

ИНН 0274170029 | КПП 027801001 | ОГРН 1120280040946

8 (347) 295-97-88 bgi_gk2022@mail.ru

Отделение-НБ Республика Башкортостан Банка России//УФК по РБ г. Уфа р/сч 0322564380000000102 | л/сч 712НЖШЯ5001 к/сч 40102810045370000067 | БИК 018073401

Заказчик – ГКУ УКС РБ

Реконструкция биологических очистных сооружений в городе Нефтекамск РБ

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 8. Мероприятия по охране окружающей среды

Часть 2. Оценка воздействия на окружающую среду

 $04/2022-151-\Pi-01000-OBOC$

Tom 8.2

г. Уфа2023

ИНН 0274170029 | КПП 027801001 | ОГРН 1120280040946

8 (347) 295-97-88 bgi_gk2022@mail.ru

Отделение-НБ Республика Башкортостан Банка России//УФК по РБ г. Уфа р/сч 0322564380000000102 | л/сч 712НЖШЯ5001 к/сч 40102810045370000067 | БИК 018073401

Заказчик – ГКУ УКС РБ

Реконструкция биологических очистных сооружений в городе Нефтекамск РБ

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 8. Мероприятия по охране окружающей среды

Часть 2. Оценка воздействия на окружающую среду

 $04/2022-151-\Pi-01000-OBOC$

Tom 8.2

Директор

Исламов И.А.

20.12.2023

Главный инженер проекта

Гараев И.Ф.

20.12.2023

г. Уфа 2023

Заказчик - ООО «БурГеоИнжиниринг»

Реконструкция биологических очистных сооружений в городе Нефтекамск РБ

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 8. Мероприятия по охране окружающей среды

Часть 2. Оценка воздействия на окружающую среду

04/2022-151-Π-01000-OBOC

Том 8.2

Заказчик - ООО «БурГеоИнжиниринг»

Реконструкция биологических очистных сооружений в городе Нефтекамск РБ

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 8. Мероприятия по охране окружающей среды

Часть 2. Оценка воздействия на окружающую среду

04/2022-151-Π-01000-OBOC

Том 8.2

2023

	Технический директор		/ О.В. Малахов /
Взам. инв. №	Главный инженер проекта	20.12.2023	/ Н.В. Каюмова /
Подп. и дата			
е подл.			

СОДЕРЖАНИЕ ТОМА Примечание Обозначение Наименование 04/2022-151-Π-01000-OBOC-C Содержание тома 8.2 2 листа 04/2022-151-Π-01000-OBOC-Список исполнителей и ответственных лиц 1 лист 04/2022-151-Π-01000-OBOC-Текстовая часть 58 листов ТЧ Графическая часть 04/2022-151-Π-01000-OBOC-2 листа Ведомость документов графической части 04/2022-151-Π-01000-OBOC-Обзорна карта 1 лист Ч1 Всего 147 листов Согласовано Взам. инв. Подп. и дата 04/2022-151-Π-01000-OBOC-C Изм. Кол.уч. Лист №док Дата Подп. Разраб. Матвеева 20.12.23 Стадия Лист Листов Инв. № подл. Содержание тома 8.2 КВАДРИТ 20.12.23 Н.контр. Рябикова ГИП Каюмова 20.12.2

Содержание

1 Общи	е поло	эжени			<u>-</u>			7	
1.1 Осн	овани	я для	разрабо	тки ра	здела			7	
				_	емого объекта				
					н объекта капитального строительства				
_					ровня шумового воздействия на терри		=		
	-	•	-	-	2	-	-		
	•			•					
			-		сферный воздух				
					рерный воздух и характеристика				
					едении строительно-монтажных и демо			-	
					х объектов на атмосферный воздух и х				
			_		ıуатации			_	
-			-		-у пыные ресурсы и почвенный покров				
					ель района расположения объекта				
 2.3.2 Воздействие на земельные ресурсы и почвенный покров. 2.4 Воздействие на состояние поверхностных и подземных вод. 2.4.1 Характеристика поверхностных и подземных вод в районе расположения объекта 2.4.2.1 Водоснабжение и водоотведение при проведении строительно-монтажи 									
					•				
	_	-	_	_					
					доотведение при проведении стр				
					едение при эксплуатации				
			_		і и животный мир				
	-	-	-	•	щего состояния растительности и живо		-		
					и количественном составе отходов, о			-	
					ажных работ и эксплуатации				
					твии и электромагнитном излучении				
			_	_	вводства строительных работ				
			-		уатации				
			-		оийных ситуациях				
		-			одные территории и другие экол		-		
_			-		редотвращению и (или) снижению и				
воздейс	твия і	намеч	аемой х	озяйст	венной деятельности на окружающую	о среду и	г рацион	альному	
использ	овани	ю пр	иродны	x pecy	трсов на период строительства, рекон	нструкци	и, капит	гального	
ремонта	а и экс	сплуат	гации об	бъекта	капитального строительства			65	
Результ	аты р	асчето	ов приз	емных	концентраций загрязняющих вещести	в, анализ	и пред.	пожения	
по пред	ельно	допус	стимым	и врем	ленно согласованным выбросам			65	
3.1 Mep	оприя	п виті	о охран	е атмо	сферного воздуха			70	
					водоснабжению				
						0000			
149-23					04/2022-151-01000-0	OROC-T	Ч		
Изм. Кол.уч			Подп.	Дата					
Разраб.	Матве	ева		20.12.23		Стадия	Лист	Листов	
Hou see					Текстовая часть	П	1	585	
Нач. отд Н.контр.	Daking	ND 2		20.12.23					
п.контр. ГИП	. Рябикова 20.12.23 Каюмова 20.12.23								
	- WIDIVIO	Ju							

Инв. № подл. Подп. и дата Взам. Инв. №

3.3 Мероприятия по охране и рациональному использованию земельных ресурсов и почвенного
покрова, в том числе мероприятия по рекультивации нарушенных или загрязненных земельных
участков и почвенного покрова
3.4 Мероприятия по сбору, накоплению, транспортированию, обработке, утилизации,
обезвреживанию, размещению отходов производства и потребления
3.5 Мероприятия по охране объектов растительного и животного мира и среды их обитания74
3.6 Мероприятия по минимизации вероятности возникновения возможных аварийных ситуаций
на объекте и последствий их воздействия на экосистему региона
3.7 Мероприятия, технические решения и сооружения, обеспечивающие рациональное
использование и охрану водных объектов, а также сохранение водных биологических ресурсов
(в том числе предотвращение попадания рыб и других водных биологических ресурсов в
водозаборные сооружения) и среды их обитания, в том числе условий их размножения, нагула,
путей миграции76
3.8 Программа производственного экологического контроля (мониторинга) за характером
изменения всех компонентов экосистемы при реконструкции и эксплуатации объекта, а также
при авариях
3.9 Мероприятия по сбору и накоплению медицинских и радиоактивных отходов
3.10 Мероприятия по защите от шума территории жилой застройки
4 Перечень и расчет затрат на реализацию природоохранных мероприятий и компенсационных
выплат
4.1 Расчет платы за выбросы загрязняющих веществ в атмосферу
4.2 Расчет платы за размещение отходов
Перечень нормативно-технической документации
Приложение А (обязательное) Расчет выбросов загрязняющих веществ
Приложение Б (обязательное) Расчет рассеивания загрязняющих веществ
Приложение В (обязательное) Расчет образования отходов
Приложение Г (обязательное) Документы об установлении СЗЗ объекта
Приложение Д (обязательное) Расчет шума
Приложение Е (обязательное) Копии писем, документов
Приложение Ж (обязательное) Программа производственного экологического контроля471

Инв. № подл. Подп. и дата Взам. Инв. №

Изм.	Кол.уч	Лист	№док	Подп.	Дата

1 Общие положения

1.1 Основания для разработки раздела

Раздел «Мероприятия по охране окружающей среды» в составе проектной документации «Реконструкция биологических очистных сооружений в городе Нефтекамск РБ» разработан на основании:

задания на проектирование;

Лист №док

Кол.уч

Подп.

материалов инженерных-экологических изысканий, выполненные отделом инженерных изысканий ООО «УралБурКомплекс» в январе – феврале 2023 г.

- технических решений других разделов данного проекта.

