инв. № подл.

Лист

11 Перечень мероприятий, обеспечивающих соблюдение требований по охране труда при эксплуатации производственных и непроизводственных объектов капитального строительства (кроме жилых зданий)

Специальная одежда и специальная обувь работников, контактирующихсо сточной водой или отбросами, должна подвергаться стирке и дезинфекциине реже одного раза в неделю. Запрещается вручную очищать технологическое оборудование. Передосмотром оборудования, необходимо выключить его из электросети.

Хранениеобезвоженного осадка в станции мехобезвоживания запрещается. Автомобильные прицепы подлежат проверке на исправное состояние нереже одного раза в год.

Отбор проб воды из открытых сооружений производят с рабочихплощадок, которые ограждены в соответствии с требованиями техникибезопасности.

Взам. инв. №								
Подп. и дата								
№ подл.								
3. No							04/2022-151-Π-01000-TX1-TЧ	Лист
Инв.	Изм.	Кол.уч.	Лист	№док.	Подп.	Дата	07/2022-131-11-01000-17(1-1-1	34

12Описание автоматизированных систем, используемых в производственном процессе,

Автоматизация систем, используемых в производственном процессе, разрабатывается в подразделе «Технологические решения. Автоматизация комплексная». Автоматизация систем технологических установоккомплектной поставки разработана в соответствующей эксплуатационнойдокументации, прилагаемой к изделию.

	ı
Взам. инв. №	
Подп. и дата	
№ подл.	

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

13 Результаты расчетов о количестве и составе вредных выбросов в атмосферу и сбросов в водные источники (по отдельным цехам, производственным сооружениям) - для объектов производственного назначения

Канализационная система после реконструкции и введения вэксплуатацию в связи с приведенными мероприятиями не являетсяисточником загрязнений вследствие своей герметичности и заглубленности.В результате эффективной технологической работы очистныхсооружений попадание вредных выбросов в водные источники исключается.

Инв. № Подп. и дата Взам. инв. № Подп. и дата

04/2022-151-Π-01000-TX1-TY

Лист

14 Перечень мероприятий по предотвращению (сокращению) выбросов и сбросов вредных веществ в окружающую среду

Мероприятия по предотвращению выбросов и сбросов вредных веществв окружающую среду:

- соблюдение технологического процесса очистки сточных вод;
- въезд на территорию очистных сооружений разрешен толькоработникам эксплуатирующих служб.

На очистных сооружениях для снижения выбросов ДПВ следует не допускать возникновения в сооружениях очистки сточных вод гидравлических застойных зон, накопления корки из плавающих веществ, не складировать обезвоженный осадок на открытых площадках.

Для уменьшения выбросов в атмосферу предусматривается

- Приёмная камера закрытого типа,

Изм. Кол.уч.

Лист №док.

Подп.

- очистка выбросов от производственных помещений, в которых осуществляется грубая механическая очистка, сгущение и обезвоживание осадка, иловых насосных станций, имеющих резервуары.
- Сливная станция закрытого типа со встроенной системой очистки выбросов в атмосферу.

Взам. инв. №					
Подп. и дата					
юдл.					
нв. № подл.				04/2022-151-П-01000-TX1-TЧ	Лист

15 Сведения о виде, составе и планируемом объеме отходов производства, подлежащих утилизации и захоронению, с указанием класса опасности отходов – для объектов производственного назначения

В проекте реконструкции очистных сооружений предусматривается обезвоживание осадка. Объем обезвоженного до 82% осадка 4 класса опасности составит 33,7 м³/сут. Данный осадок после обезвоживания хранится в контейнерах до накопления ивывозятся на полигон для твердых бытовых отходов. Для обеззараживания и обезвреживания образующихся производственных отходов (обезвоженного осадка) предусматривается дозирование комбинированного реагента, представляющего собой овицивидный препарат «Бингсти»

од/2022-151-П-01000-TX1-TY

Кол.уч. Лист №док.

Подп.

Дата

Лист

16 Перечень мероприятий по обеспечению соблюдения установленных требований энергетической эффективности к устройствам, технологиям и материалам, используемым производственном процессе, позволяющих исключить нерациональный расход энергетических ресурсов, если такие требования предусмотрены в задании на проектирование

Проектом предусмотрен ряд мероприятий по обеспечению энергоэффективности:

- применение современного оборудования и материала;
- применение на всем заменяемом оборудовании частотногорегулирования;
- применение усовершенствованного оборудования, способствующегоповышению КПД;
- снижение потерь энергетической эффективности за счетрационального выбора количества и качества применяемого оборудования иматериала;
 - использование проектируемого прибора учета СВ;
 - применение технологического оборудования с высоким КПД.

Взам. инв. Подп. и дата Инв. № подл. Лист 04/2022-151-Π-01000-TX1-TY 39

Изм.

Кол.уч. Лист №док.

Подп.

Дата

Согласоно заключению отчета обследования строительных конструкций ш. 04/2022-151-ОТ следующие сооружения имеют ограниченно-работспособное состояние и подлежат сносу, см. раздел «Проект организации демонтажа»:

- Здание решеток мелкопрозорных (поз.8 по ГП);
- Камера приемного исходного осадка (поз.9 по ГП);
- Здание накопления песка (бункерная) (поз.10 по ГП);
- Монолитная плита (резервуар очищенной воды) (поз.11 по ГП);
- Монолитная плита (вторичный отстойник) (поз.12 по ГП);
- Щитовая (поз.13 по ГП);
- Насосная станция сырого осадка (поз.14 по ГП);
- Фундамент (под мехобезвоживание) (поз.15 по ГП);
- Фундамент (под здание) (поз.16 по ГП).

Существующие здания АБК и гаража находятся в работоспособном состоянии и отвечают требованиям действующих норм и правил.

Здание АБК предназначено для размещения оборудования и персонала.

Существующее здание АБК двухэтажное, прямоугольное в плане с размерами в осях43,0х12,0 м.Конструктивно здание — каркасное. На конструкции колонн опираются железобетонные балки. Покрытие выполнено из железобетонных пустотных плит. Ограждающие конструкции выполнены из железобетонных панелей и кирпичной кладки.

<u>Гараж</u> предназначен для размещения оборудования и автомобильной техники. Существующее здание гаража одноэтажное, прямоугольное в плане с размерами восях 24,0x18,0 м.Конструктивно здание — каркасное. На конструкции колонн опираются железобетонные балки. Покрытие выполнено из железобетонных пустотных плит. Ограждающие конструкции выполнены из железобетонных панелей и кирпичной кладки.

<u>Насосная-РУ</u> предназначена для приема канализационных вод и размещения насосного оборудования, воздуходувок и подстанции. Существующее здание насосной станции одноэтажное с пристроенной частьютрансформаторной подстанции,прямоугольное в плане с размерами 12,55x55,7 м. Внутри здания насосной станции имеется приямок, где расположено насосное оборудование.Конструктивная схема основного здания насосной — каркасное, пристроенная ТП имеет неполный каркас.

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Взам. инв.

Подп. и дата

Инв. № подл.

Здание Насосная-РУ реконструируется: существующее насосное оборудование с трубопроводной обвязкой демонтируется, воздуходувки подлежат замене, в трансформаторной подстанции предусмотрена замена оборудования под потребности новых объектов.

Предусмотренные проектом новые здания выполнены в блочно-модульном исполнении, полной заводской готовности. Здания поставляются блоками и узлами со сборкой на площадке.

Проеткируемые здания каркасно-панельные. Каркас стальной, рамно-связевый, однопролетный. В качестве наружных ограждающих конструкций используются:для стен – трехслойные стеновые панели типа «Сэндвич» с минераловатным утеплителем толщиной 120 мм с облицовкой металлическими листами с полимерным покрытием;для кровли - трехслойные стеновые панели типа «Сэндвич» с минераловатнымутеплителем толщиной 150 мм с облицовкой металлическими листами с полимерным покрытием.

Здания оборудованы необходимыми инженерными системами, которые входят к комплект заводской поставки зданий: технологическое оборудование, арматура и трубопроводы, системы автоматизации, электроснабжения, отопления и вентиляции, пожарной и охранной сигнализации.

При проектировании и строительстве используются архитектурные, функциональнотехнологические, конструктивные и инженерно-технические решения, обеспечивающие установленный уровень энергетической эффективности зданий, строений и сооружений при соблюдении требуемых санитарно-гигиенических условий:

- установка оборудования, обеспечивающего в системе внутреннего теплоснабжения зданий, строений и сооружений поддержание гидравлического режима, автоматическое регулирование потребления тепловой энергии в системах отопления и вентиляции в зависимости от изменения температуры наружного воздуха, приготовление горячей воды и поддержание заданной температуры в системе горячего водоснабжения;
- оборудование отопительных приборов автоматическими терморегуляторами для регулирования потребления тепловой энергии в зависимости от температуры воздуха в помещениях;
- использование для рабочего освещения источников света со светоотдачей не менее 95 лм/Вт и устройств автоматического управления освещением в зависимости от уровня естественной освещенности, обеспечивающих параметры световой среды в соответствии с установленными нормами.

Для выполнения требований энергетической эффективности в течение всего срока эксплуатации зданий, строений и сооружений при проектировании и строительстве следует обеспечивать:

- долговечность ограждающих конструкций путем применения материалов, имеющих надлежащую стойкость (морозо-, влаго-, биостойкость, стойкость против коррозии, высокой

Инв. № подл. и дата Взам. инв. №

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

температуры, циклических температурных колебаний и других разрушающих воздействий окружающей среды);

- организацию (в случае необходимости) специальной защиты элементов конструкций, выполняемых из недостаточно стойких материалов.

Вводимые в эксплуатацию здания, строения и сооружения должны отвечать следующим требованиям в части используемых в них устройств и технологий, включая инженерные системы:

- оборудование регуляторами давления воды в системах холодного и горячего (при наличии) водоснабжения на вводе в здание, строение и сооружение;
- установка оборудования, обеспечивающего выключение освещения при отсутствии людей в местах общего пользования (датчики движения, автоматические выключатели через заданный период времени);
- оборудование оконных конструкций элементами фурнитуры с функцией микровентиляции (инфильтрации) воздуха в помещения;
- оборудование отопительными приборами с классом энергетической эффективности не ниже первых двух (в случае, если классы установлены);
- оборудование отопительных приборов автоматическими терморегуляторами для регулирования потребления тепловой энергии в зависимости от устанавливаемой потребителями температуры воздуха в помещениях;
 - оборудование устройствами, оптимизирующими работу систем вентиляции.

В томе 3 «Объемно-планировочные и архитектурные решения» определены значения характеристик ограждающих конструкций и приняты конструктивные решения, обеспечивающие соответствие расчетных значений теплотехнических характеристик требуемым значениям, установленным исходя из необходимости создания благоприятных санитарно-гигиенических условий в помещениях.

Взам инв No						
Полп и лата						
ПГОГ	t					
пропом ян					04/2022-151-П-01000-TX1-TЧ	Лист
1 -		 1	1			

Изм. Кол.уч. Лист №док.

Подп.

Проектной документацией приняты следующие технические решения:

- применение заводского оборудования;
- герметизированная система подготовки;
- защита оборудования, трубопроводов, арматуры от почвенной и атмосферной коррозии;
 - прокладка трубопроводов в единых технологических коридорах;
- соблюдение безопасных минимально допустимых расстояний между сооружениями в соответствии с действующими нормативами;
 - контроль сварных стыков трубопроводов;
 - испытание трубопроводов на прочность и герметичность;
 - контроль, автоматизация и управление технологическими процессами;
- материальное исполнение оборудования, труб соответствует требованиямнормативных документов. Все технические средства, материалы и химические вещества, средства индивидуальной и коллективной защиты работников, трубы и детали трубопроводов, применяемые в проектной документации, имеют сертификаты соответствия требованиям промышленной безопасности, сертификаты и декларации соответствия требованиям технических регламентов таможенного союза на применение (приложение A);
 - электроснабжение, заземление, молниезащита объектов;
- строгое соблюдение периодичности планово-предупредительных ремонтов и контроль технического состояния оборудования, труб и арматуры.

Проектная документация разработана в соответствии с заданием на проектирование, действующими нормативными документами, с требованиями по обеспечению безопасной эксплуатации зданий, строений, сооружений и безопасного использования прилегающих территорий, и с соблюдением технических условий.

Схема потока, представленная на рисунке 1, является общим примеромдвижения очищаемых сточных вод. Полная схема очистки хозяйственно-бытовых сточных вод представлена в графической части данного тома.

Сточные воды от главной канализационной станции по напорнымтрубопроводам диаметром 600 мм поступают на очистные сооружения в камеру гашения напора (поз.1). Камера гашения напора осуществляет функцию гашения напора иобеспечения работы очистных сооружений в самотечном режиме.

Блок механической очистки размещен в отдельно стоящем здании. Сточные воды поступают в камеру гашения напора. Далее - на оборудование механической очистки, расположенное в проектируемом здании. В блоке механической очистки предусмотрены решетки с прозором 10 мм и 3 мм, песколовка и жироловка. От решеток отбросы поступают в

Инв. № подл.	Подп. и дата	ä

Изм.

ам. инв. №

					04/2022-
Кол.уч.	Лист	№док.	Подп.	Дата	

шнековый транспортер, где отходы отжимаются и одновременно транспортируются в контейнеры для отбросов. По мере накопления контейнеров отбросами они при помощи грузоподъемного механизма погружаются в автотранспорт и вывозятся на утилизацию.

После механической очистки стоки попадают в распределительную чашу №1, затем на блок биологической очистки.

Блок биологической очистки (анаэробная, аноксидная и аэробная зоны) представляет собой железобетонный резервуар уличного подземного размещения. Для исключения зон застаивания каждое сооружение оборудованоперемешивающими устройствами.

Каждый резервуар оснащен системой аэрации на основе тарельчатых аэраторов. На каждую линию биологической очистки воздух подается по закольцованному трубопроводу воздуха от воздуходувной станции. Подача воздуха осуществляется в постоянном режиме, без остановок и перебоев, так как перерыв в подаче воздуха более двух часов может вызвать гибель биоценоза активного ила. Очищенный в аэротенке сток поступает в лоток, размещенный в конце резервуара, а оттуда через отводящие окна самотеком подается во вторичный отстойник.

После блока биологической очистки смесь сточной воды и активного ила самотеком поступает в распределительную чашу вторичных отстойников, откуда подается в центральную часть рабочего отстойника-распределитель. Выходя из распределительного устройства, смесь попадает в пространство, ограниченное стенками успокоителя, который представляет собой металлический цилиндр, обеспечивающий заглубленный выпуск иловой смеси в отстойную зону отстойника.

Сбор осветлённой воды в отстойнике осуществляется через водосливы сборным кольцевым лотком, расположенным в отстойнике на некотором расстоянии от стены отстойника. Из сборного лотка осветлённая вода отводится на доочистку в биореактор.

Биореактор представляет собой железобетонный резервуар уличного подземного размещения. Каждый резервуар оснащен системой аэрации. Подача воздуха осуществляется периодически для регенерации ершевой загрузки.

После биореактора осветленные сточные воды подаются на барабанные и дисковые фильтры, затем на обеззараживание УФО и в резервуар чистой промывной воды. Очищенный сток по двум трубопроводам подается на существующий выпуск в реку Каму.

Для резервной реагентной системы обеззараживания используется существующая система обеззараживания сточной воды гипохлоритом натрия.

Избыточный активный ил, образующийся в процессе биологической очистки, из вторичных отстойников илососами по трубопроводу отводится в резервуары избыточного активного ила, далее в систему обработки и обезвоживания осадка.

Дренажные воды, образующиеся при опорожнении емкостей биологической очистки, биореакторов, фильтров и т.п., накапливаются в емкости сбора дренажа, откуда по мере накопления перекачиваются в камеру гашения напора.

Инв. № подл.	Подп. и дата	Взам. инв. №

ı						
	Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

В здании №6 размещается блок воздуходувок для подачи воздуха в систему аэрации. Блок состоит из трех воздуходувок. Подача воздуха осуществляется от каждой воздуходувки по трубопроводам, которые выходят из здания №6 и доходят до резервуаров биологической очистки сточных вод. Подача воздухав биореакторпредусмотрена отдельной группой компрессоров, размещенных в здании №13 Блок доочистки. Каждая технологическая линия подачи воздуха оборудована запорной арматурой. Лист 04/2022-151-Π-01000-TX1-TY 45 Кол.уч. Лист №док. Изм. Подп. Дата

Взам. инв. №

Подп. и дата

Инв. № подл.

Мероприятия, позволяющие обеспечить антитеррористическую защищенность проектируемого объекта, направлены на обнаружение взрывных устройств, оружия, боеприпасов.

Согласно СП 132.13330.2011 (п.6.1), объект отнесен к 2 классу (средняя значимость) по значимости объекта. Согласно п.7.1 и таблице 1 СП 132.13330.2011, объект должен быть оснащен: КПП, стационарным металлообнаружителем или ручным металлоискателем, охранной телевизионной системой и системой охранного освещения, системой охранной и тревожной сигнализации, системой экстренной связи.

Проектируемые сооружения находятся на существующей территории очистных сооружений, на котором организован пропускной режим, доступ на территорию ограничен: площадка огорожена существующим забором,въезд организован через ворота. Доступ наплощадку имеет только эксплуатирующаяорганизация.

Проектными решениями предусмотрено оснащение территории очистных сооружений комплексом инженерно-технических средств (ИТСО), которые обеспечивают решение следующих задач:

- противодействие несанкционированному пересечению посторонними лицами, транспортными средствами границ площадки;
- обнаружение нарушителей, проникающих в охраняемые здания, сооружения и помещения;
- задержку нарушителей на время, необходимое для принятия решений и совершения ответных действий персоналом охраны;
 - организацию доступа на объект персонала объекта и посетителей;
- защиту элементов оборудования объектов от возможности их демонтажа посторонними лицами;
- защиту технологического оборудования от возможных воздействий на них постороннихлиц, в результате которых может измениться режим работы;
- защиту проводных коммуникаций, расположенных на территории базы от преднамеренного вывода их из строя;
- прием на охрану и снятие с охраны зданий, сооружений и помещений, оборудованных охранной сигнализацией;
- дистанционное наблюдение за периметром, служебными помещениями и обстановкой в различных зонах с помощью системы охранного телевидения;
 - контроль деятельности персонала охраны;

					_
Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

NHB.

Взам.

Подп. и дата

Инв. № подл.

04/2022-151-Π-01000-TX1-TY

- обеспечение прямой связи оператора с постами охраны, ответственными в режимных помещениях;
 - охранное освещение территории базы.

Проектными решениями объект оснащается:

- КПП на въезде на территорию,
- воротами, ограничивающими въезд на площадку,
- периметральным ограждением;
- системой охранной сигнализации;
- системой контроля и управления доступом (СКУД): двери входных групп зданий оснащаются магнитоконтактными извещателями. На наружной стене зданий установлены свето-звуковые охранные извещатели для подачи сигнала при обнаружении проникновения.
 - периметральным охранным видеонаблюдением;
 - периметральным охранным освещением.

Охрана предприятия осуществляется частным охранным предприятием.

КПП оборудован воротами, площадкой для досмотра автомобильного траспорта и постовым помещением, а также телефонной связью, системой видеонаблюдения и СКУД.

Пропускной режим на месторождении включает в себя:

- установление порядка прохода рабочих и других лиц на территорию объектовых площадок месторождения;
 - оборудование КПП, в котором предусмотрен досмотр сотрудников и посетитлей.

Наличие ручного металлоискателя предусмотрено в здании КПП.

<u>Система</u> <u>видеонаблюдения</u> <u>обеспечивает</u>:возможность общеплощадочного ситуационного контроля;защиту от несанкционированного изменения режима работы системы и изъятия видеодокументов;покадровое отображение на мониторе и фиксацию в устройстве видеозаписи тревожной (оперативной) информации от любой видеокамеры с наложением даты и времени.

Охранная сигнализация — совокупность технических средств для обнаружения появления нарушителя на охраняемом объекте и подачи извещения о тревоге в помещение с круглосуточным дежурством персонала для принятия мер по задержанию нарушителя. Охранная сигнализация предусматривается во всех блок-боксах и блочных зданиях.

Предусмотренное оборудование, кабельная продукция и другие материалы имеют Государственные сертификаты соответствия, технические условия и другие соответствующие документы

Инв. № подл. п Додп. и дата Взам. инв.

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

20 Описание технических средств и обоснование проектных решений, направленных на обнаружение взрывных устройств, оружия, боеприпасов

Согласно техническому заданию на проектирование, проектом не предполагаетсяединовременное нахождение в любом из помещений более 50 человек.На существующей территории очистных сооружений действуетспециальный пропускной режим.

Инв. № подл. Подп. и дата Взам. инв. №

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

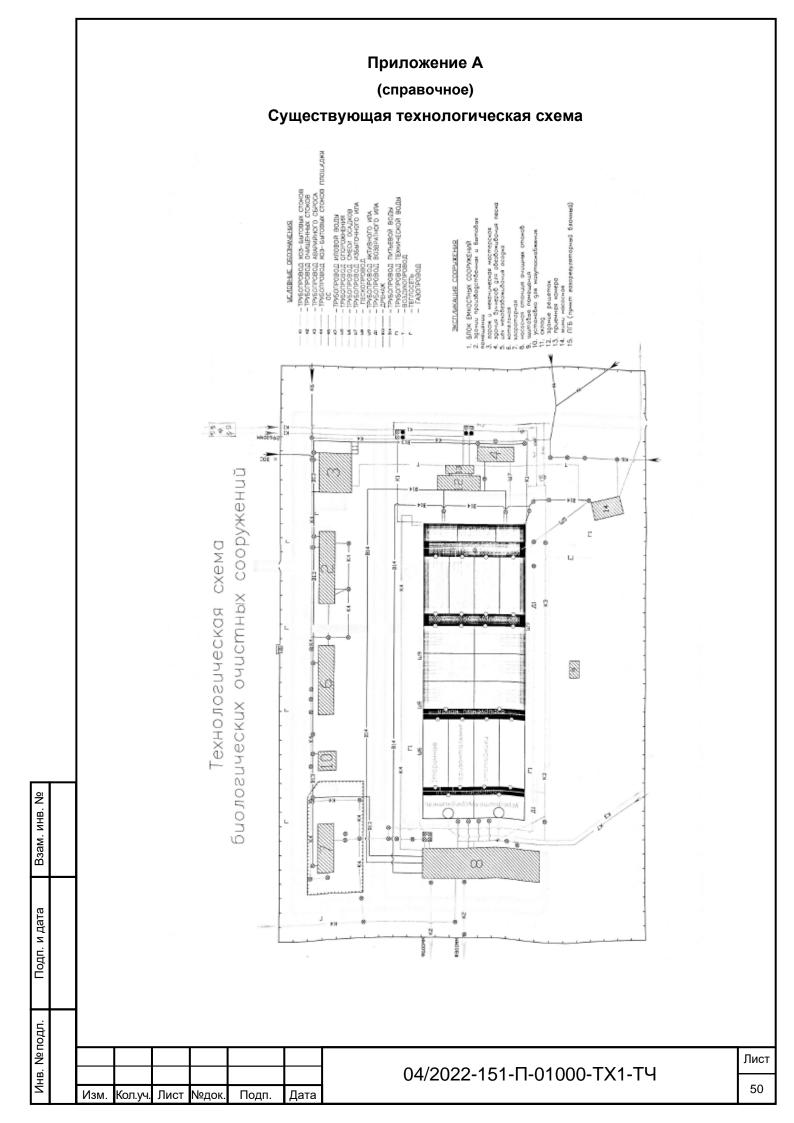
21 Описание и обоснование проектных решений при реализации требований

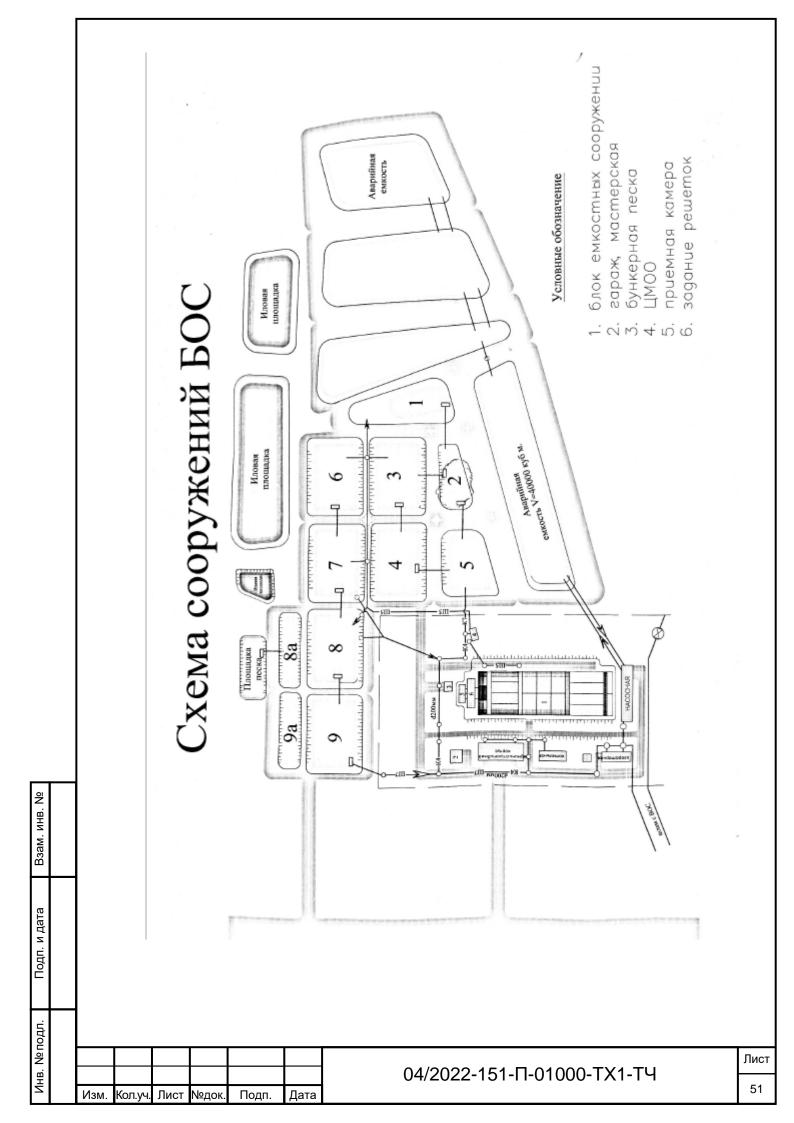
Биологические очистные сооружения спроектированы с учётомследюущих входных параметров:

- входной поток, м³/сут и м³/ч;
- входной показатель ХПК (химической потребности в кислороде) иБПК₅ (биохимической потребности в кислороде) в мг/л;
 - общий фосфор (P), общий азот (N), N-NH4, N-NO2 и N-NO3 в мг/л;
 - ИИ в мг/л и мл/л, а также щёлочность в ммоль/л;
 - температура, рН.

Изм. Кол.уч. Лист №док.

Подп.


Дата


Поскольку природа процесса биологическая, важны также следующиеданные:

- соотношение ХПК/БПК₅;
- соотношение БПК₅/общий N/ общий P;
- соотношение БПК₅/общий N;
- соотношение БПК₅/общий Р;
- токсичные компоненты на входе.

Подробные показатели измерения, их периодичность и значимостьразрабатываются во время пуско-наладочных работ и отражаются вруководстве по эксплуатации.

Взам. инв. №					
Подп. и дата					
№ подл.					
B. №				04/2022-151-Π-01000-TX1-TЧ	Лист

1 Существующая технологическая схема

Очистные сооружения г. Нефтекамска были спроектированы из расчета производительности сооружения – 40000 м³/сут. и запущены в эксплуатацию в 1977 году. В общем объеме стоков, поступающих на канализационные очистные сооружения, 84% составляют сточные воды от населения, 10% - от предприятий, 6% - от коммунально-бытовых предприятий. Общая протяженность самотечных канализационных коллекторов и сетей – 117, 5 км., напорных – 68,76 км.

На очистные сооружения канализации г. Нефтекамска сточные воды поступают от двух канализационных насосных станций (КНС) - КНС-4 (главная) и КНС-2. КНС-4 перекачивает -70% общего объема стоков, КНС-2 - 30°/о.

Сточная вода от завода автосамосвалов по двум ниткам напорных трубопроводов Ø 400 мм подается в городской канализационный коллектор Ø 700-1000 мм и совместно с хозяйственно-бытовыми стоками города поступает в приемный резервуар КНС-4, откуда по двум ниткам трубопроводов Ø 600 мм в приемную камеру ОСК.

На КНС-4 установлено следующее оборудование: насосы СД800/33 (ФГ-800/33) (Q= 800 м3/ч, h=33 м) -2 шт., Φ B2700/26,5 (16 Φ B-18) (Q= 2700 м3/ч, h=26,5 м) - 3 шт., грабли механические РМУ Б (прозор решетки 16±0,65 мм) - 3 шт., дробилка Д36 -3 шт.

На КНС-2 установлено следующее оборудование: насосы СМ150-125-315/4 (Q= 200 м3/ч, h=32 м) - 2 шт., СМ200-150-500/4 (Q= 400 м3/ч, h=32 м) - 2 шт., грабли механические МГТ (прозор решетки $16\pm0,65$ мм) - 1шт, дробилка Д36 - 1 шт.

От КНС-4 сточные воды по двум напорным коллекторам 21600 мм и длиной 6,0 км поступают на очистные сооружения канализации. На расстоянии 3,7 км от очистных сооружениях в напорные коллекторы сточных вод от КНС-4 подключается напорный коллектор от КНС-2.

Очистные сооружения канализации г. Нефтекамск обеспечивают механическую и биологическую очистку поступающих сточных вод и их обеззараживание жидким хлором.

Обработка образующихся осадков в настоящее время не производится. Осадок перекачивается на иловые площадки.

Проектом предусматривался следующий состав сооружений:

- Приемная камера сточных вод (габариты 9х3х3 м);
- Комбинированные решетки-дробилки марки РД-600, пропускной способностью 556 л/с. Данное оборудование отсутствует;
- 3. Двухсекционные горизонтальные аэрируемые песколовки (габариты 13,5х4х2,5) (ТП 902-2-27 тип.VШ) -2 шт;
- Аэрируемые каналы (габариты 36х3х4,5 м) 4 шт. Расположены перед первичными отстойниками, перед аэротенками, перед вторичными отстойниками, перед резервуарами-усреднителями;

4

-						
№ подл.						
亨						
NHB.						
\mathbb{Z}	Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

NHB.

Взам.

дп. и дата

- Первичные горизонтальные отстойники (габариты 36х9к4 м). Объем от-стойной части одного отстойника 1300 м3 - 4 шт;
- 6. Аэротенки (габариты 60х9х4,5 м). Объем одной секции 5346 м3;
- 7. Вторичные горизонтальные отстойники (габариты 36х9х4,5 м) 4 шт;
- Резервуары-усреднители (габариты 1 8x15x3,5 м) 2 шт;
- Корпус вакуумфильтрации [ТП 902-2-76] (габариты здания 46х12х10 м). В настоящее время цех не эксплуатируется. Все имеющееся оборудование для обезвоживания осадка вышло из строя;
- 10.Насосно-воздуходувная станция (габариты здания 55х12х6 м);
- 11.Хлораторная на жидком хлоре (габариты здания 30х13хб м);
- 12.Иловые площадки 9 шт. Объем 91902 м3;
- 13. Аварийная емкость сточной воды. Объем 40000 м3;
- Здание бункеров для обезвоживания песка (габариты здания 9х6х7 м);
- 15.Резервуар хоз-бытовых стоков;
- Котельная, оборудованная тепловым насосами (габариты здания 38х15хбм);
- 17. Вспомогательные здания и сооружения.

Технологическая схема очистных сооружений представлена на Рисунок 1.1. Общая компоновка сооружений БОС показана на Рисунок 1.2

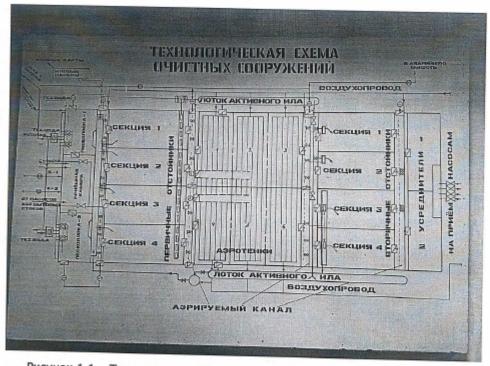


Рисунок 1.1 - Технологическая схема очистных сооружений г. Нефтекамск

5

					_
Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

NHB.

Взам.

и дата

Подп. 1

Ne подл.

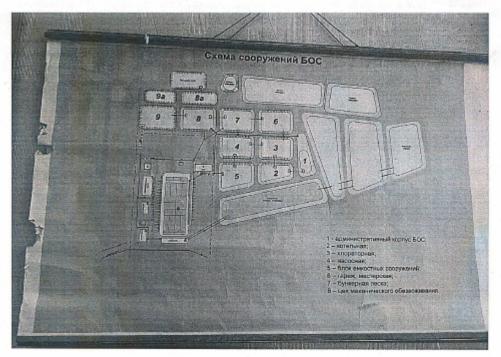


Рисунок 1.2 - Схема сооружений БОС (общая компоновка)

1.1 Здание решеток

Для механической очистки сточных вод на объекте реализован прием сточных вод от напорного коллектора в приемную камеру канализационных очистных сооружений, после которой сточные воды по лоткам в самотечном режиме направляются в здание механической очистки. В здании установлены шнековые (роторные) решетки с интегрированной промывкой и уплотнением извлекаемых отходов.

Данный тип оборудования в последнее время хорошо себя зарекомендовал и применяется на многих очистных сооружениях.

Фильтрующая поверхность решеток такого типа представляет собой цилиндрическую перфорированную или выполненную из клинообразных стержней поверхность. Загрязнения, оседающие на фильтрующую поверхность, поднимаются с помощью шнека в зону промывки, затем уплотняются и сбрасываются в контейнер и затем утилизируются.

Принцип действия следующий. Решетка установлена в канал под углом 350 и, в принципе, представляет собой вращающуюся корзину, состоящую из клиновидных реек. Сточная вода попадает в установку через открытое дно корзины. Загрязнения оседают на корзине, а сточная вода проходит через решетку. Осевшие на внутренней стороне корзины загрязнения создают дополнительный фильтрующий эффект. Клиновидная форма стержней уменьшает возможность засорения корзины. Установка начинает работать при превышении уровня жидкости до решетки выше установленного. При вращении корзины загрязнения поднимаются до уровня сброса и с помощью щетки -

6

						Ī
						ı
Изм.	Кол.уч.	Лист	№док.	Подп.	Дата	
						-

NHB.

Взам.

Подп. и дата

Инв. № подл

Приложение Б (справочное)

Объемы отведенных сточных вод Нефтекамск 2020-2022 гг

Сведения об объемах отведенных сточных вод г. Нефтекамска, по данным прибора учёта (соответствует отчётам 2ТП-водхоз), м³

Месяц	2020 год	2021 год	2022 год
январь	570520	597635	546140
февраль	561130	507870	496310
март	665914	609740	564150
апрель	551160	594510	671420
май	557160	551470	548150
июнь	531120	494370	521240
июль	527130	516230	486530
август	528990	532070	499700
сентябрь	531150	532230	550450
октябрь	557320	567270	561560
ноябрь	594470	540730	573190
декабрь	646715	603580	
год	6822779	6647705	

Главный технолог МУП «НВК» Голушко А.Н.

Взам. и	
Подп. и дата	
1нв. № подл.	

	·			·		
ĺ	Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Приложение В

(справочное)

Сведения о работе очистных сооружений за 2019-2020 гг

"Утверждаю" Главный инженер МУП "НВК"

Взам. инв. №

Подп. и дата

Инв. № подл.

Topes A.M.

Сведения о работе очистных сооружений г.Нефтекамска за январь 2019 г.

			,	Напорный коллектор	плектор	000		p. Kama		
Ингредиенты	Прием	Приемная камера	1 OTC	очищенных сточных вод	очных вод	THE	в/сброса	м/сброса	н/сброса	ğ
	П/Л	т/месяц	n/n	МГ/Л	т/месяц	Mr/л	nr/n	mr/n	п/лм	п/лм
Сухой остаток	000'609	354,568326		360,000	209,597040	361.1	237,0	244,0	237,0	1000
Взвешен.вещества	217,233	126,476094	123,6	5,267	3,066521	5,58	5,20	5,40	5,10	+0,25
БПК полн.	290,833	169,327044	239,0	14,967	8,713997	3,00	15,40	15,70	14,90	3,0
XTK	579,667	337,490243	351,9	31,300	18,223298	15,00	32,8	33,3	32,5	42
Аммоний солевой	40,819	23,765393	47,4	2,600	1,513756	0,50	0,55	0,53	0,51	0,5
Нитраты	2.153	1,253507		38,920	22,659769	40,00	2,09	2,18	2,14	40,0
Нитриты	0.003	0,001747		0,390	0,227063	80'0	0,03	0,03	0,03	0,08
Фосфаты (по Р)	4.300	2,503520	3,8	0,767	0,446558	0,20	0,10	0,11	0,10	0,20
Хлориды	146,543	85,319386	129,8	108,900	63,403105	111,20	27,8	27,8	27,8	300,0
Сульфаты	83,673	48,715592	68,2	75,843	44,156856	80,53	46,11	43,98	41,84	100,0
СПАВ анион.	2,753	1,602835		0,050	0,029111	0,05	<0,01	<0,01	<0,01	0,50
Фенолы	0,032	0,018631		<0,001	0,000000	10001	<0,001	<0,001	<0,001	0,001
Жиры	29,370	17,099625		<0,1	0,000000	00'0	×0,1	<0,1	<0,1	
Нефтепродукты	2,147	1,250013		0,023	0,013391	0,03	0,030	0,030	0,030	0,05
Железо общее	4,003	2,330603		0,210	0,122265	0,10	0,30	0,31	0,29	0,10
Xpow 6+	0,002	0,001164		0,002	0,001164	10,01	<0,01	<0,01	<0,01	0,02
Алюминий	0,283	0,164767		<0,04	0,000000	0,037	<0,04	<0,04	<0,04	0,04
Кадмий	<0,0001	0,000000		<0,0001	0,000000	0,0001	<0,0001	<0,0001	<0,0001	0,005
Кобальт	<0,001	0,000000		<0,001	0,000000	0,001	<0,001	V	Ť	0,01
Хром 3+	0,086	0,015251		0,011	0,006404	0,017	0,015			0,07
Медь	0,013	0,003177		0,001	0,000582	0,001	0,001	0,001		
Марганец	0,107	0,017158		600'0	0,005240	600'0	0,010	600'0		
Никель	<0,001	0,000000		<0,001	0,000000	0,001	<0,001	<0,001		٥
Свинец	0,0078	0,004541		0,0035	0,002038	0,005	0,0014	0,0010		
Цинк	0,128			600'0	0,005240	600'0	0,011	0,010	600'0	0,01
Doctors crossocial contracts	100000000000000000000000000000000000000	- le	10000	T. I. S. I.						l

Начальник цеха ВО Главный технолог

Инженер-химик Начальник АЦ

Христофорова С.В. Мухамадуллина Ф.М.

Пушкарев С.Н. Голушко А.Н.

Изм. Кол.уч. Лист №док Подп. Дата

04/2022-151-Π-01000-TX1-TY

609,333 298,000 407,000 2,187 0.003 222,467 56,247 4.053 86,053 2,737 0,031 27,180 3,243 0,008 0,423 0,048 149,800 <0,001 1,877 0,017 0,071 <0,001 960'0 <0.0001 0,0053 Взвешен. вещества Аммоний солевой Ингредиенты Взам. инв. № Фосфаты (по Р) Нефтепродукты Сухой остаток объем стоков Железо общее СПАВ анион Сульфаты БПК полн Алюминий Хлориды Нитраты Нитриты Марганец Фенолы Xpom 6+ Хром 3+ Кобальт Кадмий Свинец Никель Жиры Медь **∐**NHK Подп. и дата Инв. № подл. Изм. Кол.уч Лист №док Подп. Дата

Сведения с работе очистных сооружений г.Нефтекамска за февраль 2019г. 572000 M³

"Утверждаю" Главный инженер МУП "НВК"

Fopes A.M.

3,0

0.5

15,0 +0,25 1000 90,0 100,0 40.0 0,20 300,0 0,50 0,04 0,005 0,07 0,02 0,01 0,001 0,0 0,0 0.001 Π/JM д¥ 241.0 31,5 0,39 0,03 60'0 29,8 51,10 2,32 <0,001 <0,01 0,28 0,016 <0.1 0,030 0,0° 0,001 600'0 н/сброса <0,0001 <0,001 0,00 0.0024 П/JM 247.0 31,8 p. Kama 14,40 0,40 2,47 0.0 60'0 29,8 53,23 <0,01 <0,001 0,030 0,28 0,018 40.0v 0,001 0,010 ٥ 1 <0,0001 <0,001 <0.001 0.0025 M/c5poca ME/JM 30,8 0,44 2,28 0,03 29,8 5.00 0,09 54,66 0,0 <0,001 0,030 <0,29 0.0⁴ 0,025 ô, 0,001 0,0028 0.013 <0.001 <0.0001 <0,001 B/cpboca L/JM 15,00 0,50 40,00 0,08 0,20 111,20 80,53 0,05 0,00 0,001 0,03 0,10 0,01 0,037 0,009 0.001 0,017 0.001 0,001 0.0001 Π/JM 205,824476 2.974400 8,677240 18,286840 1,635920 22,332596 0,228800 0,451880 63,148800 46,372040 0,028600 0.000172 0,017160 0.114400 0,002860 0,00000,0 0,007436 0,000572 0,005148 т/месяц 0.005148 0,00000,0 0,002059 0,00000,0 0,000000 очищенных сточных вод Напорный коллектор 359,833 0,400 5,200 15,170 31,970 0,050 0,030 39,043 0,790 110,400 81,070 0,005 0,013 0.0003 0,1 0,200 <0,001 0,009 0,001 0,009 <0,0001 L/JM 117,8 361,3 44,86 131,1 79,64 1 010 Π/JM 170,456000 348,538476 127,251124 0.001716 2,318316 49,222316 232,804000 32,173284 1,250964 85,685600 1,565564 0,017732 15,546960 1,073644 1,854996 0,004576 0,241956 0,027456 0,009724 0,040612 0.003032 т/месяц 0,000000,0 0.00000.0 0,000000 Приемная камера

Расчеты произведены согласно стандарту CT C3B 543-77.