Настоящая часть проекта по экологическому обоснованию намечаемой деятельности выполнена на основании инженерно-экологических работ и технологической части проекта, с учетом следующей основной нормативной правовой, инструктивно-методической и нормативнотехнической документации по охране окружающей среды, представленной в Перечне нормативно-технической документации.

1.2 Краткое описание проектируемого объекта

Согласно заданию на проектирование, предусматривается реконструкция очистных сооружений отдельными этапами (пусковыми комплексами) без остановки действующих сооружений.

I этап – строительство и ввод в эксплуатацию нового комплекса биологических очистных сооружений.

II этап – реконструкция существующего комплекса БОС, объединение сооружений І–го и II-го этапов в единый технологический комплекс очистных сооружений.

Взам. Инв. №							
Подп. и дата							
нв. № подл.							
S						04/2022-151-00000-OBOC-TY	Лист
1 2			I	I	I	0-7/2022 101 00000 OBOO 1 1	

2.1 Климатические условия

Климатические параметры, необходимые для проектирования зданий и сооружений, представлены в таблицах 2.1-2.5, согласно СП 131.13330.2020 "Строительная климатология. Актуализированная версия СНиП 23-01-99*" по данным наблюдений метеостанции Янаул (расстояние от участка работ до г.Янаул составляет ~50 км по прямой к северо-востоку).

Таблица 2.1 - Климатические параметры холодного периода года

Температура воздуха наиболее холодных суток, °С, обеспеченностью	
0,98 / 0,92	- 43 / - 40
Температура воздуха наиболее холодной пятидневки, °С,	
обеспеченностью 0,98 / 0,92	-38 / - 34
Температура воздуха, °С, обеспеченностью 0,94	- 21
Абсолютная минимальная температура воздуха	- 51
Средняя суточная амплитуда температуры воздуха наиболее холодного месяца	9,5
Продолжительность и средняя температура воздуха периода со средней суточной температурой	163 сут.
воздуха ≤ 0 °C	- 9,6 °C
Продолжительность и средняя температура воздуха периода со средней суточной температурой	218 сут.
воздуха ≤ 8 °C	- 6,1 °C
Продолжительность и средняя температура воздуха периода со средней суточной температурой	233 сут.
воздуха ≤ 10 °C	- 5,1 °C
Средняя месячная относительная влажность воздуха наиболее холодного месяца, %	81
Средняя месячная относительная влажность воздуха в 15 ч наиболее холодного месяца, %	78
Количество осадков, за ноябрь-март, мм	143
Преобладающее направление ветра за декабрь-февраль	Ю
Максимальная из средних скоростей ветра по румбам за январь, м/с	6,0
Средняя скорость ветра, м/с, за период со средней суточной температурой воздуха ≤ 8 °C	3,9

Таблица 2.2 - Климатические параметры теплого периода года

Барометрическое давление, гПа	1004
Температура воздуха, °C, обеспеченностью 0,95 / 0,98	24 / 28
Средняя максимальная температура воздуха наиболее теплого месяца, °С	25,8
Абсолютная максимальная температура воздуха	39
Средняя суточная амплитуда темп-ры воздуха наиболее теплого месяца, °С	13,3
Средняя месячная относительная влажность воздуха наиболее теплого месяца, %	71
Средняя месячная относительная влажность воздуха в 15 ч наиболее теплого месяца, %	53
Количество осадков за апрель-октябрь	346
Суточный максимум осадков	65
Преобладающее направление ветра за июнь-август	3
Минимальная из средних скоростей ветра за июль, м/с	0

Таблица 2.3 - Средняя месячная и годовая температура воздуха (°C)

Взам. Инв. №

Подп. и дата

Инв. № подл.

I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Год
-14,2	-13,4	-6,3	3,6	12,0	16,7	18,8	16,2	10,4	3,1	-4,7	-11,1	2,6

Таблица 2.4 - Среднее месячное и годовое давление водяного пара, гПа

Изм. Кол.уч Лист №док Подп. Дата О4/2022-151-00000-OBOC-TЧ 595												
504	ı							04/2022 454 00000 ODGC TH				
	ŀ	Изм.	Кол.уч	Лист	№док	Подп.	Дата	04/2022-151-00000-OBOC-19	595			

Таблица 2.5 - Средняя и максимальная суточная амплитуда температуры наружного воздуха, °С

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
Средняя	8,3	9,5	9,9	10,0	13,4	13,5	13,0	12,6	10,5	6,9	6,2	7,6
Макси- мальная	29,1	29,6	26,6	25,1	26,6	25,4	24,1	25,0	24,0	23,1	24,6	27,7

Фоновые концентрации веществ, загрязняющих атмосферный воздух, согласно данным Ф ФГБУ "Башкирское УГМС" на территории участка работ представлены в таблице 2.6.

Таблица 2.6 – Значения фоновых концентраций загрязняющих веществ в атмосферном воздухе

Вещество (ПДК м.р., мг/м ³)	Фоновая концентрация, мг/м ³
Пыль (0,5)	0,263
Диоксид серы (0,5)	0,019
Оксид углерода (5,0)	2,7
Диоксид азота (0,2)	0,079

Анализ данных, приведенных в таблице 2.6, показывает, что фоновые концентрации вредных веществ в районе изысканий не превышают предельно-допустимых концентраций вредных веществ.

2.2 Воздействие объекта на атмосферный воздух

2.2.1 Воздействие на атмосферный воздух и характеристика источников выбросов загрязняющих веществ при проведении строительно-монтажных и демонтажных работ

Общая продолжительность строительства принимается 18 месяцев (в том числе подготовительный период -2,3 месяца). Количество смен -1, продолжительность смены 8 ч, продолжительность выполнения работ в днях на расчетный период -396 рабочих дней.

Перечень ИЗАВ:

Взам. Инв. №

Подп. и дата

Инв. № подл.

ИЗА №5501. Труба ПДЭС. Загрязняющие вещества: Азота диоксид (Двуокись азота; пероксид азота), Азот (II) оксид (Азот монооксид), Углерод (Пигмент черный), Сера диоксид, Углерода оксид (Углерод окись; углерод моноокись; угарный газ), Бенз/а/пирен, Формальдегид (Муравьиный альдегид, оксометан, метиленоксид), Керосин (Керосин прямой перегонки; керосин дезодорированный).

ИЗА №6501. Дорожная техника. Источниками выделений загрязняющих веществ являются двигатели дорожных машин в период движения по территории, во время работы в нагрузочном режиме и режиме холостого хода, в атмосферу поступают: Азота диоксид (Двуокись азота; пероксид азота), Азот (II) оксид (Азот монооксид), Углерод (Пигмент черный),

							Γ
							ı
							ı
ı							ı
	Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Сера диоксид, Углерода оксид (Углерод окись; углерод моноокись; угарный газ), Керосин (Керосин прямой перегонки; керосин дезодорированный).

ИЗА №6502. Строительная техника. Источниками выделений загрязняющих веществ являются двигатели машин в период движения по территории и во время работы в нагрузочном режиме и режиме холостого хода, в атмосферу поступают: Азота диоксид (Двуокись азота; пероксид азота), Азот (II) оксид (Азот монооксид), Углерод (Пигмент черный), Сера диоксид, Углерода оксид (Углерод окись; углерод моноокись; угарный газ), Керосин (Керосин прямой перегонки; керосин дезодорированный).

ИЗА №6503. Компрессор. Загрязняющие вещества: Азота диоксид (Двуокись азота; пероксид азота), Азот (II) оксид (Азот монооксид), Углерод (Пигмент черный), Сера диоксид, Углерода оксид (Углерод окись; углерод моноокись; угарный газ), Керосин (Керосин прямой перегонки; керосин дезодорированный).

ИЗА №6504. Виброплита. Загрязняющие вещества: Азота диоксид (Двуокись азота; пероксид азота), Азот (II) оксид (Азот монооксид), Углерод (Пигмент черный), Сера диоксид, Углерода оксид (Углерод окись; углерод моноокись; угарный газ), Керосин (Керосин прямой перегонки; керосин дезодорированный).

ИЗА №6505. Укладка асфальта. В атмосферу поступают: Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид), Алканы С12-19 (в пересчете на С).

ИЗА №6506. Сварка полиэтиленовых труб. Загрязняющие вещества: Углерода оксид (Углерод окись; углерод моноокись; угарный газ), Метановая кислота.

ИЗА №6507. Пескоструйная установка. Загрязняющие вещества: Взвешенные вещества; Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20.

ИЗА №6508. Металлообработка. Загрязняющие вещества: диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид); Пыль абразивная.

ИЗА №6509. Сварочные работы. При выполнении сварочных работ атмосферный воздух загрязняется сварочным аэрозолем, в составе которого в зависимости от вида сварки, марок электродов находятся вредные для здоровья загрязняющие вещества: диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид), Марганец и его соединения (в пересчете на марганец (IV) оксид), Азота диоксид (Двуокись азота; пероксид азота), Азот (II) оксид (Азот монооксид), Углерода оксид (Углерод окись; углерод моноокись; угарный газ), Гидрофторид (Водород фторид; фтороводород), Фториды неорганические плохо растворимые, Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20.

ИЗА №6510. Покрасочные работы. В атмосферу поступают: Диметилбензол (смесь о-, м-, п- изомеров) (Метилтолуол), Уайт-спирит, Взвешенные вещества.

Инв. № подл. Подп. и дата Взам. Инв. №

Изм. Кол.уч Лист №док

Подп.

Дата

ИЗА №6511. Пересыпка материалов. В атмосферу поступают: Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20.

Потребность в основных строительных машинах и механизмах и продолжительность работ определена на основании физических объемов работ, эксплуатационной производительности машин и механизмов, и принятых темпов проведения работ.

Результаты расчетов выбросов загрязняющих веществ в период проведения строительномонтажных работ приведены в приложении А.

Перечень и характеристики вредных веществ, выделяющихся в атмосферу в период строительства, представлены в таблице 2.7.

Параметры источников загрязняющих веществ при реконструкции приведены в таблице 2.8.

Таблица 2.7 - Перечень и характеристики вредных веществ, выделяющихся в атмосферу в период строительства

Вид ПДК

Значение ПДК

(ОБУВ)

Класс

опас-

04/2022-151-00000-OBOC-TY

Загрязняющее вещество

Лист №док

Подп.

Дата

Взам. Инв. №

Подп. и дата

Инв. № подл.

Изм.

Кол.уч

Суммарный выброс загрязняющих веществ

Лист

595

код	наименование		MΓ/M3	ности	г/с	т/год	т/период
1	2	3	4	5	6	7	8
0123	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо	ПДК м/р ПДК с/с ПДК с/г	 0,04000 	3	0,0068819	0,012731	0,019096
0143	Марганец и его соединения (в пересчете на марганец (IV) оксид)	ПДК м/р ПДК с/с ПДК с/г	0,01000 0,00100 0,00100	2	0,0002574	0,000185	0,000278
0301	Азота диоксид (Двуокись азота; пероксид азота)	ПДК м/р ПДК с/с ПДК с/г	0,20000 0,10000 0,04000	3	0,1813558	2,536403	3,80460:
0304	Азот (II) оксид (Азот монооксид)	ПДК м/р ПДК с/с ПДК с/г	0,40000 0,06000	3	0,0294684	0,412101	0,618152
0328	Углерод (Пигмент черный)	ПДК м/р ПДК с/с ПДК с/г	0,15000 0,05000 0,02500	3	0,0206070	0,468155	0,70223
0330	Сера диоксид	ПДК м/р ПДК с/с ПДК с/г	0,50000 0,05000 	3	0,0453256	0,296536	0,44480
0333	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	ПДК м/р ПДК с/с ПДК с/г	0,00800 0,00200	2	0,0001350	0,000026	0,00003
0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	ПДК м/р ПДК с/с ПДК с/г	5,00000 3,00000 3,00000	4	0,1898137	2,307483	3,461224
0342	Гидрофторид (Водород фторид; фтороводород)	ПДК м/р ПДК с/с ПДК с/г	0,02000 0,01400 0,00500	2	0,0002196	0,000158	0,00023
0344	Фториды неорганические плохо растворимые	ПДК м/р ПДК с/с ПДК с/г	0,20000 0,03000 	2	0,0002361	0,000170	0,00025

	Загрязняющее вещество	Вид ПДК	Значение ПДК (ОБУВ)	Класс опас-	Суммарный выброс загрязняющих веществ			
код	наименование		мг/м3	ности	г/с	т/год	т/период	
1	2	3	4	5	6	7	8	
0616	Диметилбензол (смесь о-, м-, п- изомеров) (Метилтолуол)	ПДК м/р ПДК с/с ПДК с/г	0,20000 0,10000	3	0,0036124	0,041250	0,061875	
0703	Бенз/а/пирен	ПДК м/р ПДК с/с ПДК с/г	1,00e-06 1,00e-06	1	0,0000001	0,000000	2,24e-08	
1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	ПДК м/р ПДК с/с ПДК с/г	0,05000 0,01000 0,00300	2	0,0009444	0,000133	0,000200	
1537	Метановая кислота	ПДК м/р ПДК с/с ПДК с/г	0,20000 0,05000 	2	0,0003060	0,000004	0,000006	
2732	Керосин (Керосин прямой перегонки; керосин	ОБУВ	1,20000		0,0532126	0,661008	0,991512	
2752	Уайт-спирит	ОБУВ	1,00000		0,0018365	0,012750	0,019125	
2754	Алканы С12-19 (в пересчете на С)	ПДК м/р ПДК с/с ПДК с/г	1,00000 	4	0,0279900	0,005374	0,008061	
2902	Взвешенные вещества	ПДК м/р ПДК с/с ПДК с/г	0,50000 0,15000 0,07500	3	0,0341708	0,029840	0,044760	
2908	Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20	ПДК м/р ПДК с/с ПДК с/г	0,30000 0,10000 	3	0,0244928	0,024091	0,036137	
2930	Пыль абразивная	ОБУВ	0,04000		0,0024000	0,006912	0,010368	
Всего в	веществ : 20				0,6232661	6,815313	10,222969	
в том ч	исле твердых : 8				0,0890461	0,542085	0,813128	
жидких	к/газообразных : 12				0,5342200	6,273227	9,409841	
	Смеси загрязняющих веществ, обла	адающих сум	мацией действия	н (комбин	ированным действи	ием):		
6035	(2) 333 1325 Сероводород, формал	ьдегид						
6043	(2) 330 333 Серы диоксид и серово	одород						
6053	(2) 342 344 Фтористый водород и п	плохораствор	имые соли фтора	a				
6204	(2) 301 330 Азота диоксид, серы ді	иоксид						
6205	(2) 330 342 Серы диоксид и фтори-	стый водород						

Таблица 2.8 - Параметры выбросов загрязняющих веществ при реконструкции

Наименование источника	Номер	Высота Диамет источник р устья –		Загр	язняющее вещество	Выбросы загрязняющих веществ		
выброса загрязняющих веществ	источник а выброса	а выброса (м)	трубы (м)	код	наименование	г/с	т/год	т/ период
Труба ПДЭС	5501	5,00	0,12	030	Азота диоксид	0,085333	0,01194	0,01792
				1	(Двуокись азота;	3	7	0
					пероксид азота)			
				030	Азот (II) оксид	0,013866	0,00194	0,00291
				4	(Азот монооксид)	7	1	2
				032	Углерод (Пигмент	0,003972	0,00053	0,00079
				8	черный)	2	3	9
				033	Сера диоксид	0,033333	0,00466	0,00700
				0		3	7	0
				033	Углерода оксид	0,086111	0,01213	0,01820