0.054912

Начальник цеха ВО Главный технолог Инженер-химик Начальник АЦ

Христофорова С.В. Пушкарев С.Н. Голушко А.Н.

0,009

0,010

Мухамадуллина Ф.М.

15,0 0,20 0,02 0,005 0,07 +0.25 40,0 90,0 300,0 100,0 0,0 0,01 0.5 0.001 9 0,00 Главный инженер МУП "НВК" M2/n ξ Fopes A.M. 5,00 0.47 2,42 0,030 0,10 0,030 0,003 242.00 31,60 0,008 0,001 "Утверждаю" менее 0,04 менее 0,0001 менее 0,001 менее 0,001 0,0010 менее 0,01 менее 0.001 менее 0,01 менее 0', н/сброса M2/II p. Kama 16,9 M/copoca 5,30 33,00 0,29 менее 0,001 менее 0,001 0,003 0,0010 0,51 2,51 0,10 31,60 39,0 менее 0.001 менее 0.001 0,030 менее 0,04 менее 0,04 0,001 0.009 600'0 0,030 менее 0,1 менее 0,001 менее 0,001 251.00 менее 0,01 менее 0,01 менее 0,01 менее 0,0001 менее 0,0001 M2/II Мухамадуллина Ф.М. Христофорова С.В. 0,28 16.6 0,53 31,60 0,003 5,20 31,80 2,23 0,030 0,10 418 0.030 0.009 менее 0,01 менее 0.1 0.00 244.00 0,001 Пушкарев С.Н. олушко А.Н. Сведения о работе очистных сооружений г.Нефтекамска за март 2019 г в/сброса M2/II 0,00 0,10 3,00 0,50 0,08 0,20 111,20 80,53 0,05 0,001 0,03 0,001 0,017 0.009 0,0 0,001 0,037 0.001 0.0001 361 무 M2/n 8.283535 0,009346 1,429428 0,223760 59,980998 45,092956 0,025840 0,113804 197.920800 2.913834 17,851357 21,743799 0,424980 0,016493 0,003848 0,000550 0,000550 0.004948 0,001155 0,004948 0,000000 0,000000 0,000000 0,000000 0,000000 очищенных сточных вод Напорный коллектор 360.00 5,300 32,470 15,067 2,600 0,407 82,020 0,030 0,207 0,017 0,001 0,001 0.009 600'0 109,100 0,047 0,007 39,550 0,773 менее 0,001 менее 0,001 менее 0,1 менее 0,0001 менее 0,001 0,0021 L/JW 236,3 157,0 117.8 44,3 356,7 Расчеты произведены согласно стандарту СТ СЭВ 543-77. 1 orc L/JM Начальник цеха ВО Главный технолог Инженер-химик Начальник АЦ 123,590544 161,727133 245,568583 28,242199 0,003848 0,119302 350.026783 1,268342 102,240937 0.015394 1,826919 0,003848 0,0000000 0,018143 0.014294 2,074320 48,353151 1,414584 15,646739 1,156187 0,0000000 0.028589 0,0000000 0.002694 0,040684 Приемная камера 549 780 M³ 51,370 636,667 224,800 2,307 0,007 3,773 185,967 87,950 2,573 28,460 2,103 3,323 294,167 446,667 0.028 0,007 0,217 0,033 менее 0,001 0.026 ленее 0.0001 0.052 0,005 менее 0,001 Взвешен.вещества Аммоний солевой Взам. инв. № Ингредиенты Фосфаты (по Р) Нефтепродукты Железо общее Сухой остаток Объем стоков СПАВ анион Сульфаты Алюминий БПК полн Хлориды Нитриты Нитраты Марганец Xpom 6+ фенолы Кобальт Хром 3+ Кадмий Жиры Никель Свинец Медь Подп. и дата Инв. № подл.

Изм.

Кол.уч

Лист

№док

Подп.

Дата

Лист

04/2022-151-Π-01000-TX1-TY

15,0 40,0 +0.25 3,0 0.5 1000 80.0 0,20 100,00 0,50 300,0 0,02 0,004 0,01 0,07 0,01 0,01 0,1 0,00 Главный инженер МУП "НВК" M2/II Ę Fopes A.M. "Утверждайо" н/сброса проезда к реке. Акт от 26.04.2019г. M2/II Проба в апреле не отобрана в связи с невозможностью р. Кама м/сброса M2/n Мухамадуллина Ф.М. Христофорова С.В. Пушкарев С.Н. Голушко А.Н. в/сброса ма/п 5,58 3,00 15,00 0,50 0,00 0,20 111,20 80,53 00'0 0,03 0,10 361,1 0.05 0,001 0.037 0,017 600'0 0,005 0,001 0,001 0,001 0.009 0,0001 M2/n 218,43720 3,114732 9,222904 18,304249 23,386918 0,240706 0,004065 0,000182 1,581667 0,447007 66,097458 48,325165 0.026273 0,022268 0,125419 0,009526 0,002427 0,000200 0,000000 т/месяц 0,00000,0 0,000000 0,005461 0,001456 0,000000 0,004854 очищенных сточных вод Сведения о работе очистных сооружений 🗂 Напорный коллектор 2,607 38,543 0,737 0.043 360,000 5.133 15,200 0,397 79,643 0,037 0,207 0.016 0,004 30,167 108,933 0,00033 менее 0,1 600'0 0,008 менее 0,001 0,0003 менее 0,001 0.0024 менее 0,0001 MI/JM 224,2 313,2 43.5 3,3 131,4 74.9 1 orc Расчеты произведены согласно стандарту СТ СЭВ 543-77. D/JW Начальник цеха ВО Главный технолог Инженер-химик 402,28851 134,66229 182,13233 1,304556 Начальник АЦ 274,46209 30,182560 2,686171 89,639952 50,196262 1,369480 1,134660 1,575782 0,006068 0.016990 18,967630 0,200234 0.013956 0,007888 0,037013 0,002670 0.00000.0 0,051575 0,00000,0 т/месяц 0,000000 0.00000.0 Приемная камера 606770 M³ 663,000 221,933 452,333 49,743 2,150 82,727 1,870 300,167 4,427 2,257 0,028 31,260 2,597 менее 0.02 147,733 0,013 0,085 0.330 0,023 менее 0,001 0.0044 менее 0,0001 менее 0,001 0.061 Взвешен.вещества Аммоний солевой Ингредиенты Взам. инв. № Фосфаты (по Р) Нефтепродукты Железо общее Объем стоков Сухой остаток СПАВ анион Сульфаты БПК полн. Алюминий Хлориды Нитраты Нитриты Марганец Фенолы Xpow 6+ Кобальт Xpow 3+ Кадмий Свинец Никель XMDPI Медь ž Подп. и дата Инв. № подл. Лист 04/2022-151-Π-01000-TX1-TY 59 Изм. Кол.уч Лист №док Подп. Дата

0,05 0,0 0,005 0,07 15,0 90,0 0,20 300°C 100,0 0,50 0,02 0,01 0,001 1000 40.0 0,001 0, 0.5 +0.25 Главный инженер МУП "НВК" Π/JM ξ Lopes A.M. 29,5 244,0 2,98 0,03 90'0 60000 600'0 5,0 0,51 0,36 0,0022 16.2 30.1 0,030 0,007 0,00 "Утверждаю" менее 0.04 менее 0,0001 менее 0,001 менее 0,001 менее 0,001 менее 0,001 менее 0,001 менее 0,01 менее 0.01 менее 0,1 н/сброса Π/JM р. Кама 30,0 0,03 60'0 33,29 0,36 0,003 0.009 254,0 16,4 0,54 3,03 менее 0,01 0,030 менее 0,04 менее 0,04 менее 0,001 менее 0,001 0,0 0,001 600'0 менее 0,001 менее 0,001 5,4 30.1 менее 0,1 менее 0,01 менее 0,01 менее 0,0001 менее 0,0001 m/copoca L/JW Мухамадуллина Ф.М. Христофорова С.В. 248,0 0,013 29,0 0,56 2,84 0,03 0.08 36,85 менее 0,01 0,030 0,38 0,012 0,010 5,2 30,1 менее 0,1 0.00 16,7 0,0035 Пушкарев С.Н. Голушко А.Н. в/сброса Сведения о работе очистных сооружений г. Нефтекамска за май 2019 г. Π/JM 15,00 0.00 0.03 3,00 0.50 111,20 80,53 0,05 0,001 0,10 40.00 0,08 0.01 0.037 0.00 0,017 0,001 0,001 0,005 361,1 0,0001 0,009 Π/JM 얼 1,530272 0,004749 0,004749 0,212813 56,690404 38,080924 0.022849 0,000158 0,015830 0,110813 0.003535 0.008812 0,000528 0,001952 189,964800 2,743936 8,003164 16,938528 20,868003 0,399295 0,000000 0,004221 0,000000 0,000000 0,000000 т/месяц очищенных сточных вод Напорный коллектор 360,000 32,100 2,900 0,043 0,030 0,210 5,200 39,547 0,757 0,007 0.00 0,001 0,008 0,009 15,167 0,403 107,433 72,167 0,0003 менее 0,1 0.017 менее 0,001 0,0037 менее 0,0001 менее 0,001 Начальник цеха ВО павный технолог Инженер-химик Начальник АЦ 124,9 43.8 77,0 206,7 3,5 136,7 220.7 1 orc Цинк 0,096 0,050657 Расчеты произведены согласно стандарту СТ СЭВ 543-77 Mr/n 116,370853 77,885568 1,155619 341,936640 144,584320 27,105339 43,909836 0,016358 0.832151 0,133503 0,013720 0,003113 0,050657 144,232357 0,960378 2,031568 1,479087 0.003694 0.064377 0,064905 0,000000 15,580807 0.000000 0.00000.0 0,000000 т/месяц Приемная камера 527680 M³ 1,820 2,190 648,000 273,333 3,850 2,803 0,253 0,026 220,533 274,000 менее 0,02 147,600 83,213 0,031 29,527 1,577 0,007 0,122 0,123 51,367 0,0059 иенее 0,0001 менее 0,001 менее 0.001 Взвешен.вещества Аммоний солевой Ингредиенты Нефтепродукты Фосфаты (по Р) Железо общее Сухой остаток объем стоков СПАВ анион Сульфаты Алюминий БПК полн Хлориды Марганец Нитриты Нитраты Фенолы Xpom 6+ Кобальт Xpom 3+ Кадмий Никель Свинец Жиры Медь X Лист 04/2022-151-Π-01000-TX1-TY 60 Изм. Кол.уч Лист №док Подп. Дата

Взам. инв. №

Подп. и дата

Инв. № подл.

25,0 40,0 0,08 0,20 100,0 0,02 0,005 0.5 300,0 0,002 0,04 0,0 0,003 0,006 Главный инженер МУП "НВК" 묲 Mr/n Lopea A.M. 242,0 15,0 34,30 3,36 5,00 0.54 32,58 0,020 0.008 0.009 "Утверждаю 30,1 менее 0,01 менее 0,001 менее 0,01 менее 0,04 менее 0,0001 0.011 0,0022 менее 0,001 менее 0,001 менее 0. менее 0,001 н/сброса U/JW р. Кама 30,10 0,001 MeHee 0,001 15,2 3,41 0,03 0,020 600'0 4,90 35.20 0.56 менее 0,001 менее 0,001 менее 0,1 0,36 менее 0,01 менее 0,01 менее 0,04 менее 0,04 менее 0,001 менее 0,001 0,019 менее 0,0001 менее 0,0001 менее 0,001 менее 0,001 менее 0,01 0.012 0.0024 w/ecpoca L/JM -Христофорова С.В. Мухамадуллина Ф.М. 15,8 250,0 4.90 34.30 0.59 3,22 60'0 34.72 0,020 0.010 0.36 0,010 менее 0,01 менее 0,1 0.018 Пушкарев С.Н. 0.0027 Голушко А.Н. Сведения о работе очистных сооружений г.Нефтекамска за июнь 2019г. в/сброса L/JM 15,25 40,00 0,002 0,00 0,05 0,02 0.50 300,00 100,001 0,50 0,040 0,005 0.003 25,00 90'0 0,60 900'0 0,0 0,07 0.01 Ě Π/JM 192,430800 21,003448 40.032716 очищенных сточных вод 17,354425 57,105604 2,779556 1,450340 8,000150 0,219157 0,418697 0,024963 0,00000 0,00000,0 0,012455 0,106906 0,000000 0,000000 0,000000 0,000000 0.007483 0,000535 0,004811 0,00000,0 0,002192 0,004811 Напорный коллектор 2,713 5,200 14,967 0,023 0,410 0.200 0,001 0,009 360,000 0,783 32,467 106,833 74,893 0,047 менее 0,001 менее 0,1 менее 0,01 менее 0,04 0.014 менее 0,0001 менее 0,001 менее 0,001 0,0041 Начальник цеха ВО MI/JM Главный технолог Начальник АЦ Инженер-химик 130,800 131,167 337,833 42,153 202,667 1 orc П/JM 0,102 0,054522 Расчеты произведены согласно стандарту ст сэв эчэ-//. 120,483062 131,939643 2,171795 28,037702 78,575910 297.020682 222,453747 1,049282 43,204456 0.017105 15,442572 1.065318 0,033675 0.0000000 1,437886 1,432540 0,011225 0.003742 0,048642 0,140581 0.000000 0,000000 0,000000 т/месяц 0,000000 Приемная камера 534530 M Ky6 52,453 555,667 225,400 246,833 4,063 2,690 0,032 28,890 1,993 416,167 1,963 менее 0,02 147,000 2,680 0,063 0,263 80,827 0.091 менее 0,01 ленее 0,0001 0.021 менее 0.001 0.007 менее 0,001 Взвешеные вещества Сухой остаток(по минерал Ингредиенты АСПАВ (влеклоульфонат Нефтепродукты Сульфат-анион Фосфаты (по Р. Железо общее объем стоков Хлорид-анион Нитрит-анион Нитрат-анион Аммоний-ион БПК полн. Алюминий Марганец Фенолы Кобальт Xpom 6+ Хром 3+ Кадмий Никель Свинец Жиры 04/2022-151-Π-01000-TX1-TY Изм. Кол.уч Лист №док Подп. Дата

Лист

61

Взам. инв. №

Подп. и дата

Инв. № подл.

300,00 0,00 90'0 0,02 0,005 1000 3,00 25,00 0,50 40,00 0,08 0,50 0.002 0,60 0,040 0,0 0,07 0,003 0.0 900'0 Π/JM 무 17,202213 22,200516 42,305702 200,47925 1,496664 0.441793 0,166296 0,002439 0,004989 очищенных сточных вод 8,333093 0,205098 59,848267 0,031596 0,00000,0 0.022173 0,00000,0 0,00000,0 0.000000 0,009423 0,004989 0.000000 0.000000 0,00000,0 0,000554 T/Mecяц Напорный коллектор 15,033 31,033 0,040 5,600 40,050 0,370 0,300 0,004 0,057 0,017 0,001 0,009 0,797 107,967 76,320 менее 0,1 менее 0,001 менее 0,01 менее 0,04 менее 0,0001 менее 0.001 менее 0.001 Начальник цеха ВО Главный технолог Инженер-химик Начальник АЦ 183,500 127,333 124,000 274,333 49,200 80,830 1 orc U/JW Цинк Расчеты произведены согласно стандарту СТ СЭВ 543-77 Насчеты произведены согласно 124,352269 32,078498 2,145218 81,300451 46,910439 0,181263 0,029379 0,005488 193,457680 1,263850 1,485578 0.016630 15,144022 1,287685 1,563182 142,829971 0,0000000 0.043791 0.011086 357,906131 0,000000 0.000000.0 0.00000.0 0.00000.0 т/месяц Приемная камера 554320 M Ky6 27,320 224,333 257,667 2,280 2,680 0,030 2,820 349,000 57,870 3,870 2,323 645,667 менее 0,02 менее 0,01 0,327 0.079 0,020 0,053 146,667 менее 0,001 менее 0.001 0,0099 84,627 ленее 0,0001 АСПАВ (алюлоульфонат натрия) Сухой остаток по минерапиза: Взвешеные вещества Ингредиенты Нефтепродукты Сульфат-анион Фосфаты (по Р) Железо общее Хлорид-анион Нитрит-анион объем стоков Нитрат-анион Аммоний-ион Алюминий БПК полн. Марганец Xpow 6+ Фенолы Кобальт Хром 3+ Кадмий Свинец Никель Жиры Лист 04/2022-151-Π-01000-TX1-TY 62 Изм. Кол.уч Лист №док Подп. Дата

"Утверждаю"

Главный инженер МУЛ "НВК"

Popes A.M.

Сведения о работе очистных сооружений г.Нефтекамска за июль 2019г.

Взам. инв. №

Подп. и дата

Инв. № подл.

33,8 0,55 3,60 0,04 60'0 36,85 0.030 0,36 менее 0,04 менее 0,0001 0,001 0,009 0.0 0.0015 менее 0,01 менее 0,001 менее 0,001 менее 0.01 менее 0,1 менее 0,001 менее 0,001 менее 0,001 н/сброса L/JM р. Кама 33,8 16,10 0,58 3,69 0,04 60'0 37,92 0,030 менее 0.01 менее 0.01 менее 0,04 менее 0,04 менее 0,0001 менее 0,0001 менее 0,001 менее 0,001 0,013 0,010 менее 0,001 менее 0,001 0,010 менее 0,01 0,36 0,001 менее 0,1 M/c6poca 16,70 3,45 60.0 33,8 менее 0,01 менее 0,1 0,020 0,019 0,010 0.60 9,0 40,42 0,36 0,002 0.014 0,0021 B/c6poca L/JW

40,0

0,5

300,0 100,0 0,50 0,02 0,04 0,005 0,01

+0,25

Mr/n ďχ

> Христофорова С.В. Пушкарев С.Н. Голушко А.Н.

0,006

0,003

Мухамадуллина Ф.М.

PXGail "HBK		¥	Mr/n	1000	+0.25	3.0	25,0	0.5	40.0	0,08	0.20	300.0	100,0	0,50	0.002		0,05	09'0	0,02	0,04	0,005	0,01	0,07	0,003	0.08	0.01	0.006	0.01				
"Утверждаю" Главный инженер МУП "НВК" Горев А.И.		н/сброса	mr/n	243.0	5.30	16,00	33,0	0.45	3,36	0,04	0.12	20.8	15,48	менее 0,01	менее 0.001	менее 0,1	0,030	0,40	менее 0,01	менее 0,04	менее 0,0001	менее 0,001	0.008	0,001	600.0	менее 0,001	0.0030	0.00				
Главный	Kawa	Meppoca	1/100 S	261,0	5.50	16,00	32,9	0.47	3,41	0,04	0.12	22.6	17,62	менее 0,01	менее 0,001	менее 0,1	0,030	0,41	менее 0,01	менее 0,04		менее 0,001	600'0	0,001	0,010	менее 0,001 м	-	0,010				
Pycr 2019-	ALL MAYOR	в/сбреса	I DIN	265.5	6.40	16,60	31,8	0,50	3,22	0,04	0.11	26,2	19,76	менее 0,01	менее 0,001	менее 0,1	0,030	0,39	менее 0,01	менее 0,04	менее 0,0001	менее 0,001	0,010	0,002	0,012	менее 0,001 м	0.0032	0,012		Пушкарев С.Н.	Голушко А.Н.	Христофорова С.В.
иска за ав	S BO	I I I I I I I I	MI/J	1000	15,25	3,00	25,00	0,50	40,00	0,08	0.20	300,00	100,001	0,50	0,002	00'0	0,05	0,60	0,02	0,040	0,005	0,01	0,07	0,003	90'0	0,01	9000	0,01		() ()	(X /IIII
Сведения о работе очистных сооружений г.Нефтекамска за август 2019-с. м куб	оллектор	сточных вод	т/месяц	189,398854	2,719392	7,896696	16,316352	1,410423	20,353603	0,210753	0,401110	56,584272	40,407550	0,031378	0,000157	0,000000	0,014120	0,184605	0,000000	0,000000	0,000000	0,000000	0,007844	0,000000	0,004184	0,000000	0,002353	0,004707	100	" MART	* A	9
ных сооружен	Напорный коллектор	очищенных сточных вод	n/m	362,167	5,200	15,100	31,200	2,697	38,920	0,403	0,767	108,200	77,267	090'0	0,0003	менее 0,1	0,027	0,353	менее 0,01	менее 0,04	менее 0,0001	менее 0,001	0,015	0,001	0,008	менее 0,001	0,0045	600'0		dexa BO	ехнолог	AL
оте очист	4 0000	010	Mr/n		122,533	220,000	347,500	42,697			3,140	144,067	80,827								2					_			-77.	Начальник цеха ВО	Главный технолог	пачальник АЦ
ведения о раб и куб	December of the second	ан камера	т/месяц	326,67585	119,967024	148,78212	296,95395	29,695238	1,117566	0,0000000	1,872197	81,320280	44,754917	1,422451	0,016735	14,897562	1,042259	1,499326	0,0000000	0,158457	0,000000	0,000000	0,039222	0,016735	0,054911	0,000000	0,003295	0,055957	пу СТ СЭВ 543.			_
Сведе 522960 м куб	- I	- Landward	nr/n	624,667	229,400	284,500	567,833	56,783	2,137	менее 0,02	3,580	155,500	85,580	2,720	0,032	28,487	1,993	2,867	менее 0,01	0,303	иенее 0,0001	менее 0,001	0,075	0,032	0,105	менее 0,001	0,0063	0,107	ласно стандар	,	,	
объем стоков		Ингредиенты		Сухой остаток по минерализации)	Взвешеные вещества	БПК полн.	XUK	Аммоний-ион	Нитрат-анион	Нитрит-анион	Фосфаты (по Р)	Хлорид-анион	Сульфат-анион	АСПАВ (алкисульфонат натрия)	Фенолы	Жиры	Нефтепродукты	Железо общее	Xpow 6+	МЙ			Хром 3+	Медь	Марганец		Свинец	ЦИНК	Расчеты произведены согласно стандарту СТ СЭВ 543-77			

Взам. инв. №

Подп. и дата

Инв. № подл.

Подп.

Дата

Изм. Кол.уч. Лист №док.

Лист 63

04/2022-151-Π-01000-TX1-TЧ

																				,												
		"HBK"	A.N.		пдк	Mr/n	1000	+0,25	3,0	15,0	0,5	40,0	0,08	0,20	300,0	100,0	0,50	0,001		0,05	0,10	0,02	0,04	0,005	0.01	0,07	0,001	0,01	0,01	0,1	0,01	
		"Утверждаю". Главный инженер МУП "НВК"	Lopes A.M		н/сброса	MIZ	248,0	5,10	15,20	30,9	0,47	2,84	0,03	60'0	31,6	12,64	менее 0,01	менее 0,001	менее 0,1	0,030	0,34	менее 0,01	менее 0,04	менее 0,0001	менее 0,001	0,014	0,001	600'0	менее 0,001	0,0022	600'0	
		Главный	M. 6/40/2	X Kawa	EM/copoea -	SECTIVE STANDARD SECTION SECTI	1	5,20	14,90	32,2	0,49	3,22	0,03	60'0	32,5	13,35	менее 0,01	менее 0,001	менее 0,1	0,030	0,35	менее 0,01	менее 0,04	менее 0,0001	менее 0,001	0,015	0,001	600'0	_	0,0026	0,010	
			нтябрь 2019 r.	10 2 3 3 S	B/ccpoca =	HTOB	260,0	5,40	15,30	31,1	0,52	2,80	0,03	60'0	31,6	17,27	менее 0,01	менее 0,001 менее 0,001	менее 0,1	0,030	0,34	менее 0,01	менее 0,04	менее 0,0001		0,018	000'0	0,009	менее 0,001 менее 0,001	0,0026	0,010	Пушкарев С.Н. Голушко А.Н. Христофорова С.В. Мухамадуллина Ф.М.
		0	ска за сен		Ě	Mr/n	1000	15,25	3,00	25,00	0,50	40,00	90'0	0,20	300,000	100,00	0,50	0,002	00'0	0,05	09'0	0,02	0,040	0,005	0.0	70,0	0,003	0,060	0,01	900'0	0,01	
			о работе очистных сооружений г.Нефтекамска за сентябрь 2019 Т.	коппектор	сточных вод	T/Mecяц	185,286917	2,682576	7,772609	15,751519	1,353308	20,401352	0,213213	0,383454	59,394967	43,168838	0,022338	0,000000	0,000000	0,017179	0,111791	0,000000	0,000000	0,000000	0,000000	0,007738	0,000516	0,004127	0,000000	0,002115	0,004643	1 Est
			ых сооружен	Напорный коппектор	очищенных	Mr/n	359,167	5,200	15,067	30,533	2,623	39,547	0,413	0,743	115,133	83,680	0,043	менее 0,001	менее 0,1	0,033	0,217	менее 0,01	менее 0,04	менее 0,0001	менее 0,001	0,015	0,001	0,008	менее 0,001	0,0041	600'0	e 5 ×
			те очистн		1 orc	nr/n		125,800	239,667	412,000	42,693			3,310	131,733	81,773								-								3-77. Начальник цеха В Главный технолог Начальник АЦ Инженер-химик
			8	2	Приемная камера	т/месяц	306,518872	120,303216	149,605200	313,310948	28,177366	1,102436	0,000000	2,054750	75,885948	44,025199	1,227794	0,017024	12,616877	0,947672	1,618316	0,000000	0,179010	0,000000	0,000000	0,068612	0,011349	0,061390	0,000000	0,003302	0,053652	лу СТ СЭВ 543
			CBeden 515880 M M		Приемня	Mr/n	594,167	233,200	290,000	607,333	54,620	2,137	менее 0,02	3,983	147,100	85,340	2,380	0,033	24,457	1,837	3,137	менее 0,01	0,347	ленее 0,0001	менее 0,001	0,133	0,022	0,119	менее 0,001	0,0064	0,104	гласно стандар
Взам. инв. №			объем стоков		N. C.	ингредменты	Сухой остатокіло минерапизации)	Взвешеные вещества	БПК полн.	XUK	Аммоний-ион	Нитрат-анион	Нитрит-анион	Фосфаты (по Р)	Хлорид-анион	Сульфат-анион	АСПАВ (апечтульфонат натрия)	Фенолы	Жиры	Нефтепродукты	Железо общее	Xpow 6+	Алюминий	Кадмий	Кобальт	Хром 3+	Медь	Марганец	Никель	Свинец	Цинк	Расчеты произведены согласно стандарту СТ СЭВ 543-77 Нач Гла Нач Ину
Подп. и дата																																
подл.		T		_					_																							
Инв. № подл.	Изм.	Кол.уч.	Лис		V⊵до	OK F	Іод	П.	+	Д ат	a							04	1/2	20)2	2-	15	51	-Г	7-()1	0	00)- ⁻	Τ)	X1-TY

Взам. инв. № Подп. и дата Инв. № подл.

Изм.

Кол.уч. Лист

№док

Подп.

Дата

Сведения о работе очистных сооружений г. Нефтекамска за октябрь 2019 г.

Главный инженер МУП "НВК"

"Утверждаю"

Lopes A.M.

532050 M Ky6 объем стоков

2000	0000	m ng o								
		0	1 010	Напорный	Напорный коллектор	700		р. Кама	а	
Ингредиенты	- Dance	an namepa	2	очищенных	сточных вод	į	в/сброса	м/сброса	н/сброса	дĸ
	МГ/Л	т/месяц	II/JM	мг/л	т/месяц	Π/JM	mr/n	mr/n	Mr/n.	п/лм
Сухой остатокіпо минерапизации	000'869	318,165900		365,333	194,375423	1000	256,0	255,0	245,0	1000
Взвешеные вещества	234,467	124,748167	125,4	5,400	2,873070	15,25	5,40	5,50	5,20	+0,25
БПК полн.	280,500	149,240025	201,0	15,167	8,069602	3,00	15,40	14,10	15,00	3,0
XIIK	572,000	304,332600	373,3	31,067	16,529197	25,00	31,5	32,5	31,5	15,0
Аммоний-ион	70,333	37,420673	54,1	2,843	1,512618	0,50	0,55	0,54	0,52	0,5
Нитрат-анион	2,183	1,161465		39,420	20,973411	40,00	2,28	2,47	2,32	40,0
Нитрит-анион	менее 0,02	0,0000000		0,410	0,218141	0,08	0,03	0,03	0,03	0,08
Фосфаты (по Р)	3,997	2,126604	3,4	0,773	0,411275	0,20	0,11	0,11	0,11	0,20
Хлорид-анион	147,400	78,424170	129,9	110,900	59,004345	300,00	31,6	29,8	29,8	300,0
Сульфат-анион	79,407	42,248494	74.7	87,477	46,542138	100,00	13,71	11,92	10,15	100,0
АСПАВ (алмилоульфонат натрия)	2,547	1,355131		0,037	0,019686	0,50	менее 0,01	менее 0,01	менее 0,01	0,50
фенолы	0,029	0,015429		2000'0	0,000372	0,002	менее 0,001	менее 0,001	менее 0,001	0,001
Жиры	26,430	14,062082		менее 0,1	0,000000	00'0	менее 0,1	менее 0,1	менее 0,1	
Нефтепродукты	2,390	1,271600		0,03	0,017558	0,05	0,030	0,030	0,030	0,05
Железо общее	2,940	1,564227		0,20	0,108006	09'0	0,43	0,45	0,42	0,10
Хром 6+	менее 0,01	0,000000		менее 0,01	0,000000	0,02	менее 0,01	менее 0,01	менее 0,01	0,02
Алюминий	0,357	0,189942		0,013	0,006917	0,040	менее 0,04	менее 0,04	менее 0,04	0,04
Кадмий	иенее 0,0001	0,0000000		менее 0,0001	0,000000	0,005	менее 0,0001	менее 0,0001	менее 0,0001	0,005
Кобальт	менее 0,001	0,0000000		менее 0,001	0,000000	0,01	менее 0,001	менее 0,001 менее 0,001	менее 0,001	0,01
Xpom 3+	0,100	0,053205		0,019	0,010109	0,07	0,018	0,016	0,016	0,07
Медь	0,031	0,016494		0,001	0,000532	0,003	0,001	0,001	0,001	0,001
Марганец	0,147	0,078211		600'0	0,004788	090'0	0,010	0,010	600'0	0,01
Никель	менее 0,001	0,0000000		менее 0,001	0,000000	0,01	менее 0,001	менее 0,001 менее 0,001	менее 0,001	0,01
Свинец	0,081	0,043096		0,0044	0,002341	900'0	0,0019	0,0019	0,0019	0,1
Цинк	0,145	0,077147		0,0080	0,004256	0,01	0,011	0,010	0,010	0,01

Начальник цеха ВО Главный технолог Инженер-химик Начальник АЦ

-Мухамадуллина Ф.М. Христофорова С.В. Пушкарев С.Н. Голушко А.Н.

Лист

Сведения о работе очистных сооружений г. Нефтекамска за ноябрь 2019 г. 0,000568 8,313593 22,181890 0,426105 41,873622 203,204929 2,954328 0,231233 62,779470 0,030282 0.017044 17,593591 1,528297 0,0000000 0.001704 0,005113 0,001988 0,004545 очищенных сточных вод 0,011363 т/месяц 0,121014 0,00000,0 0,00000,0 0.00000.0 Напорный коллектор 0,000 0,000 14,633 39,043 73,703 0,213 357,667 5,200 30,967 2,690 0,407 0,750 0,053 0,030 0,000 0.000 600,0 0,0035 110,500 0,0010 0,020 менее 0,1 0,008 менее 0,0001 менее 0,001 0.003 менее 0,001 Начальник цеха ВО Главный технолог Инженер-химик Начальник АЦ 226,0 429,4 122,2 3,6 128,0 80.8 49,2 1 orc mr/n Расчеты произведены согласно стандарту СТ СЭВ 543-77 131,581224 310,867459 1,160710 2,274264 31,957875 0,002954 179,153291 83,118882 46,460785 1,403306 13,983630 1,261271 2,265174 335,959931 000000000 0.021021 0.000000.0 0,164731 0,028407 0,100551 0.076131 T/Mecяц 0,000000 0,000000 0.000000 Приемная камера 568140 M Ky5 2,470 591,333 231,600 56,250 4,003 2,220 0,134 315,333 547,167 2.043 менее 0,02 146,300 0.037 24,613 3,987 0,290 0,050 81,777 0,177 0.090 менее 0,01 менее 0,001 менее 0.001 0,0052 ленее 0,0001 Π/JM Сухой остатокіло минерализеция **АСПАВ** (алимпоульфонат натрин) Взвешеные вещества Ингредиенты Фосфаты (по Р) Нефтепродукты Сульфат-анион Железо общее объем стоков Нитрат-анион -птрит-анион Хлорид-анион Аммоний-ион БПК полн. Алюминий Марганец Xpow 6+ Фенолы Кобальт Хром 3+ Кадмий Никель Свинец Жиры × Медь Лист 04/2022-151-Π-01000-TX1-TY 66 Изм. Кол.уч Лист №док Подп. Дата

15,0 0,5

29,0 0,47 2,84 0,03 60.0 32,8 11,92

40,0

2,93

0,03 0,08

0,49

0,53 2,75 0,03 0,09 32,8

0,08 0,20 300,0 100,0 0,50 0.001 0,02 0.04 0,005 0,01 0,07 0,001 0,01 0,01 0,1

менее 0,01 менее 0,04 менее 0,0001

менее 0,01 менее 0,01 менее 0,04 менее 0,04 менее 0,0001 менее 0,0001 600.0

0,010

0,012

0.001

0.001

0.012 0.00

0,012

0.016

менее 0,001

менее 0,001 менее 0,001

0,005 0,0 0,07 0,003 090'0 0,01 900'0

0.009

0.009

0,010

Пушкарев С.Н.

Голушко А.Н.

0,0012

Христофорова С.В.
 Мухамадуллина Ф.М.

0,0012

0,0012

менее 0,001

менее 0,001 менее 0,001

0,42

0,43

0,43

0,05

0,030

менее 0,001 менее 0,1

менее 0,001 менее 0,001

менее 0,1 0,030

менее 0,1

0,00 0,05 0.60 0,02 0.040

0,002

0,030

менее 0.01

менее 0,01

32,8

13,35

14,06 менее 0,01

100,00 0,50

300,00

3,0

1000 +0.25

243,0

251,0 14,6 29,5

253,0

1000 15,25 3,00 25,00 0,50 40,00 0.08 0.20

mr/n

15,8 31,5

5,3

Π/JM Ę

н/сброса Π/JM

M/c6poca Π/JM

в/сброса L/JW

Ě

р.Кама

Главный инженер-МУП "НВК"

"Утверждаю"

Взам. инв. №

Подп. и дата

Инв. № подл.

Fopes A.M.

15,0 +0,25 0,08 0,20 300,0 1000 0.5 100,0 0,02 0,001 0.005 0,07 0,001 0,01 Главный инженер МУП "НВК" Π/JM ž "Утверждаю" 242,0 5,30 15,40 0,52 2,09 0,04 0.09 31,6 12.64 0,030 0,46 0,008 менее 0.01 менее 0.001 менее 0.1 менее 0,01 менее 0,04 менее 0.0001 менее 0,001 0,0016 менее 0,001 менее 0,001 н/сброса Π/JM р. Кама 0.001 MeHee 0.001 MeHee 0.001 16,00 29.3 0,04 33,5 0,010 менее 0,01 менее 0,01 0,00 5,60 13,35 0.030 0,47 0,040 менее 0,04 менее 0,04 0,001 менее 0,001 менее 0,001 M/c6poca 0,063 менее 0,01 менее 0,01 0,000 менее 0,0001 менее 0,0001 0,001 менее 0,001 менее 0,001 0,012 0.008 менее 0,1 Mr/n Мухамадуллина Ф.М. Христофорова С.В. **Шарифьянов** В.Н. Голушко А.Н. 31,6 249,0 15,80 0,55 2,04 0,04 0,10 31,3 16,20 0,030 0.46 Сведения о работе очистных сооружений г.Нефтекамска за декабрь 2019 г. менее 0,1 0.014 0,001 0,011 0,0024 B/c6poca 0.000 0.500 0,200 5,500 30,000 0,080 0,030 0,100 3,000 40,000 82.073 0,016 380,667 108,433 0.00 0,009 걸 MI/J 3.260252 2,833145 0,255645 218,505588 9.202614 19,065077 68,832355 0,029093 24.247930 39,558177 0.018570 очищенных сточных вод 0,482817 0,125656 0.002600 0,00000,0 0,000000 0,011761 0.001857 0,005571 0.005571 т/месяц 0,000000 0,000000 0.00000 0,00000 0,00000 Напорный коллектор 353,000 30,800 4,577 39,173 111,200 63,907 0,030 0,009 600'0 5.267 14.867 0,413 0.047 менее 0,1 0,003 менее 0,001 0.203 менее 0,01 менее 0,04 0,019 0.0042 менее 0,0001 менее 0,001 менее 0,001 Начальник цеха ВО MI/JM Главный технолог Инженер-химик Начальник АЦ 122,33 347,87 53,54 129,30 232.17 69,21 Π/JW Расчеты произведены согласно стандарту СТ СЭВ 543-77. 146,867324 180,231238 1,225612 297,014738 42.526832 91,611408 356,541696 2,826955 42,972559 1,660766 0,017332 0,001857 16,135369 1,330841 0,167129 0,016094 0,045806 2,005547 0.000000.0 0.004952 0.077993 T/Mecяц 0,000000 0.000000 0.067471 0,000000 Приемная камера 618996 M Ky6 576.000 0,003 4,567 2,683 0,028 237,267 291,167 3,240 479,833 68,703 2,150 0,026 48,000 69,423 26,067 0,109 800'0 менее 0,01 0.074 0,126 менее 0.001 менее 0.001 менее 0.0001 Сухой остаток(по минерализвами Взвешеные вещества Ингредиенты АСПАВ (алкилсульфонат Фосфаты (по Р) Нефтепродукты Сульфат-анион Железо общее Хлорид-анион объем стоков Нитрат-анион Нитрит-анион Аммоний-ион БПК полн Алюминий Марганец Фенолы Xpow 6+ Кобальт Хром 3+ Кадмий Жиры Никель Свинец Лист 04/2022-151-Π-01000-TX1-TY Изм. Кол.уч Лист №док Подп. Дата

Взам. инв. №

Подп. и дата

Инв. № подл.

15,0 40,0 0,10 0,02 0.04 0,005 0,01 0,001 0,01 0,01 0,5 0,08 0,20 300,0 100,0 0,50 0,01 0,1 +0,25 3.0 0.001 1000 Главный инженер МУП "НВК" ЩĶ Fopes A.M. 29,9 0,12 29,8 0.004 0,008 0,48 2,01 0,03 10,24 0,020 0,42 0,009 0,001 менее 0,001 менее 0,001 менее 0,001 менее 0,01 менее 0,04 0,001 MeHee 0,001 "Утверждаю" менее 0.01 0.001 menee 0.001 menee 0.001 menee 0.001 менее 0,1 менее 0,0001 0,001 менее 0,001 менее 0,001 менее 0,001 0,0022 н/сброса L/JW р. Кама 0,040 менее 0,04 менее 0,04 0.005 0,010 16,00 0,03 31,6 12,78 0,020 менее 0,01 0,000 менее 0,0001 менее 0,0001 252,0 5,60 0,53 0.010 м/сброса 32,1 менее 0,01 менее 0,01 менее 0,1 0,0023 II/JM Мухамадуллина Ф.М. Христофорова С.В. **Шарифьянов** В.Н. Голушко А.Н. 0,010 менее 0,01 0,43 0.008 0,012 0.010 16,10 0,49 2,19 0,03 0,13 29,8 11,00 0,020 0,001 0,0026 5,50 30.1 менее 0,1 Сведения о работе очистных сооружений г.Нефтекамска за январь 2020 г. в/сброса L/JM 0,063 0000'0 0,100 600'0 82,073 0.030 0,500 40,000 0,200 108,433 0.016 0,001 5,500 3,000 0,080 30,000 II/JW 모 0,437418 0,026643 0,005135 0,005135 202,344446 8,367646 17,553018 1,580340 22,265513 0,222503 46,276760 0,018998 0,127397 0.009699 0,002111 3,004758 62,928356 0,000171 0,000571 очищенных сточных вод 0,00000,0 0,000000 0,000000 0.00000.0 0,00000,0 0,000000 т/месяц Напорный коллектор 0.033 600,0 2,770 0,390 0,047 0,223 0,001 0,009 0,0037 81,113 354,667 5,267 14,667 39,027 0.767 110,300 0.000 менее 0,04 менее 0,001 0.017 менее 0.001 30,767 менее 0,1 менее 0,01 менее 0,0001 Начальник цеха ВО MI/JM Главный технолог Инженер-химик Начальник АЦ 362,5 3,8 231,3 130,0 48,9 128,1 75,0 1 orc IZ/JM Расчеты произведены согласно стандарту СТ СЭВ 543-77 33,245912 0,015404 1.127918 0,059334 1,112514 84,608116 49,473783 15,107370 4,254368 0,144342 0,017158 333,373663 162,408217 330,045820 2,504583 1,477647 0.003177 0,003081 136,696592 0,015251 0.000000 0,000000 0,000000 0,000000 0.00000.0 т/месяц Приемная камера 570520 M³ 0,104 584,333 578,500 148,300 86,717 2,590 0,027 26,480 0,095 0,112 0,0054 239,600 менее 0,02 1,977 0,036 284,667 58.273 1.950 4.390 7.457 менее 0,01 0,253 менее 0,0001 менее 0,001 менее 0,001 Взвешен. вещества Ингредиенты Аммоний солевой Нефтепродукты Фосфаты (по Р) Железо общее Сухой остаток объем стоков СПАВ анион Сульфаты Алюминий БПК полн. Хлориды Марганец Нитраты Нитриты Kpom 6+ Кобальт фенолы Xpow 3+ Кадмий Никель Свинец KMPbl Медь ZHE Ě

Взам. инв. №

Подп. и дата

Инв. № подл.