Изм. Кол.уч Лист №док Подп. Дата

Взам. Инв. №

Подп. и дата

04/2022-151-00000-OBOC-TY

Наименование источника	Номер	Высота	Диамет	Загрязняющее вещество		Выбросы загрязняющих веществ			
выброса загрязняющих веществ	источник а выброса	источник а выброса (м)	р устья трубы (м)	код	наименование	г/с	т/год	т/ период	
				7	(Углерод окись; углерод моноокись; угарный газ)	1	3	(
				070	Бенз/а/пирен	0,000000	0,00000	2,24e-08	
				132	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	0,000944	0,00013	0,00020	
				273	Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,023027 8	0,00320	0,00480	
Дорожная техника	6501	5,00	0,00	030	Азота диоксид (Двуокись азота; пероксид азота)	0,085925 8	2,48911 3	3,7336	
				030	Азот (II) оксид (Азот монооксид)	0,013961	0,40441 6	0,60662	
				032 8	Углерод (Пигмент черный)	0,016078 2	0,46527 1	0,6979	
				033	Сера диоксид	0,009797	0,28195	0,4229	
				033	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,076917	2,21700 6	3,3255	
				273 2	Керосин (Керосин прямой перегонки; керосин дезодорированный	0,021990 9	0,63003	0,9450	
Строительная техника	6502	5,00	0,00	030	Азота диоксид (Двуокись азота; пероксид азота)	0,007568	0,01963	0,0294	
				030	Азот (II) оксид (Азот монооксид)	0,001229	0,00319	0,0047	
				032	Углерод (Пигмент черный)	0,000400	0,00116	0,00174	
				033	Сера диоксид	0,001469	0,00440	0,0066	
				033 7	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,020444	0,05290	0,0793	
				273	Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,007338	0,02127 4	0,0319	
Компрессор	6503	5,00	0,00	030	Азота диоксид (Двуокись азота; пероксид азота)	0,001008 9	0,00767	0,0115	
				030 4	Азот (II) оксид (Азот монооксид)	0,000163 9	0,00124 7	0,0018	
				032 8	Углерод (Пигмент черный)	0,000078 3	0,00059 5	0,00089	
				033	Сера диоксид	0,000362	0,00275	0,0041	

Взам. Инв. №

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

Наименование источника	Номер	Высота	Диамет	Загрязняющее вещество		Выбросы загрязняющих веществ			
выброса загрязняющих веществ	источник а выброса	источник а выброса (м)	р устья трубы (м)	код	наименование	г/с	т/год	т/ период	
				0		5	6	4	
				033	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,001523	0,01158 5	0,01737	
				273	Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,000427	0,00325	0,00487	
Виброплита	6504	5,00	0,00	030	Азота диоксид (Двуокись азота; пероксид азота)	0,001008 9	0,00767 1	0,01150	
				030 4	Азот (II) оксид (Азот монооксид)	0,000163 9	0,00124 7	0,00187	
				032	Углерод (Пигмент черный)	0,000078	0,00059	0,00089	
				033	Сера диоксид	0,000362	0,00275 6	0,00413	
				033	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,001523	0,01158 5	0,01737	
				273	Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,000427	0,00325	0,00487	
Укладка асфальта	6505	2,00	0,00	033	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	0,000135	0,00002 6	0,00003	
				275 4	Алканы С12-19 (в пересчете на С)	0,027990	0,00537	0,00806	
Сварка полиэтиленовых труб	6506	2,00	0,00	033	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,000153	0,00000	0,00000	
				153 7	Метановая кислота	0,000306	0,00000 4	0,00000	
Пескоструйная установка	6507	2,00	0,00	290 2	Взвешенные вещества	0,032016 0	0,02049 0	0,03073	
				290 8	Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20	0,021344	0,01366	0,02049	
Металлообработк а	6508	2,00	0,00	012	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо	0,003600	0,01036	0,01555	
				293	Пыль абразивная	0,002400	0,00691	0,01036	
Сварочные работы	6509	5,00	0,00	012	диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо	0,003281	0,00236	0,00354	
				014	Марганец и его	0,000257	0,00018	0,00027	

Взам. Инв. №

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

Наименование источника	Номер	Высота источник	Диамет р устья	Загрязняющее вещество		рязняющее вещество Выбросы загрязня веществ		хишоя	
выброса загрязняющих веществ	источник а выброса трубы		код	наименование	г/с	т/год	т/ период		
				3	соединения (в пересчете на марганец (IV) оксид)	4	5	8	
				030	Азота диоксид (Двуокись азота; пероксид азота)	0,000510	0,00036 7	0,00055	
				030	Азот (II) оксид (Азот монооксид)	0,000082	0,00005 9	0,00008	
				033	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,003140	0,00226	0,00339	
				034	Гидрофторид (Водород фторид; фтороводород)	0,000219 6	0,00015 8	0,00023 7	
				034	Фториды неорганические плохо растворимые	0,000236	0,00017 0	0,00025	
				290 8	Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20	0,000236	0,00017	0,00025	
Покрасочные работы	6510	2,00	0,00	061 6	Диметилбензол (смесь о-, м-, п- изомеров) (Метилтолуол)	0,003612	0,04125 0	0,06187 5	
				275	Уайт-спирит	0,001836	0,01275	0,01912	
				290	Взвешенные	0,002154	0,00935	0,01402	
Пересыпка материалов	6511	2,00	0,00	2 290 8	вещества Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20	0,002912 7	0 0,01026 1	0,01539	

Расчет выбросов загрязняющих веществ (Приложение A) произведен согласно Перечню методик расчета выбросов вредных (загрязняющих) веществ в атмосферный воздух стационарными источниками (утв. Министерством природных ресурсов и экологии РФ распоряжение Минприроды от 26.12.2021 г. №38-Р).

С целью определения влияния загрязняющих веществ на состояние атмосферного воздуха выполнены расчеты рассеивания загрязняющих веществ в атмосфере и определены максимальные приземные концентрации для площадки.

Расчет выполнялся с помощью унифицированной программы расчета загрязнений атмосферы УПРЗА «Эколог» (версия 4.70), разработанной фирмой «Интеграл» (г. Санкт-Петербург) и согласованной ГГО им. Войкова (на программу получено заключение Росгидромета

						Γ
						ł
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв. №

Подп. и дата

Инв. № подл.

о соответствии выполняемых расчетов МРР-2017 (требование приказа Минприроды от 20.11.2019 № 779)).

Размер расчетного прямоугольника принят равным: ширина – 2600 м; шаги координатной сетки – 200 м по осям ОХ и ОҮ. Шаг расчетной сетки принят согласно п.3.3. «Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух» и не превышает размеры СЗЗ. Система координат – локальная для площадки.

Таблица 2.9 - Расчетные точки

V	Координаты (м)		December (c)	Тип точки	Комментарий	
Код	х	Y	Высота (м)	тип точки	комментарии	
9	-1095,40	88,20	2,00	на границе жилой зоны	Расчетная точка	
10	-842,00	-161,20	2,00	на границе жилой зоны	Расчетная точка	
11	-894,90	-417,80	2,00	на границе жилой зоны	Расчетная точка	
12	-1095,90	-717,50	2,00	на границе жилой зоны	Расчетная точка	

Результаты расчетов рассеивания приземных концентраций загрязняющих веществ приведены в приложении Б.

2.2.2 Воздействие проектируемых объектов на атмосферный воздух характеристика выбросов загрязняющих веществ при эксплуатации

Согласно Проекту санитарно-защитной зоны БОС г. Нефтекамск Республики Башкортостан, 2019 г.: На территории биологических очистных сооружений имеются 22 организованных и 11 неорганизованных источников выбросов, выделяющих в атмосферу 46 загрязняющих веществ и 16 групп веществ, обладающих эффектом суммации.

Согласно Решению об установлении санитарно-защитной зоны №49/СЗЗ от 13.05.2020 г. размер СЗЗ для объекта составляет 400 м во всех направлениях от контура.

Согласно заданию на проектирование, предусматривается реконструкция очистных сооружений отдельными этапами (пусковыми комплексами) без остановки действующих сооружений.

I этап – строительство и ввод в эксплуатацию нового комплекса биологических очистных сооружений.

II этап – реконструкция существующего комплекса БОС, объединение сооружений I-го и II-го этапов в единый технологический комплекс очистных сооружений.

Среднесуточная производительность биологических очистных сооружений – 41200 м3/сут. (І этап -19500 м3/сут., ІІ этап -21700 м3/сут.).

В период производства работ БОС будут действовать.

Перечень существующих зданий и сооружений:

- хлораторная;
- насосная:

ZHB.

Взам.

04/2022-151-00000-OBOC-TY

- АБК4
- Гараж;

Позиция на генплане

Взам. Инв. №

Подп. и дата

Инв. № подл.

Изм.

Кол.уч

Лист №док

Подп.

Дата

- Насосная РУ.

Перечень зданий и сооружений, подлежащий демонтажу (сносу) представлен в таблице 2.10.

Габариты 9,0x24,0 м

Лист

595

Таблица 2.10 – Перечень зданий и сооружений, подлежащий демонтажу (сносу)

Здание решеток мелкопрозорных (демонтаж)

Демонтируемое сооружение

		1 - 1 - 1 -
	фундамент – сваи железобетонные с сечением 300х300	300х300х4000 мм
	ростверки – монолитные железобетонные	1500х1800х500 мм
	под наружными стенами выполнены сборные	-
	железобетонные фундаментные балки высотой 450 мм	
	под внутренней стеной устроен монолитный железобетонный ленточный ростверк.	-
	колонны - сборные железобетонные	300х400 мм
	балки покрытия – сборные железобетонные таврового сечения пролетом 9,0 м и высотой 800 мм	9000х800 мм
	наружные стены – продольные – сборные керамзитобетонные панели толщиной 250 мм	-
	торцевые стены – кладка из керамического кирпича толщиной 380 мм	-
	цокольная часть наружных стен по периметру выполнена из керамического кирпича толщиной 380 мм	-
	внутренняя стена выполнена из керамического кирпича толщиной 380 мм	-
	плиты покрытия – сборные железобетонные ребристые шириной 1500 мм, толщиной 300 мм.	1500х300 мм
	кровля – малоуклонная, с покрытием наплавляемыми битумными материалами и	-
)	утеплением минераловатными плитами толщиной 150 мм Камера приемного исходного стока (демонтаж)	9,0х5,0х3,0 м
7		
	канал, соединяющий со зданием решеток	6,0х5,0х2,5 м
	фундамент – монолитный железобетонный, толщиной 500 мм	-
	стены камеры - монолитные железобетонные, толщиной 200 мм, снаружи стены утеплены пенополистирольными плитами	-
	стены канала - кладка из керамического кирпича толщиной 380 мм	-
	покрытие канала - сборные железобетонные многопустотные шириной 1200 мм, толщиной 220 мм	-
0	Здание накопления песка (бункерная) (демонтаж)	6,0х9,0 м
	стены здания из керамического кирпича толщиной 380 мм, марки M50	-
	фундамент – сборный ленточный, глубиной заложения 2,8 м	-
	перекрытие - монолитная железобетонная конструкция толщиной 200 мм.	-
	перекрытие имеет главные балки размером 250х450 мм пролетом 6,0 м и шагом 2,0 м,	
	а также второстепенные сечением 200х200 мм и пролетом 1,8 м	
	конструкция покрытия - из сборных железобетонных	350х1500х6000 мм

04/2022-151-00000-OBOC-TY

	ребристых плит покрытия с размерами 350х1500х6000 мм	
	усиление кирпичного простенка - из металлических двух пролётных рам, подведенной под конструкцию монолитного перекрытия. конструкция усиления - из стоек, которые выполнены из труб d108х4 и балки – из двутавра №20	-
.1	Монолитная плита (резервуар очищенной воды) (демонтаж)	26,0х16,0х0,5 м
12	Монолитная плита (вторичный отстойник) (демонтаж)	70,0х28,0х0,5 м
13	Щитовая (демонтаж)	9,76х3,45х3,5 м
	стены здания - силикатный кирпич толщиной 380 мм, марки M50	-
	фундамент – сборный ленточный, глубиной заложения 2,8 м	-
	конструкция покрытия - из сборных железобетонных ребристых плит покрытия с размерами 350х1500х3000 мм	350х1500х3000 мм.
	кровля - рубероид на битумной мастике	-
14	Насосная станция сырого осадка (демонтаж)	8,0x2,7x2,2(h) м.
	фундамент – монолитный железобетонный, толщиной 500 мм	-
	стены и покрытие – сэндвич-панели, толщиной 100 мм	-
	окна – деревянные переплеты, одинарное остекление.	-
15	Фундамент (под мехобезвоживание) (демонтаж)	11,0х8,0х500 мм
16	Фундамент (под здание) (демонтаж)	24,0х19,0 м
	фундаменты под колонны – 12 шт.	2,5x2,5x1,5(h) м
	фундаменты под колонны – 8 шт.	2,0х2,0х3,0(h) м
	фундаменты под сдвоенные колонны - 4 шт.	2,0х3,0х3,0(h) м
	железобетонные резервуары – 4 шт.	6,0x1,5x4,0(h) м
	пространство между фундаментами залито в железобетонную монолитную плиту толщиной 500 мм	24,0х19,0х0,5 м
	Демонтаж опор анкерных концевых – 2 шт.	КтБ10-21
	демонтаж провода ВЛ-6 кВ, тип провода АС-70	240 м

Основной процесс очистки воды происходит в самотечном режиме, что снижает эксплуатационные затраты.

Требования к организации технологического процесса очистки сточных вод:

- непрерывность очистки сточных вод;
- соответствие очищенных сточных вод ПДК;
- оптимальное расположение оборудования;
- выбор рационального технологического решения.

В проекте разработаны решения по очистке бытовых стоков на очистных сооружениях и сбросу очищенных сточных вод вреку Каму.

Проектируемый комплекс очистных сооружений обеспечивает прием бытовых стоков, подачу их на очистные сооружения, очистку стоков до нормативов ПДК для водоемов рыбохозяйственного назначенияНижнекамское водохранилище согласно приказа №212 от 17.10.2019г.

Необходимая степень очистки данных стоков: до норм сброса в водоем

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв. №

Подп. и дата

04/2022-151-00000-OBOC-TY

рыбохозяйственного назначения (ВРХН).

Усредненный состав загрязнений поступающих сточных вод представлен в таблице 2.11.

Таблица 2.11 – Усредненный состав загрязнений, поступающих в стоках

Наименование загрязняющего компонента	Концентрации, мг/л
1	2
Взвешенные вещества	254,033
БПК полн.	254,653
БПК5	178,079
ХПК	535,431
Общий азот	63,655
Аммоний-ион	67,839
Общий фосфор	9,049
Фосфаты (по Р)	5,301

К проектированию приняты следующие сооружения для очистки стоков:

- <u>Сливная станция</u> для приема стоков от передвижной техники и подачи их на очистку;
- <u>Камера гашения напора</u> для приема сточных вод, поступающих на очистныесооружения от главной канализационной насосной станции, гашенияскорости потока жидкости и сопряжения трубопроводов с открытымлотком;
- <u>Блок механической очистки (здание решеток)</u> установка комбинированной очистки от песка, жира и твердых отходовдля улавливания крупных органических и неорганических загрязнений;
- <u>Блок биологической очистки (денитрификатор и аэротенк-нитрификатор)</u> в качестве основной ступени биологической очистки;
- <u>Вторичные радиальные отстойники</u> для осветления сточных вод, прошедших биологическую очистку;
- <u>Блок доочистки (фильтры барабанные, фильтры дисковые) с УФ</u>
 обеззараживанием для механической доочистки от взвешенных веществ и обеззараживания сточных вод;
- **Биореактор** для биологической доочистки осветленных вод и исключения выноса активного ила на последующие сооружения.

В качестве сооружений по обработке осадка используютсястабилизатор активного ила, установка обезвоживания. Выбранные сооружения обоснованы составомисходных сточных вод и требуемым качеством очистки сточных вод.

Инв. № подл. Подп. и дата Взам. Инв. №

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Сливная станция предназначена для приема жидких фракций бытовых стоков, доставляемых ассенизационным транспортом, расположена в непосредственной близости от очистных сооружений.

Сливная станция является блочно-комплектным оборудованием полной заводской готовности, в соответствии с опросным листом. В состав станции входит:

- горизонтальный подземный резервуар, с установленным насосным оборудованием для подачи стока на очистные сооружения;
 - приемный узел, быстроразъёмное соединение;
 - система подачи и учёта воды на разбавление стока;
 - расходомер для учета объёма поступивших стоков;
 - блок грубой механической очистки (решетки);
 - контейнер для уловленного мусора;
 - система автоматического управления;
 - система вентиляции блока механической очистки.

Разбавление привозных стоков осуществляется технической водой через сеть ВЗН в пропорции 1:3.

Камера гашения напора

Городские бытовые сточные воды, в количестве 41200 м³/сут., поступают на очистные сооружения подвумнапорным стальным коллекторам Ø600 мм и одному напорному коллектору Ø100 мм ГОСТ 20295-85 вкамеру гашения напора (поз. 1). В камере гашения напора происходит гашение скорости потока жидкости,сопряжение трубопроводов с открытым лотком, переход на безнапорныйрежим.

В целях экономической целесообразности основные сооружения подвижению воды предусмотрены в самотечном режиме.

Блок механической очистки, здание решеток

Для задержания песка предусмотрена установка комбинированной очистки от песка, жира и твердых отходов.