Изм.

Кол.уч

Лист

№док

Подп.

Дата

04/2022-151-Π-01000-TX1-TY

Сведения о работе очистных сооружений г.Нефтекамска за февраль 2020г очищенных сточных вод Напорный коллектор 33,900 5,267 359,333 2,527 0,400 0,053 15,200 31,700 0,803 111,533 83,060 0,033 0.2330,008 0,001 0,008 менее 0,001 менее 0,1 менее 0,01 менее 0,04 менее 0,0001 менее 0,001 менее 0,001 0,0036 Начальник цеха ВО Главный технолог Инженер-химик Начальник АЦ 229,3 355,4 127,5 128,4 45.40 76.00 1 OTC P/JM Расчеты произведены согласно стандарту СТ СЭВ 543-77. 130,069934 278,881610 33,284548 159,735194 14,106808 2,787133 0.015712 1,002739 0,116154 0.005611 0,031423 334,246624 1,067830 2,463361 78,315231 48,111286 1,395530 0.00000.0 0.012906 0,003647 0.038157 0,000000 0,00000,0 0.00000.0 000000'0 т/месяц Приемная камера 561130 M³ 59,317 1,903 85,740 231,800 25,140 595,667 284,667 497,000 менее 0,02 4,390 2,487 0.028 1,787 0,023 0,010 0.056 139,567 4.967 0,207 0,068 ленее 0,0001 менее 0,001 0,0065 менее 0,01 менее 0.001 L/JM Ингредиенты Взвешен. вещества Аммоний солевой Взам. инв. № фосфаты (по Р) Нефтепродукты Железо общее Сухой остаток объем стоков СПАВ анион Сульфаты БПК полн. Алкминий Хлсриды Марганец HMTDMTh Нитраты фенолы Kpow 6+ Кобальт Xpow 3+ Кадмий Никель Свинец *KNPP Mega X MHK Подп. и дата Инв. № подл. 04/2022-151-Π-01000-TX1-TY Изм. Кол.уч Лист №док Подп. Дата

менее 0,001 менее 0,0001 менее 0,001 менее 0,001 менее 0,007 M/Copoca H/Copoca р. Кама 253.0 5,50 16,10 0,35 2,67 0,13 29,8 0,001 менее 0,001 менее 0,001 29,3 900 0,46 0,040 менее 0,04 менее 0,04 0,000 менее 0,0001 менее 0,0001 0,001 менее 0,001 менее 0,001 0,004 10,22 0,001 менее 0,001 менее 0,001 0,010 0.001 менее 0,001 менее 0,001 менее 0,1 0,010 0,010 менее 0,01 менее 0,01 менее 0,01 II/JM 256,0 5,40 16,60 30,3 0,38 2,39 0,03 0,14 28,0 0,010 0,43 0,005 11,68 менее 0,01 менее 0,1 B/cpboca 0.011 MI/JM 0,063 000'0 0,030 0,100 0,016 30,000 0,080 0,200 380,667 3,000 0,500 82,073 40,000 08,433 0,009 모 7/W 201,632695 2,955303 8,529176 0,224452 46,607458 17.787821 21,827957 0,029908 1,417807 0,450756 62,584681 0,018686 0.130912 0,000000 0,004489 0,000561 0,004489 T/Mecяц 0,000000 0.00000.0 0,000000 0,00000,0 0,000000 0,000000

15,0

+0.25

15,90 28,9 0,35 2,34 0.03 0,13 28,5 98'6

1000

245.0

Mr/n ПÄ

D/JW

"Утверждаю" Глазный инженер МУН"НВК"

Fobes A.M.

40,0 0,08

0,5

300,0

0,20

100,0 0,50

менее 0,01

0,001

0,10

0.010 0.44

менее 0,1

0,02

менее 0,01 менее 0,04

0,0

0,005 0,01 0.07 0,001 0,01 0,01 0,1

0.004

0,010

0.006

900'0

0,015

0,0021

0,0020

0.002020

0,004489

0,0020

Шарифьянов В.Н. Голушко А.Н.

Кристофорова С.В.

Мухамадуллина Ф.М.

15,0 0.5 0,08 100,0 0,02 40.0 0,20 300,0 0,50 0,04 0,01 1000 +0,25 0,005 0,07 0,001 0,01 0,001 Главный инженер МУП "НВК" M2/II яğ Fepres A.M. 243,00 15,0 28,8 0,38 2,11 0,03 0.03 0,020 0,84 0,001 600.0 45,2 0,000 иенее 0,00005 менее 0,00005 менее 0,00005 0,001 енее 0,0005 енее 0,0005 менее 0,0005 0,007 0,007 менее 0,0005 "Утверждаю" менее 0,01 менее 0,01 0,001 менее 0,001 менее 0,001 менее 0,001 менее 0,04 менее 0,1 н/сброса M2/m р. Кама 47,9 15,5 31,6 2,76 0,010 менее 0,01 менее 0,01 м/сброса 5,6 0,03 0.03 41,65 менее 0,1 0.03 0,89 0,040 менее 0,04 менее 0,04 600'0 0,023 251,00 0,41 менее 0,01 0,001 0,007 менее 0,0005 M8/II Мухамадуллина Ф.М. Христофорова С.В. **Шарифьянов** В.Н. олушко А.Н. 253,00 15,9 0,44 2,49 0,03 0,03 44,3 43,11 0,063 MeHee 0,01 0,03 0,83 0,001 менее 0,0005 30,0 менее 0,1 0,009 0,009 0,010 S 0.001 B/c6poca Сведения о работе очистных сооружений г.Нефтекамска за март 2020 г Ma/n 0,000 108,433 82,073 0.030 380,667 30,000 40,000 0,100 0,016 600'0 5,500 3,000 0,500 0,080 0,200 0,001 19,999595 26,205913 0,015516 240,173005 3,462753 7,946552 1,835725 0,259706 0,521610 67,967644 0,010655 0,000666 0,005993 53,688184 0,031098 0,142039 очищенных сточных вод 0,00000 0,000000 0.000000 0,000000 0,00000 0,000000 0,00000,0 0.002397 0.005327 т/месяц Напорный коллектор 30,033 2,757 39,353 0,390 0,783 0.047 0,023 0.213 600'0 360,667 5,200 11,933 0,001 0,008 80,623 менее 0,01 0,016 102,067 менее 0,1 менее 0,04 менее 0,0001 менее 0,001 0,0036 менее 0,001 менее 0,001 317,8 120,5 186,5 54.4 127,5 68.0 3,7 1 orc PI/JW Расчеты произведены согласно стандарту СТ СЭВ 543-77. Начальник цеха ВО Главный технолог Инженер-химик Начальник АЦ 153,160220 160,263525 98,555272 52,065818 1,486986 0,019312 17,739949 0.867686 1,909175 0.137844 0,027968 0.065260 392,889260 316,642107 42.147695 2,905383 0,063262 0,073251 0,0000000 1.323171 0,000000 0.0000000 0.0000000 0,00000,0 0.002797 T/Mecsu Приемная камера 665 914 M³ 590,000 230,000 4.363 2,233 0,029 1,303 0,042 0,110 240,667 63,293 1,987 26,640 2,867 0,095 0,098 475,500 менее 0,02 0.207 148,000 78,187 ленее 0,0001 менее 0.01 менее 0.001 менее 0,001 0.0042 Сухой остаток померализеции натрия) Ингредиенты Взвешен.вещества АСПАВ (алимизульфонат Нестепродукты Фосфаты (по Р) Сульфат-анион Железо общее Объем стоков Хлорид-анион Нитрат-анион Нитрит-анион Аммоний-ион Марганец 2+ Алюминий БПК полн. Xpcm 6+ Кобальт фенолы Храм 3+ Кадмий Свинец Никель XMDE Медь

Взам. инв. №

Подп. и дата

Инв. № подл.

Изм.

Кол.уч

Лист

№док

Подп.

Дата

04/2022-151-Π-01000-TX1-TЧ

3,0 0,20 300,0 100,0 1000 +0.25 0,5 40,0 0,08 0,50 0,02 0,004 0,07 0,01 0,001 0,01 0,01 0,001 Главный инженер МУП "НВК" ž Maln Topes A.M. "Утверждаю" 14,5 36.0 0,43 246,0 2,38 0,03 47,0 60.0 1,07 5 39,46 0,004 0,001 0,009 0,000 денее 0,00005 денее 0,00005 менее 0,00005 менее 0,0005 0,0029 0.008 менее 0,0005 0,001 менее 0,001 менее 0,001 менее 0,001 н/сброса 0,063 менее 0,01 менее 0,01 менее 0,01 0,010 менее 0,01 менее 0,01 менее 0.01 0,040 менее 0,04 менее 0,04 менее 0,04 0,000 менее 0,1 менее 0,1 менее 0,1 M2/n р. Кама 0,45 248,0 15,0 38,6 M/c6poca 0,03 60'0 48,8 5.6 2,48 0,04 0,001 менее 0,0005 менее 0,0005 0,001 менее 0,0005 менее 0,0005 40,92 0,004 0,009 0,0028 0,010 0,001 MeHee 0,001 M2/II Мухамадуллина Ф.М. Христофорова С.В. **Шарифьянов В.Н.** 0,04 250.0 37,3 Голушко А.Н. 5 15,2 0.46 2,67 0,03 0,09 45,2 42.75 0,008 0,011 Сведения о работе очистных сооружений г. Нефтекамска за апрель 2020 г. 0,0031 0.010 в/сброса Me/II 5.500 3,000 0,200 0,016 30,000 0.500 0,080 0,030 600'0 40,000 108,433 0,100 82,073 0.001 380,667 0.0042 0,009 달 M2/n 197,13158 2,866032 8.322516 16,663386 1.420174 21,577914 59,451810 46,855930 0,027558 0,000369 0,016535 0,119436 0,000551 0,004409 0,002756 очищенных сточных вод 0,216771 0,409677 0,000000 0,011023 0,004960 0,000000 0,000000 т/месяц 0,000000 0,00000,0 0,00000,0 Напорный коллектор 5,200 30,233 15,100 2,577 0,393 0,743 0,050 0,030 0,020 0,0010 357,667 39.150 85,013 менее 0,1 600,0 107,867 0,00067 0,008 0,217 менее 0,04 менее 0,001 менее 0,01 менее 0,0001 менее 0,001 0,0050 MI/JM 231,0 129,7 347.0 50.0 125,3 87,9 3,6 1 orc RF/JM Расчеты произведены согласно стандарту СТ СЭВ 543-77. Начальник цеха ВО Главный технолог Инженер-химик 328,12374 128,97144 Начальник АЦ 152,94690 269,70078 32,323881 1,196017 79.238620 49,539914 1,291368 1,184994 0.031416 0,044644 2,241568 13,790023 0,137790 0,022598 0,014881 2,564547 0,004134 т/месяц 0,000000 000000'C 0.000000 0,000000 0,00000,0 0.049053 Приемная камера 551160 M³ 58,647 2,170 2,343 2,150 595,333 277,500 0,027 234,000 489,333 менее 0,02 4.067 89.883 143,767 25,020 0.057 0,0075 4.653 0.250 ленее 0,0001 менее 0,001 0,041 0,081 менее 0,001 менее 0,01 Сухой остатоков минерапизации АСПАВ (алимоульфонат натрин) Взвешен. вещества Ингредиенты Нефтепродукты Фосфаты (по Р) Сульфат-анион Железо общее Объем стоков Хлорид-анион Нитрат-анион Нитрит-анион Аммоний-ион Марганец 2+ БПК полн. Алюминий Фенолы Kpolm 6+ Кобальт Хром 3+ Кадмий Свинец Никель Жиры MHX

Лист

71

04/2022-151-Π-01000-TX1-TY

Взам. инв. №

Подп. и дата

Инв. № подл.

Изм.

Кол.уч

Лист

№док

Подп.

Дата

15,0 0,5 40,0 +0,25 0,20 300,0 1000 0,10 0.0 0,005 0,01 0,07 0,001 0,001 0,01 Главный инженер МУП "НВК" IL/JM ПДК Topes A.M. 28,8 2,48 15.2 0,07 "Утверждаю" 0,03 46,1 39,83 0,030 1,07 менее 0,001 менее 0,01 менее 0,04 0.001 0.007 0,0018 0.009 менее 0,01 менее 0.0001 менее 0.001 менее 0,1 менее 0.001 н/сброса P/JM р. Кама 5,5 31,4 249.0 15.7 0,46 2,86 0,04 0,07 0,000 менее 0,0001 менее 0,0001 49,7 41,65 0,001 менее 0,001 менее 0,001 0,030 1,15 0,001 менее 0,001 менее 0,001 0,010 M/cppoca 0,040 менее 0,04 менее 0,04 0,001 0,008 0,001 менее 0,001 менее 0,001 0,010 менее 0,01 менее 0,1 менее 0,01 0,0021 P/JW Мухамадуплина Ф.М. Христофорова С.В. **Шарифьянов** В.Н. Голушко А.Н. 253,0 15,9 30,8 2,76 43,4 42,38 0,030 0.50 0,03 0,07 0,063 менее 0,01 менее 0,1 1,14 0,010 MeHee 0,01 600'0 0.009 0,001 MeHee 0,001 0,0019 0,010 B/c6poca Сведения о работе очистных сооружений г.Нефтекамска за май 2020 г. L/JM 000'0 40,000 0,030 0,016 3,000 30,000 0,500 0,200 0,080 82,073 0,100 600,0 60000 380,667 108,433 0,0042 모 21,744116 0,026019 132,418379 58,780380 16,659084 1.521047 0,217292 0,421603 46,548879 0,014876 очищенных сточных вод 2,971501 8,338847 0,000167 0,120737 0,005572 0,005014 0,005014 0.002173 0,004457 0,00000,0 т/месяц 0,00000,0 0,00000,0 0,000000 0,000000 0,00000,0 Напорный коллектор 5,333 14,967 29,900 2,730 0,390 0,757 237,667 39,027 105,500 83,547 0,047 менее 0,1 0,027 0,217 600'0 0,009 0,008 0.0003 менее 0,01 менее 0,04 менее 0,0001 0.010 менее 0,001 менее 0,001 0,0039 Начальник цеха ВО Главный технолог Инженер-химик Начальник АЦ 134,9 243,5 356,3 121,5 84,3 47.7 1 orc L/JM Расчеты произведены согласно стандарту СТ СЭВ 543-77 220,635360 132,901046 163,154834 279,508786 31,024340 1,218509 2,291599 48.045578 1,485946 0,017272 77,872582 14,400915 0,152105 0,059616 1,123792 1,500432 0,029529 0,000000 0,00000,0 0,052930 0,000000 0,003287 0.066302 т/месяц 0.000000 0.00000.0 Приемная камера 557160 M³ 4,113 396,000 292,833 55,683 2,187 238,533 501,667 менее 0,02 139,767 86,233 2,667 0,031 25,847 2,017 2,693 0,273 0,107 0,053 0,095 0,119 менее 0,01 ленее 0.0001 менее 0,001 менее 0,001 0.0059 Сухой остаток(по минерализации АСПАВ (алкилсульфонат натрин) Ингредиенты Взвешен. вещества Фосфаты (по Р) Нефтепродукты Сульфат-анион железо общее объем стоков Хлорид-анион Нитрит-анион Нитрат-анион Аммоний-ион Марганец 2+ БПК полн. Алкминий Фенолы (bow 6+ Кобальт CDOM 3+ Кадмий **Чикель** Свинец KNPP Megs ZHK

Взам. инв. №

Подп. и дата

Инв. № подл.

Изм.

Кол.уч

Лист

№док

Подп.

Дата

25,0 0,5 1000 +0,25 40,0 0,20 300,0 100,0 0,50 0,02 0,04 0,005 0,003 0,006 0,002 0,01 0,07 0,0 Главный инженер МУП "НВК" Ĕ II/JW Fopes A.M. 15,0 "Утверждаю" 2,34 0,04 0,08 24.2 0,020 44,3 38,88 0,005 0,001 weree 0,001 weree 0,001 weree 0,001 000'0 0,009 0,009 менее 0,001 менее 0,0001 менее 0,01 менее 0,04 менее 0,07 менее 0,001 0.030 менее 0, н/сброса L/JM р. Кама 5,6 15,3 2,76 0,50 0,001 менее 0,001 менее 0,001 0,000 менее 0,0001 менее 0,0001 0,04 90'0 0,030 м/сброса 45,2 менее 0,1 4 менее 0,01 менее 0,01 0,040 менее 0,04 менее 0,04 900'0 0,001 | менее 0,001 | менее 0,001 0,036 0,012 35.07 0,001 менее 0,01 менее 0,01 0.008 MI/JM Христофорова С.В. Мухамадуллина Ф.М. Шарифринов В.Н. 15,5 24,9 256,0 5,5 0,52 0,04 47,0 Голушко А.Н. 2,67 0.08 менее 0,1 0,013 0,048 0,010 0,030 0,001 0,010 37.27 B/c6poca Сведения о работе очистных сооружений г.Нефтекамска за июнь 2020г. MI/JM 0,063 0,000 0,010 0,500 0,030 0,018 5,500 3,000 30,000 40,000 0,080 108,433 0,100 0,001 0.009 380,667 0.200 82,073 0.009 0.0042 异 187,839458 16,039824 57,343274 очищенных сточных вод 40,492589 2,761824 7,949114 1,573868 20,727861 0,210695 0,398340 0.000000 0,014181 0,109783 0,000000 0,000000 0,00000,0 0.004249 0,004780 0,000000 0,00000,0 0.004780 0.000000 0,022307 т/месяц 0,022997 0.000531 Напорный коллектор 107,967 0,750 30,200 2,963 0,043 5,200 0,397 0,027 0,207 0,009 0,042 0,009 353,667 39,027 менее 0,001 менее 0,1 менее 0,01 менее 0,04 0,008 0,001 14,967 менее 0,0001 менее 0,001 менее 0,001 Начальник цеха ВО L/JW Главный технолог Начальник АЦ Инженер-химик 116,833 248.833 49,710 132,333 353,667 1 orc ME/JM асчеты произведены согласно стандарту ст сэв э+э-г/ 2,420314 70,287176 1,358074 312,298560 127,079489 160,398240 257,150777 31,327051 1,225294 0.0000000 43,856172 0,015402 14,187809 1,129692 1.586455 0,154025 0.048332 0.018589 0.075419 0,044614 0,055768 т/месяц 0,000000 0.000000 0,000000 0.000000 Приемная камера 531120 M Ky6 2,307 132,300 0,029 26,713 2,557 588,000 302,000 58,983 4,557 0,035 0.142 239,267 484,167 менее 0.02 2,127 2.987 0,290 0,084 менее 0,01 менее 0,0001 менее 0,001 0,091 0.105 менее 0,001 Сухой остатокіть минерализация АСПАВ (этките)тьфонат натрия) Взвешеные вещества Ингредиенты Нефтепродукты Фосфаты (по Р) Сульфат-анион Железо общее ноине-ридспу Ниграт-анион объем стоков Нитрит-анион Аммоний-ион Марганец 2+ БПК полн. Алюминий KDOM 6+ Кобальт Фенолы Хром 3+ Кадмий Никель Свинец KNDE Медь ZHE

Взам. инв. №

Подп. и дата

Инв. № подл.

Изм.

Кол.уч

Лист

№док

Подп.

Дата

3,0 "Утверждаю" 40,0 1000 0,5 0,08 0,20 300,0 100,0 0,50 0,02 0,04 0,005 0,07 0,003 0,06 0,0 0,006 Главный инженер МУП "НВК" 0.0 IL/JM Ę Fepres A.M. 5,0 15,0 27,7 0,03 0,02 1,09 0.07 46,1 27,03 менее 0,1 менее 0,01 0,001 менее 0,001 менее 0,001 менее 0,001 0,001 0,008 0,0040 0,009 менее 0,01 менее 0,0001 0.00 0,001 менее 0,001 менее 0,001 менее 0,001 менее 0,001 менее 0,04 н/сброса MI/JM р. Кама 5,5 15,7 28,5 47,5 2,48 0,03 0,08 0,52 0,001 менее 0,001 менее 0,001 менее 0,1 0,03 1.11 менее 0,01 0,040 менее 0,04 менее 0,04 0,000 менее 0,0001 менее 0,0001 0,010 0.00 0.010 0,0042 менее 0.01 M/c6poca L/JW Мухамадуплина Ф.М. Христофорова С.В. **Шарифьянов** В.Н. 5,2 29,4 0,55 0,03 0,03 0.010 MeHee 0,01 Голушко А.Н. 2,67 45,7 31,42 менее 0,1 1,10 600,0 0,001 0.009 0,063 менее 0,01 0.0031 0,012 в/сброса Сведения о работе очистных сооружений г.Нефтекамска за июль 2020г. PL/JM 3,000 40,000 0.000 30,000 0,500 0,200 0.030 0,100 82,073 0.016 380.667 0.080 108,433 0,001 0,009 물 187,833814 очищенных сточных вод 15,691079 20,373575 58,054408 2,846502 42,370709 7,924345 1,437484 0,207162 0,026357 0,00000,0 0,000000 0,019346 0,396929 0,109116 0,000000 0,000000 0,000000 т/месяц 0,000000 0,004744 0.002214 0,005271 0,000527 0,000000 0,004744 Напорный коллектор 5,400 15,033 29,767 38,650 0,393 356,333 2,727 0,753 80,380 0,050 110,133 0,207 0,010 0,009 600'0 менее 0,1 менее 0,001 0.037 менее 0,01 менее 0,04 менее 0,001 0,001 менее 0,0001 0,0042 менее 0,001 Начальник цеха ВО лавный технолог Инженер-химик Начальник АЦ 124,900 249,000 51,033 2,847 130.067 351,667 80.870 1 orc L/JM Засчеты произведены согласно стандарту СТ СЭВ 543-77 131,185262 155,854946 33,188105 44,939414 315,399274 253,110431 2,203403 75,783899 1,374228 0,014760 13,916232 1,168647 1,207128 0,000000,0 0,138635 1,453297 0.0000000 0.051659 0,063783 0,003953 0,027938 0.054294 т/месяц 0,000000 0,000000 0,00000,0 Приемная камера 527130 M KV6 295,667 598,333 0,028 248,867 480,167 62,960 2,290 менее 0,02 4,180 143,767 85,253 2,607 2,217 2.757 0,263 0,098 0.053 26,400 менее 0.01 ленее 0,0001 менее 0,001 0.121 менее 0,001 0.0075 0,103 АСПАВ (алимпоульфонет нятрил) Взвешеные вещества Ингредиенты Сухой остаток по минера Фосфаты (по Р) Нефтепродукты Сульфат-анион Железо общее объем стоков Нитрит-анион Хлорид-анион Нитрат-анион Аммоний-ион Иарганец 2+ БПК полн. Алюминий Фенолы +9 Mod) Кобальт CDOM 3+ (адмий Свинец Хиры **Чикель**

Взам. инв. №

Подп. и дата

Инв. № подл.

Изм.

Кол.уч

Лист

№док

Подп.

Дата

"Утверждаю" Главный инженер МУП "НВК" Lopes A.M. 0,010 0.009 0,55 244,0 5.10 14,10 28,8 0,46 0,03 0.060 0,00 0,008 5,47 0,001 menee 0,001 menee 0,001 menee 0,001 менее 0.05 менее 0,001 менее 0,1 менее 0,04 менее 0,0001 менее 0,001 0.0041 менее 0,01 менее 0,01 н/сброса L/JM р. Кама 0,46 0,58 0,000 менее 0,0001 менее 0,0001 0,001 менее 0,001 менее 0,001 0.011 0,0040 245,0 5,50 0,04 менее 0,05 5.10 менее 0,01 менее 0,04 0,011 0,001 13,90 31,4 1,31 менее 0,01 0,001 менее 0,001 менее 0,001 0,080 менее 0,1 M/e5poca Π/JM Мухамадуллина Ф.М. Христофорова С.В. **Шарифьянов В.Н.** Голушко А.Н. менее 0,05 13,3 0,56 менее 0,04 0,0042 0,45 6,20 090'0 менее 0,01 0,011 250.0 5,40 14,30 0.03 0,001 1,21 менее 0,01 менее 0,1 0.010 30,1 Сведения о работе очистных сооружений г.Нефтекамска за август 2020 г. в/сброса MI/JM 0,040 0,200 000'0 0,010 0,0042 0,063 0,016 5,500 3,000 0,500 40,000 0,030 0,100 0,001 600'0 0.009 0.080 82,073 30,000 108,433 380,667 무 D/JM 0,002222 185,322654 56,072940 15,992955 20,445464 41,360141 0,024863 0,000000 0,014283 0,105798 0,000000 0,00000,0 7.864494 1.506035 0,206306 0.421605 0,000000 0,005290 0,000000 0,004761 0,000000 очищенных сточных вод 2,786190 0,00000,0 0,00000,0 T/Mecяц Напорный коллектор 0,200 0,010 0,001 0,009 0,009 5,267 14,867 2,847 0,390 0,797 106,000 0,047 0,027 менее 0,04 менее 0,001 менее 0,001 0,0042 350,333 30,233 38,650 78,187 менее 0,001 менее 0,1 менее 0,01 менее 0,0001 Начальник цеха ВО L/JW Главный технолог Инженер-химик Начальник АЦ 50,703 133,933 219,500 3,647 345.667 80,390 1 orc L/JW Расчеты произведены согласно стандарту СТ СЭВ 543-77. 77,691174 1,273279 161,16580 2,174149 44,969440 0.013754 13,478665 0,008094 127,380792 246.86218 1,212974 1.283859 1,130452 0,051841 0,044964 305,22723 31,728820 0,0000000 0.026450 0,0000000,0 0,130661 0,000000 0.00000.0 0.064537 0,000000 т/месяц Приемная камера 528990 M Ky6 59,980 4.110 146,867 85,010 0,026 25,480 2,137 0,098 0,050 0,085 0,122 2,293 2,427 2,407 0,247 240,800 менее 0,02 менее 0,001 0,0153 577,000 304,667 466,667 ленее 0,0001 менее 0,001 менее 0,01 MI/JN натрия) Взвешеные вещества Ингредиенты Сухой остатокое минера Взам. инв. № **АСПАВ** (апмилеульфонат Нестепродукты Фосфаты (по Р) Сульфат-анион Железо общее Упорид-анион Нитрит-анион объем стоков Аммоний-ион Нитрат-анион Марганец 2+ Алюминий БПК полн. Kpcm 6+ Фенолы KoGanh Kpcm 3+ Свинец Кадмий Никель Жиры Медь LMFK X Подп. и дата Инв. № подл.

0,20 0,001

0,002

25,0

+0,25 3,0

1000

II/JM Ĕ

Изм.

Кол.уч

Лист

№док

Подп.

Дата

40,0

0,5

0,04 0,005 0,0 0,07 0.003 0,006

0.0

Лист

75

04/2022-151-Π-01000-TX1-TY

15,0 40,0 1000 +0,25 300,0 100,0 0,005 0,01 0,01 3,0 0,001 0,04 0,01 0,001 0,01 0,1 Главный инженер МУП "НВК" Π/JM ž Fobes A.M. "Утверждаю" 6.4 28,4 0,49 0,04 16,00 2,38 90'0 0.030 0,98 0,010 600.0 244.0 45,2 0,0 0,0025 0,008 31,42 менее 0,01 менее 0,001 менее 0,1 менее 0,01 менее 0,04 менее 0,0001 0,001 menee 0,001 menee 0,001 menee 0,001 менее 0,001 н/сброса II/JW р. Кама 0,000 менее 0,0001 менее 0,0001 30,2 0,001 менее 0,001 менее 0,001 16,60 2,72 90'0 48,3 1,02 0,010 менее 0,01 менее 0,01 0,040 менее 0,04 менее 0,04 0,010 M/Copoca 249.0 5,4 0.51 34.71 менее 0,01 менее 0,1 0.030 0,0 0.009 0,001 менее 0,001 менее 0,001 0,0027 Π/JM Мухамадуллина Ф.М. Христофорова С.В. **Шарифьянов** В.Н. Голушко А.Н. Сведения о работе очистных сооружений г. Нефтекамска за сентябрь 2020 г. 251,0 29,8 0,55 2,48 0,04 47,0 0,063 MeHee 0,01 0,013 0,008 0,010 17.10 0,07 менее 0,1 0.030 0,008 5,2 1,01 0,0033 B/c6poca IZ/JM 0000'0 0,030 82,073 0,200 0,100 0.016 40,000 0,080 3.000 30,000 108,433 0.001 0.009 0,0042 0,009 380,667 II/JM 188,381218 54,779252 15,899072 20,736096 очищенных сточных вод 7.843333 0,207149 42,954101 0,024805 0,000000 0,111542 2,832782 0,403674 0,000000 0,010623 0,000000 0,000000 0,000000 0,00000,0 0.005312 1,570451 0,000531 0,004780 0,000000 0.004780 т/месяц 0,002231 Напорный коллектор 29,933 5,333 0,760 2,957 39,040 0,390 0,047 0,020 0,210 0,010 0,001 0.009 354.667 14.767 103,133 80,870 менее 0,04 менее 0,0001 менее 0,001 0,0042 менее 0,001 менее 0,1 менее 0,01 0.00 менее 0,001 Начальник цеха ВО лавный технолог Инженер-химик Начальник АЦ 3,793 240,000 137,333 358,667 65,940 122,900 79,893 1 orc Mr/n Расчеты произведены согласно стандарту CT C3B 543-77. 152,616923 261,325800 2,381145 73,776735 40,126789 1,225363 44,765322 1,384708 304,348950 124.890893 0.016997 0,950759 1,200399 0,045148 0.003718 13,896477 0,134381 0,048866 0,029744 0.000000 0.090827 0.00000.0 0,000000 0,000000 0.00000.0 т/месяц Приемная камера 531150 M Ky5 573,000 75,547 4,483 235.133 287,333 492,000 84,280 2,607 0,032 26,163 1,790 2,260 0,253 0,092 0,171 менее 0,02 138,900 менее 0,01 0,056 2,307 менее 0,001 0,085 0.007 ленее 0,0001 менее 0.001 Сухой остаток по минерализаци АСПАВ (этмитеульфонат натрия) Взвешеные вещества Ингредиенты Фосфаты (по Р) Нефтепродукты Сульфат-анион Железо общее Хлорид-анион объем стоков Нитрат-анион -Питрит-анион Аммоний-ион Марганец 2+ БПК полн. Алкминий CDOM 6+ фенолы Кобальт Xpom 3+ Кадмий Никель Свинец KMDE Megs XIX

Взам. инв. №

Подп. и дата

Инв. № подл.

Изм.

Кол.уч

Лист

№док

Подп.

Дата

04/2022-151-Π-01000-TX1-TY

0,030 менее0,005 менее 0,005 0,001 менее 0,001 менее 0,001 0,001 menee 0,001 menee 0,001 0,000 менее 0,0001 менее 0,0001 0,010 менее 0,01 менее 0,01 менее 0,04 менее 0,04 м/сброса менее 0,01 менее 0,01 менее 0,1 менее 0,1 L/JM 27,6 32,8 0,24 249,0 5,00 16.80 0,43 2.38 0,03 0.08 23,38 Сведения о работе очистных сооружений г. Нефтекамска за октябрь 2020 г. в/сброса L/JM 0,063 0,040 0,000 0,200 0,100 3,000 0,500 5,500 30,000 40,000 0,080 108,433 82,073 380,667 물 L/JW 0,113136 16,496672 21,757773 60,357756 40,862702 0,029538 197,105692 3,009528 8,582728 1,681434 0,222928 0,419662 0,016720 очищенных сточных вод 0.000000 0,00000,0 0,000000 0,000000 0,000000 0,000000 T/Mecяц Напорный коллектор 353,667 15,400 29,600 0,753 0,053 0,20 5,400 3,017 39,040 0,400 73,320 0,030 менее 0,04 108,300 менее 0,01 менее 0,001 менее 0,001 менее 0,1 менее 0,0001 374,0 250,0 61.0 132,7 3,7 1 OTC L/JM 136,840452 37,857076 2,347989 81,201524 43.441422 1,354288 0.015605 14,976860 0,742908 2,375855 0,154378 331,048080 274,015852 1,187092 166,081360 000000000 0,0000000,0 0,0000000 0,0000000 Приемная камера 557320 M Ky6 4,263 2,130 2,430 0,028 1,333 594,000 менее 0,02 4.213 245,533 298,000 491,667 67,927 145,700 77,947 менее 0,01 менее 0.0001 менее 0,001 0,277 (видивн Сухой остатокіпо минерапизаці Взвешеные вещества Ингредиенты АСПАВ (влюялсульфонат Нефтепродукты Фосфаты (по Р) Сульфат-анион Железо общее Хлорид-анион объем стоков Нитрат-анион Нитрит-анион Аммоний-ион Алюминий БПК полн. Фенолы Xpam 6+ Кобальт Кадмий Жиры X

Дата

Подп.

0,5

0,41

0,41 2,53 0,04 90'0 34,2 22,29

28,1

40,0

+0,25 3,0 15,0

16,50

1000

242,0

247.0 5,40

L/JM Ĕ

н/сброса L/JM

p. Kama

Главный инженер МУП "НВК"

"Утверждаю"

Взам. инв. №

Подп. и дата

Инв. № подл.

Изм.

Кол.уч

Лист

№док

POPEB A.M.

300,0

32,8

19,72

90,0 2,34

0,50

менее 0,0, менее 0.007 0,02

менее 0,04

менее 0,000

менее 0,007

менее 0,01

0,24

менее 0,005

менее 0

0,07

0,005

0,008 0,001

0,012 0,002

0,016

0,008360 0,000557

0,015

0,042356 0,017834 0.045700

0,076

0,032

0,082

Марганец 2+

Свинец Никель

Ĭ

Кром 3+

Медь

0,001

0,001 0,01

0,00

0,009

0,010

0.010

0,009

0,005573

0,010

0,001

0,000000

менее 0,001

0,01

0,006

0,0027

0,0030

0,0038

0,0042

0,002341 0,005573

0,0042 0,0100

0,045143

0,081

0,0000000

менее 0,001

0,054617

0.098

0,014

0,009

менее 0,001

0,001 менее 0,001 менее 0,001

Начальник цеха ВО Главный технолог Начальник АЦ Расчеты произведены согласно стандарту СТ СЭВ 543-77

Инженер-химик

Мухамадуллина Ф.М. Христофорова С.В. Шарифьянов В.Н. Голушко А.Н.

Лист

77

Сведения о работе очистных сооружений г.Нефтекамска за ноябрь 2020г. очищенных сточных вод Напорный коллектор 29,733 0,400 0,763 108,367 0,050 5,267 14,967 2,820 76,727 0,200 0,010 0,0003 0.027 0,001 352,333 39,040 менее 0,1 менее 0.01 менее 0,04 менее 0,001 менее 0,0001 L/JM 129,5 81,8 131,4 219.8 373,7 61.0 3,6 1 OTC 7/JW 135,618225 39,988213 161,596564 1,353608 50,391438 1,520060 0,017834 342,811231 297,631511 0,0000000 2,623396 88,259177 15.081704 1,147327 2.811843 0,164668 0,041018 0,007728 0,0000000 0,000000 0,000000 T/Mecяц Приемная камера 594470 M KYG 0,030 228,133 2,277 1,930 4,730 0,013 271,833 500,667 4,413 2,557 0,069 576,667 67,267 менее 0,02 25,370 менее 0,001 148,467 84,767 менее 0,01 ленее 0,0001 АСПАВ (этимпеутьфонат натрия) Взвешеные вещества Ингредиенты Сухой остатокіпо минера Взам. инв. № Нефтепродукты Фосфаты (по Р) Сул-фат-анион Железо общее Хлорид-анион Нитрит-анион ноина-тастиН объем стоков Аммоний-ион БПК полн. Алюминий хром 6+ **ЧИСНЭФ** COGAINET Kpom 3+ Кадмий KMED Медь Подп. и дата Инв. № подл.

15,0

27.7

28,2 0,46

30,000 0,500

15,3

15,3 29,3 0,48 2,25 0,03 0,07 44,8 16,44

15,7

3,000

0,5 40,0 0.08 0,20 300,0 100,0

0,45 2,11 0,03 0,50 0,001

менее 0,01

менее 0,01

0,063 менее 0,01

82,073

0,001 менее 0,001 менее 0,001 менее 0,001

0,010

0,020 99'0

менее 0,1

менее 0,1

менее 0,1 0,020

000'0

0.030 0,100

0.016051

99'0

менее 0,01 менее 0,04 менее 0,0001

0,010 менее 0,01 менее 0,01 0,040 менее 0,04 менее 0,04

0,0000000

0,000000

0.0000000

0,118894

0,67

43,9

43,4 17,53

64,420930

45,611900 0,029724 0,000178 0,0000000

0,07

16.07

0,07

0,03

0,080 0,200 108,433

40,000

1000

II/JM ğ

н/сброса II/JM

м/сброса

в/сброса

달

Mr/n

Mr/n

Π/JM

т/месяц

247,0

5.500

380,667

209,451399 3,131073 8.897432 17,675377 1,676405 23,208109 0,237788 0,453581

p. Kama

Главыми инженер МУП "НВК"

"Утверждаю"

Изм.

Кол.уч

Лист

№док

Подп.

Дата

Юсупов Д.Х.

242

Мухамадуллина Ф.М. Христофорова С.В. **Шарифьянов** В.Н. Голушко А.Н.

0,005 0,0 0,07

0,001

0,001 0,009

0.0

0,013

0,012

0,016 0,001

0,005945 0,000594 0,004756

0.000000

0,001 0,010

0,002

менее 0,001

0,001 менее 0,001 менее 0,001

0,000 менее 0,0001 менее 0,0001

600'0

0,0015

0,0017

0,0021

0,004756

0,008

0.002497

0,000000

менее 0,001 0.0042

0,008

0,043991

0.074

Марганец 2+

Свинец Никель

0.003507

0,00000,0

менее 0,001 0,0059

менее 0,001

0,001 менее 0,001 менее 0,001

0,010

0.009

Начальник цеха ВО Главный технолог Инженер-химик Начальник АЦ

Расчеты произведены согласно стандарту CT C3B 543-77 0,035668 0,060

Изм.

Кол.уч.

Лист

№док

Подп.

Дата

Сведения о работе очистных сооружений г.Нефтекамска за декабрь 2020 г. 646715 м куб

Главный инженер МУП "НВК" Юсупов Д.Х. "Утверждаю"

объем стоков

		26						71		
		COORDINATE DES	4 040	Напорный	Напорный коллектор	CUH		p. Kawa	(a	
MTHONDOUGH	прием	приемная камера	200	очищенных	очищенных сточных вод) I	в/сброса	м/сброса	н/сброса	пдк
	mr/n	т/месяц	ת/יאו	n/m	т/месяц	II/JM	n/n	n/n	ת/א	mr/n
Сухай остатокіло минерализации)	609,667	394,280794		350,000	226,350250	380,667	245,0	245,0	230,0	1000
Взвешеные вещества	242,467	156,807046	139,27	5,267	3,406248	5,500	5,40	5,60	5,30	+0,25
БПК полн.	292,500	189,164138	207,00	15,033	9,722067	3,000	6,60	6,50	6,50	3,0
XUK	498,667	322,495429	371,33	29,800	19,272107	30,000	8,8	8,9	8,7	15,0
Аммоний-ион	69,410	44,888488	62,62	2,910	1,881941	0,500	0,64	0,62	09'0	0,5
Нитрат-анион	2,233	1,444115		39,133	25,307898	40,000	2,29	2,25	2,11	40,0
Нитрит-анион	менее 0,02	0,0000000	all c	0,403	0,260626	0,080	0,04	0,04	0,03	0,08
Фосфаты (по Р)	4,820	3,117166	3,78			0,200	0,12	0,11	0,11	0,20
Хлорид-анион	149,500	96,683893	131,60	108,467	70,147236	108,433	42,1	43,9	40,7	300,0
Сульфат-анион	90,547	58,558103	85,21	77,340	50,016938	82,073	43,85	40,92	39,83	100,0
АСПАВ (алюлоульфонат натрия)	2,513			0,065	0,042036	0,063	менее 0,01	менее 0,01	менее 0,01	0,50
Фенэлы	0,029	0,018755		менее 0,001	0,000000	0,001	0,001 менее 0,001	менее 0,001	менее 0,001	0,001
Жиры	26,310	17,015072		менее 0,1	0,000000	0,000	менее 0,1	менее 0,1	менее 0,1	
Нефтепродукты	1,823	1,178961		0,027	0,017461	0,030	0,030 менее 0,005 менее 0,005	менее 0,005	менее 0,005	0,05
Железо общее	3,097	2,002876		0,210	0,135810	0,100	0,72	0,74	0,71	0,10
Хром 6+	менее 0,01	0,0000000		менее 0,01	0,00000	0,010	менее 0,01	менее 0,01	менее 0,01	0,02
Алюминий	0,243	0,157152		менее 0,04	0,00000	0,040	0,040 менее 0,04	менее 0,04	менее 0,04	0,04
Кадмий	иенее 0,0001	0,00000,0		менее 0,0001	0,000000	0,000	0,000 менее 0,0001	менее 0,0001	менее 0,0001	0,005
Кобальт	менее 0,001	0,000000		менее 0,001	0,000000	0,001	0,001 менее 0,001 менее 0,001	менее 0,001	менее 0,001	0,01
Xpolm 3+	0,037	0,023928		0,010	0,006467	0,016	0,014	0,01	10,0	0,07
Медь	0,016	0,010347		0,001	0,000647	0,001	0,003	0,001	0,000	0,001
Марганец 2+	0,083	0,053677		0,008	0,005174	0,009	0,009	0000	0,009	0,01
Никель	менее 0,001	0,000000		менее 0,001	0,000000	0,001	менее 0,001	менее 0,001	менее 0,001	0,01
Свинец	0,0055	0,003557		0,0040	0,002587	0,0042	0,0037	0,0032	0,0032	0,1
Тинк	0.093	0.060144		0.008	0.005174	0.009	0.011	0.010	00.00	0.01

| Цинк 0,083 0,060144 | Расчеты произведены согласно стандарту СТ СЭВ 543-77.