Проектом предусмотрено пять установок комбинированных (далее по тексту установка) чистки стока. Производительность одной установки при разных режимах работы указано в таблице 2.12.

Таблица 2.12 – Производительность одной установки комбинированной

Режим работы	Производит	ельность одной	Примечание		
	уст	ановки			
Номинальный режим работы 1 и 2 очередь 41200 м³/сутки					

Изм.	Кол.уч	Лист	№док	Подп.	Дата				

ZHB.

Взам.

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

Взам. Инв. №	
Подп. и дата	
№ подл.	

Максимальный режим 4 установки в работе, м ³ /час	$2492,6 / 4 = 623,15 \text{ m}^3/\text{час}$	4 установки в работе, 1 в резерве					
Номинальный режим 4 установки в работе, м ³ /час	$1716,7 / 4 = 429,2 \text{ m}^3/\text{vac}$	4 установки в работе, 1 в резерве					
Минимальный режим 4 установки в работе, м ³ /час	331,66 / 4 = 82,9	4 установки в работе, 1 в резерве					
Номинальн	Номинальный режим работы 1 очередь 19500 м ³ /сутки						
Максимальный режим 2 установки в работе, м ³ /час	$1190,4 / 2 = 595,2 \text{ m}^3/\text{час}$	2 установки в работе, 1 в резерве					
Номинальный режим 2 установки в работе, м ³ /час	$812,5 / 2 = 406,25 \text{ m}^3/\text{vac}$	2 установки в работе, 1 в резерве					
Минимальный режим 2 установки в работе, м ³ /час	$152,4 / 2 = 76,2 \text{ m}^3/\text{час}$	2 установки в работе, 1 в резерве					

Как видно из таблицы: производительность одной установки комбинированной должна лежать в диапазоне от 76,2 м³/час до 623,15 м³/час в зависимости от режима работы очистных сооружений. В состав комбинированной установки входит две ступени очистки: первая – решетка прозором 10 мм, вторая – барабанная решетка прозором 3 мм.

Суточное количество обезвоженных отбросов с решетки блока механической очистки 1 очереди строительства составит 1,3 тонн или 1300 кг/сутки. Влажность отбросов 60%, плотность 0,75 т/м³. Суточное количество обезвоженных отбросов с решетки блока механической очистки 2 очереди строительства составит 1,44 тонн или 1440 кг/сутки. Влажность отбросов 60%, плотность 0,75 т/м³. При накоплении свыше 2 суток – отходы присыпаются обеззараживающим реагентом. Накопление отбросов свыше 5 суток запрещается.

Для первой очереди строительства объем песка, улавливаемый за сутки, составит:

$$V = N\pi p \cdot 0.02/1000 = 65975 \cdot 0.02/1000 = 1.32 \text{ m}^3$$

Масса песка:

$$M = 1.32 \cdot 1.5 = 2.0 \text{ T/cyt.}$$

Количество песка годовое определено в соответствии с пунктом ГЗ.3 СП 32.13330:

M год =
$$365 \cdot 0.7 \cdot 2.0 = 511.0$$
 т/год

$$V$$
 год = 365 · 0,7 · 1,32 = 337,3 м³/год

Для второй очереди строительства объем песка, улавливаемый за сутки, составит:

$$V = N\pi p \cdot 0.02/1000 = 73418 \cdot 0.02/1000 = 1.47 \text{ m}^3$$

Масса песка:

$$M = 1,47 \cdot 1,5 = 2,2 \text{ T/cyt.}$$

Блок биологической очистки

В качестве схемы очистки сточных вод принята схема с предвключенной денитрификацией UCT (University of Cape Town). В процессе UCT возвратный активный ил поступает в зону денитрификации, куда так же попадает иловая смесь из анаэробной зоны. Эта иловая смесь содержит как органические вещества, используемые для удаления азота нитратов,

Изм.	Кол.уч	Лист	№док	Подп.	Дата

так и активный ил, содержащий ФАО, уже накопившие внутриклеточные органические вещества, которые так же используются при денитрификации.

В анаэробную зону направляется рецикл иловой смеси после денитрификатора, содержащий минимум нитратов. Таким образом в данных процессах достигается высокая защищенность анаэробной зоны от воздействия нитратов (страница 43 Д.А. Данилович, А.Н. Эпов «Расчет и технологическое проектирование процессов и сооружений удаления азота и фосфора из городских сточных вод»).

Данная схема доказала свою эффективность и стабильность, при удалении фосфора из сточных вод, хорошее удаление азота.

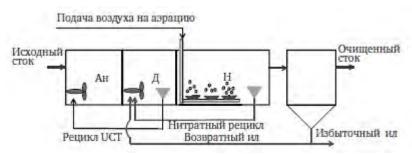


Рисунок 1 - схема с предвключенной денитрификацией UCT (University of Cape Town).

Согласно ИТС 10-2019 таблица 4.8 принята технология очистки с биологическим удалением азота и биолого-химическим удалением фосфора (БНДБХФ). Даная технология гарантированно решает задачу удаления азота и фосфора.

Дополнительно предусмотрена доочистки на фильтрах (Φ), что обеспечивает удаление взвешенных веществ до 3-5 мг/л, а также снижение БПК около 0,3-0,5 мл/л удаленной взвеси и тяжелых металлов на 15-30% за счет удаления вместе со взвесью.

Завершающей стадией является обеззараживание, где применена технология УФоблучения (УФ). Таким образом достигается полная эффективность обеззараживания по всем микробиологическим загрязнениям, которые необходимо удалить в данном процессе, а также отсутствие каких-либо побочных негативных последствий для окружающей среды.

Для сокращения объема осадка, образующегося в процессе очистки сточных вод предусмотрено механическое обезвоживание (MO), что позволяет быстро и эффективно уменьшить массу осадка, при это отсутствуют негативные воздействия на окружающую среду.

Принятая технология – БНДБХ Φ + Φ позволяет получить качество воды пригодное для отведения в водный объект категории «А».

Инв. № подл. Подп. и дата Взам. Инв. №

Изм.

Кол.уч

Лист №док

04/2022-151-00000-ОВОС-ТЧ Подп. Дата Данным проектом не предусматривается наличие первичного осветления (отстойника) ввиду дефицита органической составляющей сточных вод по отношению к общему азоту. А именно БПК5/Nобщ=178,08/63,655=2,79.

Объёмы зон биологической очистки представлены в таблице 2.13.

Таблица 2.13 – Объёмы зон биологической очистки

Наименование зоны биологии	Ед. изм	Объем
1.Аноксидная зона, общий объем	M ³	6214,3
Первая очередь	\mathbf{M}^3	2941,3
Первая линия	\mathbf{M}^3	1470,6
Вторая линия	\mathbf{M}^3	1470,6
Вторая очередь	\mathbf{M}^3	3273,1
Первая линия	\mathbf{M}^3	1636,5
Вторая линия	\mathbf{M}^3	1636,5
2.Анаэробная зона, общий объем	\mathbf{M}^3	2492,5
Первая очередь	\mathbf{M}^3	1190,5
Первая линия	\mathbf{M}^3	595,25
Вторая линия	\mathbf{M}^3	595,25
Вторая очередь	\mathbf{M}^3	1302,0
Первая линия	\mathbf{M}^3	651,0
Вторая линия	\mathbf{M}^3	651,0
3.Аэробная зона, общий объем	\mathbf{M}^3	26093,3
Первая очередь	\mathbf{M}^3	12350,0
Первая линия	\mathbf{M}^3	6175,0
Вторая линия	\mathbf{M}^3	6175,0
Вторая очередь	\mathbf{M}^3	13743,3
Первая линия	\mathbf{M}^3	6871,65
Вторая линия	\mathbf{M}^3	6871,65

Вторичные радиальные отстойники

Взам. Инв. №

Подп. и дата

Инв. № подл.

После аэротенков смесь сточной воды и активного ила самотеком потрубопроводу поступает в распределительную чашу вторичныхотстойников, откуда подается в центральную часть рабочего отстойника - распределитель. Сбор осветлённой воды в отстойнике осуществляется через водосливысборным кольцевым лотком, расположенным в отстойнике на некоторомрасстоянии от стены отстойника.

Из сборного лотка осветлённая вода поступает в существующуювыпускную камеру отстойника и далее отводится за пределы отстойников. На площадке очистных сооружений располагаются два вторичныхотстойника диаметром 33 м.