Начальник цеха ВО И.о.начальника АЦ Главный технолог Инженер-химик

Шарифьянов В.Н. Голушко А.Н.

Мухамадуллина Ф.М. Шилова Н.В.

Сведения о работе очистных сооружений г. Нефтекамска за 2021г. Напорный коллектор очищенных сточных вод Фактический мг/п 355,0413 5,3364 16,5824 29,8466 3,3081 39,8731 0,4683 0,7977 107,8062 76,5355 0,0452 0,0002 менее0,1 0,0260 0.2142 0,0107 менее0,04 менее0,001 0,0010 менее0,01 менее0,0001 0,0088 0,0039 0,0086 менее0,05 менее0,001 3955,305237 57,147530 31,171380 311,713800 5,195230 415.618400 0,831237 2.078092 1126,668749 852,776224 0,000000 0,654599 0,010390 0,311714 1,039046 0,103905 0,415618 0,001039 0,010390 0,166247 0,010390 0,093514 0.010390 0,093514 1,350760 m/sog 5,50 3.00 30,00 0,50 40,00 90'0 0.20 380,667 82,073 00'0 0,03 108,433 0,10 0,040 0,063 0.00 0,0 0,0001 0.00 0.016 0,001 600'0 600'0 0,13 0.001 0,0042 Начальник цеха ВО 3 758,145622 1849,067319 1816,008094 3 369,161955 408,563679 11,959046 0,000000 33,102055 972,438860 565,318936 15,191795 0,183977 190,680187 37,490054 0,209205 12,847181 0.000000 0,590894 0,000000 2,033821 0.00000,0 0,812603 0,0000 0.069744 0.719044 7,890091 Главный технолог Расчеты произведены согласно стандарту СТ СЭВ 543-77. 6 647 705 Инженер-химик Начальник АЦ poe/w Приемная камера 506,816 61,459 1,799 4.979 565,330 278,151 273,178 2,285 0,028 1,933 5,640 146,282 85,040 28,684 0.306 0,089 0,122 менее0,01 менее0.0001 менее0,001 0,031 0.010 0,108 менее0,02 1,187 менее0,001 Сухой остаток 🗠 минерплазци.) Взам. инв. № Ингредиенты Взвешен вещества АСПАВјапосторпофонат Объем стоков Фосфаты (по P) Сульфат-анион **Нефтепродукты** HINAB (MOSHOTAD-12) железо общее Хлорид-анион Нитрат-анион Нитрит-анион Аммоний-ион БПК полн **АЛЮМИНИЙ** Марганец (pom 6+ ренолы Кобальт (pow 3+ Кадмий Никель Свинец KNDE Медь ž Подп. и дата Инв. № подл. 04/2022-151-Π-01000-TX1-TY Изм. Кол.уч Лист №док Подп. Дата

22.02

14,150 6,000

28,817 0.524 1,862

27,742

9

243,917 5,600 13,250 27,250 0.478 1,663 0,031 0,051 28,500 25,846

248,500

247,167

2360,209561

110,234819 35,474876

198,411433 21,991542

5,350 13,675

н/сброса

м/сброса

в/сброса

p. Kawa

- Юсупов Д.X.

Главный инженер МУП "НВК"

утверждаю:

15.0

0.5

40.0 0,08 0,20

> 0,032 0,058 30,017 28,118

0,026 0,055

1,725

265,064757

3,112953 5,302848

0,499

100,0

0,50

менее0,01

менее0.01 менее0,001 менее0,1

27,775 28,275

716,664058

508,785134

0,300242 0,001655 0,0000 0,172547 1,423977 0,00000,0

менее0,01

менее0,001 менее0,1

менее0,001

менее0,1 0.026

> 0,031 0,600

0,024

0,587

менее0,01 менее0.04 менее0,0001 менее0,001

> 0,0000 0,00000

0,02 9.0 0,005 0,01 0,07 0,003

менее0,01

менее0,01 менее0,04 менее0,0001

менее0,04

менее0,0001 менее0.001

0.570

300,0

Шарифьянов В.Н. Голушко А.Н.

0,01

0,010

менее0,05

менее0,05

0,003

0,0 0,006

менее0,001

менее0.001 0.003 0.010

менее0,001

0,003

0,026132

0,057283 0.000000

0,0000,0

0.010

менее0,05

0.014

0.012

0.00

0,008 0000 0.009

0,008

0,009

0.00

0,006648 0,058499

0,071200

0,00000

менее0,001

Нурисламова И.Ф.

Мухамадуллина Ф.М.

Главный инженер МУП "НВК" Юсупов Д.Х. "Утверждаю"

Сведения о работе очистных сооружений г. Нефтекамска за январь 2021г

597635 M³ объем стоков

				Напорный коллектор	коппектор			n Kawa	0	
Ингредиенты	Приемн	Приемная камера	1 orc	VIGHTIPHINO	ONWINGHALY CTOURLY BOD	HAC	alohoona	M/ofinors	niofoco	000
				None Control	Hog vigueoio		acopoca	moopoog	ucopoca	98
	mr/m	т/месяц	mr/n	n/nw	т/месяц	II/JW	Mr/n	Mr/n	Mr/n	Π/JM
Сухой остатокіло минерализации	585,333	349,815487		356,667	213,156503	380,667	247,0	244,0	242,0	1000
Взвешен.вещества	244,667	146,221563	135,4	5,467	3,267091	5,500	5,3	5,5	5,3	+0,25
БПК полн.	280,333	167,536812	225,5	15,033	8,984426	3,000	9,1	6'8	8,8	3,0
XUK	505,667	302,204298	392,8	30,400	18,168104	30,000	18,8	19,4	18,7	15,0
Аммоний-ион	66,163	39,541325	60,4	2,750	1,643496	0,500	0,58	0,55	0,53	0,5
Нитрат-анион	2,233	1,334519		39,000	23,307765	40,000	2,15	2,30	2,10	40,0
Нитрит-анион	менее 0,02	0,000000		0,400	0,239054	0,080	0,03	0,04	0,03	0,08
фосфаты (по Р)	4,957	2,962477	4,0	0,790	0,472132	0,200	0,10	0,10	60'0	0,20
Хлорид-анион	144,133	86,138925	130,7	107,033	63,966846	108,433	42,6	45,7	45,2	300,0
Сульфат-анион	80,143	47,896262	81,0	80,143	47,896441	82,073	40,50	38,37	35,41	100,0
АСПАВ (алемоульфонат натрии)	2,540	1,517993		0,053	0,031854	0,063	менее 0,01	менее 0,01	менее 0,01	0,50
Фенолы	0,028	0,016734		0,00030	0,000179	0,001	0,001 менее 0,001	менее 0,001	менее 0,001	0,001
Жиры	26,067	15,578552		менее 0,1	0,000000	0,000	менее 0,1	менее 0,1	менее 0,1	
Нефтепродукты	2,073	1,238897		0,027	0,015957	0,030	0,030	0,030	0,020	0,05
Железо общее	3,793	2,266830		0,237	0,141460	0,100	0,65	0,61	0,57	0,10
Xpow 6+	менее 0,01	0,000000		менее 0,01	0,00000	0,010	менее 0,01	менее 0,01	менее 0,01	0,02
Алюминий	0,253	0,151202		менее 0,04	0,000000	0,040	менее 0,04	менее 0,04	менее 0,04	0,04
Кадмий	менее 0,0001	0,000000		менее 0,0001	0,00000	0,000	0,000 менее 0,0001	менее 0,0001	менее 0,0001	0,005
Кобальт	менее 0,001	0,000000		менее 0,001	0,00000	0,001	0,001 менее 0,001	менее 0,001	менее 0,001	0,01
Xpom 3+	0,077	0,015251		0,010	0,005976	0,016	0,011	0,011	0,010	0.07
Медь	0,027	0,003177		0,001	0,000598	0,001	0,001	0,001	0,001	0,003
Марганец 2+	0,153	0,017158		600'0	0,005379	600'0	0,010	0,010	600'0	90'0
Никель	менее 0,001	0,000000		менее 0,001	0,00000	0,001	0,001 менее 0,001	менее 0,001	менее 0,001	0,01
Свинец	0,0058	0,003466		0,0036	0,002151	0,0042	0,0029	0,0026	0,0027	900'0
Цинк 0,131	0,131	0,078290		600'0	0,005379	600'0	0,011	0,010	600'0	0,01
Designation of the second second second	STATE OF STREET	P 074 000 10 100	-							

| Цинк 0,078290 | Расчеты произведены согласно стандарту СТ СЭВ 543-77.

Начальник цеха ВО И.о. начальника АЦ Главный технолог Инженер-химик

Шарифьянов В.Н. Голушко А.Н.

Шилова Н.В. Мухамадуллина Ф.М.

Изм. Кол.уч. Лист №док Подп. Дата

04/2022-151-Π-01000-TX1-TY

Изм.

Кол.уч.

Лист

№док

Подп.

Сведения о работе очистных сооружений **г.Нефтекамска за февраль 2021**г 507870 м²

"Утверждаю" Главный инженер МУП "НВК"

Юсупов Д.Х.

Орбем Стоков Ингредиенты Сухой остатокую венеральные Взвешен.вещества БПК полн. ХПК Аммоний-мон Нитрит-анион Нитрит-анион Фосфаты (по Р) Хлорид-анион АСПАВ (алексульфонат матрия) Фенолы Жиры	MeH	Приемная камера 1/1 1/1 1/1 1/2 1/3 1/3 1/4 1/6 1/4 1/6 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	1 orc Mr/II 147.7 244.5 374.7 61.04 4.18 131.5 80.71		Напорный коллектор очищенных сточных вод мг/л т/месяц 372,333 189,096913 5,500 2,793285 15,333 7,787323 29,900 15,185313 29,900 15,185313 0,40090 0,203148 0,793 0,402893 108,467 55,086983 83,533 42,424057 0,050 0,000356	HДС 380,667 5,500 30,000 0,500 40,000 0,000 10,003 82,073 82,073 0,000	в/сброса мг/л 247,0 5,10 14,80 37,2 2,06 0,03 0,03 0,03 0,03 2,06 0,03 34,14 менее 0,001 менее 0,001	р. Кама ми/оброса миг/л 249.0 5.30 14,40 37.7 0,29 0,09 0,06 23.9 33.29 менее 0,001 менее 0,001 менее 0,001	ма мг/л 243.0 243.0 5,10 14,30 36,4 0,27 1,96 0,03 0,05 21,7 21,7 менее 0,001 менее 0,001	HQB 1000 +0.25 3,0 15,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Нефтепродукты Железо общее Хром 6+	2,097 2,827 менее 0,01	1,065003		0,030 0,2 07 менее 0,01	0,015236 0,104977 0,000000	0,030	2	2	менее 0,005 0,69 менее 0,01	0,05
Алюминий Кадмий	0,303	0,153885		менее 0,004 менее 0,0001	0,000000	0,040	0,040 менее 0,040	менее 0,004 менее 0,0001	менее 0,04 менее 0,0001	0,04
Кобальт Хром 3+	менее 0,001	0,000000		менее 0,001	0,000000	0,001	менее 0,001 0,012	менее	менее 0,001	0,01
Медь Марганец 2+ Нихель	0,024 0,123	0,012189		0,001 0,009 Menee 0.001	0,000508	0,009	0,001 0,012 Mehee 0,001	0,001 0,010 MeHee 0,001	0,001 0,009 MeHee 0,001	0,003
Свинец	0,0063	0,003200		0,0042	0,002133	0,0042	0,0032		0,0030	0,006

Расчеты произведены согласно стандарту CT C3B 543-77.

Начальник цеха ВО И.о.начальника АЦ Главный технолог Инженер-химик

Голушко А.Н. Шилова Н.В. Мухамадуллина Ф.М. Шарифьянов В.Н.

	П			

Дата

Изм.

Кол.уч.

Лист

№док

Подп.

Дата

Сведения о работе очистных сооружений г. Нефтекамска за март 2021 г
 609 740 $_{\rm M}{}^{\rm s}$

главный инженер МУП "НВК" Юсупов Д.Х.

"Утверждаю"

Объем стоков

Murrophonium			,	Напопиний	Напорный коппектор			-		
id individual init	ilbwewi	приемная камера	1 orc		douglass	얼		p. Nama	Ma	
				очищенных	очищенных сточных вод		в/срроса	M/c6poca	н/сброса	HZB
	Mr/m	т/месяц	Mr/n	Mr/n	T/Mecell	ujem	4/644	ay con	7	
Сухой остаток/по минерализации	584,167	356,189987		363,333	221.538846	380 667	245 00	00 4400	MZ/II	ME/JN
Взвешен.вещества	242,800	148,044872	147.9	5,467	3.333266	5 500	0 V		242,00	0001
БПК полн.	301,500	183,836610	250.2	15.000	9.146100	3,000	42.5			C7'0+
XIX	496,500	302,735910	351,3	29,600	18,048304	30,000		3,0	13,1	3,0
Аммоний-ион	73,327	44,710405	60,0	3,113	1.898304	0.500				0,0
Нитрат-анион	1,403	0,855465		37,893	23,105061	40.000			00,0	0,0
Нитрит-анион	менее 0,02	0,000000		0.393	0.239811	0.080	000		2,2	0,0
Фосфаты (по Р)	5,153	3,141990	4.1	0,790	0.481695	0.200			40,0	80,0
Хлорид-анион	148,033	90,261641	130,3	108,167	65,953564	108 433			00,00	0,000
Сульфат-анион	96,237	58,679548	89,2	79,293	48,348297	82,073	35.83	(C)	30.32	300,0
АСПАВ (алимсульфонет натрия)	2,163	1,318868		0,050	0,030487	0.063	менее 0.01	MEHON	Metter 0.01	0,00
Фенолы	0,030	0,018292		менее 0,001	0,000000	0.001	0.001 менее 0.001	2	Mendo O OO1	000
Жиры	27,040	16,487370		менее 0,1	0,000000	0.000	менее 0.1		Method 0,001	8
Нефтепродукты	1,780	1,085337		0,030	0,018292	0.030	0,030 менее 0,005	1 8	MANAGE O OOS	0.05
Железо общее	10,063	6,135814		0.213	0.130058	0.100	0.71	0.74	0000	3 6
Xpow 6+	менее 0,01	0,000000		менее 0,01	0.000000	0.010	менее 0.01	Metter 0.01	Meuno 0 01	0,0
Алюминий	0,317	0,193288		менее 0,04	0,000000	0.040	менее 0.04	менее 0.04	Method O Od	20,0
Кадмий	менее 0,0001	0,0000000	-	менее 0,0001	0,000000	0.000	менее 0.0001	0.000 Mehee 0.0001 Mehee 0.0001	Meude 0 0001	500
Кобальт	менее 0,001	0,0000000		менее 0,001	0,000000	0.001	0.001 менее 0.001 менее 0.001	менее 0.001	Meyes 0.001	0,0
Хром 3+	0,061	0,037194		600'0	0,005488	0.016	0.006	0 000	0000	000
Медь	0,026	0,015853		0,001	0,000610	0.001	0.002	0000	Meyes 0 001	0000
Марганец 2+	0,080	0,048779		0,0086	0,005244	0.009	0.011	0.011	0,000	800
	менее 0,001	0,0000000		менее 0,001	0.000000	0.001	-	Meuso 0.001	2000	000
Свинец	0,056	0,034145		0,0042	0,002561	0.0042	-	0.0038	0 0038	900
LIMHK	0,110	0,067071		800'0	0,004878	0.00	0.00	00010	0100	200
Расчеты произведены согласно станла	TRACHO CTAHABA	DTV CT C3B 543.77	7.7					21212	2 2 2 2	2

|Цинк 0,110 0,067071 | Расчеты произведены согласно стандарту СТ СЭВ 543-77. Начальник цеха ВО Главный технолог И.о. начальника АЦ

Инженер-химиг

Шарифьянов В.Н. Голушко А.Н. Шилова Н.В. Мухамадуллина Ф.М.

Лист

83

Изм.

Кол.уч.

Лист

№док

Подп.

Дата

Главицияниемер МУП "НВК" Юсупов Д.Х. "Утверждаю"

Сведения о работе очистных сооружений г. Нефтекамска за апрель 2021 г. $594510~{\rm M}^{\circ}$

Объем стоков	594510	M ³		awfdoor vigue	Obsequents of pages of a complete managements of an ipage 2021 1.	cra sa anp	GIIB 20211.			
ZHIDEGRACHIA	Приемп	Помемная камела	1 ore	Напорный	Напорный коллектор	NA C		р. Кама	Ма	
	moud.	an vamena	2	очищенных	очищенных сточных вод	1	B/c6poca	м/сброса	н/сброса	НДВ
			,			,				
	MI/JI	т/месяц	U/JW	Π/JM	т/месяц	me/n	Me/n	мг/л	M2/II	U/JW
Сухой остатокію минерапизацию	466,933	277,59634		347,667	206,69133	380,667	249,0	245,0	241,0	1000
Взвешен.вещества	306,967	182,49495	148,9	6,267	3,725616	5,500	5,2	5,7	4,9	+0,25
БПК полн.	257,667	153,18561	207,8	17,267	10,265226	3,000	13,5	14,0	12.5	3.0
XUK	536,667	319,05390	368,7	35,467	21,085308	30,000	53,2	54,9		15,0
Аммоний-ион	55,913	33,240838	44,3	2,253	1,339609	0,500	09'0	0,58	0,56	0,5
Нитрат-анион	1,680	0,998777		61,393	36,498931	40,000	2,15	2,35	2,10	40,0
Нитрит-анион	менее 0.02	0,000000		0,280	0,166463	0,080	0,03	0,03	0,04	0,08
фосфаты (по Р)	4,600	2,734746	3,9	1,233	0,733209	0,200	0,07	0,07	20'0	0,20
Хлорид-анион	146,233	86,936981	131,4	107,700	64,028727	108,433	23,9	25,7	23,9	300,0
Сульфат-анион	88,047	52,344822	75,9	81,270	48,315828	82,073	23,97	18,18	16,77	100,0
АСПАВ (апелеульфонат натрии)	2,520	1,498165		0,030	0,017835	0,063	менее 0,01	менее 0,01	менее 0,01	0,50
Фенолы	0,027	0,016052		менее 0,001	0,000000	0,001	менее 0,001	менее 0,001 менее 0,001 менее 0,001	менее 0,001	0,001
Жиры	30,140	17,918531		менее 0,1	0,000000	0,000	менее 0,1	менее 0,1	менее 0,1	
Нефтепродукты	1,673			0,030	0,017835	0,030	0,03	0,03	0,03	0,05
Железо общее	7,330	4,357758		0,273	0,162480	0,100	0,74	0,75	0,73	0,10
Xpow 6+	менее 0,01	0,000000		менее 0,01	0,000000	0,010	менее 0,01	менее 0,01	менее 0,01	0,02
Алюминий	0,313	0,186082		менее 0,04	0,00000	0,040	менее 0,04	менее 0,04	менее 0,04	0,04
Кадмий	менее 0,0001	0000000'0		менее 0,0001	0,000000	0,000	0,000 менее 0,0001	~	менее 0,0001	0,005
Кобальт	менее 0,001	0,000000		менее 0,001	0,00000	0,001	0,001 менее 0,001	менее 0,001	менее 0,001	0,01
Хром 3+	960'0	0,057073		0,010	0,005945	0,016	0,008	0,010	800'0	0,07
Медь	0,036	0,021402		0,0010	0,000595	0,001	0,001	0,002	0,001	0,003
Марганец 2+	0,190	0,112957		0,028	0,016646	600'0	0,028	0,049	0,020	90'0
Никель	менее 0,001	0,000000		менее 0,001	0,000000	0,001	0,001 менее 0,001 менее 0,001	менее 0,001	менее 0,001	0,01
Свинец	0,0068	0,004043		0,0042	0,002497	0,0042	0,0034	0,0038	9600'0	900'0
Цинк	0,020	0,011890		0,010	0,005945	0,009	менее 0,01	0,410	мен	0,01
Decision of the Contract of th	0011000 0110000	TO CAR GOOD TO JUNE	11						ı	

Расчеты произведены согласно стандарту CT C3B 543-77. 0,020 0,011890

Начальник цеха ВО И.о. начальника АЦ Главный технолог Инженер-химик

Шарифьянов В.Н. Голушко А.Н.

Шилова Н.В. Мухамадуллина Ф.М.

Изм. Кол.уч. Лист №док Подп. Дата

Сведения о работе очистных сооружений г.Нефтекамска за май 2021 г.

"Утверждаю" "НВК" Коупов Д.Х.

Интредиенты мигл тимесян 1 отс онициенных стить тимесяц мигл мигл р. Кама	объем стоков	551470 M	M.								
MITIA MITIA <t< th=""><th></th><th>Приемн</th><th>ая камера</th><th>1 orc</th><th>Напорный</th><th>коллектор</th><th>걸</th><th>olođenos</th><th>p. Ka</th><th>Ma</th><th>000</th></t<>		Приемн	ая камера	1 orc	Напорный	коллектор	걸	olođenos	p. Ka	Ma	000
Markin Timecsist Markin Timecsist Markin Mark	Murronnonne				очищенных	сточных вод		B/CODOC#	Mycopoca	ноороса	146
Mir/In T/MacStill Mir/In	инредисион									-	
The contract of the contract		nr/n	т/месяц	п/лм	Mr/n	т/месяц	II/JM	MIT/J	44F/JI	Mr/n	II/JM
149,200 14,000	Сухой остаток/по минерализации)	586,000	323,161420		345,667	190,624815	380,667	243,0	245,0		1000
288,500 159,650565 209,7 14,067 7,757363 3,000 13,1 12,8 12,8 49,410 27,249133 43,4 2,450 1,6200 0,56 0,57 0,50 49,410 27,249133 43,9 2,450 1,582 0,57 0,50 0,56 0,57 0,56 49,410 27,248133 43,9 2,46414 40,000 2,06 0,57 0,57 0,74414 40,000 0,67 0,57 0,000 0,00 <t< td=""><td>Взвешен.вещества</td><td>366,200</td><td>201,948314</td><td>151,0</td><td>4,767</td><td>2,628692</td><td>5,500</td><td></td><td>5,7</td><td>5,6</td><td>+0,25</td></t<>	Взвешен.вещества	366,200	201,948314	151,0	4,767	2,628692	5,500		5,7	5,6	+0,25
498,667 274,999890 374.0 29,200 16,102924 30,000 22.2 21.2 20.5 20	БПК полн.	289,500	159,650565	209,7	14,067	7,757363	3,000		12,8		3,0
49,410 27,248133 43,9 2,463 1,352921 0,500 0,56 0,57 0,56 0,56 0,57 0,56 0,57 0,56 0,57 0,56 0,57 0,56 0,57 0,56 0,57 0,56 0,57 0,56 0,57 0	XUK	498,667	274,999890	374,0		16,102924	30,000	22,2	21,2		15,0
Methee 0,022	Аммоний-ион	49,410	27,248133	43,9	2,453	1,352921	0,500		0,57	0,56	0,5
менее 0,02 0,000000 0,390 0,215073 0,008 0,03 0,042 0,000 0,000 0,007 0,042812 0,000 0,000 0,007 0,002 0,000 0,007 0,007 0,002 0,000 0,007 0,007 0,007 0,007 0,007 0,007 0,000 0,007 0,007 0,000 0,000 менее 0,001	Нитрат-анион	2,103	1,159741		37,707	20,794114	40,000	2,06	2,15		40,0
(14) 200 2,702203 3,8 0,767 0,422812 0,200 0,00 <td>Нитрит-анион</td> <td>менее 0,02</td> <td>0,000000</td> <td></td> <td>0,390</td> <td>0,215073</td> <td>0,080</td> <td></td> <td>0,03</td> <td></td> <td>0,08</td>	Нитрит-анион	менее 0,02	0,000000		0,390	0,215073	0,080		0,03		0,08
149,200 82,279324 137,1 108,367 59,760984 108,433 22,6 23,5 22,6 23,5 22,6 35,1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	Фосфаты (по Р)	4,900	2,702203	3,8	0,767	0,422812	0,200		0,07	0,07	0,20
рат-анион 95,107 52,448657 81,0 74,203 40,920894 82,073 18,88 19,31 19,30 Вателенион 2,003 1,104594 0,027 0,014724 0,063 менее 0,01 менее 0,01 <td>Хлорид-анион</td> <td>149,200</td> <td>82,279324</td> <td>137.1</td> <td>108,367</td> <td>59,760984</td> <td>108,433</td> <td>22,6</td> <td>23,5</td> <td></td> <td>300,0</td>	Хлорид-анион	149,200	82,279324	137.1	108,367	59,760984	108,433	22,6	23,5		300,0
В (автемесульфонит натрим) 2,003 1,104594 0,0023 0,0015993 0,000166 0,0001 менее 0,001 м	Сульфат-анион	95,107	52,448657	81,0	74,203	40,920894	82,073		19,31	19,30	100,0
Пы 0,029 0,01593 0,00003 0,000166 0,0001 менее 0,001 менее 0,01 менее 0,001 менее 0,001 менее 0,001 менее 0,001 менее 0,001 менее 0,01 менее 0,001	АСПАВ (эпинсульфонат натрия)	2,003	1,104594		0,027	0,014724	0,063		менее 0,01	менее 0,01	0,50
1 29,620 16,334541 менее 0,1 0,000000 0,000 менее 0,1 менее 0,1 менее 0,1 менее 0,1 менее 0,1 менее 0,01	Фенолы	0,029	0,015993		0,0003	0,000165	0,001	менее 0,001	менее 0,001	менее 0,001	0,001
вайтей в в в в в в в в в в в в в в в в в в в	Жиры	29,620	16,334541		менее 0,1	0,00000	0,000		менее 0,1	менее 0,1	
6+ менее 0,01 0,193 0,106599 0,100 0,67 0,67 0,64 6+ менее 0,01 0,000000 менее 0,01 менее 0,001	Нефтепродукты	1,940	1,069852		0,017	0,009210	0,030		0,020		0,05
б+ менее 0,01 0,000000 менее 0,01 менее 0,001	Железо общее	8,563	4,722238		0,193	0,106599	0,100		0,67	0,64	0,10
иний 0,303 0,167095 менее 0,004 0,000000 0,0000 менее 0,001 менее 0,0001 менее 0,0001<	Xpow 6+	менее 0,01	0,000000		менее 0,01	0,00000	0,010		менее 0,01	менее 0,01	0,02
менее 0,0001 0,000000 менее 0,0001 0,000000 менее 0,0001	Алюминий	0,303	0,167095		менее 0,04	0,00000	0,040	- 1	менее 0,04	менее 0,04	0,04
Бът менее 0,001 0,000000 менее 0,001 мен		ленее 0,0001	0,000000		менее 0,0001	0,00000	0,000	менее 0,0001	менее 0,0001	менее 0,0001	0,005
3+ 0,105 0,057904 0,010 0,005516 0,016 0,001 0,0024 0,0024 0,0024 0,0024 0,0034 0,0034 0,0034 0,0034 0,0024 0,0034 0,0034 0,0024 0,0034 0,0024 0,0034 0,0034 0,0024 0,0034 0,0024 0,0034 0,0024 0,0034 0,0024 0,0034 0,0024 0,0034 0,0024 0,0034 0,0032 0,0032 0,0032 0,0032 0,0032 0,0032 0,0032 0,0032 0,0032 0,0032 0,0032 0,0032 0,0032 0,0032 <th< td=""><td></td><td>менее 0,001</td><td>0,000000</td><td></td><td>менее 0,001</td><td>0,00000</td><td>0,001</td><td>менее 0,001</td><td>менее 0,001</td><td>менее 0,001</td><td>0,01</td></th<>		менее 0,001	0,000000		менее 0,001	0,00000	0,001	менее 0,001	менее 0,001	менее 0,001	0,01
HHELL 2+ 0,005 0,001 0,001 0,0005 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0000 </td <td>Xpom 3+</td> <td>0,105</td> <td>0,057904</td> <td></td> <td>0,010</td> <td>0,005515</td> <td>0,016</td> <td></td> <td>0,004</td> <td>0,003</td> <td>0,07</td>	Xpom 3+	0,105	0,057904		0,010	0,005515	0,016		0,004	0,003	0,07
0,012 0,006618 0,009 0,015 0,030 менее 0,001 менее 0,001 0,000000 0,001 менее 0,001 менее 0,001 менее 0,001 0,0039 0,002151 0,0042 0,0024 0,0032 0,0034 0,0034 0,0034 0,013 0,013 0,013 0,022 0,003 0,003 0,003	Mega	0,052	0,028676		0,001	0,000551	0,001	0,001	0,002		0,003
менее 0,001 0,000000 0,001 менее 0,001 менее 0,001 менее 0,001 менее 0,001 менее 0,001 менее 0,001 менее 0,001 0,0039 0,002151 0,0042 0,0024 0,0032 0,0034 0,0034 0,013 0,013 0,013 0,022 0,022	Марганец 2+	0,200	0,110294		0,012	0,006618	600'0		0,030	менее 0,01	90'0
0,0039 0,002151 0,0042 0,0024 0,0032 0,0034 0,013 0,007169 0,009 0,013 0,013 0,022	Никель	менее 0,001	0,000000		менее 0,001	0,000000	0,001	менее 0,001	менее 0,001	менее 0,001	0,01
0,013 0,007169 0,009 0,013 0,012	Свинец	900'0	0,003309		0,0039	0,002151	0,0042	0,0024	0,0032	0,0034	0,006
	Цинк	960'0	0,052941		0,013	0,007169	600'0		0,013		0,0

Пинк 0,095941 О.095 О.095 О.095 Расчеты произведены согласно стандарту СТ СЭВ 543-77.

И.о. начальника АЦ Инженер-химик Начальник цеха ВО Главный технолог

Голушко А.Н. Шилова Н.В. Мухамадуллина Ф.М. Шарифьянов В.Н.

Изм.

Кол.уч.

Лист

№док

Подп.

Дата

Главиятичное МУП "НВК" Юсупов Д.Х. "Утверждаю"

Сведения о работе очистных сооружений г.Нефтекамска за июнь 2021г.

Public P	объем стоков	494370	M KyO		Напооный коллектор	оплектор			p. Kawa		
Суков остаток (по минерали 860 667 128 (24.454) мигл тимескиц мигл тимескиц мигл	Ингредиенты	Приемн	ая камера	1 070	очищенных с	точных вод	HAC	в/сброса	м/сброса	. 1	ндв
Окой остатом(по минерали) БВО (БРС 7 287 064345 1 37 553 1 344,333 1 770,228064 1 380,667 2 430) ТРАНИВОВИНИ В В В В В В В В В В В В В В В В В В											
Костаток(по минерали 580 (657) 287 (064345 344,333 110,228064 280,0657 245,0 <th></th> <th>mr/m</th> <th>т/месяц</th> <th>MI/JI</th> <th>Mr/n</th> <th>т/месяц</th> <th>n/m</th> <th>mr/n</th> <th>Mr/n</th> <th>Mr/n</th> <th>ML/JM</th>		mr/m	т/месяц	MI/JI	Mr/n	т/месяц	n/m	mr/n	Mr/n	Mr/n	ML/JM
ний-мон 286.733 141,267823 137,533 4,867 2,405856 5,500 7,6 11,0 7,2 полн 277,167 137,23350 216,667 74,433 7,135,951 3,000 18,3 2,000 17,2 17,4 полн 484,33 23,668680 26,667 22,000 26,000 18,3 26,00 18,3 26,00 18,3 27,1 17,44 <td>Сухой остаток(по минерали</td> <td>580,667</td> <td>287,064345</td> <td></td> <td>344,333</td> <td>170,228054</td> <td>380,667</td> <td>243,0</td> <td>245,0</td> <td>242,0</td> <td>1000</td>	Сухой остаток(по минерали	580,667	287,064345		344,333	170,228054	380,667	243,0	245,0	242,0	1000
100H. 277,167 137,023050 216,667 144,333 7,135391 3,000 8 11,7 7,2 HWINH-MOH 586,43 289,68880 359,000 22,010 1,38,2380 3,000 0,43 26,3 1,74 HWINH-MOH 58,64.3 28,91300 47,017 35,233 18,91337 40,000 0,43 0,65 0,65 0,43 0,65 0,60 0,03 0,60 <td>Взвешеные вещества</td> <td>285,733</td> <td>141,257823</td> <td>137,533</td> <td>4,867</td> <td>2,405950</td> <td>5,500</td> <td>7,</td> <td>11,8</td> <td>11,0</td> <td>+0,25</td>	Взвешеные вещества	285,733	141,257823	137,533	4,867	2,405950	5,500	7,	11,8	11,0	+0,25
ний моне 58 643 23,968889 359,000 13,842360 30,000 18,3 25,3 17,4 эт аннон 58 643 28,991340 47,017 2,713 1,341374 0,500 16,20 0,650 0,650 0,600 1,32 0,650 0,600 1,32 0,650 0,600 1,32 0,650 0,600 1,32 0,650 0,600 1,32 0,650 0,600 1,32 0,600 0,600 1,32 0,600 0,600 1,32 0,600 0,600 0,00 0,00 0,600 0,00 </td <td>БПК полн.</td> <td>277,167</td> <td>137,023050</td> <td>216,667</td> <td>14,433</td> <td>7,135391</td> <td>3,000</td> <td></td> <td>11,7</td> <td>7,2</td> <td>3,0</td>	БПК полн.	277,167	137,023050	216,667	14,433	7,135391	3,000		11,7	7,2	3,0
развиторните дев база даза даза даза даза даза даза даза	XIIK	484,833	239,686890	359,000	28,000	13,842360	30,000		25,3	17,4	15,0
жт. занион 1,927 0,9626551 39,233 18,901397 40,000 1,123 1,32 1,06 кт. занион менее 0,02 0,0000000 0,356 0,173030 0,000 0,00 0,00 заты (по. Р) 4,570 2,262271 3,853 0,2727 0,23624 10,00 0,00 0,00 0,00 дат-анион 14,9800 1,021863 138,367 16,147 33,195314 82,073 35,3 37,1 90,00 дат-анион 14,9800 1,021863 69,407 61,73334 82,073 21,00 0,00 0,00 0,00 да санион 1,021863 69,407 61,023087 0,003 менее 0,001	Аммоний-ион	58,643	28,991340	47,017	2,713	1,341374	0,500		0,65	0,60	0,5
жизанионн миенее 0,02 0,0000000 0,356 0,173030 0,090 0,000 0,000 0,000 аттанионн 4,570 2,258271 3,853 0,727 0,389288 0,200 0,000 0,000 0,000 фат-анионн 149,000 74,056626 69,407 67,147 33,195344 82,073 3,67 30,00 <td>Нитрат-анион</td> <td>1,927</td> <td>0,952651</td> <td></td> <td>38,233</td> <td>18,901397</td> <td>40,000</td> <td></td> <td>1,32</td> <td>1,08</td> <td>40,0</td>	Нитрат-анион	1,927	0,952651		38,233	18,901397	40,000		1,32	1,08	40,0
манее 0,001 о,000 0,000	Нитрит-анион	менее 0,02	0,0000000		0,350	0,173030	0,080		90'0	0,05	0,08
Адд-анисн 149,800 74,056626 138,367 108,633 53,705045 108,433 35,705045 36,37 37,1	Фосфаты (по Р)	4.570	2,259271	3,853	0,727	0,359259	0,200		00'0	00'0	0,20
AB (anixatrophic phart anixation) 78 443 38,779866 69,407 67,447 33,195314 82,073 21,00 29,05 26,09 AB (anixatrophic phart at a control phart anixatrophic phart at a control phart	Хлорид-анион	149,800	74,056626	138,367	108,633	53,705045	108,433		37,1	37,1	300,0
КВ (алимпоульфонат на 2,067 (од 23693) 1,021863 0,047 (од 23087) 0,023 (од 23087) 0,063 (од 23087) менее 0,01 (од 23097) менее 0,001 (од	Сульфат-анион	78,443	38,779866	69,407	67,147	33,195314	82,073		29,05	26,09	100,0
пыт 0,025 0,012359 менее 0,001 0,0000 0,001 менее 0,001 менее 0,01 менее 0,001 менее 0,01 менее 0,01 <t< td=""><td>АСПАВ (алкилсульфонат на</td><td>2,067</td><td>1,021863</td><td></td><td>0,047</td><td>0,023087</td><td>0,063</td><td>П</td><td>менее 0,01</td><td>менее 0,01</td><td>0,50</td></t<>	АСПАВ (алкилсульфонат на	2,067	1,021863		0,047	0,023087	0,063	П	менее 0,01	менее 0,01	0,50
4 24,307 12,016652 менее 0,1 0,000000 0,000 менее 0,1 менее 0,0 менее 0,0 <td>Фенолы</td> <td>0,025</td> <td>0,012359</td> <td></td> <td>менее 0,001</td> <td>0,000000</td> <td>0,001</td> <td>\rightarrow</td> <td>менее 0,001</td> <td>менее 0,001</td> <td>0,001</td>	Фенолы	0,025	0,012359		менее 0,001	0,000000	0,001	\rightarrow	менее 0,001	менее 0,001	0,001
сепродукты 1,743 0,861687 0,0213 0,011619 0,030 0,060 0,030 0,100 6+ 2,657 1,313541 0,213 0,105449 0,100 0,63	Жиры	24,307	12,016652		менее 0,1	0,000000	0,000		менее 0,1	менее 0.1	
G6+ менее 0,01 0,000000 менее 0,01 0,105449 0,100 0,63 0,63 0,63 б6+ менее 0,01 0,000000 менее 0,01 0,000000 менее 0,01 менее 0,01 менее 0,01 менее 0,01 менее 0,01 менее 0,001 менее 0,	Нефтепродукты	1,743	0,861687		0,023	0,011519	0,030		0,130	0,100	0,05
6+ менее 0,01 0,000000 менее 0,01 менее 0,01 менее 0,01 менее 0,01 менее 0,01 менее 0,01 менее 0,001	Железо общее	2,657	1,313541		0,213	0,105449	0,100		0,68	0,63	0,10
мий 0,270 0,133480 менее 0,004 0,0000 0,040 менее 0,004 менее 0,004 менее 0,004 менее 0,004 менее 0,0001	Xpow 6+	менее 0,01	0,00000		менее 0,01	0,000000	0,010		менее 0,01	менее 0,01	0,02
мій менее 0,0001 0,000000 менее 0,0001 0,000000 менее 0,0001 менее 0,0001 <th< td=""><td>Алюминий</td><td>0,270</td><td>0,133480</td><td></td><td>менее 0,04</td><td>0,000000</td><td>0,040</td><td></td><td>менее 0,04</td><td>менее 0,04</td><td>0,04</td></th<>	Алюминий	0,270	0,133480		менее 0,04	0,000000	0,040		менее 0,04	менее 0,04	0,04
Път менее 0,001 0,000000 менее 0,001 мен	Кадмий	менее 0,0001	0,000000		менее 0,0001	0,000000	000'0	менее 0,0001	менее 0,0001	менее 0,0001	0,005
3+ 0.071 0.035100 0,010 0,00444 0,016 0,016 0,005 0,003 0,003 энец 2+ 0.046 0.022741 0,001 0,0044 0,001 0,017	Кобальт	менее 0,001	0,000000		менее 0,001	0,000000	0,001		менее 0,001	менее 0,001	0,01
энец 2+ 0.046 0.022741 0.001 0.00494 0.001	Xpow 3+	0,071	0,035100		0,010	0,004944	0,016		0,003	0,003	0,07
внец 2+ 0.138 0.068223 0,006 0,005 0.009 0.007 0.008 0.007 1b менее 0,001 0,000000 менее 0,001 0,00039 0,001928 0,0032 0,00182 0,00182 0,0038 0,0039 0,0038 0,0047 0,017 0,017 0,017	Медь	0,046	0,022741		0,001	0,000494	0,001		0,001	0,001	0,003
пь менее 0,001 о,00000 менее 0,001 о,00039 менее 0,001 менее 0,0	Марганец 2+	0,138	0,068223		0,005	0,002472	0,009		0,008	0,007	90'0
эц 0,0039 0,001928 0,0032 0,00182 0,0036 0,0036 0,0039 0,0038 эты промзведены согласно стандарту СТ СЭВ 543-77. 0,001 0,001 0,001 0,017 0,017 0,017 0,017	Никель	менее 0,001	0,000000		менее 0,001	0,000000	0,001		менее 0,001	менее 0,001	0,01
0,101 0,049931 0,003 0,001483 0,009 0,017 0,019 0,017	Свинец	0,0039	0,001928		0,0032	0,001582	0,0042		0	0,0038	0,008
произведены согласно стандарту СТ СЭВ 543-77.	Цинк	0,101	0,049931		0,003	0,001483	600'0			0,017	0,0
	Расчеты произведены согла		CT C3B 543-77.								

Лаборант хим.анализа v разряда Начальник цеха ВО Главный технолог Начальник АЦ

Мухамадуплина Ф.М. Шарифьянов В.Н. Голушко А.Н.

Нурисламова И.Ф.

Главный инженер МУП "НВК"

"Утверждаю"

- Юсупов д.х.

Сведения о работе очистных сооружений г.Нефтекамска за июль 2021г. 516230 M ky6

объем стоков

Кол.уч.

Изм.

Лист

№док

Подп.

Дата

				Напорный коппектор	коппектор			2		
	Приемн	ная камера	1 orc		douglass	HDC		D. Nama	Ma	
Ингредиенты				очищенных	очищенных сточных вод		s/c6poca	м/сброса	н/сброса	HAB
	u).		2/22							
00000		hwaewii	MI/JM	MI/JI	т/месяц	ME/JI	Π/JM	Π/JM	П/JM	II/JM
Сухом остаток/по минерализация		304,059470		355,000	183,261650	380,667	246,0	251,0	241.0	1000
Взвешеные вещества	260,467	134,460879	151,000	5,067	2,615583	5,500	5,0	5.3	4.9	+0.25
БПК полн.	279,333	144,200075	217,833	15,233	7,863732	3,000	13,4	14.2	13.0	3.0
XIIX	515,333	266,030355	362,167	28,167	14,540650	30,000	23,0		22.8	15.0
Аммоний-ион	55,227	28,509834	43,600	2,573	1,328260	0,500	0,62		0.60	0.5
Нитрат-анион	1,973	1,018522		37,577	19,398375	40,000	1,91	1.96	191	40.0
Нитрит-анион	менее 0,02	0000000'0		0,393	0,202878	0,080	0.02	0.03	0.02	0.08
Фосфаты (по Р)	5,040	2,601799	4,187	0,737	0,380462	0,200	0,03		0.03	0.20
Хлорид-анион	146,667	75,713905	131,200	108,433	55,976368	108,433	36,3	38.1	35.9	300.0
Сульфат-анион	75,623	39,038861	70,537	68,277	35,246636	82,073	35,41	37.53	34.98	100.0
АСПАВ (влюялсульфонат натрия)	2,340	1,207978		0,040	0,020649	0,063	менее 0.01	менее 0.01	менее 0.01	0.50
Фенолы	0,026	0,013422		менее 0,001	0,000000	0,001	менее 0,001	менее 0,001	менее 0.001	0.001
Жиры	29,113	15,029004		менее 0,1	0,000000	0,000	менее 0,1	менее 0,1	менее 0.1	
Нефтепродукты	1,683	0,868815		0,020	0,010325	0,030	0,02	0,02	0.02	0.05
Железо общее	5,807	2,997748		0,207	0,106860	0,100	0,65	99'0	0.64	0.10
Xpow 6+	менее 0,01	0,0000000		менее 0,01	0,000000	0,010	менее 0,01	менее 0,01	менее 0,01	0.02
Алюминий	0,307	0,158483		менее 0,04	0,00000,0	0,040	менее 0,04	менее 0,04	менее 0,04	0.04
Кадмий	менее 0,0001	0,000000		менее 0,0001	0,000000	0,000	0,000 менее 0,0001 менее 0,0001	менее 0,0001	менее 0,0001	0,005
Кобальт	менее 0,001	0,000000		менее 0,001	0,00000	0,001	0,001 менее 0,001	менее 0.001	менее 0.001	0.01
Хром 3+	0,099	0,051107		0,010	0,005162	0,016		0,005	0,005	0.07
Медь	0,027	0,013938		0,001	0,000516	0.001	0,001	0,001	менее 0,001	0,003
Марганец 2+	0,19	0,098084		менее 0,01	0,00000	600'0	0,010	600'0	0,008	90.0
Никель	менее 0,001	0,000000		менее 0,001	0,00000,0	0,001	менее 0,001	менее 0,001	менее 0,001	0,01
Свинец	0,0066	0,003407		0,0042	0,002168	0,0042	0,0035	0,0035	0.0033	0.00
CINHK	0,26	0,134220		0,020	0,010325	600'0	600'0	0,010	0.010	0.01
гасчеты произведены согласно стандар	гласно стандар	pry C1 C3B 543-77.	77.							

Начальник цеха ВО Главный технолог Начальник АЦ

Инженер-химик

Мухамадуллина Ф.М. Нурисламова И.Ф. Шарифьянов В.Н. Голушко А.Н.

Изм.

Кол.уч. Лист

№док

Подп.

Дата

Главный инженер МУП "НВК" TOCYNOB AX. "Утверждаю"

Сведения о работе очистных сооружений г.Нефтекамска за август 2021г.

532070 M куб объем стоков

		-6								
	Приемн	Приемная камера	1 ore	напорным коллектор	коллектор	HUC		р. Кама	ма	
Ингредиенты				очищенных	очищенных сточных вод	ŗ	в/сероса	м/сброса	н/сброса	큠
	Mr/n	т/месяц	nr/n	Π/JM	т/месяц	III/III	nr/n	п/лм	Mr/n	мг/л
Сухой остатокию инмерализации	588,000	312,85716		357,667	190,303881	380,667	248,0	246,5	244,0	1000
Взвешеные вещества	286,267	152,314083	143,867	5,200	2,766764	5,500	5,30	5,40	5,10	+0,25
БПК полн.	293,667	156,25140	237,500	15,167	8,069906	3,000	14,0	14,3	13,9	3,0
XUK	510,333	271,53288	372,667	29,200	15,536444	30,000	24,9	26,1	24,5	15,0
Аммоний-ион	57,620	30,657873	40,183	2,717	1,445634	0,500	0,56	0,58	0,46	0,5
Нитрат-анион	0,953	0,507063		38,227	20,339440	40,000	0,53		0,45	40,0
Нитрит-анион	менее 0,02	0,0000000		0,387	0,205911	0,080	0,02	0,02	0,02	0,08
Фосфаты (по Р)	4,763	2,534249	4,097	0,773	0,411290	0,200	0,02	0,02	0,02	0,20
Хлорид-анион	135,500	72,095485	126,000	105,467	56,115827	108,433	20,4	22,2	19,5	300,0
Сульфат-анион	78,447	41,739295	71,380	68,277	36,328143	82,073	13,49	14,67	11,62	100,0
АСПАВ (элимисульфонат натрии)	2,200	1,170554		0,040	0,021283	0,063	менее 0,01	менее 0,01	менее 0,01	0,50
фенолы	0,025	0,013302		менее 0,001	0,00000	0,001	менее 0,001	менее 0,001	менее 0,001	0,001
Жиры	35,687	18,987982		менее 0,1	0,00000	0,000	менее 0,1	менее 0,1	менее 0,1	
Нефтепродукты	1,977	1,051902		0,023	0,012238	0,030	0,030	0,030	0,030	0,05
Железо общее	3,940	2,096356		0,200	0,106414	0,100	0,59	0,61	0,51	0,10
Хром 6+	менее 0,01	0,0000000		менее 0,01	0,000000	0,010	менее 0,01	менее 0,01	менее 0,01	0,02
Алюминий	0,310	0,164942		менее 0,04	0,00000	0,040	менее 0,04	менее 0,04	менее 0,04	0,04
Кадмий	менее 0,0001	0,00000		менее 0,0001	0,00000	0,000	менее 0,0001	менее 0,0001	менее 0,0001	0,005
Кобальт	менее 0,001	0,000000		менее 0,001	0,00000	0,001	0,001 менее 0,001 менее 0,001	менее 0,001	менее 0,001	0,01
Хром 3+	0,110	0,058528		0,010	0,005321	0,016	0,014	0,012	0,010	0,07
Медь	0,026	0,013834		0,001	0,000532	0,001	0,001	0,001	менее 0,001	0,003
Марганец 2+	0,118	0,062784		0,008	0,004257	600'0	0,011	0,008	0,008	90'0
Никель	менее 0,001	0,00000		менее 0,001	0,00000	0,001	менее 0,001	менее 0,001	менее 0,001	0,01
Свинец	0,0080	0,004257		0,0042	0,002235	0,0042	0,0024	0,0017	0,0016	900'0
Цинк	0,105	0,055867		600'0	0,004789	600'0	0,010	600'0	600'0	0,01
		The second second								

Расчеты произведены согласно стандарту CT C3B 543-77.

Начальник цеха ВО Главный технолог Инженер-химик Начальник АЦ

Шарифьянов В.Н.

Голушко А.Н. Мухамадуллина Ф.М.

Нурисламова И.Ф.

1000 52,04 40,0 300,0 0,50 3,0 15,0 0,20 0,10 0,02 0,04 0,005 0,0 0,07 0,003 90'0 0,01 0,006 Π/JM главуый инженер МУП "НВК" 5,2 15,5 250,0 24,4 1,32 0,02 36,5 0,66 28,63 0,03 600,0 0,001 600'0 менее 0.01 менее 0,001 менее 0,1 менее 0,01 менее 0,04 менее 0,0001 0,0020 6000 менее 0,001 0,001 менее 0,001 менее 0,001 менее 0,001 H/cpboca ✓ HOCYTIOB Д.X MI/JM p. Kama м/сероса "Утверждаю" 251,0 15,8 25,5 0,03 0,03 39,5 0,03 0,68 34,14 менее 0,01 0,001 менее 0,001 менее 0,001 менее 0,1 0,040 менее 0,04 менее 0,04 0,000 менее 0,0001 менее 0,0001 0,001 менее 0,001 менее 0,001 600'0 0,010 5,7 менее 0,01 0,001 0,0019 600'0 MC/JM Мухамадуллина Ф.М. Нурисламова И.Ф. Сведения о работе очистных сооружений г.Нефтекамска за сентябрь 2021 🦒 😿 **Шарифьянов В.Н.** 248,0 16,3 5 24,7 1,37 0.02 0,03 0,010 Menee 0,01 37,7 31,59 менее 0,1 0,03 Голушко А.Н. менее 0,01 0,64 0,010 0,001 0,009 0,009 в/сброса 0,0022 MIZ/M 5,500 3,000 30,000 0.500 40,000 0,200 08,433 0,063 0,000 0,100 0,016 0,080 0,030 82.073 380,667 0,00 0,009 0,0042 0,009 달 ME/IN 191,602800 очищенных сточных вод 2,980488 8,001014 15,913677 1,568482 20,689377 0,207570 0,413543 57,445181 40,956695 0,025015 0,000532 т/месяц 0,000000 0,014370 0,111768 0,000000 0,000000 0,00000 0,004790 0,00000 0,004790 0,000532 0,00000,0 0,002022 0,004790 Напорный коллектор 360,000 2,600 0,390 107,933 29,900 2,947 76,953 0,047 0,027 0,11 0,00 600'0 38,873 менее 0,1 0.210 менее 0,04 0,00 0,009 0,009 менее 0,01 менее 0,0001 менее 0,001 менее 0,001 Начальник цеха ВО Главный технолог Инженер-химик Начальник АЦ 153,000 393,833 130,200 75,823 216,667 50,097 3,767 1 010 Π/JM Расчеты произведены согласно стандарту CT C3B 543-77 153,459473 2,710647 77,084468 44,565215 0,016499 314,814045 157,895077 268,243920 1,105442 36,669050 1.041574 0,533827 16,664121 2,960795 0,166588 0,050030 0,016499 0,002714 0,060674 0,076641 т/месяц 0,000000 0,000000 0,000000 0,000000 0,000000,0 Приемная камера 532230 M³ 504,000 44,833 591,500 5.093 31,310 288,333 68,897 003 менее 0,02 83,733 0,031 5,563 296,667 2,077 1,957 0,313 0,094 менее 0,01 0,14 менее 0,0001 0,031 менее 0,001 0,14 менее 0.001 0,0051 Взвешеные вещества Ингредиенты Сухой остатокіпо минера АСПАВ (эпечисульфонат Фосфаты (по Р) Нефтепродукты Сульфат-анион **Спорид-анион** Келезо общее объем стоков Аммоний-ион Нитрат-анион Нитрит-анион Марганец 2+ БПК полн. **А**ЛЮМИНИЙ Кобальт Фенолы (bow 6+ Хром 3+ Кадмий Никель Свинец *MPP X Медь Ž

Взам. инв. №

Подп. и дата

Инв. № подл.

Изм.

Кол.уч

Лист

№док

Подп.

Дата

Изм.

Кол.уч

Лист

№док

Подп.

Дата

Утверждаю:

Главный миженер МУП "НВК"

Юсупов Д.Х.

Сведения о работе очистных сооружений г.Нефтекамска за октябрь 2021 г.

567270 M³

объем стоков

15,0 300,0 100,0 0,50 0,001 3,0 40,0 0,08 0,20 0,5 0,05 0,10 0,02 0,04 0,005 1000 0,01 0,003 0,07 90'0 0,006 멾 Mr/n 0,33 246,0 0,02 0.0 13,6 26,54 0,02 0,32 0,010 0.00 0,008 0,001 | менее 0,001 | менее 0,001 | менее 0,001 менее 0,01 менее 0,1 менее 0,04 0,0016 менее 0,001 менее 0,01 менее 0,001 менее 0,0001 н/сброса Mr/n p. Kama 0,35 253,5 29,5 0,39 1,28 0,02 0,05 15,4 0,02 0,012 0.008 м/сброса 27,21 менее 0,01 0,001 менее 0,001 менее 0,001 0,040 менее 0,04 менее 0,04 0,0001 менее 0,0001 менее 0,0001 0.00 менее 0,001 менее 0,001 0,0017 менее 0,1 U/JW 247,0 4 50 28,6 0,35 0,05 13,6 0,063 менее 0,01 0.33 менее 0,01 0,02 0,012 25,86 0,001 менее 0,1 0,009 0.0024 B/c6poca II/JM 3,000 0,500 108,433 0,000 0,010 0,016 30,000 40,000 0,080 82,073 0,030 0,100 0,00 380,667 0.200 0,009 0,001 달 0,455518 61,189713 43,698510 0,026662 2.987811 16.545564 1,629767 0,260944 8,660511 21,903997 0,113454 0,007375 203,27156 0,00000,0 0.013047 0.000567 0.003404 0.002156 очищенных сточных вод 0,000000 0,000000 0,000000 0.000000 т/месяц 0.00000.0 0.00000.0 Напорный коллектор 2,873 38,613 0,803 900'0 358,333 5.267 15,267 0,20 29,167 0,460 0.023 0,013 107,867 77,033 0,047 0.00 менее 0,001 менее 0,1 менее 0,01 менее 0,04 менее 0,001 0.0038 менее 0,0001 менее 0,001 221,167 54,883 4,180 370,000 133,067 77,880 1 orc Π/JM 155,129625 254,515329 34,819033 82,953594 46,103735 0,015316 1,151558 0.018720 330,529509 164,129931 1,128867 2,815361 1,348401 16,080403 4,672603 0,183228 0,058996 0,017018 0.000000.0 0,0000000 0,000000,0 0.003177 0000000'0 0,000000,0 т/месяц Приемная камера 289,333 4,963 146,233 81,273 582,667 273,467 1,990 2,377 0,027 2,030 8,237 0.033 448,667 61,380 менее 0.02 0,104 0,030 0.323 менее 0,01 0,0056 менее 0,0001 менее 0,001 менее 0,001 Сухой остатокіль минерепизаци АСПАВ (алимпоульфонат натрии) Взвешеные вещества Ингредиенты Чефтепродукты Фосфаты (по Р) Сульфат-анион Келезо общее клорид-анион -Іитрит-анион Аммоний-ион Нитрат-анион Марганец 2+ Алюминий БПК полн. Xpom 6+ Фенолы Кобальт Хром 3+ Кадмий Никель Свинец XMDPI Медь

Расчеты произведены согласно стандарту СТ СЭВ 543-77.

0.041978

0.074

Начальник цеха ВО Главный технолог Инженер-химик Начальник АЦ

Мухамадуллина Ф.М. Нурисламова И.Ф. Голушко А.Н.

Шарифьянов В.Н.

0.009

0,010

600'0

0,002836

Лист

90

Сведения о работе очистных сооружений г.Нефтекамска за ноябрь 2021г. 2,811796 10,850829 2,997266 188,174040 16,059681 20,473660 0,492064 0,421769 58,308538 43,377361 очищенных сточных вод 0,027037 0,014600 т/месяц 0,000000 0,000000,0 0,0000000 0,000000,0 0,005948 0,002704 0,000541 0.002001 0,111931 0,00000,0 0.00000.0 0,000000 Напорный коллектор 29,700 5,200 5,543 107,833 348,000 20,067 37,863 0,910 0,780 0,050 80,220 0.027 0.207 менее 0,001 менее 0,1 0,001 0,005 менее 0,01 менее 0,04 0,011 менее 0,001 менее 0,0001 менее 0,001 0.0037 Начальник цеха ВО Главный технолог Инженер-химик Начальник АЦ 469,000 4,573 150,133 194,330 130,667 83,780 55,567 1 orc MI/J Расчеты произведены согласно стандарту СТ СЭВ 543-77 316,507113 317,949240 127,395988 143,654117 1,085245 32,820689 3,011866 47,286839 0,014600 16,164042 0.000000.0 80,406551 1,339388 1,178791 0,196285 1,800631 0.047584 0,016222 0,057317 0,003623 0.0000000 0.047044 т/месяц 0,000000 0,000000 0.000000 Приемная камера 540730 M³ 588,000 585,333 5,570 235,600 2,007 265,667 60,697 менее 0,02 148,700 0,027 29,893 2,180 87,450 2,477 3,330 0.088 0,030 0,106 менее 0.01 0.363 менее 0,001 0.087 менее 0,0001 менее 0.001 0,0067 U/JW Сухой остаток померализац АСПАВ (алемеульфонат натрия) Взвешеные вещества Ингредиенты Взам. инв. № Нефтепродукты Фосфаты (по Р) Сульфат-анион Железо общее объем стоков Нитрат-анион Нитрит-анион Хлорид-анион Аммоний-ион Марганец 2+ БПК полн. Алюминий Кобальт +9 Mody ренолы Кром 3+ Кадмий Никель Свинец Жиры ž Медь Подп. и дата Инв. № подл. 04/2022-151-Π-01000-TX1-TY 91 Изм. Кол.уч Лист №док Подп. Дата

15,0

3,0

16,0 28,4 0.40

16,9 29,5 0,46

28,9 16,5

0,44 1,90 0,03

0,500

4,

5,2

5,500

3,000 30,000 0,5 40,0 0,20 300,0 100,0

0,08 29,5

0,200

0,080

40.000

27,8 0,07

108,433

29,5

23,82

25,18 менее 0,01

24,16

82,073 0,063

менее 0.01

0,001

менее 0,001

0,001 менее 0,001 менее 0,001

менее 0,01

менее 0,1 0,020

менее 0,1

менее 0,1 0.020 0,36

0,000

0,030 0,100

0,020 0,38

0,10 0,02 0,005 0,01 0,003 0,06 0,006

0.37

менее 0.01 менее 0,04

0,010, менее 0,01 менее 0,01 0,040 менее 0,04 менее 0,04 0,000 менее 0,0001 менее 0,0001

менее 0,0001

0.010

0,001 менее 0,001 менее 0,001

0,011

0.012

0.016 0,00 600'0

0,009

0.010

0,001 menee 0,001 menee 0,001 menee 0,001

0,009

0,001 менее 0,001 менее 0,001 менее 0,001

0.009

0,010 0,0016

0,009

600'0 0,0042

0,0019

0.0016

0.08

0.03 0,07

2,07 0,03

1000 +0,25

НДВ MIT/JI

н/сброса

м/сброса

в/сброса

달

р. Кама

U/JW

U/JW

E/JW

253,0

251,0

Главный инженер МУП "НВК"

Утвер»:даю;

Юсупов Д.Х

Шарифьянов В.Н. Голушко А.Н.

Мухамадуллина Ф.М. Нурисламова И.Ф.

Сведения о работе очистных сооружений г.Нефтекамска за декабрь 2021 г. очищенных сточных вод Напорный коллектор 28,800 351,667 5,233 26,033 6,603 0,577 79,653 32,880 0,840 0,203 107,900 0,060 0,0007 менее 0,1 0,033 0,016 менее 0,01 менее 0,04 менее 0,0001 менее 0,001 Mr/m 4,150 129,900 80,710 150,133 160,170 411,330 51,790 1 orc MI/J 37,927156 288,189532 180,591136 105,425508 302,594572 1,283815 3,194749 89,329840 51,286193 0.018711 15,723259 1,239150 0,0000000 ,338137 2,729992 0,000000,0 0,179263 0,025954 T/Mecsiu 0,059151 0.000000 0.00000.0 Приемная камера 603580 M Ny6 299,200 501,333 148,000 84,970 477,467 174,667 62,837 2,127 5,293 2,217 0,031 26,050 2,053 4.523 менее 0,02 0,098 0,043 менее 0,01 0,297 менее 0,0001 менее 0,001 Сухой остаток(по минерализац Взвешеные вещества Ингредиенты Взам. инв. № АСПАВ (альянсульфонят Фосфаты (по Р) Сульфат-анион Нефтепродукты железо общее объем стоков Нитрат-анион Нитрит-анион Упорид-анион Аммоний-ион БПК полн. Алюминий Фенолы Xpow 6+ Кобальт Хром 3+ Кадмий Жиры Медь Подп. и дата Инв. № подл.

15,0 0,5 0.08

24,8 14,80

0,41 1,86 0.09 28,5

0,20 300,0 0,50

0.03

0,10 0.05

0,36

менее 0,1

0.030 0,39 менее 0,01

0.030

0,38

менее 0,1

менее 0,1

000'0 0.030 0.100

> 0,019918 0.122527

0,000000

0,02 0,04

менее 0,01 менее 0.04 менее 0.0001

0,001

менее 0.00.

0,001 менее 0,001 менее 0,001

26,34

менее 0,01

менее 0,01

менее 0,01

0,063

82,073

108,433

0,348266

0,507007

65,126282 48,076958 0.036215 0,000423

28.47

0,005

0,01

0,009 0.00

600'0

0.001 600'0

0,001

0,001 0.009

0.000604 0.002414

0,00 0,004

0,009657

0,00000,0 0,00000,0 0,009

менее 0,001

0,000 менее 0,0001 менее 0,0001

0,001 менее 0,001 менее 0,001

0,010

0,016

менее 0,04,

0,040 MeHee 0,04

0,010 Menee 0,01

0,00000

0,0000,0

0,003 0,01 0,006

600,0

0.0018

0.0020

0,0020 0.010

0,0042 0,009

0,002475 0,002414

0,00000,0

менее 0,001 0.0041

менее 0,001

0,001 менее 0,001 менее 0,001

1000 +0,25

250.0 5,10

255.0

252,0 5,10 14,70

380,667

212,259168

T/Mecяц

3.158534

5,50

15.70

3,000 5,500

> 15,712998 17,383104 3,985439 19,845710

30,000 0.500 40,000 0,080 0,200

25,2 0,45 2,25 0,03 0,11 30,3 28,90

24,7

0,48

2,01 0,03 0,10 29,4

Mr/n

UZ/W

ME/IN

MI/JM

물

н/сброса

M/c6poca

B/c5poca

모

р. Кама

павный инженер МУП "НВК"

утверждаю:

Юсупов Д.Х

Мухамадуплина Ф.М. **Шарифьянов** В.Н. Голушко А.Н.

Нуриспамова И.Ф.

Начальник цеха ВО лавный технолог Начальник АЦ

Расчеты произведены согласно стандарту CT C3B 543-77

0,053115

0.088 0.0041

0,002475

0.00000.0

менее 0,001

0,080880

0,134

Марганец 2+

Никель Свинец Инженер-химик

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-Π-01000-TX1-TY

Изм.

Кол.уч

Лист

№док

Подп.

Дата

Сведения о работе очистных сооружений г.Нефтекамска за январь 2022г

Главный мнженер МУП "НВК"

/тверждаю:

ПОсупов Д.Х.

546140 M³

объем стоков

15,0 40,0 1000 0,20 0,5 0,08 300,0 100,0 0,02 0,04 0,01 0,50 0,001 0,005 Нижнекамское водохранилище на реке Кама 물 U/JM 27,0 245,0 15,0 1,89 0,54 0.03 0,09 31,04 0,02 0,37 27.1 0,009 сброса сточных менее 0.01 менее 0.001 менее 0.01 менее 0,04 менее 0,001 вод(212,5км от менее 0.1 менее 0,000 устья р.Кама) Mr/n 500 M HWXB 28,9 255,0 15,5 29,8 0,51 0,03 0,11 0,02 0,010 30,61 0.40 0,001 менее 0,001 менее 0,001 менее 0,01 0,001 менее 0,001 менее 0,001 менее 0,1 0,010 менее 0,01 менее 0,01 менее 0,04 0,000 менее 0,0001 менее 0,0001 место оброса устья р.Кама) вод(213км от Mr/n СТОЧНЬЮХ 250,0 15,2 27,3 0,02 28,0 0,56 0,38 1,97 31,89 0,02 0,063 MeHee 0,01 менее 0,1 0,040 менее 0,04 0,012 1000 M Balue устья р.Кама) под(214км от L/IM СТОЧИВЫХ coppoca 5,500 3,000 000'0 0.100 0,080 0,200 0,016 380,667 30,000 0.500 82.073 0.030 40,000 108.433 얼 191,877005 0,440735 Напорный коллектор 2,967179 43,123214 очищенных сточных вод 8,537807 15.219283 1,370811 19,768630 0,233202 58,928506 0,025669 0.014746 0,110866 0,005461 0.00000.0 0.00000.0 0,000000 т/месяц 0,00000,0 0,00000,0 0,000000 15,633 5,433 2,510 27,867 0,807 0,027 0,203 351,333 36,197 0,427 107,900 78,960 0.047 0,00000 0,010 менее 0,1 менее 0,01 менее 0,04 менее 0,0001 менее 0,001 156,333 172,500 411,833 64,823 133,500 83,233 1 orc 164,315503 101,035900 287,997645 322,404465 41,282723 81,156404 47,983860 0,016384 1,153994 4,949667 1,270868 1.017459 0,203710 13,728321 2,637856 0,015251 0,000,000 т/месяц 0.000000 0,00000,0 0.00000.0 Приемная камера 590,333 527,333 0,030 185,000 75,590 2,113 9,063 2,327 1,863 4.830 0.373 0.109 300,867 менее 0,02 148,600 87,860 25,137 менее 0,01 менее 0,0001 менее 0,001 Сухой остатоком минера Взвешен.вещества Ингредиенты АСПАВ (алемпоульфонет Нефтепродукты фосфаты (по P) Сульфат-анион Железо общее Хлорид-анион Нитрат-анион Нитрит-анион Аммоний-ион Алюминий БПК полн. Фенолы Xpom 6+ Кобальт Хром 3+ Кадмий Жиры ž

Расчеты произведены согласно стандарту СТ СЭВ 543-77 0,056252 0,103

Начальник цеха ВО Главный технолог Начальника АЦ

Инженер-химик

Шарифьянов В.Н. Голушко А.Н.

0,003

0,009 менее 0,001 0,0021

0,009 0,011 0,011 0,001 menee 0,001 menee 0,001 0,0042 0,0030 0,0023

0,000000

менее 0,001

0,003058

менее 0,001 0,0056

0.00000.0

0,004915

0,009

0.009

0,012

0.010

0.00

0.002

0,001 | Menee 0,001

0,000546 0.004915

0,001 0,009

0,003177 0,017158

0,048

0,141

Марганец 2+

Медь

Никель Свинец Мухамадуплина Ф.М. Нурисламова И.Ф.

93

Изм.

Кол.уч

Лист

№док

Подп.

Дата

Сведения о работе очистных сооружений г.Нефтекамска за февраль 2022г

Главный инженер МУП "НВК"

/тверждаю:

Юсупов Д.Х.

496310 M³

объем стоков

1000 +0.25 15,0 0,5 40,0 300,0 0,00 0,20 100.0 0.50 0,01 0,003 0,06 0,01 0,01 0,006 0.001 品品 Π/JM Нижнекамское водохранилище на реке Кама 242,0 4,8 19,8 1,49 0.03 76,4 900'0 0,71 0,010 вод(212,5км от устья р.Кама) 64.77 менее 0,001 менее 0,01 менее 0,04 менее 0,0001 0.002 0.010 оброса сточных менее 0,01 менее 0,001 менее 0,001 менее 0. менее 0,05 Π/JM место сброса 500 м ниже вод(213км от устья р.Кама) 251,0 20,2 32,4 5,0 0.03 78,7 61,56 менее 0,1 0,75 0,010 менее 0,01 менее 0,01 0,010 0,001 менее 0,001 менее 0,001 0,0042 0,0032 0,0027 0,001 менее 0,001 менее 0,001 0,007 0,001 менее 0,001 менее 0,001 менее 0,01 менее 0.04 0,002 менее 0,05 0,000 менее 0,0001 менее 0,0001 0.011 СТОЧНЫХ Mr/n 248,0 0,040 менее 0,04 31,9 0,16 1,54 0.03 76,9 900'0 0,010 0,002 70,11 менее 0,01 0.74 0,200 менее 0,05 менее 0.1 1000 M Bulle устья р.Кама) вод(214км от II/JM CTOMHECK copoca 3,000 0,063 0.000 0,016 0,080 82,073 0.030 0,100 0.009 30,000 40,000 108,433 380,667 0.001 무 MEŻ Напорный коллектор 15,981182 1,364853 19,412173 53,634733 очищенных сточных вод 176.190050 7,510659 0,198524 0,393574 0,000149 0,011415 0,099262 40,249252 0,023327 0,000000 0,000496 0,002085 0,004963 0,00000,0 0,004467 0,00000,0 0,00000,0 0,000000 0,004467 т/месяц 0.000000 5,400 32,200 2,750 0,400 81,097 355,000 15,133 0,047 0,023 0,200 0,0010 39,113 0,0003 0,793 108,067 менее 0,1 менее 0,04 менее 0,01 менее 0,0001 менее 0,001 менее 0.001 132,900 455,000 55,450 262,333 4,590 77,536 1 orc MIT/IM 293,319210 138,718645 277,850716 1,159876 0,021341 138,404481 34,584370 73,751666 4,550320 2,673622 41,134173 1,167817 0.924626 1,985240 0,012904 0,048638 0.00000.0 0.00000.0 0,190087 0.002531 0.048142 0,000000,0 0,000000,0 0.00000.0 Приемная камера 2,353 0,026 279,500 559,833 2,337 29,317 1,863 591,000 69,683 менее 0.02 5,387 148,600 82,880 0,043 278,867 4,000 0.098 менее 0,01 0,383 менее 0,0001 менее 0,001 менее 0.001 0.0051 Сухой остаток(по минерализации натрия Ингредиенты Взвешен.вещества АСПАВ (ягимпрульфонет Нефтепродукты Фосфаты (по Р) Сульфат-анион Железо общее Хлорид-анион Нитрат-анион Нитрит-анион Аммоний-ион Марганец 2+ Алюминий БПК полн. Фенолы XDOM 6+ Кобальт Хром 3+ Кадмий Никель Свинец Медь ž

Расчеты произведены согласно стандарту CT CЭВ 543-77.

Начальник цеха ВО Главный технолог Начальник АЦ Инженер-химик

Шарифьянов В.Н. Голушко А.Н.

Мухамадуллина Ф.М. Нурисламова И.Ф.

Лист

94

Сведения о работе очистных сооружений г.Нефтекамска за март 2022 г

Главыый инженер МУП "НВК"

Утверждаю:

Юсупов Д.Х.

564 150 M³ Объем стоков

							Нижнекам	ское водохра	Нижнекамское водохранилище на реке Кама	е Кама
Ингредиенты	Приемн	Приемная камера	1 отс	Напорн	Напорный коллектор очищенных сточных вод	НДС	1000 м выше оброса сточных вод(214км от устыя р.Кама)	место сброса сточных вод(213км от устья р.Кама)	500 м ниже оброса сточных вод(212,5км от устья р.Кама)	品
	Mr/n	т/месяц	Mr/n	Mr/n	т/месяц	Main	M2/n	n/cm	ujen	njare
Сухой остаток (по менерализации)	591,000	333,412650		354,000	199,709100	380.667	248.00	246 50	244 00	1000
Взвешен. вещества	259,133	146,189882	134,666	5,333	3,008612	5,500		1		+0.25
БПК полн.	278,167	156,927913	255,500	14,800	8,349420	3.000	-	-	-	000
XUK	550,500	310,564575	412,470	41,200	23,242980	30,000				15.0
Аммоний-ион	68,293	38,527496	51,620	2,650	1,494998	0.500				0.5
Нитрат-анион	2,310	1,303187		38,097	21,492423	40,000			1.19	40.0
Нитрит-анион	менее 0,02	0,00000,0		0,397	0,223968	0,080	0.04		0.04	0.08
Фосфаты (по Р)	5,843	3,296328	5,170	0,767	0,432703	0,200	менее 0,05	менее 0,05	менее 0.05	0.20
Хлорид-анион	142,833	80,579237	128,930	108,300	61,097445	108,433	73.3		65.5	3000
Сульфат-анион	88,217	49,767621	84,300	81,453	45,951710	82,073	7	80	79.72	100.0
АСПАВ (апкисульфонат натума)	2,147	1,211230		0,047	0,026515	0,063	менее 0,01	менее 0.01	менее 0.01	0.50
фенолы	0,025	0,014104		менее 0,001	0,000000	0,001	менее 0,001	менее 0,001	менее 0,001	0.001
XXMDSI	26,027	14,683132		менее 0,1	0,000000	0,000	менее 0.1	менее 0.1	менее 0.1	
пефтепродукты	2,040	1,150856		0,027	0,015232	0,030	менее0,005	менее0,005	менее0,005	0,05
железо общее	3,133			0,233	0,131447	0,100	0,38	0,40	0.34	0.10
Apom 6+	менее 0,01	0,000000		менее 0,01	0,000000	0,010	менее 0,01	менее 0,01	менее 0,01	0,02
АПОМИНИИ	0,323	0,182220		менее 0,04	0,000000	0,040	менее 0,04	менее 0,04	менее 0,04	0.04
Кадмий	менее 0,0001	0,0000000	•	менее 0,0001	0,000000	00000	0.000 менее 0.0001 менее 0.0001	менее 0.0001	менее 0.0001	0.005
Кобальт	менее 0,001	0,000000,0		менее 0,001	0,000000	0.001	0 001 менее 0.001 менее 0.001	менее 0.001	менее 0.001	0.01
Xpow 3+	0,095	0,053594		0,010	0,005642	0.016	0.012	0.00	2000	0.07
Медь	0,042	0,023694		0.001	0.000564	0.001	0000	0.001	1000	0000
Марганец 2+	0,110	0,062057		600'0	0,005077	600.0	0000	0.007	0.007	0.06
Никель	менее 0,001	0,000000,0		менее 0,001	0,000000	0.001	0,001 менее 0,001 менее 0,001	менее 0.001	менее 0.001	0.01
Свинец	0,0042	0,002369		0,0040	0,002257	0,0042	0,0029	0.0025	0.0027	0.006
ЦИНК	0,098	0,055287		600'0	0,005077	60000	0.010	0.010	0000	0.00

Расчеты произведены согласно стандарту СТ СЭВ 543-77.
Начальник цеха ВО Главный технолог Начальник АЦ

Инженер-химик

Шарифьянов В.Н. Голушко А.Н. Мухамадуллина Ф.М. Нурисламова И.Ф.

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Изм.

Кол.уч.

Лист

№док

Подп.

Дата

Сведения о работе очистных сооружений г.Нефтекамска за япрель 2022г.

главые миженер МУП "НВК"

Утверждаю:

Исупов Д.Х.

							Нижнекамс	ское водохра	Нижнекамское водохранилище на реке Кама	Кама
Ингредменты	Приемная камера	н камера	1 0 1 0	Напорн очищенных	Напорный коллектор очищенных сточных вод	HÃC	1000 м выше оброса сточных вод (214км от устья р Кама)	место сброса сточных вод(213км от устья р.Кама)	500 м ниже оброса сточных вод (212,5км от устъя р.Кама)	ндв
	Mr/n	т/месяц	mr/n	Mr/n	т/месяц	Ma'n	ma/n	мг/л	ma/n	МГ/л
Сухой остатокого минерапизации;	478,267	321,11803		352,333	236,563423	380,667	250,0	249,0	246,0	1000
Взвешен вещества	242,167	162,59577	118,133	5,433	3,647825	5,500	1,7	2,3	2,0	+0,25
БПК полн.	266,500	178,93343	234,333	14,767	9,914859	3,000	11,0	11,5	10,5	3,0
XIIK	417,167	280,09427	326,500	30,600	20,545452	30,000	17,5	18,5	17.4	15,0
Аммоний-ион	49,893	33,499158	38,700	3,030	2,034403	0,500				0,5
Нитрат-анион	2,350	1,577837		38,097	25,579088	40,000		2,85	2,59	40,0
Нитрит-анион	менее 0,02	0000000'0		0,403	0,270582	0,080	менее 0,02	менее 0,02	менее 0,02	0,08
фосфаты (по Р)	4,050	2,719251	3,393	0,810	0,543850	0,200	0,200 менее 0,05	менее 0,05	менее 0,05	0,20
Хлорид-анион	145,333	97,579483	126,800	106,233	71,326961	108,433	47,5	49.2	47,5	300,0
Сульфат-анион	762'98	58,277242	84,303	79,670	53,492031	82,073	85,73	77,18	80,39	100,0
АСПАВ (апклюзтьфонат натрия)	2,180	1,463696		0,047	0,031557	0,063	менее 0,01	менее 0,01	менее 0,01	0,50
Фенолы	0,021	0,014100		0,0003	0,000201	0,001	менее 0,001	менее 0,001	менее 0,001	0,001
Жиры	26,393	17,720788		менее 0,1	0,000000	0000'0	менее 0,1	менее 0,1	менее 0,1	
Нефтепродукты	1,730	1,161557		0,027	0,018128	0,030	0,005	0,005	менее 0,005	0,05
Железо общее	6,020	4,041948		0,240	0,161141	0,100	0,94		06'0	0,10
Xpow 6+	менее 0,01	0,000000		менее 0,01	0,000000	0,010	менее 0,01	менее 0,01	менее 0,01	0,02
Алюминий	0,310	0,208140		менее 0,04	0,000000	0,040	менее 0,04	менее 0,04	менее 0,04	0.04
Кадмий	менее 0,0001	0,000000		менее 0,0001	0,000000	000'0	менее 0,0001	менее 0,0001	менее 0,0001	0,005
Кобальт	менее 0,001	0,000000		менее 0,001	0,000000	0,001		менее 0,001 менее 0,001	менее 0,001	0,01
Xpom 3+	0,104	0,069328		0,010	0,006714	0,016	600'0	0,010	0,010	0,07
Медь	0,056	0,037500		600'0	0,006043	0,001	0,002	0,001	0,001	0,003
Марганец 2+	0,098	0,065799		600'0	0,006043	0,009	600'0	0,008	600'0	90'0
Никель	менее 0,001	0,000000		менее 0,001	0,000000	0,001	менее 0,001	менее 0,001	менее 0,001	0,01
Свинец	0,0055	0,003593		0,0040	0,002686	0.0042	0,0019	0,0021	0,0023	0,006
Nation 1	0.111	0.074528		600'0	0,006043	0.009	0,019	0.010	0.009	0.01

И.о. начальника цеха ВО Цинк 0.074528 Расчеты произведены согласно стандарту СТ СЭЕ 543-77.

Главный технолог Начальник АЦ Инженер-химик

Мухамадуллина Ф.М. Мухтасимов А.А. Голушко А.Н.

Нурисламова И.Ф.

Изм.

Кол.уч

Лист

№док

Подп.

Дата

Сведения о работе очистных сооружений г. Нефтекамска за май 2022 г.

И.о. главного инженера МУП "НВК"

утверждаю:

Нугуманова Е.В.