Принимается диаметр одного отстойника 33 метра, рабочую глубину 4 метра.

При этом запас по площади отстойника, согласно расчету, составит 24%.

							\blacksquare	
						04/2022-151-00000-OBOC-TY	Лист	
Изм.	Кол.уч	Лист	№док	Подп.	Дата	04/2022 101 00000 0000 1 1	595	
				-1.1	11-			

Фактическое значение гидравлической нагрузки на вторичные отстойники равно расчетному. Незначительное увеличение илового индекса со $150~{\rm cm}^3/{\rm r}$ до $180~{\rm cm}^3/{\rm r}$ не приведет к выносу активного ила из вторичного отстойника.

Биореактор доочистки

Биореактор доочистки является завершающей ступенью биологической очистки сточных вод, где происходит удаление органических загрязнений и доочистка азота аммонийного при помощи прилепленной биомассы, иммобилизованной на поверхности загрузки:

- средний расход обрабатываемых сточных вод: Q=41200 м³/сут.;
- концентрация растворенного кислорода: Со = 3 мг/л;
- максимальная скорость окисления: $\rho_{max} = 70 \text{ мг/(}\Gamma \cdot \text{час});$
- зольность активного ила: S=0,3;
- константа, характеризующая свойства органических загрязняющих веществ: Kl=65~мг $Б\Pi K_{n}/\pi;$
 - константа, характеризующая влияние кислорода: $Ko = 0.625 \text{ мгO}_2/\text{л}$;

 $БПК_{\Pi}$ поступающей в биореактор сточной воды принята 9 мгО₂/л.

Принятая доза ила в биореакторе с закрепленной биозагрузкой 8 г/л. (согласно статье «Очистка сточных вод в биореакторе с переменным количеством носителей иммобилизованного ила» В.Н. Кульков, Е.Ю. Солопанов)

Габариты (ДхШхВ)м = 18x12x4,5м. Рабочая глубина – 4 метра.

Габариты одной секции(ДхШхВ)м = 9х12х4,5м. Рабочая глубина – 4 метра.

В процессе прироста активного ила в биореакторах происходит параллельное изъятие азота и фосфора, идущих на построение клеточного вещества.

Сооружения доочистки

Доочистка сточных вод после блока биологической очистки осуществляется в два этапа:

1 этап – барабанные фильтры;

2 этап – дисковые фильтры.

Технологической схемой очистки предусмотрено 3 фильтра. В первой очереди строительства – 1 рабочий, 1 резервный, во второй очереди строительства – 1 рабочий, резервный общий.

Производительность фильтра первой очереди строительства:

 $19500 \text{ м}^3/\text{сут} / 24 \text{ часа} = 812,5 \text{ м}^3/\text{час} / 1 фильтр} = 812,5 \text{ м}^3/\text{час}$

Производительность фильтра второй очереди строительства:

 $41200 \text{ м}^3/\text{сут} / 24 \text{ часа} = 1716,7 \text{ м}^3/\text{час} / 2 фильтра = 858,35 \text{ м}^3/\text{час}$

Для унификации технологического оборудования барабанный фильтр должен работать в диапазоне производительности от 812,5 м³/час до 858,35 м³/час.

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв. №

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

Эффективность очистки по взвешенным вещества должна быть не менее 70%. Концентрация взвешенных веществ на входе в фильтр - $10 \, \mathrm{mr/n}$ концентрация на выходе - $7 \, \mathrm{mr/n}$.

Для доочистки сточных вод после блока барабанных фильтров предусмотрены дисковые фильтры.

Технологической схемой очистки предусмотрено 3 фильтра. В первой очереди строительства — 1 рабочий, 1 резервный, во второй очереди строительства — 1 рабочий, резервный общий.

Производительность фильтра первой очереди строительства:

 $19500 \text{ м}^3/\text{сут} / 24 \text{ часа} = 812,5 \text{ м}^3/\text{час} / 1 фильтр} = 812,5 \text{ м}^3/\text{час}$

Производительность второй очереди строительства:

 $41200 \text{ м}^3/\text{сут} / 24 \text{ часа} = 1716,7 \text{ м}^3/\text{час} / 1 фильтр = 1716,7 м}^3/\text{час}$

Для унификации технологического оборудования дисковый фильтр должен работать в диапазоне производительности от 812,5 м³/час до 1716,7 м³/час.

Эффективность очистки по взвешенным вещества должна быть не менее 72%. Концентрация взвешенных веществ на входе в фильтр - 7 мг/л концентрация на выходе –5,0 мг/л.

Для обеззараживания очищенных сточных вод принято использование ультрафиолетовых ламп.

Блок обезвоживания осадка

Блок обезвоживания осадка состоит из емкости илового стабилизатора и установок механического обезвоживания осадка.

Согласно пункту 4.1 «Справочного пособия к СНиП 2.04.03-85» продолжительность гравитационного уплотнения не должна превышать 6 часов.

Объем емкости стабилизатор первой очереди строительства составит:

908,76 м³/сутки / 24 часа \cdot 6 часов = 227,2 м³

Количество секций резервуара: 1 шт. Габаритные размеры одного резервуара (ДхШхВ)м: 12х6х4м. Рабочий уровень в резервуаре: 3,6 м от дна.

Объем емкости стабилизатора второй очереди строительства составит:

 $1011,289 \text{ м}^3/\text{сутки} / 24 \text{ часа} \cdot 6 \text{ часов} = 252,8 \text{ м}^3$

Количество секций резервуара: 1 шт.

Габаритные размеры одного резервуара (ДхШхВ)м: 12х6х4м. Рабочий уровень в резервуаре: 3,6 м от дна.

Первая очередь строительства

Часовой расход осадка подаваемого в блок обезвоживания:

 $908,76 / 24 = 37,9 \text{ m}^3/\text{час}$

Взам. Инв. №

Подп. и дата

Инв. № подл.

Объем обезвоженного до 82% осадка составит:

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

$$Voбeзв = Voc \frac{100\% - 99,4\%}{100\% - 82\%} = 37,9 \cdot \frac{100 - 99,4}{100 - 82} = 1,26 \,\text{м}^3/\text{час}.$$

Суточный объем обезвоженного до 82% осадка составит:

$$V_{\text{обезв.ос}} = 1,26 \text{ м}^3/\text{час} \cdot 24 = 30,3 \text{ м}^3/\text{сутки}$$

Объем дренажной воды, образующейся от обезвоживания, составит:

$$37.9 - 1.26 = 36.6 \text{ m}^3/\text{yac}$$

$$36,6 \text{ м}^3/\text{час} \cdot 24 \text{ ч} = 878,5 \text{ м}^3/\text{сутки}.$$

Вторая очередь строительства

Часовой расход осадка подаваемого в блок обезвоживания:

$$1011,3 / 24 = 42,13 \text{ m}^3/\text{yac}$$

Объем обезвоженного до 82% осадка составит:

$$V$$
обезв= V ос $\frac{100\%-99,4\%}{100\%-82\%}$ =42,13 $\cdot \frac{100-99,4}{100-82}$ =1,4 M^3 /час.

Суточный объем обезвоженного до 82% осадка составит:

$$V_{\text{обезв.ос}} = 1,4 \text{ м}^3/\text{час} \cdot 24 = 33,7 \text{ м}^3/\text{сутки}$$

Объем дренажной воды, образующейся от обезвоживания, составит:

$$42,13 - 1.4 = 40.73 \text{ m}^3/\text{yac}$$

$$40,73 \text{ м}^3/\text{час} \cdot 24 \text{ ч} = 977,6 \text{ м}^3/\text{сутки}.$$

Технологической схемой предусмотрен блок обезвоживания осадка, состоящий из четырех обезвоживателей: для первой очереди строительства- 2 рабочих, 1 резервный, для второй очереди строительства - 1 рабочий, 1 резервный общий. Таким образом при запуске первой и второй очереди предусмотрено 3 рабочих обезвоживателя, 1 резервный.

Для унификации оборудования каждый обезвоживатель должен работать в диапазоне производительности от $18.9 \text{ m}^3/\text{час}$ до $26.7 \text{ m}^3/\text{час}$.

Проектируемые ИЗА:

ИЗА №0017. Дефлектор. Насосная, дозирование коагулянта. Загрязняющие вещества: Алюминий, растворимые соли (нитрат, сульфат, хлорид, алюминиевые квасцы - аммониевые, калиевые) /в пересчете на алюминий/, Алканы С12-19 (в пересчете на С).