548150 M³

объем стоков

15,0 40,0 1000 0,20 300,0 0,50 0,0 0,5 0.08 100.0 0,02 0,005 0,01 0.001 0,07 0,003 0,01 0,006 물 Нижнекамское водохранилище на реке Кама 24,8 14,6 248,0 2,15 0,30 47,0 0.02 менее 0,05 0,007 0,010 600'0 0,91 0.002 вод(212,5км от устья р.Кама) менее 0,01 0,001 menee 0,001 menee 0,001 menee 0,001 менее 0.04 сброса сточных менее 0,01 менее 0.0001 менее 0,001 менее 0,001 0,0024 менее 0, MI/JM место сброса 500 м ниже 265.0 0,32 15,2 26.2 0.03 менее 0,05 48.8 0,95 79,72 0,0 менее 0.04 600'0 0,010 вод(213км от менее 0,01 менее 0,1 менее 0,01 менее 0.0001 0.001 | менее 0,001 | менее 0,001 0.002 0,001 менее 0,001 менее 0,001 0,012 устья р.Кама) 0,0026 CTOMHBIX Mr/n менее 0,01 25,4 0,35 2,15 47,5 14,9 0,02 менее 0,05 менее 0,04 менее 0,0001 оброса сточных 85,07 0,93 600'0 1000 M BЫШе менее 0,1 0,008 менее 0.01 0,009 вод (214км от устья р.Кама) 0.001 0,0031 0.0 mr/n 0,200 0000 0,063 00000 0.030 0.010 0.040 0.016 3,000 0,500 380,667 0.080 08,433 82,073 0.100 0,0042 30,000 40,000 0.001 600'0 600'0 달 очищенный сточных вод 8,368606 16,152336 0.220904 0,436876 Напорный коллектор 190.482125 2,978099 1,547427 21,185998 58,999029 42,892738 0,025763 0.000164 0,014800 0,131556 0,005482 0,000548 0,004933 0,00000,0 0,004933 0,00000,0 0,00000,0 0,00000,0 0,000000 0.00000.0 347,500 107,633 29,467 2,823 38,650 0.403 0,797 78,250 0,047 0,027 0,010 0,001 0,009 15,267 0,0003 менее 0,1 0.240 менее 0,04 менее 0,001 менее 0,01 менее 0,0001 менее 0,001 0,009 0,0041 L/JM 343,000 127,400 169,3 82,170 136,400 3,290 50,2 1 OTC Mr/n 156,990160 134,114216 352,186375 35,343068 1,240463 2,234808 79,920270 0,016445 15,419480 47.382086 2,351554 0.054815 0,00000,0 1.273352 1,171397 0,220904 0.058652 0,021926 0.052622 0,000000 0,002521 0,000000,0 0.00000,0 0,00000,0 Приемная камера 2,323 586,333 0,030 2,137 286,400 642,500 64,477 2,263 менее 0,02 145,800 86,440 4,290 0,403 4.077 28,130 0,040 244,667 менее 0,01 менее 0,0001 0,107 0.096 менее 0.001 0.10 0,0046 менее 0,001 Сухой остатокіго минерапизация АСПАВ (алемпульфонат натрик) Ингредиенты Взвешен.вещества Нефтепродукты фосфаты (по P) Сульфат-анион Железо общее Нитрат-анион Нитрит-анион Хлорид-анион Аммоний-ион Марганец 2+ БПК полн. Алюминий Xpom 6+ Фенолы **Собальт** (pom 3+ Кадмий **Чикель** Свинец Жиры Медь

Начальник цеха ВО Главный технолог Начальник АЦ Расчеты произведены согласно стандарту СТ СЭВ 543-7

Инженер-химик

Шарифьянов В.Н. Голушко А.Н.

Мухамадуллина Ф.М. Нурисламова И.Ф.

Изм. Кол.уч Лист №док Подп.

521240 M Ky6

объем стоков

Дата

Сведения о работе очистных сооружений г. Нефтекамска за июнь 2022г.

И.о. главного инженера МУП "НВК" Нугуманова Е.В. Утверждаю:

15,0 40,0 300,0 0,10 +0,25 0,5 0,20 100.0 0,50 0,02 9,0 0,005 0,01 0,001 90.0 0,01 0,006 0,003 물 Mr/n Нижнекамское водохранилище на реке Кама м выше место сброса 500 м ниже сбросв сточных вод(212,5км от устыя р.Кама) 4,9 27,0 34,32 0,005 1.0 0,86 600'0 0,03 0,007 0,001 0,0023 менее 0,01 менее 0,001 менее 0,1 менее 0,01 менее 0,04 менее 0,0001 менее 0.001 менее 0,001 менее 0.05 MI/IM 3,1 28,3 0,03 35.92 0,0 0,89 0,010 0,0027 менее 0,01 менее 0,001 менее 0.01 менее 0,04 0,0001 менее 0,0001 менее 0,0001 менее 0.001 0,001 45,7 менее 0,1 0.008 менее 0,001 менее 0,05 сточных вод(213км от устья р.Кама) Π/JM оброса сточных с вод (214км от устыя р.Кама) у 27,5 1,05 247,0 0,72 44,8 39,13 0,008 14.8 менее 0,01 менее 0,001 менее 0,1 0.008 0.87 менее 0,01 менее 0,04 менее 0,001 0,001 0,007 менее 0,001 0.0024 менее 0,05 1000 м выше mr/n 5,500 3,000 0.500 0,200 108,433 0.063 0,001 000'0 0,030 0,100 0,010 0,040 0,016 0.001 0,001 30,000 40,000 82,073 0.001 380,667 달 19,247829 0,410216 55,772680 Напорный коллектор 2,884021 15,168084 1,527233 0,212145 41,714837 0,024498 0,00000,0 0,000000 0,014073 0,118321 0.000000 очищенных сточных вод 0.000000 0.000000 0,00000,0 0,00000,0 0,004691 0,00000,0 0,001929 0,004691 5,533 0,227 600'0 350,333 0,407 107,000 0,047 15,000 29,100 36,927 0,787 80,030 менее 0,1 менее 0,001 менее 0,01 менее 0,04 менее 0,001 менее 0,001 менее 0,001 менее 0,0001 127,767 121,533 409,167 50,243 198,667 1 orc Π/JM 114,742125 34,693734 1,249412 2,154285 75,875343 44,493259 0,016158 13,281195 1.935364 0,055251 0,025020 128,137993 1,181651 1,103677 0,003127 252,627827 0,177222 0,071931 0,0000000 0,000000 0.00000.0 0,000000 0.00000.0 Приемная камера 597,433 4,133 145,567 2,267 0,031 2,127 3,713 0,106 0,138 220,133 245,833 66,560 менее 0,02 85,370 0.340 0,048 2,397 25,480 0,0060 484,667 менее 0,01 менее 0,0001 менее 0,001 менее 0.001 АСПАВ (алкилсульфонат на Сухой остаток(по минерали Взвешеные вещества Ингредиенты

Расчеты произведены согласно стандарту CT C3B 543-77.

Марганец 2+

Свинец Никель

Начальник цеха ВО Главный технолог Инженер-химик Начальник АЦ

Мухамадуллина Ф.М. Нуриспамова И.Ф. Шарифьянов В.Н. Голушко А.Н.

0,013

Лист

Нефтепродукты

фенолы

железо общее

Алюминий

Kocanbr Хром 3+

Кадмий

CDOM 6+

Фосфаты (по Р) Сульфат-анион

Хлорид-анион

Нитрит-анион

Нитрат-анион

Аммоний-ион

БПК полн.

Изм.

Кол.уч. Лист

№док

Подп.

Дата

Сведения о работе очистных сооружений г. Нефтекамска за июль 2022г.

И.о. главного инженера МУП "НВК"

Утверждаю:

Нугуманова Е.В.

486530 M³

объем стоков

							Нижнекам	жое водохран	Нижнекамское водохранилище на реке Кама	е Кама
	c		,	Напорн	Напорный коллектор	2	1000 м выше	место сброса	500 м ниже	
Ингредиенты	риемн	приемная камера	1 010	очищенных	очищенных сточных вод	E E	вод (214км от устья р.Кама)	вод(213км от устья р.Кама)	вод(212,5км от устья р.Кама)	НДВ
	Mr/n	т/месяц	nr/n	Mr/n	т/месяц	МГЛ	п/лм	Mr/n	II/JI	п/лм
Сухой остатокію минерализации)	260,000	272,456800		352,000	171,258560	380,667	206,0	247,5	199,0	1000
Взвешеные вещества	213,367	103,809447	101,133	4,967	2,416595	5,500	4,6	4,9	4,9	+0,25
БПК полн.	263,000	127,957390	225,000	-	7,330548	3,000		13,7	13,7	3,0
XUK	370,167	180,097351	337,333	28,800	14,012064	30,000	26,8	27,1	26,3	15,0
Аммоний-ион	65,517	31,875986	60,097	3,037	1,477592	0,500	0,47	0,48	0,48	0,5
Нитрат-анион	2,423	1,178862		38,390	18,677887	40,000	0,57	0,75	0,53	40,0
Нитрит-анион	менее 0,02	0,000000		0,403	0,196072	0,080	0,080 менее 0,02	менее 0,02	менее 0,02	0,08
Фосфаты (по Р)	4,007	1,949526	3,637	0,813	0,395549	0,200	0,200 менее 0,05	менее 0,05	менее 0,05	0,20
Хлорид-анион	142,200	69,184566	128,433	107,933	52,512642	108,433	13,2	14,1	12,3	300,0
Сульфат-анион	68,990	33,565705	69,343	80,383	39,108741	82,073	24,17	27,37	19,89	100,0
АСПАВ (элкинсульфонат натрии)	2,357	1,146751		0,047	0,022867	0,063	менее 0,01	менее 0,01	менее 0,01	0,50
Фенолы	0,027	0,013136		менее 0,001	0,000000	0,001	менее 0,001	менее 0,001	менее 0,001	0,001
Жиры	28,660	13,943950		менее 0,1	0,000000	0,000	менее 0,1	менее 0,1	менее 0,1	
Нефтепродукты	2,033	0,989115		0,027	0,013136	0,030	0,005	0,008	менее 0,005	0,05
Железо общее	4,530	2,203981		0,243	0,118227	0,100	09'0	0,62	0,57	0,10
Xpow 6+	менее 0,01	0,00000000		менее 0,01	0,000000	0,010	менее 0,01	менее 0,01	менее 0,01	0,02
Алюминий	0,433	0,210667		менее 0,04	0,000000	0,040	менее 0,04	менее 0,04	менее 0,04	0,04
Кадмий	менее 0,0001	0,000000		менее 0,0001	0,000000	0,000	С,000 менее 0,0001 менее 0,0001	менее 0,0001	менее 0,0001	0,005
Кобальт	менее 0,001	0,00000,0		менее 0,001	0,000000	0,001	менее 0,001	менее 0,001	менее 0,001	0,01
Xpom 3+	260'0	0,047193		0,010	0,004865	0,016	0,013	0,010	0,010	0,07
Медь	0,067	0,032598		менее 0,001	0,000000	0,001	0,003	0,002	0,002	0,003
Марганец 2+	0,078	0,037949		600'0	0,004379	0,009	0,010	600'0	600'0	0,06
Никель	менее 0,001	0,000000		менее 0,001	0,000000	0,001	0,001 менее 0,001	менее 0,001	менее 0,001	0,01
Свинец	0,0081	0,003941		0,0041	0,001995	0,0042	0,0037	0,0037	0,0029	900'0
Цинк 0,175 0,085143	0,175	0,085143		600'0	0,004379	0,009	0,010	600'0	600'0	0,01
Davidate promonogonomic Ann	THE PROPERTY OF THE PARTY OF TH	CC C T C C C T C C C T C C C C C C C C								

Цинк 0,175 0,085143 Расчеты произведены согласно стандарту СТ СЭВ 543-7

Начальник цеха ВО Главный технолог Инженер-химик Начальник АЦ

Шарифьянов В.Н. Голушко А.Н.

Мухамадуплина Ф.М. Нурисламова И.Ф.

Сведения о работе очистных сооружений г. Нефтекамска за август 2022г. 178.059600 Напорный коллектор очищенных сточных вод 14.857580 39.277919 2.714870 7.495500 1.547571 19.181984 0.201379 0.401259 54.017570 0.026484 0.213372 0.000000 0.000000 0.013492 0.000000 0.000000 0.000230 0.003998 0.00000.0 0.002499 0.004497 0.000000 0.005996 5.433 356.333 15,000 29.733 3.097 38.387 0.053 0.403 0.803 108.100 78.603 менее 0,1 0.027 0.00046 0.427 менее 0,01 менее 0.04 0.008 0.005 0.009 0.012 менее 0,001 менее 0,001 0.0039 менее 0,001 Начальник цеха ВО И.о. начальника АЦ Главный технолог Инженер-химик 127.467 208.167 130.567 381.667 56.480 84.300 1 orc Mr/n Расчеты произведены согласно стандарту СТ СЭВ 543-77 294 90645 130,288280 247.76775 33.280032 1.180791 2.327103 73.472390 39,277919 1.235776 0.012493 13,451924 0.999400 2.533479 0.019488 0.043474 0.0000000 0.0000000 0.009494 0.044473 0.003248 0.221367 0.000000.0 0.000000 0.000000 Приемная камера 2.413 0.025 2.000 0.019 590,167 260.733 250.833 495.833 менее 0,02 0.443 0.039 66.560 2.363 4.657 147.033 78.603 26.920 5.070 менее 0.01 менее 0,0001 0.087 менее 0.001 0.089 менее 0,001 0.0065 Сухой остатокіпо минерапизадин натрин) Взвешеные вещества Ингредиенты АСПАВ (алимпоульфонат Взам. инв. № Нефтепродукты фосфаты (по Р) Сульфат-анион Железо общее Нитрат-анион хлорид-анион объем стоков Нитрит-анион Аммоний-ион Марганец 2-Алюминий БПК полн XDOM 6+ фенолы Кобальт Хром 3+ Кадмий Никель Свинец KMDbi Медь XLX Подп. и дата Инв. № подл. Лист 04/2022-151-Π-01000-TX1-TY 100 Изм. Кол.уч Лист №док Подп. Дата

15.D 0.5 40.0

27.2 4.90 15.3

26.4

0.37 0.53

0.36 0.79

0.33

0.500

40.000

0.61

14.9 4.80

0.03 0.23 300.0 100,0 0.50

менее 0,02 менее 0,05

менее 0,02

менее 0,02 0,200 менее 0,05

0.080

менее 0,05

0.05 0.10 0.02

0.030 менее 0.005 менее 0,005 менее 0,005

0.001 менее 0,001 менее 0,001

0.063 менее 0,01 менее 0,01

0.0 0.005

менее 0,04

менее 0,0001

менее 0,01

0.010 менее 0,01 менее 0,01 менее 0,04 менее 0,04 0.0001 Mehee 0,0001 Mehee 0,0001

0.040

0.33

0,100

0.003 90.0

0.001

0.001 0.010

0.001 0.008

0.009

0.01 0.006

0.010

0.001 менее 0,001 менее 0,001 менее 0,001

0.0019

0.010

0.009 0.0024

Шарифьянов В.Н

Голушко А.Н.

Шилова Н.В.

Нурисламова И.Ф.

0.0 0.07

0.001 менее 0,001 менее 0,001 менее 0,001

0.010

0.013

0.012

0.016

0.001

0.001

менее 0,

менее 0,1

0.000 менее 0,1

17.76

15.62

19.36

23.3

22.8

08.433 82.073 менее 0.01 менее 0.001

1000

248.0

265.0

260.5 5.00 15.2

380,667

5.500

3.000 30.000

Mr/n

MIN/III

Mr/n

Нижнекамское водохранилище на реке Кама 1000 м выше место сброса 500 м ниже

оброса сточных вод(212,5км от устыя р.Кама)

вод(213км от устья р.Кама)

вод (214км от

HAC

устья р.Кама)

Главный ийженер МУП "НВК"

Утверждаю:

Чучев И.П.

Изм.

Кол.уч. Лист

№док

Подп.

Дата

Сведения с работе очистных сооружений г.Нефтекамска за сентябрь 2022 г.

главный инженер МУП "НВК"

Утверждаю:

Але чучев И.П.

550450 M³

объем стоков

			-				Нижнекамс	ское водохран	Нижнекамское водохранилище на реке Кама	Кама
Ингредиенты	Приемная	ая камера	1 отс	Напорны	Напорный коллектор очищенных сточных вод	H	1000 м выше сброса сточных вод (214км от устья р.Кама)	место сброса сточных вод(213км от устъя р.Кама)	500 м ниже сброса сточных вод(212,5км от устыл р.Кама)	HAB
	Mr/n	т/месяц	mr/n	иг/л	т/месяц	mr/m	Mr/n	Mr/m	mr/n	II/JM
Сухой остаток(по минерапизации)	574,500	316,233525		355,000	195,409750	380,667	180,5	200,0	170,5	1000
Взвешеные вещества	247,800	136,401510	150,133	5,333	2,935550	5,500	4,2	3,9	4,1	+0,25
БПК полн.	225,167	123,943175	185,833	14,600	8,036570	3,000	14,2	15,0	13,0	3,0
XUX	553,000	304,398850	410,833	29,500	16,238275	30,000	28,4	29,5	28,1	15,0
Амионий-ион	73,443	40,426699	62,530	3,060	1,684377	0,500	0,45	0,45	0,46	0,5
Нитрат-анион	2,380	1,310071		37,807	20,810863	40,000			96'0	40,0
Нитрит-анион	менее 0,02	0,000000		0,523	0,287885	0,080	0,02	0,02	0,02	0,08
Фосфаты (по Р)	4,840	2,418548	4,533	0,803	0,442011	0,200	менее 0,05	менее 0,05	менее 0,05	0,20
Хлорид-анион	148,800	81,906930	131,167	107,467	59,155210	108,433	37,4	39,3	37,0	300,0
Сульфат-анион	82,520	45,423134	80,740	79,673	43,856003	82,073	19,89	22,57	20,43	100,0
АСПАВ (алеклоульфонат натрие)	2,390	1,315576		0,047	0,025871	0,063	менее 0,01	менее 0,01	менее 0,01	0,50
Фенолы	0,025	0,013761		0,0003	0,000165	0.001	0.001 менее 0,001 менее 0,001	менее 0,001	менее 0,001	0,001
Жиры	27,640	15,214438		менее 0,1	0,000000	00000	менее 0,1	менее 0,1	менее 0,1	
Нефтепродукты	1,920	1,056864		0,030	0,016514	0.030	менее 0,005	0.030 менее 0,005 менее 0,005	менее 0,005	0,05
Железо общее	3,450	1,899053		0,233	0,128255	0.100	0,21	0,22	0,20	0,10
Xpow 6+	менее 0,01	0,00000		менее 0,01	0,000000	0.010	менее 0,01	менее 0,01	менее 0,01	0,02
Алюминий	0,437	0,240547		менее 0,04	0,000000	0.040	менее 0,04	менее 0,04	менее 0,04	0,04
Кадмий	менее 0,0001	0,000000		менее 0,0001	0,000000	0,0001	0,C001 menee 0,0001 menee 0,0001	менее 0,0001	менее 0,0001	0,005
Кобальт	менее 0,001	0,000000		менее 0,001	0,000000	0.001	менее 0,001	менее 0,001	менее 0,001	0,01
Xpow 3+	0,070	0,038532		0,008	0,004404	0,016		0,008	600'0	0,07
Медь	0,053	0,029174		менее 0,001	0,000000	0,001	0,002	0,002	0,001	0,003
Марганец 2+	0,123	0,067705		600'0	0,004954	600'0	600'0	600'0	600'0	90'0
Никель	менее 0,001	0,000000		менее 0,001	0,000000	0,001	менее 0,001	менее 0,001	менее 0,001	0,01
Свинец	0,0078	0,004294		0,0038	0,002092	0,0042	0,0027	0,0025	0,0023	900'0
Цинк	0,114	0,062751		900'0	0,003303	600'0	0,010	0,008	600'0	0,01

| Цинк 0,062751 | Расметы произведены согласно стандарту СТ СЭВ 543-77.

Начальник цеха ВО Главный технолог Начальник АЦ

Инженер-химик

Мухамадуллина Ф.М. Нурисламова И.Ф. Голушко А.Н.

Шарифьянов В.Н.

Изм.

Кол.уч.

Лист

№док

Подп.

Дата

Главный инженер МУП "НВК" Утверждаю;

Чучев И.П.

Сведения о работе очистных сооружений г.Нефтекамска за октябрь 2022 г.

объем стоков

561560 M³

							Нижнекам	ское водохра	Нижнекамское водохранилище на реке Кама	э Кама
Ингредиенты	Приемная	ая камера	1 070	Напорны	Напорный коллектор очищенных сточных вод	НДС	1000 м выше сброса сточных вод (214км от устъя р.Кама)	место оброса с сточных вод(213км от устъя р.Кама)	500 м ниже сброса сточных вод(212,5км от устъя р.Кама)	НДВ
	II/JM	т/месяц	mr/n	Mr/m	T/Mecail	Media	narin.	and an	mj.co.	-/
Сухой остаток/по минерализиции)	523,500	293,976560		338.833	190.275059	380 667	214.0		A COC	MI/JI
Взвешеные вещества	234,900	131,910444	135.267	5.600	3.144736	5 500	4 30		0,202	000
БПК полн.	242,000	135,897520	202,667	14.833	8.329619	3,000	,	1,100	,	CZ'0+
XUK	479,333	269,174239	356,667	30,300	17,015268	30,000			14,10	0,0
Аммоний-ион	77,540	43,543362	62,180	2,823	1,585284	0.500	0.39		0.42	0,0
Нитрат-анион	2,410	1,353360		38,097	21,393751	40,000	0.61		0,42	40,0
нитрит-анион	менее 0,02	0,0000000		0,400	0,224624	0,080	менее 0	менее 0	менее 0.02	0.08
Фосфаты (по Р)	4,597	2,581491	4,140	0,810	0,454864	0.200	0,200 менее 0,05	менее 0.05	менее 0.05	0.20
Хлорид-анион	136,500	76,652940	122,133	106,267	59,675297	108,433	28.0		26.2	3000
Сульфат-анион	85,370	47,940377	80,030	79,317	44,541255	82,073	33,25	63	37.72	100,0
АСПАВ (аполюульфонат натрин)	2,307	1,295519		0,037	0,020778	0,063	менее 0,01	менее 0.01	менее 0.01	0.50
Устан Стан	0,027	0,015162		менее 0,001	0,000000	0,001	менее 0,001	менее 0,001 менее 0,001	менее 0.001	0.001
Lotto	26,220	14,724103		менее 0,1	0,000000	0,000	менее 0,1	менее 0.1	менее 0.1	
пертепродукты	1,817	1,020355		00000	0,016847	0,030	0,030 менее 0,005	менее 0,005	менее 0,005	0.05
Xxxxx 64	3,897	2,188399		0,25	0,140390	0,100	0,54	0,57	0,50	0.10
A TOWN OF	менее 0,01	0,000000,0		менее 0,01	0,000000	0,010	менее 0,01	менее 0,01	менее 0.01	0.02
Сопоминии	0,343	0,192615		менее 0,04	0,000000	0,040	менее 0.04	менее 0.04	менее 0.04	0.04
Кобольн	менее 0,0001	0,0000000		менее 0,0001	0,000000	0,0001	менее 0,0001	2	менее 0.0001	0.005
Novalia I	менее 0,001	0,000000,0		менее 0,001	0,000000	0,001	0,001 MeHee 0,001	менее 0.001	менее 0.001	0.01
Apom 3+	0,073	0,040994		0,010	0,005616	0,016	0,010	0.008	0.007	0.07
Медь	0,030	0,016847	_	менее 0,001	0,000000	0.001	0.002	0.001	0 001	0 003
Марганец 2+	0,089	0,049979		600'0	0.005054	0.009	0.010	0000	0000	9000
Никель	менее 0,001	0,0000000		менее 0,001	0.000000	0 001	0.001 MeHee 0.001	Meyee 0.001	Morros O OO	800
Свинец	0,0083	0,004631		0,0041	0.002302	0.0042	0.0018	0.0015	0000	9000
Цинк	0,106	0,059525		0.009	0.005054	6000	0.010	0100	2000	0,00
Расчеты произведены согласно станларту С	дасно стандарт	VICT COR 543,77					200	200	700,0	0,0

Расчеты произведены согласно стандарту СТ СЭВ 543-77

Начальник цеха ВО Главный технолог Начальник АЦ

Инженер-химик

Мухамадуллина Ф.М. Нурисламова И.Ф. **Шарифьянов В.Н.** Голушко А.Н.

Изм.

Кол.уч. Лист

№док

Подп.

Дата

Главный инженер МУП "НВК" Чучев И.П. Утверждаю:

Сведения о работе очистных сооружений г.Нефтекамска за ноябрь 2022г.

объем стоков

							Нижнекам	Нижнекамское водохранилище на реке Кама	нилище на ре	е Кама
Ингредиенты	Приемная	ая камера	1 отс	Напорны	Напорный коллектор очищенных сточных вод	НДС	1000 м выше оброса сточньо вод (214км от устъя р.Кама)	место сброса сточных вод(213км от устья р.Кама)	500 м ниже оброса сточных вод (212,5км от устья р.Кама)	НДВ
	Mr/n	т/месяц	Mr/n	n/nM	т/месяц	Mr/m	Mr/n	Mr/m	Mr/m	mela
Сухой остаток(по минерализации)	584,667	335,125278		355,500	203.769045	380 667				200
Взвешеные вещества	192,667	110,434798	108,330	5.433	3.114141	5 500			0,042	0001
БПК полн.	238,500	136,705815	186,170	14.933	8.559446	3,000	-		6,2	40,25
XIIK	447,000	256,215930	317,000		16,832871	30.000			14,0	3,0
Аммоний-ион	82,477	47,274992	67,740	3,080	1,765425	0.500			0.56	0,0
нитрат-анион	2,500	1,432975		38,680	22,170989	40,000			0.75	40.0
нитрит-анион	менее 0,02	0,0000000		0,400	0,229276	0.080	0.080 менее 0.02	менее 0.02	менее 0.02	0.08
Фосфаты (по Р)	4,933	2,827546	4,207	0,800	0,458552	0.200	0.200 менее 0,05	менее 0.05	менее 0.05	0.20
Хлорид-анион	143,167	82,061893	129,370	107,667	61,713648	108,433	22,6		21.3	300.0
Сульфат-анион	81,810	46,892674	77,890	80,740	46,279361	82,073	29.51	32.71	26.30	1000
АСПАВ (алелеульфонат натрия)	2,567	1,471379		0,047	0,026940	0,063	мене	менее 0.01	менее 0.01	0.50
Фенолы	0,028	0,016049		0,0003	0,000172	0,001	менее 0,001	0,001 менее 0,001 менее 0,001	менее 0.001	0.001
Жиры	23,463	13,448757		менее 0,1	0,0000000	0,000	менее 0,1	менее 0.1	менее 0.1	
тефтепродукты	1,437	0,823674		0,027	0,015476	0,030	менее 0,005	0,030 менее 0,005 менее 0,005	менее 0,005	0,05
Weneso ooulee	3,717	2,130547		0,250	0,143298	0,100	0,33	0,35	0,32	0.10
A DOM OF	менее 0,01	0,00000000		менее 0,01	0,00000000	0,010	менее 0,01	менее 0,01	менее 0.01	0.02
Commission	7000	0,204629		менее 0,04	0,00000000	0,040	менее 0,04	менее 0,04	менее 0,04	0.04
officers =	менее о,ооот	0,000000		менее 0,0001	0,000000	0,0001	менее 0,0001	менее 0,0001	менее 0,0001	0,005
NOOBJIBI	менее 0,001	0,000000		менее 0,001	0,000000	0,001	0,001 менее 0,001 менее 0,001	менее 0,001	менее 0.001	0.01
DOM 37	0,089	0,051014		0,015	0,008598	0,016	0,008	0.007	0.007	0.07
Medib	0,022	0,012610		менее 0,001	0,000000	0,001	менее 0,001	0.001	0,001	0.003
Maprahett Z+	0,119	0,068210		800'0	0,004586	00'0	600'0	600'0	600.0	0.06
TMKGJIB	менее 0,001	0,000000		менее 0,001	0,000000	0,001	0,001 менее 0,001 менее 0,001	менее 0,001	менее 0,001	0.01
Свинец	0,0064	0,003668		0,0041	0,002350	0,0042	0,0020	0,0016	0.0016	0.006
цинк 0,101	0,101	0.057892		0000	0 005450	0000	0			200

Расчеты произведены согласно стандарту СТ СЭВ 543-7

Начальник цеха ВО Главный технолог Начальник АЦ Инженер-химик

Шарифьянов В.Н. Голушко А.Н.

Мухамадуллина Ф.М. Нурисламова И.Ф.

Спавный унженер МУП "НВК" Чучев И.П. +0,25 30000 100,0 0,06 0,005 0,003 是 1000 0,20 90'0 40.0 0,08 0.001 0,02 0.04 20'0 0,5 15,0 0,01 Никинекамоское въдохранилице на рекс Кама оброса сброса 500 и индер сброса сброса сброса сброса сброса стояны и устъя р.Кама у устъя р.Кама у кама вод Кама) 3,0 менее 0,001 менее 0,001 менее 0,02 менее 0.01 менее 0,04 менее 0,0001 менее 0,001 менее 0,01 менее 0,1 248,5 17,60 600'0 0,001 Mr/m 0,51 0,14 42,1 24.1 0.009 15,3 0.01 0,38 Утверждаю 4. 0.39 менее 0,001 менее 0,001 менее 0,001 менее 0,0001 менее 0,0001 менее 0,02 менее 0,04 менее 0,001 менее 0.01 менее 0,01 менее 0,1 600'0 0,003 0,0038 258,5 17,27 0,012 15,5 26,0 0.011 0,58 0.14 43,0 0,33 0,43 4.5 0.01 БПК полн, взвешеные вещества, нефть и нефтепродукть, сульфаты, сухой остаток, хлориды, фосфаты, аммоний-ион приводятся в тонных, увбчие 3В - в кипограммах Мухамадуппина Ф.М. Нурисламова И.Ф. Шарифьянов В.Н. 1000 M BEILLIB менее 0,001 Голушко А.Н. сточных вод менее 0,02 менее 0.01 менее 0,04 менее 0,001 устья р.Кама) менее 0,01 (214KM OT менее 0,1 0,012 253,0 0,003 0.010 Mr/n 0.14 42,5 24.2 0,0034 0.010 16,87 0,36 15,1 0,56 0.01 4,5 Сведения о работе очистных сооружений г. Нефтекамска за июль 2023г. 108,433 3,000 0,500 0,200 82,073 0.030 30,000 40,000 0,080 0,010 380,667 5,500 0.063 00000 0,040 0,016 0.100 0,0001 HH 0.001 0,001 0.001 60000 0.009 20165,361120 15022,171680 24,206880 T / ICT MECRU 182,925212 Напорный коллектор очищенных сточных вод 113,308800 2,798212 52,156556 41,613687 0,154512 0,000000,0 0,422333 0,013906 0,000000 0,000000 0,000000 0,000000 7,777104 1,526064 0,000000 5,150400 0,515040 4,635360 2,214672 4,635360 менее 0,0001 менее 0,001 менее 0,04 менее 0,001 менее 0,1 менее 0,01 5,433 15,100 0,820 101,267 80,797 29,167 39,153 0,400 0,0003 355,167 0,010 0.001 0,0043 2,963 0.027 0.220 0.009 9,009 Mr/n Начальник цеха ВО 198,000 56,713 Главный технолог 128,100 353,000 4.233 1 070 Mr/n 77,933 79,983 Инженер-химик Начальник АЦ T/ KT MECSIL 14438,11632 129,189028 1283,99472 296,319508 92,604192 278894,16 889,47408 3059,3376 34,976366 75,916896 223,01232 2,738468 39,84504 0,000000 14,42112 0,000000 0.000000 0,000000 1,011024 26,78208 45,83856 3,656784 0,000000 54,59424 36,0528 Приемная камера Расчеты произведены согласно стандарту СТ СЭВ 543-77 515040 M³ менее 0,0001 менее 0,001 менее 0,02 менее 0,001 менее 0,01 147,400 575,333 179,800 250,833 67,910 77,363 541,500 28,033 5,940 2,493 1,727 0,028 0,433 0,070 0,052 5.317 1,963 0,0071 0,089 0,106 Сухой остаток (по минерализации) Ингредиенты Взвешеные вещества фосфаты (по Р) Нефтепродукты Сульфат-анион объем стоков Железо общее Хлорид-анион Нитрат-анион Нитрит-анион чимоний-ион Марганец 2+ БПК полн. Алюминий Xpow 6+ Kobana Xpom 3+ Кадмий ACTIAB KMDBI XLX Mens

Взам. инв. №

Подп. и дата

Инв. № подл.

Кол.уч

Лист

№док

Подп.

Дата

Изм.

Лист

04/2022-151-Π-01000-TX1-TY

104

Приложение Г

(справочное)

Нормативы допустимых сбросов веществ и микроорганизмов в р.Кама

Камское бассейновое водное управление Федерального агентства водных ресурсов (Камское БВУ)

ПРИКАЗ

17.10.2019

г. Пермь

a 212

Об утверждении нормативов допустимых сбросов веществ и микроорганизмов в водные объекты

В соответствии с постановлением Правительства Российской Федерации от 23.07.2007 № 469 «О порядке утверждения нормативов допустимых сбросов веществ и микроорганизмов в водные объекты для водопользователей», Административным регламентом Федерального агентства водных ресурсов по предоставлению государственной услуги по утверждению нормативов допустимых сбросов веществ (за исключением радиоактивных веществ) и микроорганизмов в водные объекты для водопользователей по согласованию с Федеральной службой по гидрометеорологии и мониторингу окружающей среды, Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека, Федеральным агентством по рыболовству и Федеральной службой по надзору в сфере природопользования», утвержденным приказом Минприроды России от 02.06.2014 № 246, приказом Федерального агентства водных ресурсов от 08.05.2008 № 87 «О реализации полномочий по утверждению нормативов допустимых сбросов веществ и микроорганизмов в водные объекты для водопользователей в Федеральном агентстве водных ресурсов» приказываю:

- Утвердить нормативы допустимых сбросов веществ и микроорганизмов в Нижнекамское водохранилище на 213 км от устья р. Кама для Муниципального унитарного предприятия «Нефтекамскводоканал», г. Нефтекамск, Республика Башкортостан на срок до 17.10.2024 согласно приложению к настоящему приказу.
- Контроль исполнения настоящего приказа возлагаю на и.о. заместителя руководителя - начальника отдела водных ресурсов по Республике Башкортостан М. А. Макарову.

Руководитель

Mass !

А.В. Михайлов

Г. Т.							
HE H	одл.						
ш	₽						
[™] Изм. Кол.уч. Лист №док. Подп. Дата	HB.						
The state of the s	Z	Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

NHB.

Взам.

одп. и дата

Наименование водопользователя (юридического лиця, физического лица, или гидивидуельного гредпринимателя): Мунцимальное учиторное Место сброса сточных, в том числе дренажных зод (географические координаты и расстояние от устья (для водотоков): Нажмение в неговерование и расстояние от устья (для водотоков); 6. Утвержденный расход сточных вод, в том числе дренажных вод для установления НД€ — 1233,3 м³/час (тах); 1-905 790 м³/мес., П-872 100 Nº Mec., 111-917 619 Nº Mec., IV-885 020 Nº Mec., V-854 280 Nº Mec., VI-871 200 Nº Mec., VII-803 890 Nº Mec., VIII-789 110 Nº Mec., IX-848 409 Nº Mec. Ф.И.О. в телефов должностного лица, ответственного за водунользование, его должность: директор Дамленбаев Рамиль Равиловыч, тел: Камского БВУ об утверждении НДС от 17.10.19 № 21.2 Приложение к приказу <u>водохранизище на р.Кама, 213 км от устья р.Кама, РЕ, Краснокамский район, косрдинаты сброса: 36°00′28′′′ с.н.</u> 53°58′00′′′ в.д. в Нижнекамское водохренилище ва р. Каме, 10.01.01.014, Кама от Воткинского г/у до Нежнекамского г/у . Реквизиты водопользователя (юридического лица, оизического лица ели индивидуальнего предпринимателя); без рек рр.Буй (от истока до Кармановского г/у), Иж, Ик, и Белая (изименсвание водного объектт и водохозяйственного участка) Категсрия сточных вод, в том числе дренажных вод; хозяйстенно-бысловые, прэизводственные Нормагивы допустимого сброса Адрес юридический: 452684, Республика Башкортостин, г. Нефтекамск, ул. Чапаева, 5. Алрес фактический: 452684, Республика Башкортостен. г. Нефтекамск, ул. Чапаева, 5. Тип оголовка выпуска сточных вод, в том числе древажных вод: рассевопощий. K-859 280 MJ/Mec., XI-870 190 MJ/Mec., XII-914 590 MJ/Mec., 10 390, 46 mmc., d'200. Утвержденный норматив допустимого сброса веществ и микроорганизмов 7.1. Утвержденный порматив допустимого сброса в водный объякт предпризтие «Нефтекамскводоканал», (МУП «НВК») Сброс веществ не указанных ниже - запрещен Цели водопользования: сброс сточных воф -Чаимено вание выпуска: выгууск № 1. 171019212 OFPH 1020201883481; MHH 0264014479: (34783) 2-28-30. Лист 04/2022-151-Π-01000-TX1-TY 106 Изм. Кол.уч Лист №док Подп. Дата

Взам. инв. №

Подп. и дата

Инв. № подл.

255 -			1410	0	Greater	-		7 Jack Klein	SHIRL HODINGTING	MORNETH ADER	у тясрудов варыштив долусти лого сброса вашеств		1000		
20 -		Kisacc	interested in		admin	5	Speriphilis.		Mapr	¥.	Anpens		Mah		Phoen
_	Нанис Всц	ORBICHO- STR	мормет на достустниког о сброса вещести ме/дм ³	14/1	TMCC	14/4	Triance	ť	Direc	5	T/MBC	453	тумся	š.	TÓMEC
1	2	3	4	vo	9	-	9		2	:		:			
-	Сухой оставок (минерализация)	ı	383,667	199/2569	344,304362	19903661	331,579691	1608869	349,303846	8	336.897908	46967601	125 195005	15	111 356433
P4	Взяситен-ые вещества	**	515	6733,15	4,981845	6783,15	4,796550	6783,15	5,046855	6783.15	4,867e10	6783,15	4,6985-10	6783 85	4 78610
m	БПКим			3699,9	2,7 7370	3699.9	2.6 630	36009	2.752K30	1600.0	3,656,760	1,600.3	0.0630.0	or touch	alonis.
**	XIIK		30	36999	27,17370	36999	26, 630	36599	27,52830	36989	26.55(160)	16000	24,438=0	36000	2,61060
in	Аммоний-ион	7	5,0	615,65	0,452895	615,65	0,43605	61665	0,458805	616,mS	0,442.1	19919	0.42711	516.65	0.43510
9	Нитрат-анвон	4	97	49932	36,33160	49332	34,8840	49,362	36,70840	493=2	35,40080	4013	3417170	40225	0,4351U
11.51	Нитрит-анвон	ч	80'0	98,664	0,032463	19986	0,064768	98,664	0,073409	98,684	0.070802	-99.86	0.06832	08.66=	0.0000.00
	Фосфит-нон (Р)	¥	0,2	246,66	0,181158	246,66	0,1342	246.56	0,183 (22	246,06	0,177004	246.68	0.1708%	746.65	0.174040
	Хлорил-анжон	4	108,433	13320,42	98,2 7527	1332042	94,561419	13373,42	99,495205	13373042	95.965:74	13373040	F-1059 C0	12270540	04.356.300
01	Сульфат-ан.юн	i.	82,373	10123063	74,3=0903	10022063	71,575863	10122063	75.311.306	1012300	32 636 246	menance	20113300	Market See	14,000,000
	ACПАВ(аливису гифонат натрие)	4	0,063	77.69	0,057065	69'11	0,05-942	77,09	0,057#09	17,64	0,055726	-69'LL	0.053820	77.69	0.084873
	Фенол	M	100'0	1,2333	90600000	1,2333	0,000872	1,2313	0.000518	1.2330	0.000885	1 9382	0.000063	1 43333	O O O O O O O
	ИСПАВ (невнол АФ-12 Скеилтизировани жii ноизифетол)	4	0,3	160,329	0,11753	160,329	0,113673	160,529	0,119289	160,329	0,115023	160,32m	0,111054	160,329	0,113126
	Нефть и исфтепролукты в растворенном и эжультировальном состояния	m	0,03	36,599	0,027174	36,599	0,026/63	36,959	0,027528	36,994	ES920'0	36,999*	0,025628	36,999	0,026106
	Железо	4	0.	123,33	6,6965,9	123,33	0,087210	123,33	0.091751	123.3	0.088500	133.12	0.000.076	123.33	0.00000
	Хром 9+	m	10'0	12,333	0,009058	12,333	0,008721		- 0.009116	12.137	0.000003	10 333	0.000000	66,631	0,08702
	Алюхиний	+	90'0	49,332	0,036232	49,332	0,034184		0.036744	40 332	0.03540-	40.123	0.034178	14,303	207800,0
	Калмий	2	100000	0,1250	160000'0	Q12353	0,000087	0,123.5	0,0000#2	0,1233	0.00008**	OHZHI	0.000008	265,534	0,034808
	Кобальт	101	12000	1,2333	90600000	1,2333	0.000872	1,2113	0.0000 8	13112	0.00000	1,1111	O Distance of	or and a	0,0000007

Инв. № подл. Подп. и дата Взам. инв. №

Изм. Кол.уч. Лист №док. Подп. Дата

04/2022-151-Π-01000-TX1-TЧ

		10	-	ie	ys.	+	ю	un.	=	=	17	13	11	151	- 91
		m	9100	19,1328	0,024493	19,7328	0,013954	19,7328	0,014682	19,7228	0,014 60	19,7338	0,013668	19,7至8	0,013923
1		9	100'0	1,3333	90600000	1,2333	0,000872	1,2333	81600000	1,2383	0,000085	1,2323	0,000654	1,2353	0,0000\$70
177	7	4	0,209	11,4997	0,003152	11,0997	0,007849	11,0997	0,000258	11,0=97	0,007%65	11,0997	0,007689	11,0997	0,007\$32
100	Никаз	70	1000	1,3333	9060000'0	1,2333	0,000872	1,2333	81000000	1,2383	0,000085	1,2353	0,000654	1,2353	0,0000470
100		2	0,0042	986, 1'5	0,0033804	5,17986	0,000663	5,17986	0,003854	5,17286	71"500,0	5,17986	0,003588	5,17986	0,003655
		6	6000	11,4997	0,0038152	11,0997	0,001849	11,0997	8533000	11,0497	0,007965	11,0907	0,007089	11,0997	0,007\$32

Hoons Annyer Thec	-	2 E			-11	∂3 -	2 E	3	4	S. A	9 H	1 H	8	y o	0	¥ =	12	36 2
Hoose Thec 74 Thec 22 30 6,814395 481766 306,813.15 4,340.05 24,1670 36999 22,67330 0,481782 32,1826 0,182825 32,1820 0,102381 0,0000894 1,2333 0,0000899 0,102381 0,102381 0,102381 0,102381 0,102381		Наименование			18	Сухой остигок (минералязации)	Взвешенные вещества	SITK _{aces}	XIIK	Аммоний-аон	Нитрат-анвион	Нитрит-анкон	Фосфат-не т (Р)	Хлорыл-анвеон	Сульфат-авмон	АСПАВ(алкиис ульфонет нятрия	Фенол	НСПАБ (неовал АО-12 Оксистили хова иний
Annyor 10 21 30 21 21 22 66,814395 4EE0661 300,288136 (421395 6713,15 4_340105 (421395 6713,15 4_340105 (481965 6713,15 4_340105 (481965 686,65 0_365330 (481965 686,65 0_365320 (416078 286,66 0_365322 (416078 286,66 0_365322 (416078 132340,2 85,365565 (920645 77,69 0_3649714 (020645 17,69 0_3649714		3		124	B	469-7661	6789,15	3649.9	36 999	618,65	49132	98,564	248,66	13373042	90000	77.69	1,2833	1606329
100,288136 4,340105 2,367330 23,67330 0,38,5684 0,063129 0,1157822 83,365565 64,764625 0,0300789 0,102584		908		Transc	30	306,814395	4,421395	2,4.1670	24,1670	0,481945	32,1556	0,084311	0,160778	87,138204	65,947664	0,020645	9,000004	0,154506
22 22 22 22 2,288136 340105 367330 3,67330 3,67330 1,5644 (1,57822 1,57822 1,57822 1,57822 1,57823 1,57823 1,57823 1,57823 1,574623 1,574623 1,574623 1,574623		7		1/4	11	4653661	67.13,15	3699,9	38999	686,65	45332	98,664	246,66	135730,42	10022043	77,69	1,2333	168,329
Утверждея Сен 23 4997668 6783,15 3699,9 3699,9 3699,9 3699,9 36665 49332 49332 85,664 216,66 11573042 К12006 12333		ryer		TOWEC	22	300,388136	4,340105	2,367330	23,67330	0,394555	311,5644	0,063129	0,1157822	85,365565	64,764625	0,649714	0,0000789	0,102584
	Утверждея	Cer		1/4	23	4997661	6783,15	3699,9	3€999	616,65	40332	98,664	246,66	1350042	1022063	5,769	12333	160,329
	догустимого	Okr		1/4	25	99000	£783,15	3699,9	36999	516,65	19332	98,664	246,66	183730,42	10122063	77,69	1,2333	160,329
0km c 25 c 6937,68 c 6937,69 c 166,339 c 177,69	сормся вешест	ndge		1/800	26	329,099539	4726040	2577840	25,77840	0.429640	34,371,20	0.068742	0171856	92,174308	70,523687	0054135	6580000	0111706
Октибра 155 26 256 269259 175100 160,329 10008599 1175100 160,329 1175100 160,329 1175100 160,329 1175100 160,329 1175100 160,329 117500				104	27	19947661	5783,15	3699.9	36999	616,65	49332	98,664	246,66	133730,42	690210	77,69	1,2333	60,329
17/100 1/14 26 27 326 27 320,099539 894766 4726040 1783,11 22577840 36999 0429640 616,68 34,17120 49332 0068742 98,664 0171856 246,66 95,174308 1357344 77,273687 77,69 00054135 77,69 0111706 60,322		mdge.		TOMOG	238	301,252617	*,786045	2,610570	26,10570	m,435095	34,80760	m,069615	m,174038	\$4,357312	M,419104	M,054821	e,000870	M,113124
Howling 27 894664 349332 98,664 2346,66 13579,42 0120,93 1,2333		11		14/4	53	4694560	6783,15	6'669E	36999	616,65	49332	98,664	246,66	133730,42	10622063	49'12	1,2333	160,329
Hoxfpa 27 2.8 29 494766 321,252617 4694361 3783,15 *,786045 6783,15 3699,9 2,610570 3699,9 616,65 #,435095 616,65 49332 24,80760 49332 98,664 #,096915 98,664 13739,42 S4,357312 13178,42 77,69 #,174038 246,66 12333 #,0000570 1,2333 60,329 #,113124 160,329		эдбрь		T/NGC	30	348154232	5,030245	2,743770	27,43770	0,457295	36,58360	0,073167	0,182918	99,171738	75,063145	0,057619	0,000915	0,118897
Hox6ps Tokson T	Утверасления	ый вопустиного сброси	bemeers	pholi	31	3955,305237	57,14753	31,17138	311,71280	5,195230	415,61840	0,831236	2,018002	1126,668749	852,776223	0,654538	0,010330	1,350759

Взам. инв. №

Подп. и дата

04/2022-151-Π-01000-TX1-TЧ

Лист

108

17	90	- 19	20	53	77	23	24	25	36	27	28	67	20	5
2	Нефтын нефтепроцукты в растворыном и эмультированно м состояния	38,999	0,024117	666°%	0,323674	16,999	C,025452	36,999	0,025778	36,999	0,026105	36,999	0,027437	0,311713
20	Желего	123,33	0,080389	ID3,33	0.078911	123,33	0,084840	123,33	0,085928	123,33	6100'80'0	125,83	0,091429	B+(#250*)
90	Xpow 2	12,333	0,008039	12,333	0.007891	12,333	0,008484	12,333	0,008593	12,333	0,008702	12,333	0,009146	0,103905
12	Алюмитий	44 332	0.832156	59,332	0.031564	19,332	0,033936	49,332	0,034371	49,332	0,034808	49,332	0,036583	0,415518
9	Kamed	087723	0.800080	MITTES	0.000079	0.1233	0,000085	0,1233	980000'0	0,12333	0,000087	0,12333	16000000	0,001339
9 9	Kofont	1 9233	D MODISON	1 2444	0.000789	1,2333	0.000848	1,2333	6580000'0	1,2333	0,0000370	1,2333	0,000915	066010'0
6	Vacan 14	1,4222	0,400000	117376	9090109	-0.7328	B.013574	19,7328	0,013749	19,7328	0,013923	19,7328	0,014633	0,166247
07	Mose	13,7320	O mentions	19233	00000000	1.2333	■ 000848	1,2333	658000'0	1,2333	0,000870	1,2333	0,000915	0,010390
N 8	Marcarett	1 8 0007	0.000000	11 0007	00007102	1.0997	#,007636	11,0997	0,007734	11,0997	0,007831	11,0997	0,008231	0,093514
2 5	Hazera	1,2333	0.000884	1,2333	00000189	1,2333	#,000848	1,2333	0,000859	1,2333	0,0000870	1,2333	0,000915	0,010690
2 2	Cessual	5 7086	0.803376	511986	0e003314	2,17986	M,003563	5,17986	0,003609	5,17986	0,003655	5,17986	0,003841	0,043639
50	Hunr	180907	0.407235	11,0997	00007102	7660,1	80,007636	11,0997	0,007734	11,0997	0,007831	11,0997	0,008231	0,093514

Примечание: " - расчет в т/гол прсизводится ;уммировалием т/мес

7.2. Утвержденный норматив допустивого сбрсса микроэрганизм зв в водный объект. Наименование вып /ска: $6b/m_0$ Ск N_2 I.

2 5	Покакатели по видам микрворганизмоя	Размерность	Допустимое содержание	допустимый нэрматив сброса микроорганівмов
	2	3	4	
1 2	Office you downstar (Syrephia	KOE/100 Ma	не более 500	51,9-101
t e	County Scott Persons County	EOE/100 MIT	не более 100	10,3•101
(H)	Термотолералтные коляформные Сактерии	KOE/100 мл	не более 100	10,3*1012
49	Возбущители инфекционных заболеван ий		orc.	OTC.
u l	Жазнеспособ-нье яйца гельминтов		orc.	OTC.
ψ	Живнеспособные цисты гатогенных кишечных простейших		orc.	OTC.

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Взам. инв. №

Подп. и дата

Инв. № подл.

		 Согласованные общие свейства стечных, в том числе дренажных вод; плавансщие примест (вещества): <u>ис поверхимсти водет водных объектое рыбохозліствення со значечия в зоне антропогенного «оздействия зе должень общие примест (вещества); ис поверхняють в масел, же ров и сколяения других примесей;</u> температура: температура воды те должет повыщеться поб влиянием хозяйственной деятельности (в том числе, при сбресе сточных вод) по сравнению с естественной пламиерат рой водьества вод водьест и на " °C, с общим повышением температуры не более чем до 28 °C петом и 8 °C летом и 8 °C летом и 8 °C летом и 8 °C летом и 8 	2C зимой в оставьных случски. В месячах нерестипиц нялима заврещается повышать температуру воды зимой более чем на 2 °C; 3) водородный показатель (pH): должен соот зетствовать фонмому значению показателя для воды водного объекта рыбохозяйственного значения;	 растворенный кнепород; содержатие растворенного кислорода не должно опускаться ниже оду мет ом под вимнием молмением деятельности (в том числе, при сбудее сточных вод). Содержание растворенного кислорода в период ледостава не должно опускаться миже 6,0 мг/дм². В летний вериод от распадения льда до периода ледостава должен быть не менее 6 мг/дм². минерализация: не более 180,667 мг/дм². минерализация: не более 180,667 мг/дм². 	действия на тест-объекты	НДС утзержден «17» 10 2019 г. на срок до «17» 10 20 ДИг.						
Изм.	Кол.уч	Лист №док.	Подп.	Дата		04/20	22-15	51-Π-(01000)-TX1-	ТЧ	Лист 110

Взам. инв. №

Подп. и дата

Инв. № подл.

Приложение Д

(справочное)

Решение о предоставлении водного объекта в пользование

Росводресурсы

Камское бассейновое водное управление Федерального агентства водных ресурсов

(Камское БВУ) Отдел водных ресурсов по Республике Башкортостан

450006, г. Уфа, ул. Ленина, 86 Тел./факс (347)273-95-65 ovrrb@mail.ru; http://kambvu.ru

от <u>05. 03. 2019</u> № <u>08/209</u> на _____ от ___ Директору МУП «Нефтекамскводоканал»

В.Ю.Трусову

Уважаемый Владислав Юрьевич!

Отдел водных ресурсов по Республике Башкортостан направляет Вам решение о предоставлении Нижнекамского водохранилища на р.Кама в пользование для целей сброса сточных вод МУП «Нефтекамскводоканал», зарегистрированного в государственном водном реестре от 05.03.2019 № 02-10.01.01.014-X-PCBX-T-2019-04574/00.

Приложение: Оригинал решения о предоставлении водного объекта в пользование с приложениями на 10 л. в 1 экз.

Заместитель руководителя начальник отдела

В.С.Горячев

Взам. инв. №	
Взам	
Подп. и дата	
л.	

Асеева Н.Н. 273-98-38

		·			
Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

04/2022-151-Π-01000-TX1-TY

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОДНЫХ РЕСУРСОВ

Камское бассейновое водное управление Отдел водных ресурсов по Республике Башкортостан 450006, г. Уфа, ул. Ленина, 86, телефон/факс (347) 273-95-65

РЕШЕНИЕ

о предоставлении водного объекта в пользование

or « 5 » <u>niapma</u> 20/9 r. № 02-10.01.014-X-PCBX-T-2019-04574/00

1. Сведения о водопользователе

Муниципальное унитарное предприятие «Нефтекамскводоканал» (МУП «НВК»), (полное и сокрышенное наименование - для теридического лица и индивидуального предпринимателя с указанием ОГРН, для физического ОГРН — 1020201883481, ИНН 0264014479.

лица - Ф.И.О. с указанием данных документа, удостоверяющего его личность)

Юридический адрес: 452684, РБ, г.Нефтекамск, ул. Чапаева, 5.

(почтовый и юридический адреса водопользователя)

Цель, виды и условия использования водного объекта или его части

2.1. Цель использования водного объекта или его части:

сброс сточных вод.

(цели использования водного объекта или его части указываются в соответствии с частью 2 статьи 11 Водного кодекса Российской федерации)

2.2. Виды использования водного объекта или его части:

совместное водопользование с забором (изъятием) водных ресурсов из водного объекта (указывается вид и способ использования водного объекта или его части в соответствии со статьей 38 Водного кодекса Российской Федерации) при условии возврата воды в водный объект.

2.3. Условия использования водного объекта или его части:

Использование части Нижнекамского водохранилища на р.Кама, указанного в пункте 3.1 настоящего Решения, может производиться Водопользователем в соответствии с требованиями действующего законодательства и при выполнении им следующих условий:

- недопущение нарушения прав других водопользователей, а также причинения вреда окружающей среде;
- содержание в исправном состоянии расположенных на водном объекте и эксплуатируемых Водопользователем гидротехнических и иных сооружений, связанных с использованием водного объекта;
- оперативное информирование Отдела водных ресурсов по Республике Башкортостан Камского бассейнового водного управления (далее ОВР по РБ), администрации Краснокамского района Республики Башкортостан об авариях и иных чрезвычайных ситуациях на водном объекте, возникших в связи с использованием водного объекта в соответствии с настоящим Решением;
- своевременное осуществление мероприятий по предупреждению и ликвидации чрезвычайных ситуаций на водном объекте;

Взам. инв. №	
Подп. и дата	
№ подл.	
B.	

Изм. Кол.уч. Лист №док. Подп. Дата

- ведение регулярных наблюдений за водным объектом и его водоохранной зоной по программе, согласованной с ОВР по РБ, а также представление в установленные сроки бесплатно результатов таких наблюдений в ОВР по РБ;
- недопущение проведения на водном объекте работ, приводящих к изменению его естественного водного режима;

7) осуществление сброса сточных вод в следующем месте (местах): Нижнекамское водохранилище на р.Кама, (наименование водного объекта) 56°00'28"с.ш. 53°58'00"в.д. (WGS-84), 76 км от устья р.Кама до створа Нижнекамского (приводится описание места оброса с указанием расстояния от береговой линии водного объекта и координат оголовка выпуска (место (а) гидроузла, 137 км от створа Нижнекамского гидроузла до места водопользования, предполагаемого сброса отражаются в графических материалах), а также уровня места сброса от поверхности воды в меженный период) 213 км от устья р.Кама до места водопользования. осуществление сброса сточных вод с использованием следующих водоотводящих сооружений: отведение сточных вод после биологических (приводится характеристика водоотводящих сооружений: тип очистных сооружений с очистных сооружений осуществляется по напорному трубопроводу диаметром 800 мм, укязанием типа оголовков выпусков, проективя и фактическая производительность очастных сооружений, степень очастки сточных вод длиной 18,866 км. Выпуск сточных вод рассеивающий. Расстояние от берега до до нормативного уровня и др.) оголовка 123 м. Длина оголовка 70 м. Оголовок, заглубленный в грунт на 2,5 м, имеет 7 рассеивающих патрубков (диаметром 0,325 м) с рассеивающими насадками, расстояние между которыми 10,5 м. Производительность очистных сооружений: проектная — 40,0 тыс. м³/сут., 14600,0 тыс. м³/год; фактическая (2018 г.) - 6896,27 тыс. м³/год 9) объем сброса сточных вод не должен превышать: 10390,46 тыс. м³/год. Учет объема сброса должен определяться инструментальными методами по показаниям аттестованных средств измерений: Учет количества сбрасываемых сточных вод ведется по прибору «ЭРИС.ВЛТ», (приводятся сведения о наличии контрольно-измерительной аппаратуры для учета объемов обрасываемых вод) 10) осуществление сброса сточных вод в соответствии с графиком их выпуска (сброса), согласованным с ОВР по РБ. Не допускать залповых сбросов сточных вод; Нижнекамском водохранилище на р.Кама (наименование водного объекта) в месте сброса сточных вод в результате их воздействия на водный объект должна отвечать следующим требованиям: а. БПК_{полн.}* - 3,0 мг/л, ХПК* - 25,0 мг/л, взвешенные вещества* - 15,25 мг/л, нитрит-(указываются показатели качества вод и их величины, устанавливаемые органами, принимающими решение о предоставлении водного анион* – 0,08 мг/л, нитрат-анион*– 40,0 мг/л, аммоний-ион*– 0,5 мг/л, фосфаты (по Р)*– объекта в пользование)

анион* — 0.06 мг/л, нитрат-анион*— 40,0 мг/л, аммонии-ион*— 0,5 мг/л, фосфаты (по Р)*—
объекта в пользоваеме)

0,2 мг/л, хлорид-анион* — 300,0 мг/л, сульфат-анион* — 100,0 мг/л, цинк* — 0,01 мг/л, хром шестивалентный** — 0,02 мг/л, хром трехвалентный* — 0,07 мг/л, медь* — 0,003 мг/л, свинец* — 0,006 мг/л, никель* — 0,01 мг/л, кадмий** — 0,005 мг/л, кобальт**— 0,01 мг/л, фенол* — 0,002 мг/л, нефтепродукты* — 0,05 мг/л, железо* — 0,6 мг/л, марганец двухвалентный* — 0,06 мг/л, сухой остаток (по минерализации)* — 1000,0 мг/л, алюминий* — 0,04 мг/л, АСПАВ (алкилсульфонат натрия (в техническом препарате до

15% хлорида натрия)** – 0,5 мг/л, НСПАВ (неонол АФ-12 (оксиэтилированный нонилфенол)** – 0,25 мг/л, жиры – отс.;

б. плавающие примеси (вещества)**: на поверхности воды водных объектов рыбохозяйственного значения в зоне антропогенного воздействия не должны обнаруживаться пленки нефтепродуктов, масел, жиров и скопления других примесей;

1нв. № подл. п Дата Взам. инв. №

Изм. Кол.уч. Лист №док. Подп. Дата

04/2022-151-Π-01000-TX1-TY

г. водородный показатель (pH)**: должен соответствовать фоновому значению показателя для воды водного объекта рыбохозяйственного значения;

- д. растворенный кислород**: содержание растворенного кислорода не должно опускаться ниже 6,0 мг/дм³под влиянием хозяйственной деятельности (при сбросе сточных вод): в зимний (подледный) период должен быть не менее 6,0 мг/дм³ (высшая и первая категория водного объекта) и не менее 4 мг/дм³ (вторая категория водного объекта); в летний (открытый) период во всех водных объектах должен быть не менее 6 мг/дм³;
- е. токсичность воды**: вода водных объектов рыбохозяйственного значения в местах сброса сточных вод не должна оказывать острого токсического действия на тестобъекты. Вода водного объекта в контрольном створе не должна оказывать хронического токсического действия на тест-объекты;

 определяется исходя из установленных нормативов допустимого воздействия по бассейну р.Кама, утвержденных Федеральным агентством водных ресурсов от 18.01.2013;

- ** определяется в соответствии с приказом Минсельхоза России от 13.12.2016 N 552 "Об утверждении нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения";
- ведение (с помощью аттестованных средств измерений) учета объема сброса сточных вод в используемый водный объект и контроля их качества в соответствии с приказом Минприроды России от 08.07.2009 № 205;
- 13) ежеквартальное представление в ОВР по РБ в срок до 10 числа месяца, следующего за отчетным кварталом, сведений по утвержденным приказом МПР России от 08.07.2009 № 205 формам;
 - своевременное осуществление мероприятий по охране и восстановлению Нижнекамского водохранилища на р.Кама,

(указывается наименование водного объекта)

а также ведение мониторинга состояния указанного водного объекта в соответствии с приказом МПР России от 06.02.2008 № 30;

- 15) ежегодное предоставление в ОВР по РБ сведений, получаемых в результате наблюдений за водным объектом (их морфометрических особенностей) и его водоохраной зоной на первый день месяца, следующего за отчетным годом по формам, утвержденным приказом МПР России от 06.02.2008 № 30, в срок до 15 марта текущего года;
- 16) ежеквартальное, не позднее 10 числа месяца, следующего за отчетным кварталом, представление бесплатно в ______ OBP по РБ
- отчета о выполнении условий использования водного объекта с приложением подтверждающих документов, включая результаты учета объема сброса сточных вод и их качества, а также качества поверхностных вод в местах сброса, выше и ниже мест сброса;
- своевременное ежегодное до 22 января представление в установленном порядке в ОВР по РБ форм федерального статистического наблюдения 2 - тп (водхоз);
- обработка осадков, образующихся на очистных сооружениях при очистке сточных вод, в строгом соответствии с установленными технологическими режимами.

₽	
Взам. инв.	
Подп. и дата	
№ подл.	
Инв. №	

Изм. Кол.уч. Лист №док. Подп. Дата

04/2022-151-Π-01000-TX1-TY

Утилизация (захоронение) осадков сточных вод из очистных сооружений должна осуществляться в соответствии с требованиями, установленными законодательством Российской Федерации по обращению с отходами производства;

- содержание в исправном состоянии эксплуатируемых водопользователем очистных сооружений;
- соблюдение специального режима хозяйственной деятельности в пределах границ водоохраной зоны Нижнекамского водохранилища на р.Кама – 200 м в границах пользования;
- 21) выполнение в установленные сроки намечаемых водохозяйственных мероприятий и мероприятий по охране водных объектов на 2019-2024 гг., ежеквартальное, не позднее 10 числа месяца, следующего за отчетным кварталом, представление в ОВР по РБ отчета о выполнении мероприятий с указанием размера и источников средств освоения;
- недопущение ухудшения качества воды водного объекта, предоставляемого в пользование, среды обитания биоресурсов, а также нанесения ущерба биоресурсам;
- 23) в случае причинения вреда водным биологическим ресурсам в результате нарушения законодательства в области рыболовства и сохранения биоресурсов, возмещать вред в полном объеме в соответствии со ст. 77 Федерального закона от 10.01.2002 № 7-ФЗ «Об охране окружающей среды»;
- 24) соблюдение п.1 ст.9 Кодекса внутреннего водного транспорта от 07.03.2001 № 24-ФЗ;
- 25) обеспечение представителям органов государственного надзора за использованием и охраной водных объектов по их требованию беспрепятственного доступа к водному объекту в месте осуществления водопользования и в границах предоставленной в пользование части водного объекта с целью проверки выполнения Водопользователем условий настоящего Решения;
- предоставление по запросу ОВР по РБ дополнительных материалов и документов, необходимых для проверки выполнения условий водопользования;
- осуществление платы за негативное воздействие (сброс загрязняющих веществ в водные объекты) в размерах и порядке, установленных законодательными нормативными правовыми актами Российской Федерации;
- выполнение в полном объеме и установленные сроки всех условий и требований, установленных в настоящем Решении;
- 29) при досрочном прекращении прав пользования водным объектом в связи с отказом от дальнейшего использования Нижнекамского водохранилища на р.Кама необходимо обратиться в ОВР по РБ с заявлением для получения Решения о прекращении действия Решения о предоставлении водного объекта в пользование.

Приостановление или ограничение водопользования осуществляется в соответствии со ст. 41 Водного кодекса Российской Федерации.

3. Сведения о водном объекте

3.1. Нижнекамское водохранилище на р.Кама, КАС/ВОЛГА/1804, Республика (наименование водиого объекта согласно данным государственного водного ресстра и местоположение водного объекта Башкортостан, Краснокамский район; код и наименование водохозяйственного участка: или его части: речной бассейн, субъект Российской Федерации, муниципальное образование)
10.01.014, Кама от Воткинского г/у до Нижнекамского г/у без рек рр.Буй (от истока до Кармановского г/у), Иж, Ик и Белая.

 3.2. Морфометрические характеристики Нижнекамского водохранилища на р.Кама (в соответствии с Правилами использования водных ресурсов Нижнекамского

Инв. № подл. п Додп. и дата Взам. инв. №

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

водохранилища на р.Кама, утвержденными приказом Федерального агентства водных ресурсов от 28.10.2014 № 270):

отметки уровня воды: НПУ - 63,3 мБС, УМО - 62,7 мБС, форсированные уровни при (длянна реки или се участка, км; расстояние от устья до места водопользования, км; объем водохранилища, озера, пруда, обаодивенного пропуске максимальных расходов вероятностью превышения 0,1 % и 1 % - 66,93 мБС карьера, тыс. м³; площадь зеркала воды в водоеме, км²; средняя, максимальная и минимальная глубина в водном объекте в месте

и 65,4 мБС соответственно; площадь зеркала при НПУ - 1370,0 км²; полный объем при

НПУ - 4,21 м³; полезный объем при НПУ - 0,77 км³.

Расстояние до места водопользования: 213 км от устья р.Кама.

3.3. Гидрологические характеристики водного объекта в месте водопользования в створе Нижнекамского гидроузла (в соответствии с Правилами использования водных ресурсов Нижнекамского водохранилища на р.Кама, утвержденными приказом Федерального агентства водных ресурсов от 28.10.2014 № 270):

средний многолетний расход воды - 2940 м³/с; среднегодовой расход воды 95 % (среднемноголетний расход воды в створе наблюдения, ближайшем к месту водопользования; скорости течения в перноды максимального обеспеченности — 1940 м³/с; максимальный среднедекадный расход — 19810 м³/с.

и минимального стока; колебания уровня и длительность неблагогіриятных по водности периодов; температура воды (среднегодовая

и по сезонам) и др.)

3.4. Качество воды Нижнекамского водохранилища на р.Кама, с.Саклово, 213 км от устья р.Кама (по данным приложения 15 «Информационного бюллетень о состоянии водных объектов, дна, берегов водных объектов, их морфометрических особенностей, водоохранных зон водных объектов, количественных и качественных показателей состояния водных ресурсов, состояния водохозяйственных систем, в том числе гидротехнических сооружений по Камскому бассейновому округу, относящемуся к зоне деятельности Отдела водных ресурсов по РБ Камского БВУ за 2017 год», ФГУ МВО БУ):

величина УКИЗВ - 2,64;

(качество воды в водном объекте в месте водопользования характеризуется индексом загрязнения вод и соответствующим ему Класс качества - 3 «а» «загрязненная».

классом качества воды: «чистая», «относительно чистая», «умеренно загрязменная», «загрязменная», «грязмая», «очень грязная»,

«чрезвычайно грязная»; при использовании водного объекта для целей питьевого и хозяйственно-бытового водоснабжения и в целях

рекреации качество воды указывается по санитарно-эпидемиологическому заключению)

3.5. Перечень гидротехнических и иных сооружений, расположенных на водном объекте, обеспечивающих возможность использования водного объекта или его части для нужд Водопользователя:

выпуск сточных вод рассеивающий, расстояние от берега до оголовка 123 м. длина (приводится перечень гидротехнических и иных сооружений и их основные параметры)

оголовка 70 м с 7 рассеивающими патрубками (диаметром 0,325 м) с рассеивающими насадками, расстояние между которыми 10,5 м.

Наличие зон с особыми условиями их использования:

отсутствуют источники питьевого и хозяйственно-бытового водоснабжения в районе (зон и округов санитерной охраны источников питьевого и хозяйственно-бытового водоснабжения, рыбохозяйственных и сброса сточных вод.

рыбоохранных зон и др.)

Материалы в графической форме, включающие схемы размещения гидротехнических и иных сооружений, расположенных на водном объекте, и зон с особыми условиями их использования, а также пояснительная записка к ним прилагаются к настоящему Решению.

Инв. № подл. подп. и дата Взам. инв. №

Изм. Кол.уч. Лист №док. Подп. Дата

04/2022-151-Π-01000-TX1-TY

4. Срок водопользования

4.1. Срок водопользования установлен с 9 апре	ля 2019 года
по 8 апреля 2024 года	in, meanly rody
(день, месяц, год))	
Отделом водных ресурсов по Республике Башкортостан Камско	ого БВУ.
(наименование исполнительного органа государственной власти, принявшего и выдавл	пего настоящее решение)
4.2. Настоящее Решение о предоставлении водного	объекта (его части) в
пользование вступает в силу с момента его регистрации в	государственном водном
реестре.	
5. Приложения	
5.1. Схема размещения гидротехнических сооружени указанием места выпуска очищенных сточных вод на 2 л. в 1 эк 5.2. Пояснительная записка к материалам в графической в	3.
Заместитель руководителя- начальник отдела	В.С.Горячев
« <u>01</u> » <u>Дарто</u> 20 <u>19</u> г.	

федеральное агентотво водных ресурсов
(РОСВОДРЕСУРСЫ)

КАМСКОЕ ВАССЕЙНОВЛЕ В ОДНОЕ УПРАВЛЕНИЕ
(КАМСКОЕ ВОУ)

СТДЕЛ ВОДНЫХ РЕСУРСОВ ПО РЕИМ БЛИКЕ БАШКОРТОСТАН

Зарегист рировано

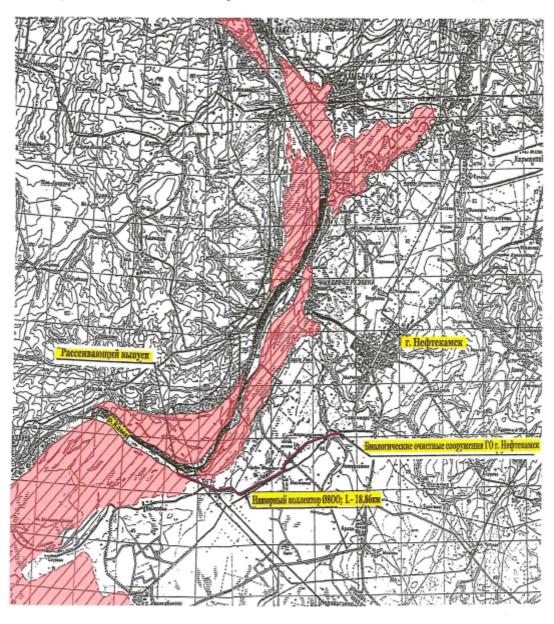
5 лирта 20 /9 года
В государствения м водном реестре

за N 02-10.01.014-X-РС 6X-Т-2019-04574/00

Ул. специпацет - энсперт Ассева НН
(Должность, фамилия и.о. лица, воуществившого регистрацию)

Тодпись НАси

₽.	
Взам. инв. Г	
aM.	
B3	
a	
Подп. и дата	
_ Z	
Пр	
-	
\vdash	
5	
№ подл.	

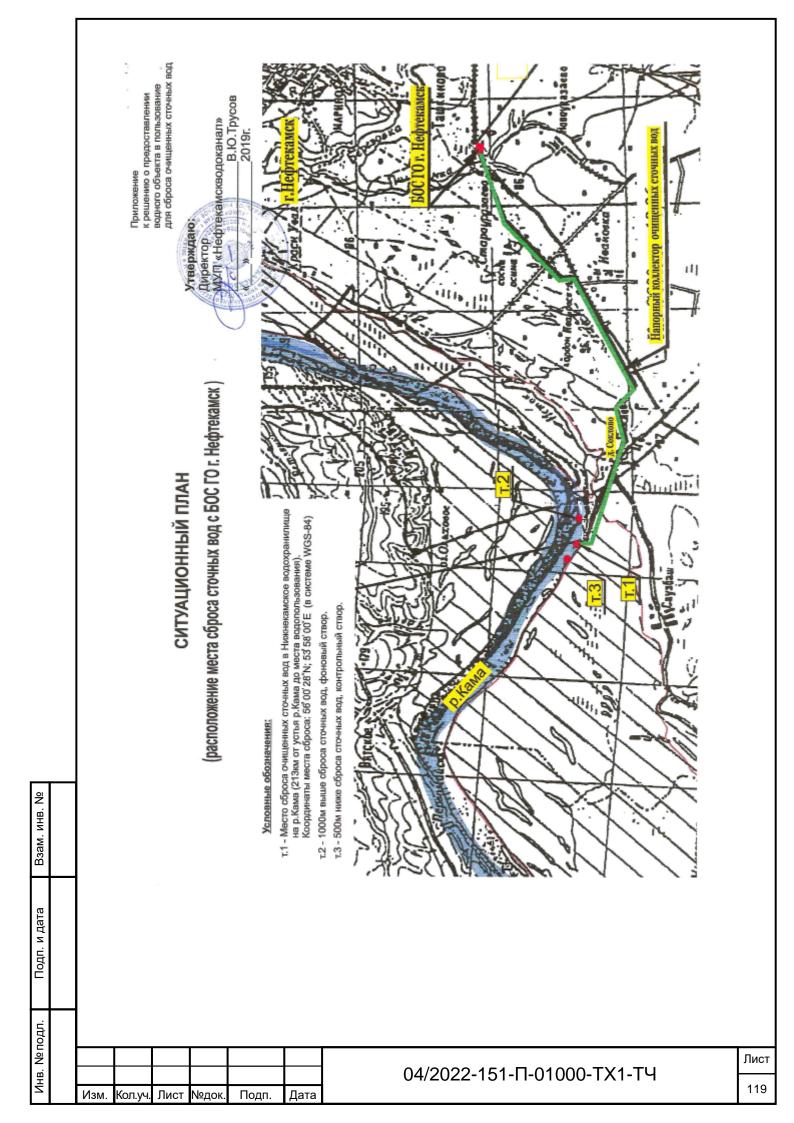

Изм.	Коп.уч.	Пист	№лок.	Полп.	Дата

04/2022-151-Π-01000-TX1-TY

Приложение к решению о предоставлении водного объекта в пользование для сброса очищенных сточных вод

Схема

расположения части Нижнекамского водохранилища на р.Кама, с указанием места сброса очищенных сточных вод.



Дата

подпор Нижнекамского водохранилища

Изм. Кол.уч. Лист №док. Подп.

Взам. инв. №

пояснительная записка

к материалам в графической форме МУП «Нефтекамскводоканал»

Источником водоснабжения ГО г. Нефтекамск, населенных пунктов Краснокамского района, в том числе с. Николо-Березовка являются подземные воды Камского инфильтрационного водозабора фактической производительностью до 30,0 тыс.м³/сут. (10.9 млн.м³/год) и поверхностного водозабора «Кама» фактической производительностью до 25,0 тыс.м³/сут. (9,1 млн.м³/год).

Основными объектами водоотведения являются:

- г. Нефтекамск с местной промышленной базой;
- завод автосамосвалов «НефАЗ»;
- завод «Искож»:
- с. Николо-Берёзовка Краснокамского района.

Сбор сточных вод от населения и предприятий перечисленных хозяйственных объектов осуществляется на биологические очистные сооружения города Нефтекамска, после чего очищенные стоки сбрасываются в реку Кама. Общая протяженность канализационных сетей, включая напорные и самотечные, составляет около 200 км.

Проект комплекса очистных сооружений канализации «Внеплощадочная канализация» 1880-НК-КР разработан институтом «СоюзводоканалНИИпроект» ГОССТРОЯ СССР. Заказчик по строительству: Нефтекамский завод автосамосвалов.

Построены очистные сооружения и введены в эксплуатацию в 1978г с проектной производительностью 40 тыс. м³/сут. (14,6 млн. м³/год). Фактическая производительность в 2018 году составила 18,76тыс. м³/сут. (6,85 млн. м³/год).

В 1988г. биологические очистные сооружения переданы с баланса завода автосамосвалов на баланс ПУ «Нефтекамскмежрайводоканал», которые в последствие переформированы в МУП «Нефтекамскводоканал».

Биологические очистные сооружения г. Нефтекамска обеспечивают механическую и биологическую очистку поступающих сточных вод и их обеззараживание низкоконцентрированным раствором гипохлорита натрия.

В состав блока очистных сооружений входит:

- приемная камера 1 шт;
- горизонтальные аэрируемые песколовки 2 шт;
- здание бункеров для обезвоживания песка 1 шт.;
- первичные горизонтальные отстойники 4 шт.;
- аэротенки-вытеснители трехкоридорные с регенераторами 2 шт.;
- вторичные горизонтальные отстойники 4 шт.;
- усреднители (приемный резервуар-усреднитель) 2 шт;
- насосная станция перекачки очищенных стоков с воздуходувками 1 шт.;
- участок обеззараживания стоков перед сбросом в водный объект 1 шт.;
- насосная станция откачивания сырого осадка и избыточного активного ила 1 шт.;
- иловые карты 9 шт., (3 каскада);
- аварийный резервуар (V=40 000 м³) − 1 шт.

Очищенные на очистных сооружениях и обеззараженные сточные воды перекачиваются насосами очищенных стоков по напорному трубопроводу Ø 800 мм протяжённостью 18,866 км в Нижнекамское водохранилище к месту сброса сточных вод.

	ı
Взам. инв. №	
Подп. и дата	
подл.	
	№ подл. и дата

∕1зм.	Кол.уч.	Лист	№док.	Подп.	Дата

Учет количества сбрасываемых очищенных сточных вод производится по прибору «ЭРИС.ВЛТ» №500, установленному на напорном трубопроводе Ø 800 мм с выводом вторичного прибора в помещение воздуходувной станции.

Сброс очищенных стоков производится через рассеивающий выпуск. Расстояние от берега до оголовка, т.е. до рассеивающей части выпуска канализационного коллектора очищенных стоков 123 м. Длина оголовка— 70 м. Оголовок, заглубленный в грунт-дно водохранилища на 2,5 м, имеет 7 рассеивающих патрубков диаметром 0,325 м с рассекающими насадками, расстояние между которыми 10,5 м. Отметка низа трубы оголовка— 55,30 м, отметка верха насадок рассеивающей части выпуска - 58,50 м (расстояние от низа трубы до верха насадок — 3,2 м). Учитывая заглубление оголовка в грунт-дно водохранилища на 2,5 м, расстояние от дна реки до верха насадок составляет 0,7 м и углубление рассеивающей части выпуска относительно уровня воды при максимальной глубине реки 6,6 м (Сведения ФГБУ «Удмуртский центр по гидрометеорологии и мониторингу окружающей среды» от 24.06.2013г. № 06/722) составляет 5,9 м, при средней глубине реки 4,2 м — 3,5 м.

Влияние сбрасываемых сточных вод на водный объект оценивается по результатам анализа качества речной воды в точках контроля:

1-я точка контроля - место сброса очищенных сточных вод в водный объект;

2-я точка контроля – отбор воды в 1000 м выше сброса сточных вод;

3-я точка контроля - отбор воды в 500 м ниже сброса сточных вод.

Точки контроля и место сброса сточных вод указаны на ситуационном плане.

Плотина Нижне-Камского гидроузла располагается у города Набережные Челны. Место сброса сточных вод находится в 137 км от створа Нижнекамского гидроузла, в 213 км от устья р.Кама. Координаты места сброса (рассеивающего выпуска): 56° 00¹ 28^{II} N и 53° 58^I 00^{II} Е в системе WGS- 84.

В.Ю. Трусов

Голушко Александр Николаевич главный технолог МУП «Нефтекамскводоканал» тел. 2-19-69

ľ						
Инв. Nº подл.						
HB.						
Z	Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

NHB.

и дата

1.5 Описание процесса работы

Устройство для обезвоживания осадка представляет собой комбинацию шнекового пресса с пресс-конусом на валу шнека, и цилиндрическими ситами. Подразделяется на три зоны: зона подачи осадка вместе с зоной привода, трёхсоставная зона уплотнения и обезвоживания, и зона прессования, с пневматическим конусом обратно направленного давления.

В шнековый пресс следует подавать флокулированный осадок достаточной стабильности. На первом участке фильтрации, при небольшом давлении, создаваемом подающим насосом, свободная вода через большую поверхность сита быстро удаляется из осадка. Датчик давления в Зоне подачи осадка предохраняет Устройство от слишком высокого давления на входе, а тем самым – и от чрезмерного загрязнения фильтрата.

На втором участке фильтрации, в шнеке, перемещающем осадок, постепенно сокращается расстояние между витками. Осадок движется и сжимается в постоянно сокращающемся объеме. Через барабанное сито, из него отжимается вода. Прозоры сита здесь значительно меньше, чем на первом участке.

На третьем участке фильтрации, где толщина коржа осадка минимальна, пневматическим пресс-конусом обратного давления из осадка выдавливается оставшаяся в нём вода. Давление здесь может бесступенчато регулироваться в зависимости от характера и консистенции хлопьев осадка.

Обезвоженный осадок проталкивается шнеком через пресс-конус в зону выброса.

Изменяя скорость вращения шнека, можно менять время пребывания осадка в прессе, т.е. время фильтрации, в зависимости от конкретных требований к степени обезвоживания.

Скребки, установленные на шнеке, обеспечивают постоянную автоматическую очистку сита изнутри. Интервальная очистка сита снаружи осуществляется с помощью барабана с форсунками. У типоразмера Q-PRESS® 440.2 барабан с форсунками находится в неподвижном состоянии, а сито представляет собой вращающийся элемент. Чтобы очистить Устройство, необходимо на время прекратить подачу в шнековый пресс и прокрутить шнек в обратную сторону. Подвижно закрепленный фильтрационный барабан вращается, проходя под барабаном форсунок, поверхность первого очищается. В режиме прессования начинается подача осадка, и шнек вращается в прямом направлении. Фильтрующее сито вращается до тех пор, пока не останавливается храповыми механизмами, закрепленными в корпусе. На типоразмерах Q-PRESS® 620.2 и 800.2 процесс обезвоживания не прерывается во время режима промывки, т.е. Установку не нужно останавливать во время цикла промывки. Четыре отдельно регулируемых сегмента форсунок позволяют разделить промывку фильтрующего сита на зоны.

Подп. и дата						
Инв. № подл.						
чв. №						
Ž	Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

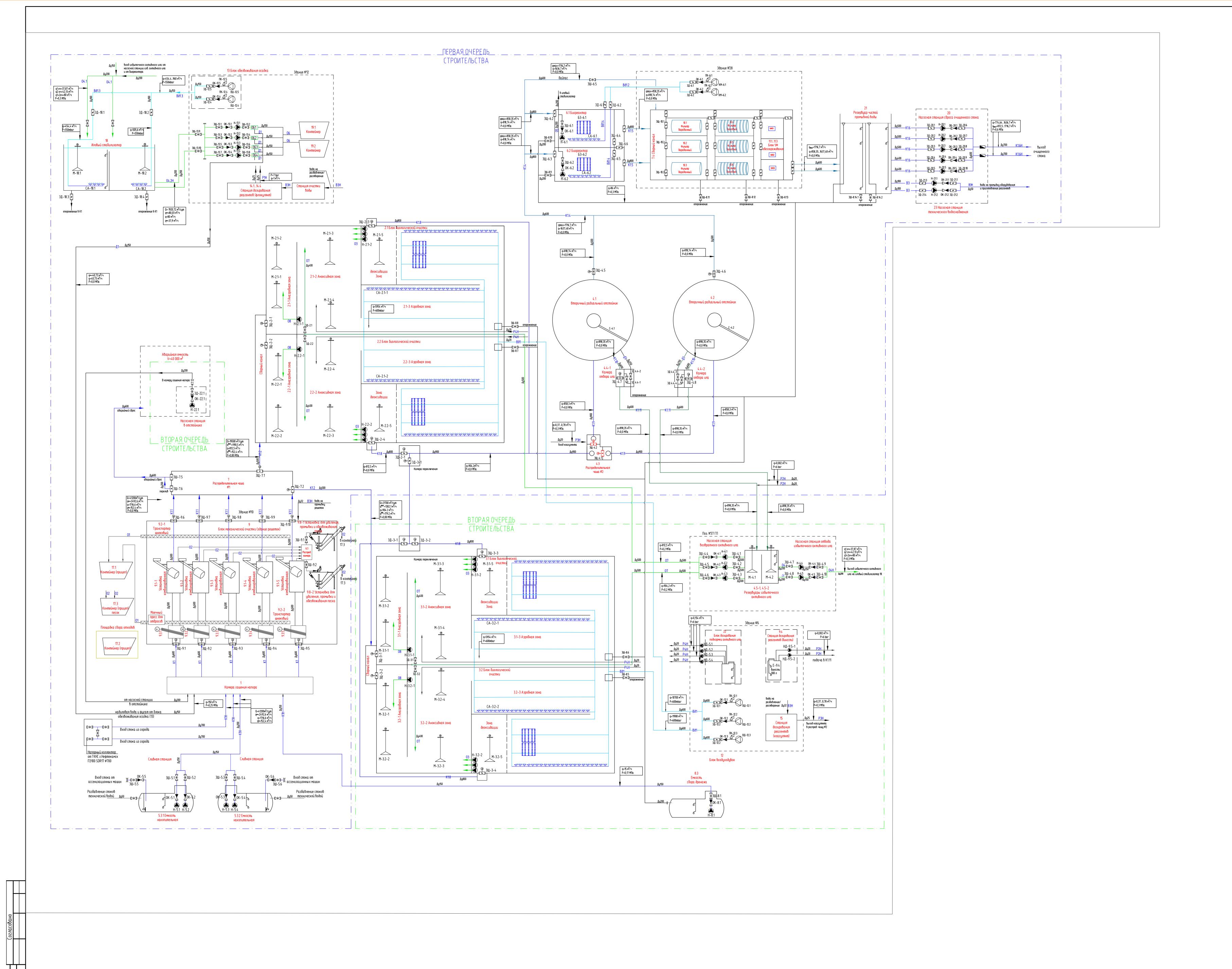
NHB.

Перечень нормативно-технической документации

- 1 ГОСТ 12.4.009-83 Система стандартов бзопасности труда. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание;
- 2 ГОСТ 12.4.026-2015. Система стандартов безопасности труда. Цвета сигнальные, знаки безопасности и разметка сигнальная. Назначение и правила применения. Общие технические требования и характеристики. Методы испытаний;

ЗГОСТ 14918-2020 Прокат листовой горячеоцинкованный. Технические условия;

4ГОСТ 16037-80 Соединения сварные стальных трубопроводов. Основные типы, конструктивные элементы и размеры;


5ГОСТ 32569-2013 Трубопроводы технологические стальные. Требования к устройству и эксплуатации на взрывопожароопасных и химически опасных производствах;

- 6 Постановление Правительства от 16.02.2008 г. № 87 «О составе разделов проектной документации и требованиях к их содержанию»;
- 7 СанПиН 2.1.3684-21 Санитарно-эпидемиологические требования к содержанию территорий городских и сельских поселений, к водным объектам, питьевой воде и питьевому водоснабжению атмосферному населения, воздуху, почвам, жилым помещениям, эксплуатации производственных, общественных помещений, организации и проведению санитарно-противоэпидемических (профилактических) мероприятий;

8СП 8.13130.2020 Системы противопожарной защиты. Наружное противопожарное водоснабжение. Требования пожарной безопасности;

- 9 СП 10.13130.2020 Системы противопожарной защиты. Внутренний противопожарный водопровод. Нормы и правила проектирования;
 - 10 СП 30.13330.2020 Внутренний водопровод и канализация зданий;
 - 11 СП 73.13330.2016 Внутренние санитарно-технические системы зданий.
 - 12СП 129.13330.2019 Наружные сети и сооружения водоснабжения и канализации;
- 13 СП 231.1311500.2015 Обустройство нефтяных и газовых месторождений. Требования пожарной безопасности:
 - 14. СП 32.13330.2018 Канализация. Наружные сети и сооружения;
- 15 Федеральный закон от 22 июля 2008 №123-Ф3 «Технический регламент о требованиях пожарной безопасности».

Взам. ин							
Подп. и дата							
№ подл.							
Инв. №							04/2022-151-П-01000-ТХ1-ТЧ
Ę	Изм.	Кол.уч.	Лист	№док.	Подп.	Дата	

К1 Трубопровода подачи стюка на очистки К1.1 Трубопровода стока после мех. очистки К1.2 Трубопровод подачи стюка на биологическую очистку К1.3 Трубопровод соединяющий биологическую очистку К1.4 Трубопровод подачи стюка на доочистку на бирабан. фильтрох К1.5 Трубопровод подачи стюка на доочистку на барабан. фильтрох К16Н Трубопровод премыбной воды для фильтров К17Н Трубопровод подачи в распред. камеру N2 К19 Трубопровод подачи в камеру отбора ила К110 Трубопровод подачи в камеру отбора ила К111 Трубопровод подачи в камеру зашения напора О1 Трубопровод подачи в камеру зашения напора О2 Трубопровод подачи в камеру зашения О3 Трубопровод подачи в камеру зашения О4 Трубопровод отбод и в бытивного ила из распред. камеры О4 Трубопровод отбод и в бытивного ила из распред. камеры О5 Трубопровод отбод и в бытивного ила из распред. камеры О6	Обознач.	Наименование	Примечание
К12 Трубопровод гоединяниций биологическую очистку К13 Трубопровод соединяниций биологическую очистку К14 Трубопровод подачи стюка на доочистку (общий) К14 Трубопровод подачи стюка на доочистку (общий) К15 Трубопровод подачи стюка на доочистку на барабам фильтрах К16Н Трубопровод промыбной воды для фильтров К17Н Трубопровод промыбной воды для фильтров К18 Трубопровод подачи на вторичные отстойники К110 Трубопровод подачи в камеру атбора ила К111 Трубопровод подачи в камеру обозратного ила К112 Трубопровод подачи в камеру зашения напора 01 Трубопровод подачи в камеру зашения напора 02 Трубопровод подачи в камеру зашения напора 03 Трубопровод отвода и оса камеры от за из расспред, камеры 04 Трубопровод отвода из за камивного ила (напорный) 05 Трубопровод отвода из бытичного и ктивного ила (напорный) 05 Трубопровод обезвоженного активного ила из бирреактора 06 Трубопровод обезвоженного активного ила из бирреактора 07 Трубопровод обезвоженного активного ила из бирреактора 08 Трубопровод	K1	Трубопровода подачи стока на очистку	
К13 Трубопровод соединяющий биологическию очистку К14 Трубопровод подачи стока на доочистку на биофреактор К4.1 Трубопровод подачи стока на доочистку (общий) К15 Трубопровод подачи стока на доочистку на барабан, фильтрах К16Н Трубопровод очищенного стока К17Н Трубопровод подачи в распред камеру N2 К18 Трубопровод подачи в фильтрод К1.10 Трубопровод подачи в камеру отбора ила К1.11 Трубопровод подачи в камеру зашения напора О1 Трубопровод подачи в камеру зашения напора О2 Трубопровод подачи в камеру зашения напора О3 Трубопровод отвода избыточного ила К1.12 Трубопровод отвода избыточного ила О3 Трубопровод отвода избыточного активного ила из распред камеры О4Н Трубопровод отвода избыточного активного ила из биореактора О5 Трубопровод отвода избыточного активного ила О6 Трубопровод обезбоженного активного ила О7 Трубопровод обезбоженного активного ила О8 Трубопровод обезбоженного активного ила О8 Трубопровод обезбоженного активного ила О8	K1.1	Трубопровода стока после мех. очистки	
К1.4 Трубопровод подачи стока на доочистку на биофреактор К4.1 Трубопровод подачи стока на доочистку (общий) К15 Трубопровод подачи стока на доочистку на барабан, фильтрах К16Н Трубопровод очищенного стока К17Н Трубопровод поромывной воды для фильтров К18 Трубопровод подачи в распред камеру №2 К19 Трубопровод подачи в камеру отбора ила К110 Трубопровод подачи в камеру возбратного ила К111 Трубопровод подачи в камеру кашения напора О1 Трубопровод подачи в камеру кашения напора О2 Трубопровод отвода песка О3 Трубопровод отвода избыточного ила из распред камеры О4 Трубопровод отвода избыточного ила из распред камеры О4 Трубопровод отвода избыточного ила из распред камеры О4 Трубопровод отвода избыточного ила из биореактора О5 Трубопровод отвода избыточного ила О7 Трубопровод обаздоженного активного ила О8 Трубопровод обаздоженного активного ила О3 Трубопровод обаздоженного активного ила О4 Трубопровод обазчи воздуха (общий) В3Н Трубоп	K1.2	Трубопровод подачи стока на биологическую очистку	
К4.1 Трубопровод подачи стока на доочистку (общий) К15 Трубопровод подачи стока на доочистку на барабан, фильтрах К16H Трубопровод очищенного стока К1.7H Трубопровод промывной боды для фильтров К18 Трубопровод подачи в распред камеру N2 К19 Трубопровод подачи в камеру отвора ила К110 Трубопровод подачи в камеру дозбратного ила К111 Трубопровод подачи в камеру дозбратного ила К112 Трубопровод подачи в камеру дошения напора 01 Трубопровод подачи в камеру дошения 02 Трубопровод отвода избыточного ила из распред, камеры 04 Трубопровод отвода избыточного активного ила (напорный) 05 Трубопровод отвода избыточного активного ила из биореактора 06 Трубопровод обезбоженного активного ила 07 Трубопровод обезбоженного активного ила 08 Трубопровод обезбоженного активного ила 08 Трубопровод обезбоженного активного ила 08 Трубопровод подачи воздуха (общий) 831 Трубопровод подачи воздуха на азрацию 801.1 Трубопровод подачи воздуха на азрацию в биореактор 802.2 <td>K1.3</td> <td>Трубопровод соединяющий биологическую очистку</td> <td></td>	K1.3	Трубопровод соединяющий биологическую очистку	
К15 Трубопровод подачи стока на доочистку на барабан. фильтрах К16H Трубопровод очищенного стока К17H Трубопровод промывной воды для фильтров К18 Трубопровод промывной воды для фильтров К18 Трубопровод подачи в распред. камеру N2 К19 Трубопровод подачи на вторичные отклюйники К110 Трубопровод подачи в камеру отвора ила К111 Трубопровод подачи в камеру возбратного ила К112 Трубопровод подачи в камеру зашения напора О1 Трубопровод подачи в камеру зашения напора О2 Трубопровод отвода песка О3 Трубопровод отвода изб. активного ила из распред. камеры О4Н Трубопровод отвода изб. активного ила из распред. камеры О5 Трубопровод отвода избыточного активного ила из биореактора О6 Трубопровод отвода избыточного активного ила из биореактора О7 Трубопровод обездоженного активного ила О8 Трубопровод дазробного рецикла В3H Трубопровод назробного рецикла В4Н Трубопровод подачи воздуха (общий) В61 Трубопровод подачи воздуха к каждой технологической линии В611 Трубопровод подачи воздуха на аэрацию В612 Трубопровод подачи воздуха на аэрацию В613 Трубопровод подачи воздуха на порвый стабилизатор Р1H Трубопровод подачи реагента (филокулянт) Р2Н Трубопровод подачи реагента (конскулянт)	K1.4	Трубопровод подачи стока на доочистку на биофреактор	
К16Н Трубопровод очищенного стока К1.7Н Трубопровод промывной воды для фильтров К1.8 Трубопровод порачи в распред, камеру N2 К19 Трубопровод подачи в распред, камеру N2 К110 Трубопровод подачи в камеру отвора ила К1.11 Трубопровод подачи в камеру возвратного ила К1.12 Трубопровод подачи в камеру зашения напора О1 Трубопровод подачи в камеру зашения напора О2 Трубопровод подачи в камеру зашения напора О3 Трубопровод отвода песка О3 Трубопровод отвода изб. активного ила из распред, камеры О4Н Трубопровод отвода избыточного ила из распред, камеры О5 Трубопровод отвода избыточного активного ила из биореактора О6 Трубопровод отвода избыточного активного ила О7 Трубопровод обезвоженного активного ила О8 Трубопровод обезвоженного активного ила О8 Трубопровод аназробного рецикла ВЗН Трубопровод истой воды Ва Трубопровод подачи воздуха (общий) Вд1 Трубопровод подачи воздуха на азрацию Вд1 Трубопровод подачи воздуха на израшию в биореактор Вд1 Трубопровод подачи реагента (флокулянт) Р2Н Трубопровод подачи реагента (бингсти) Р3Н Трубопровод подачи реагента (коагулянт)	K4.1	Трубопровод подачи стока на доочистку (общий)	
К1.7H Трубопровод промывной воды для фильтров К1.8 Трубопровод подачи в распред, камеру №2 К1.9 Трубопровод подачи на вторичные отстойники К1.10 Трубопровод подачи в камеру отбора ила К1.11 Трубопровод подачи в камеру возбратного ила К1.12 Трубопровод подачи в камеру возбратного ила К1.12 Трубопровод подачи в камеру защения напора О1 Трубопровод отвода неска О3 Трубопровод отвода неска О3 Трубопровод итвратного рецикла О4 Трубопровод отвода избыточного ила из распред, камеры О4H Трубопровод отвода избыточного активного ила (напорный) О5 Трубопровод отвода избыточного активного ила из биореактора О6 Трубопровод отвода избыточного активного ила О7 Трубопровод бозвратного активного ила О8 Трубопровод возвратного активного ила ВЗН Трубопровод ана эробного рецикла ВЗН Трубопровод подачи воздуха (общий) Вд1 Трубопровод подачи воздуха каждой технологической линии Вд11 Трубопровод подачи воздуха на аэрацию Вд2 Трубопровод подачи воздуха на аэрацию Вд3 Трубопровод подачи воздуха на аэрацию в биореактор Вд3 Трубопровод подачи воздуха на аэрацию в биореактор Вд3 Трубопровод подачи резента (флокулятт) Р2H Трубопровод подачи резента (бингсти) Р3H Трубопровод подачи резента (коагулятт)	K1.5	Трубопровод подачи стока на доочистку на барабан. фильтрах	
К18 Трубопровод подачи в распред. камеру N2 К19 Трубопровод подачи на вторичные отстойники К110 Трубопровод подачи в камеру отвора ила К111 Трубопровод подачи в камеру возвратного ила К112 Трубопровод подачи в камеру защения напора О1 Трубопровод подачи осадка от решеток О2 Трубопровод отвода песка О3 Трубопровод отвода изб. активного ила из распред. камеры О4 Трубопровод отвода изб. активного ила из распред. камеры О4 Трубопровод отвода изб. активного ила из распред. камеры О5 Трубопровод отвода избыточного активного ила (напорный) О5 Трубопровод обезвоженного активного ила О7 Трубопровод обезвоженного активного ила О8 Трубопровод ана эробного рецикла В3Н Трубопровод ана эробного рецикла В3Н Трубопровод подачи воздуха (общий) В61 Трубопровод подачи воздуха к каждой технологической линии В611 Трубопровод подачи воздуха на аэрацию В612 Трубопровод подачи воздуха на азрацию в биореактор В613 Трубопровод подачи воздуха в илобый стабилизатор Р1Н Трубопровод подачи реагента (флокулянт) Р2Н Трубопровод подачи реагента (бингсти)	K1.6H	Трубопровод очищенного стока	
К1.9 Трубопровод подачи на вторичные отстойники К1.10 Трубопровод подачи в камеру отбора ила К1.11 Трубопровод подачи в камеру возбратного ила К1.12 Трубопровод подачи в камеру гашения напора О1 Трубопровод подачи в камеру гашения напора О2 Трубопровод отвода песка О3 Трубопровод отвода песка О4 Трубопровод отвода изб. активного ила из распред. камеры О4Н Трубопровод отвода избыточного активного ила (напорный) О5 Трубопровод отвода избыточного активного ила из биореактора О6 Трубопровод обезбоженного активного ила О7 Трубопровод возбратного активного ила О8 Трубопровод напробного рецикла В3Н Трубопровод подачи воздуха к каждой технологической линии В81.1 Трубопровод подачи воздуха к каждой технологической линии В81.1 Трубопровод подачи воздуха на аэрацию В81.2 Трубопровод подачи воздуха на азрацию в биореактор В81.3 Трубопровод подачи воздуха в иловый стабилизатор Р1Н Трубопровод подачи реагента (флокулянт) Р2Н Трубопровод подачи реагента (билести) Р3Н Трубопровод подачи реагента (коагулянт)	K1.7H	Трубопровод промывной воды для фильтров	
К1.10 Трубопровод подачи в камеру отбора ила К1.11 Трубопровод подачи в камеру возбратного ила К1.12 Трубопровод подачи в камеру гашения напора О1 Трубопровод подачи в камеру гашения напора О2 Трубопровод отвода песка О3 Трубопровод нитратного рецикла О4 Трубопровод отвода изб. активного ила из распред. камеры О4Н Трубопровод отвода избыточного активного ила (напорный) О5 Трубопровод отвода избыточного активного ила из биореактора О6 Трубопровод обезвоженного активного ила О7 Трубопровод обезвоженного активного ила О8 Трубопровод обезвоженного активного ила В3Н Трубопровод назробного рецикла В3Н Трубопровод подачи воздуха к каждой технологической линии В811 Трубопровод подачи воздуха к каждой технологической линии В811 Трубопровод подачи воздуха на аэрацию В812 Трубопровод подачи воздуха на аэрацию В813 Трубопровод подачи воздуха в иловый стабилизатор Р1Н Трубопровод подачи реагента (флокулянт) Р2Н Трубопровод подачи реагента (коагулянт)	K1.8	Трубопровод подачи в распред. камеру N2	
К1.11 Трубопровод подачи в камеру возвратного ила К1.12 Трубопровод подачи в камеру зашения напора О1 Трубопровод подачи осадка от решеток О2 Трубопровод отвода песка О3 Трубопровод отвода песка О4 Трубопровод отвода изб. активного ила из распред. камеры О4 Трубопровод отвода избыточного активного ила (напорный) О5 Трубопровод отвода избыточного активного ила из биореактора О6 Трубопровод обезвоженного активного ила О7 Трубопровод возвратного активного ила О8 Трубопровод анаэробного рецикла О8 Трубопровод чистой воды В3Н Трубопровод подачи воздуха (общий) В61 Трубопровод подачи воздуха к каждой технологической линии В61.1 Трубопровод подачи воздуха на аэрацию в биореактор В61.3 Трубопровод подачи воздуха в иловый стабилизатор Р1Н Трубопровод подачи реагента (бингсти) Р2Н Трубопровод подачи реагента (бингсти)	K1.9	Трубопровод подачи на вторичные отстойники	
К112 Трубопровод подачи в камеру гашения напора О1 Трубопровод подачи осадка от решеток О2 Трубопровод отвода песка О3 Трубопровод отвода изб. активного ила из распред. камеры О4 Трубопровод отвода изб. активного ила из распред. камеры О5 Трубопровод отвода избыточного активного ила (напорный) О5 Трубопровод обезвоженного активного ила из биореактора О6 Трубопровод обезвоженного активного ила О7 Трубопровод возвратного активного ила О8 Трубопровод анаэробного рецикла ВЗН Трубопровод чистой воды Ва Трубопровод подачи воздуха (общий) Вд1 Трубопровод подачи воздуха к каждой технологической линии Вд11 Трубопровод подачи воздуха на аэрацию в биореактор Вд13 Трубопровод подачи воздуха в иловый стабилизатор РН Трубопровод подачи реагента (флокулянт) Р2Н Трубопровод подачи реагента (бингсти)	K1.10	Трубопровод подачи в камеру отбора ила	
О1 Трубопровод подачи осадка от решеток О2 Трубопровод отвода песка О3 Трубопровод отвода изб. активного ила из распред. камеры О4 Трубопровод отвода избыточного активного ила из биореактора О5 Трубопровод отвода избыточного активного ила из биореактора О6 Трубопровод обезвоженного активного ила О7 Трубопровод возвратного активного ила О8 Трубопровод анаэробного рецикла ВЗН Трубопровод анаэробного рецикла ВЗН Трубопровод подачи воздуха (общий) ВЗН Трубопровод подачи воздуха к каждой технологической линии ВЗН Трубопровод подачи воздуха на аэрацию ВЗН Трубопровод подачи воздуха на аэрацию ВЗН Трубопровод подачи воздуха на азрацию в биореактор ВЗН Трубопровод подачи воздуха в иловый стабилизатор РЗН Трубопровод подачи реагента (бингсти) РЗН Трубопровод подачи реагента (коагулянт)	K1.11	Трубопровод подачи в камеру возвратного ила	
О2 Трубопровод отвода песка О3 Трубопровод нитратного рецикла О4 Трубопровод отвода изб. активного ила из распред. камеры О4Н Трубопровод отвода избыточного активного ила (напорный) О5 Трубопровод отвода избыточного активного ила из биореактора О6 Трубопровод обезвоженного активного ила О7 Трубопровод возвратного активного ила О8 Трубопровод анаэробного рецикла ВЗН Трубопровод чистой воды В∂ Трубопровод подачи воздуха (общий) В∂11 Трубопровод подачи воздуха к каждой технологической линии В∂1.1 Трубопровод подачи воздуха на аэрацию В∂1.2 Трубопровод подачи воздуха на аэрацию в биореактор В∂1.3 Трубопровод подачи воздуха в иловый стабилизатор Р∩Н Трубопровод подачи реагента (флокулянт) Р2Н Трубопровод подачи реагента (бингсти) Р3Н Трубопровод подачи реагента (коагулянт)	K1.12	Трубопровод подачи в камеру гашения напора	
ОЗ Трубопровод нитратного рецикла О4 Трубопровод отвода изб. активного ила из распред. камеры О4Н Трубопровод отвода избыточного активного ила (напорный) О5 Трубопровод отвода избыточного активного ила из биореактора О6 Трубопровод обезвоженного активного ила О7 Трубопровод возвратного активного ила О8 Трубопровод анаэробного рецикла ВЗН Трубопровод чистой воды Вд Трубопровод подачи воздуха (общий) Вд1 Трубопровод подачи воздуха к каждой технологической линии Вд11 Трубопровод подачи воздуха на аэрацию Вд12 Трубопровод подачи воздуха на аэрацию в биореактор Вд13 Трубопровод подачи воздуха в иловый стабилизатор Р1Н Трубопровод подачи реагента (флокулянт) Р2Н Трубопровод подачи реагента (коагулянт)	01	Трубопровод подачи осадка от решеток	
О4 Трубопровод отвода изб. активного ила из распред. камеры О4Н Трубопровод отвода избыточного активного ила (напорный) О5 Трубопровод отвода избыточного активного ила из биореактора О6 Трубопровод обезвоженного активного ила О7 Трубопровод возвратного активного ила О8 Трубопровод анаэробного рецикла ВЗН Трубопровод анаэробного рецикла ВЗН Трубопровод подачи воздуха (общий) ВЗН Трубопровод подачи воздуха к каждой технологической линии ВЗН Трубопровод подачи воздуха на аэрацию ВЗН Трубопровод подачи воздуха на аэрацию в биореактор ВЗН Трубопровод подачи воздуха на израцию в биореактор ВЗН Трубопровод подачи воздуха в иловый стабилизатор РЗН Трубопровод подачи реагента (флокулянт) Трубопровод подачи реагента (бингсти) Трубопровод подачи реагента (коагулянт)	02	Трубопровод отвода песка	
О4Н Трубопровод отвода избыточного активного ила (напорный) О5 Трубопровод отвода избыточного активного ила из биореактора О6 Трубопровод обезвоженного активного ила О7 Трубопровод возвратного активного ила О8 Трубопровод анаэробного рецикла ВЗН Трубопровод чистой воды Вд Трубопровод подачи воздуха (общий) Вд1 Трубопровод подачи воздуха к каждой технологической линии Вд11 Трубопровод подачи воздуха на аэрацию Вд12 Трубопровод подачи воздуха на аэрацию в биореактор Вд13 Трубопровод подачи воздуха на израцию в биореактор Р1Н Трубопровод подачи реагента (флокулянт) Р2Н Трубопровод подачи реагента (бингсти) Р3Н Трубопровод подачи реагента (коагулянт)	03	Трубопровод нитратного рецикла	
О5 Трубопровод отвода избыточного активного ила из биореактора О6 Трубопровод обезвоженного активного ила О7 Трубопровод возвратного активного ила О8 Трубопровод анаэробного рецикла ВЗН Трубопровод чистой воды Вд Трубопровод подачи воздуха (общий) Вд1 Трубопровод подачи воздуха к каждой технологической линии Вд1.1 Трубопровод подачи воздуха на аэрацию Вд1.2 Трубопровод подачи воздуха на аэрацию в биореактор Вд1.3 Трубопровод подачи воздуха в иловый стабилизатор Р1Н Трубопровод подачи реагента (флокулянт) Р2Н Трубопровод подачи реагента (бингсти) Р3Н Трубопровод подачи реагента (коагулянт)	04	Трубопровод отвода изб. активного ила из распред. камеры	
Об Трубопровод обезвоженного активного ила О7 Трубопровод возвратного активного ила О8 Трубопровод ана эробного рецикла ВЗН Трубопровод чистой воды Вд Трубопровод подачи воздуха (общий) Вд1 Трубопровод подачи воздуха к каждой технологической линии Вд11 Трубопровод подачи воздуха на аэрацию Вд12 Трубопровод подачи воздуха на аэрацию в биореактор Вд13 Трубопровод подачи воздуха в иловый стабилизатор Р1Н Трубопровод подачи реагента (флокулянт) Р2Н Трубопровод подачи реагента (коагулянт)	04H	Трубопровод отвода избыточного активного ила (напорный)	
О7 Трубопровод возвратного активного ила О8 Трубопровод анаэробного рецикла ВЗН Трубопровод чистой воды Вд Трубопровод подачи воздуха (общий) Вд1 Трубопровод подачи воздуха к каждой технологической линии Вд11 Трубопровод подачи воздуха на аэрацию Вд12 Трубопровод подачи воздуха на аэрацию в биореактор Вд13 Трубопровод подачи воздуха в иловый стабилизатор Р1Н Трубопровод подачи реагента (флокулянт) Р2Н Трубопровод подачи реагента (бингсти) Р3Н Трубопровод подачи реагента (коагулянт)	05	Трубопровод отвода избыточного активного ила из биореактора	
О8 Трубопровод анаэробного рецикла ВЗН Трубопровод чистой воды Вд Трубопровод подачи воздуха (общий) Вд Трубопровод подачи воздуха к каждой технологической линии Вд Трубопровод подачи воздуха на аэрацию Вд Трубопровод подачи воздуха на аэрацию в биореактор Вд Трубопровод подачи воздуха на аэрацию в биореактор Вд Трубопровод подачи воздуха в иловый стабилизатор Р1Н Трубопровод подачи реагента (флокулянт) Р2Н Трубопровод подачи реагента (коагулянт)	06	Трубопровод обезвоженного активного ила	
ВЗН Трубопровод чистой воды Вд Трубопровод подачи воздуха (общий) Вд1 Трубопровод подачи воздуха к каждой технологической линии Вд1.1 Трубопровод подачи воздуха на аэрацию Вд1.2 Трубопровод подачи воздуха на аэрацию в биореактор Вд1.3 Трубопровод подачи воздуха в иловый стабилизатор Р1Н Трубопровод подачи реагента (флокулянт) Р2Н Трубопровод подачи реагента (бингсти) Р3Н Трубопровод подачи реагента (коагулянт)	07	Трубопровод возвратного активного ила	
Вдана Прубопровод подачи воздуха (общий) Вдана Прубопровод подачи воздуха к каждой технологической линии Вдана Прубопровод подачи воздуха на аэрацию Вдана Прубопровод подачи воздуха на аэрацию в биореактор Вдана Прубопровод подачи воздуха в иловый стабилизатор Рана Прубопровод подачи реагента (флокулянт) Рана Прубопровод подачи реагента (бингсти) Рана Прубопровод подачи реагента (коагулянт)	08	Трубопровод анаэробного рецикла	
Вдана Прубопровод подачи воздуха (общий) Вдана Прубопровод подачи воздуха к каждой технологической линии Вдана Прубопровод подачи воздуха на аэрацию Вдана Прубопровод подачи воздуха на аэрацию в биореактор Вдана Прубопровод подачи воздуха в иловый стабилизатор Рана Прубопровод подачи реагента (флокулянт) Рана Прубопровод подачи реагента (бингсти) Рана Прубопровод подачи реагента (коагулянт)	ВЗН	Трубопровод чистой воды	
Вд.1.1 Трубопровод подачи воздуха на аэрацию в биореактор Вд.2 Трубопровод подачи воздуха на аэрацию в биореактор Вд.3 Трубопровод подачи воздуха в иловый стабилизатор Р1Н Трубопровод подачи реагента (флокулянт) Р2Н Трубопровод подачи реагента (бингсти) Р3Н Трубопровод подачи реагента (коагулянт)	Вд		
Вд.2 Трубопровод подачи воздуха на аэрацию в биореактор Вд.3 Трубопровод подачи воздуха в иловый стабилизатор Р1Н Трубопровод подачи реагента (флокулянт) Р2Н Трубопровод подачи реагента (бингсти) Р3Н Трубопровод подачи реагента (коагулянт)	B∂1	Трубопровод подачи воздуха к каждой технологической линии	
Вда. Трубопровод подачи воздуха в иловый стабилизатор Р1Н Трубопровод подачи реагента (флокулянт) Р2Н Трубопровод подачи реагента (бингсти) Р3Н Трубопровод подачи реагента (коагулянт)	B∂1.1	Трубопровод подачи воздуха на аэрацию	
Р1Н Трубопровод подачи реагента (флокулянт) Р2Н Трубопровод подачи реагента (бингсти) Р3Н Трубопровод подачи реагента (коагулянт)	B ₀ 1.2	Трубопровод подачи воздуха на аэрацию в биореактор	
Р1Н Трубопровод подачи реагента (флокулянт) Р2Н Трубопровод подачи реагента (бингсти) Р3Н Трубопровод подачи реагента (коагулянт)	B∂1.3		
РЗН Трубопровод подачи реагента (коагулянт)	P1H		
РЗН Трубопровод подачи реагента (коагулянт)	P2H		
Р4Н Трубопровод подачи реагента (подкормка активного ила)	P3H		
·	P4H	Трубопровод подачи реагента (подкормка активного ила)	

	Условные обозначения										
Обознач.	Наименование	Обознач.	Наименование								
	Погружной насос	3Ш > <	Задвижка шиберная								
	Воздуходувка	OK ▶≪II	Клапан обратный								
\triangle	Погружная мешалка	3Д	Затвор дисковый								
***	Система аэрации	3Щ	Затвор щитовой								
		⊕ 3∏	Затвор дисковый с эл. приводом								

						04/2022-151-Π-010	000-T	X1-41		
Изм.	Кол.уч	/lucm	N∂ок	Подпись	Дата	Реконструкция биологических очистных сооружений в городе Нефтекамск РБ				
Разра		Сюндюк	κοδα		20.12.23		Стадия	/lucm	Листов	
Пров.		Шкода			20.12.23 Технологические решения		П	1		
						Схема технологическая принципиальная	000 «E	БурГеоИнж	(пнпbпнs»	
ГИП Г		Гараев	,		20.12.23	пранцанаальнал				

Экспликация емкостного и технологического оборудования

Поз. по ТС	Наименование	Кол.	Примечание
1	Камера гашения напора. Тип – железобетонный резервуар.	1	Уличное размещени
3Щ-9.19.5	Затвор щитовой с электроприводом	5	
2.12.2	Блок биологической очистки первой очереди строительства		
2.1-1, 2.2-1	Анаэробная зона. Тип – железобетонный открытый резервуар	2	Уличное размещени
1-2.1-1, 2; M-2.2-1, 2	Мешалка в анаэробной зоне. Tun – полупогружная низкооборотная гиперболическая	4	
2.1-2, 2.2-2	Аноксидная зона. Tun – железобетонный открытый резервуар.	2	Уличное размещени
3Д-2.1, 3Д-2.2	Задвижка	2	
M-2.1-3,4; M-2.2-3,4	Мешалка в аноксидной зоне. Тип — полупогружная низкооборотная	4	
	гиперболическая		
-2.1-1, 2.2-1, 3.1-1, 3.2-1	Насос анаэробного рецикла. Tun – погружной	5	4 раб. 1 рез.
2.1-3, 2.2-3	Аэробная зона. Tun – железобетонный открытый резервуар.		
CA-2.1-1,2.2-1	Система аэрации. Tun – тарельчатая, мелкопузырчатая	2	
·	Насос нитратного рецикла в аэротенке. Tun – погружной	13	12 раб. 1 рез.
M-2.1-5, M-2.2-5	Мешалка в деоксидаторе. Tun — полупогружная низкооборотная	2	
	гиперболическая		
3Щ-2.12.2	Затвор щитовой с электроприводом	2	
3	Блок биологической очистки вторая очереди строительства	2	Уличное размещения
3.1–1, 3.2–1	Анаэробная зона. Tun – железобетонный открытый резервуар	2	Уличное размещени
1-3.1-1, 2; M-3.2-1, 2	Мешалка в анаэробной зоне. Tun – полупогружная низкооборотная гиперболическая	4	
3.1-2, 3.2-2	Аноксидная зона. Тип – железобетонный открытый резервуар.	2	Уличное размещени
3Д-3.1, 3Д-3.2	Задвижка	2	
M-3.1-3,4; M-3.2-3,4	Мешалка в аноксидной зоне. Tun – полупогружная низкооборотная	4	
	гиперболическая		
H-2.1-1, 2.2-1	Насос анаэробного рецикла. Tun – погружной	5	4 раб. 1 рез.
3.1-3, 3.2-3	Аэробная зона. Tun – железобетонный открытый резервуар.		Уличное размещени
CA-3.1-1,3.2-1	Система аэрации. Tun – тарельчатая, мелкопузырчатая	2	
H-3.1-1,3.2-1	Насос нитратного рецикла в аэротенке. Tun – погружной	13	12 раб. 1 рез.
M-3.1-5, M-3.2-5	Мешалка в деоксидаторе. Tun – полупогружная низкооборотная	2	
	гиперδοлическая		
3Щ-3.13.2	Затвор щитовой с электроприводом	2	
4.1, 4.2	Вторичный отстойник. Тип – радиальный железобетонный открытый	2	
	резервуар.		
C-4.1, 4.2	Скребковый механизм (Илосос радиальный сосунный)	2	
3Щ-4.54.6	Затвор щитовой с электроприводом	2	
4.4-1, 4.4-2	Камера отбора ила. Тип – железобетонный открытый резервуар.	2	
3Щ-4.74.8	Затвор щитовой переливной с электроприводом	2	
3Д 4.4-14.4-4	Задвижка	4	
4.3	Распределительная чаша №2. Tun — железобетонный открытый	1	
	резервуар.		
3Щ-4.14.2	Затвор щитовой с электроприводом	2	
4.5-14.5-2	Резервуары избыточного активного ила	2	
M-4.14.2	Мешалка погружная.Tun — полупогружная низкооборотная	2	

Экспликация емкостного и технологического оборудования

Поз. по ТС	Наименование	Кол.	Примечание
	Насосная станция возвратного активного ила		
H-20.120.4	Насос возвратного рецикла избыточного активного ила	4	2 раδ. 1 рез.
	Tun – сухой установки с ЧРП		
	Насосная станция отвода избыточного активного ила		
H-4.44.5	Насос удаления избыточного активного ила	2	1 рαδ. 1 рез.
	Тип – сухой установки с ЧРП		
	Насосная станция дренажа и опорожнения резервуаров		
H-8.18.2	Насос сброса дренажа и опорожнения резервуаров	2	1 раδ. 1 рез.
	Tun – сухой установки с ЧРП		
	Резервуары активного и избыточного ила. Тип – железобетонный	2	Уличное размещени
	открытый резервуар		·
15	Сливная станция	1	
5.3	Емкость накопительная	1	
H-5.15.2	Насос подачи стока из емкости накопительной	2	1 раδ. 1 рез.
11 3.13.2	Tun – погружной канализационный с плавным пуском		, p , p
6.16.2	Биореактор доочистки	2	
H-6.16.2	Насос рециркуляции активного ила из биореактора	3	2 раб. 1 рез.
11-0.10.2	Тип – погружной канализационный		z μασ. 1 μεσ.
CA (1 (2	Система аэрации.	2	
CA-6.16.2	Биологическая загрузка	2	
Б3-6.16.2	Распределительная чаша N1		
		4	
3Щ-7.17.4	Затвор щитовой с электроприводом	1	
3Ш-7.5	Задвижка шиберная с электроприводом	5	
3Щ-9.69.10	Затвор щитовой с электроприводом		D
9	Блок механической очистки	1	Размещение в здани
9.1–19.1–5	Установка комбинированная: решетка, песколовка, жироуловитель	5	4 раб. 1 рез.
9.2-19.2-2	Транспортер шнековый	2	
9.3–19.3–5	Решетка с механическим съемом осадка, ширина прозора 10 мм	5	4 раб. 1 рез.
9.8-19.8-2	Установка для удаления, промывки и обезвоживания песка	2	
	Моечный пресс для отбросов	1	
10.110.3	Фильтр доочистки, тип – барабанный	3	2 раб. 1 рез.
10.410.6	Фильтр доочистки, тип – дисковый	3	2 раб. 1 рез.
11	Станция ультрафиолетового обеззараживания	3	2 раб. 1 рез.
12	Блок воздуходувок		Размещение в
			здании
ВД-12.112.3	Воздуходувка подачи воздуха на аэрацию	3	2 раб. 1 рез.
KM-6.16.2	Компрессоры	2	1 рαδ. 1 рез.
ВД-12.412.6	Воздуходувка подачи воздуха на иловый стабилизатор	3	2 рαδ. 1 рез.
13	Блок обезвоживания осадка	1	Размещение в
			здании
3Д-18.318.4	Затвор дисковый с электроприводом	2	
3Д-18.5	Затвор дисковый с электроприводом	1	

Экспликация емкостного и технологического оборудования

Поз. по ТС	Наименование	Кол.	Примечание
14.114.2	Станция дозирования реагента (флокулянт)	2	Размещение в
			здании
H-14.1-114.1-4	Насос-дозатор (флокулянт)	4	3 раб. 1 рез.
	Станция приготовления флокулянта	4	3 раб. 1 рез.
	Растариватель биг-бегов (флокулянт)	4	3 раб. 1 рез.
15.115.3	Станция дозирования реагентов (коагулянт)	3	Размещение в здании
H-15.1-115.1-6	Насос-дозатор (коагулянт)	6	
15.415.6	Растариватель биг-бегов (флокулянт)	2	
9.4	Станция дозирования реагентов (бингсти)	1	Размещение вздании
НД 4.1, 4.2	Насос-дозатор, тип – мембранный, раб.среда – бингсти 10% раствор	2	1 раδ. 1 рез.
P4H	Станция подачи для подкормки активного ила	1	
НД 5.15.4	Насос-дозатор, тип – мембранный	5	4 раб. 1 рез.
16.116.2	Блок расходомера	2	
18	Иловый стабилизатор	1	Уличное размещение
M-18.118.2	Мешалка в резервуаре сбора осадка, тип – погружная гиперболическая	2	
CA-18.118.2	Система аэрации	2	
H-18.118.3	Насос подачи активного ила, тип — погружной канализационный с ЧРП	3	2 рαδ. 1 рез.
20	Насосная станция сброса очищенного стока	1	Размещение в
			здании
H-20.120.4	Насос сброса воды в реку, mun – сухой установки с ЧРП	4	3 раб. 1 рез.
21	Резервуар чистой и промывной воды	1	
H-21.121.3	Насос технического водоснабжения, тип – центробежный с ЧРП	3	2 рαδ. 1 рез.

						04/2022-151-Π-01000-TX1-Ч2				
Изм.	Кол.уч.	/lucm	№ док.	Подпись	Дата	Реконструкция биологическихочистных сооружений в городе Нефтекамске РБ				
Разраб.		Сюндю			дини 20.12.23	· · · · · · · · · · · · · · · · · · ·	Стадия	/lucm	Листов	
Проверил		Шкода			20.12.23	Технологические решения	П	2		
ГИП		Fapael)		20.12.23	Экспликация емкостного и технологического оборудования	000 «БурГеоИнжиниринг»			