ИЗА №0023. Вент труба (блок механической очистки) проект. Загрязняющие вещества: Азота диоксид (Двуокись азота; пероксид азота), Аммиак (Азота гидрид), Азот (II) оксид (Азот монооксид), Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид), Метан, Смесь предельных углеводородов С6Н14-С10Н22, Гидроксибензол (фенол), Формальдегид (Муравьиный альдегид, оксометан, метиленоксид), Этантиол.

ИЗА №0024. Вент.труба (блок обезвоживания осадка). Загрязняющие вещества: Азота диоксид (Двуокись азота; пероксид азота), Аммиак (Азота гидрид), Азот (II) оксид (Азот

						Γ
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв. №

Подп. и дата

монооксид), Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид), Метан, Смесь предельных углеводородов С6Н14-С10Н22, Гидроксибензол (фенол), Формальдегид (Муравьиный альдегид, оксометан, метиленоксид), Этантиол, Полиакриламид катионный АК-617.

ИЗА №0025. Вент.труба (блок доочистки). Загрязняющие вещества: Азота диоксид (Двуокись азота; пероксид азота), Аммиак (Азота гидрид), Азот (II) оксид (Азот монооксид), Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид), Метан, Смесь предельных углеводородов С6Н14-С10Н22, Гидроксибензол (фенол), Формальдегид (Муравьиный альдегид, оксометан, метиленоксид), Этантиол.

ИЗА №0026. Вент.труба (насосная дренажа). Загрязняющие вещества: Азота диоксид (Двуокись азота; пероксид азота), Аммиак (Азота гидрид), Азот (II) оксид (Азот монооксид), Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид), Метан, Смесь предельных углеводородов С6Н14-С10Н22, Гидроксибензол (фенол), Формальдегид (Муравьиный альдегид, оксометан, метиленоксид), Этантиол.

ИЗА №6011. Иловые площадки. Загрязняющие вещества: Азота диоксид (Двуокись азота; пероксид азота), Аммиак (Азота гидрид), Азот (II) оксид (Азот монооксид), Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид), Метан, Смесь предельных углеводородов С6Н14-С10Н22, Гидроксибензол (фенол), Формальдегид (Муравьиный альдегид, оксометан, метиленоксид), Этантиол.

ИЗА №6012. Сливная станция. Загрязняющие вещества: Азота диоксид (Двуокись азота; пероксид азота), Аммиак (Азота гидрид), Азот (II) оксид (Азот монооксид), Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид), Метан, Смесь предельных углеводородов С6Н14-С10Н22, Гидроксибензол (фенол), Формальдегид (Муравьиный альдегид, оксометан, метиленоксид), Этантиол.

ИЗА №6013. Иловый стабилизатор. Загрязняющие вещества: Азота диоксид (Двуокись азота; пероксид азота), Аммиак (Азота гидрид), Азот (II) оксид (Азот монооксид), Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид), Метан, Смесь предельных углеводородов С6Н14-С10Н22, Гидроксибензол (фенол), Формальдегид (Муравьиный альдегид, оксометан, метиленоксид), Этантиол.

ИЗА №6014. Блок биологической очистки. Загрязняющие вещества: Азота диоксид (Двуокись азота; пероксид азота), Аммиак (Азота гидрид), Азот (II) оксид (Азот монооксид), Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид), Метан, Смесь предельных углеводородов С6Н14-С10Н22, Гидроксибензол (фенол), Формальдегид (Муравьиный альдегид, оксометан, метиленоксид), Этантиол.

Инв. № подл. Подп. и дата Взам. Инв. №

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

ИЗА №6016. Вторичный радиальный отстойник. Загрязняющие вещества: Азота диоксид (Двуокись азота; пероксид азота), Аммиак (Азота гидрид), Азот (II) оксид (Азот монооксид), Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид), Метан, Смесь предельных углеводородов С6Н14-С10Н22, Гидроксибензол (фенол), Формальдегид (Муравьиный альдегид, оксометан, метиленоксид), Этантиол.

ИЗА №6017. Биореактор. Загрязняющие вещества: Азота диоксид (Двуокись азота; пероксид азота), Аммиак (Азота гидрид), Азот (II) оксид (Азот монооксид), Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид), Метан, Смесь предельных углеводородов С6Н14-С10Н22, Гидроксибензол (фенол), Формальдегид (Муравьиный альдегид, оксометан, метиленоксид), Этантиол.

ИЗА №6018. Емкость сбора дренажа. Загрязняющие вещества: Азота диоксид (Двуокись азота; пероксид азота), Аммиак (Азота гидрид), Азот (II) оксид (Азот монооксид), Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид), Метан, Смесь предельных углеводородов С6Н14-С10Н22, Гидроксибензол (фенол), Формальдегид (Муравьиный альдегид, оксометан, метиленоксид), Этантиол.

ИЗА №6019. Камера отбора ила. Загрязняющие вещества: Азота диоксид (Двуокись азота; пероксид азота), Аммиак (Азота гидрид), Азот (II) оксид (Азот монооксид), Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид), Метан, Смесь предельных углеводородов С6Н14-С10Н22, Гидроксибензол (фенол), Формальдегид (Муравьиный альдегид, оксометан, метиленоксид), Этантиол.

ИЗА №6020. Камера отбора ила. Загрязняющие вещества: Азота диоксид (Двуокись азота; пероксид азота), Аммиак (Азота гидрид), Азот (II) оксид (Азот монооксид), Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид), Метан, Смесь предельных углеводородов С6Н14-С10Н22, Гидроксибензол (фенол), Формальдегид (Муравьиный альдегид, оксометан, метиленоксид), Этантиол.

ИЗА №6021. Резервуар избыточного активного ила. Загрязняющие вещества: Азота диоксид (Двуокись азота; пероксид азота), Аммиак (Азота гидрид), Азот (II) оксид (Азот монооксид), Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид), Метан, Смесь предельных углеводородов С6Н14-С10Н22, Гидроксибензол (фенол), Формальдегид (Муравьиный альдегид, оксометан, метиленоксид), Этантиол.

Инв. № подл. Подп. и дата

Взам. Инв. №

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

ИЗА №6022. Резервуар избыточного активного ила. Загрязняющие вещества: Азота диоксид (Двуокись азота; пероксид азота), Аммиак (Азота гидрид), Азот (II) оксид (Азот монооксид), Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид), Метан, Смесь предельных углеводородов С6Н14-С10Н22, Гидроксибензол (фенол), Формальдегид (Муравьиный альдегид, оксометан, метиленоксид), Этантиол.

Описание и параметры ИЗА с учетом существующего положения представлены в таблице 2.14.

Высота Диаметр на выходе из источника выброса

Параметры газовоздушной смеси

Выбросы

загрязняющих

Лист

595

Загрязняющее вещество

Таблица 2.14 – Параметры ИЗА

Наименование

Взам. Инв. №

Подп. и дата

Инв. № подл.

Изм.

Кол.уч

Лист №док

Подп.

Дата

источника	Номер	источника	диаметр	на выход	е из источі	ника выороса		•	веще	еств
выброса загрязняющих веществ	источника выброса	выброса (м)	устья трубы (м)	скорость (м/с)	Объем на 1 трубу (м3/c)	Температур а (гр.С)	код	наименование	г/с	т/год
Дымовая труба	0001	14,69	0,33	2,80	0,239484	110,0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0027974	0,033941
							0304	Азот (II) оксид (Азот монооксид)	0,0004546	0,005515
							0330	Сера диоксид	0,0000056	0,000068
							0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,0094944	0,115170
							0703	Бенз/а/пирен	1,81e-10	1,28e-09
Дефлектор	0002	5,90	0,10	1,00	0,007854	20,0	0410	Метан	0,0067398	0,212547
							1716	Одорант СПМ	1,00e-08	0,000003
Продувочная свеча	0003	6,80	0,03	4,50	0,003181	20,0	0410	Метан	0,0000466	5,95e-08
							1716	Одорант СПМ	1,17e-10	1,40e-13
Дефлектор	0004	5,90	0,05	2,40	0,004712	20,0	0101	диАлюминий триоксид (в пересчете на алюминий)	0,0041667	0,000600
							0123	диЖелезо триоксид (железа оксид) (в пересчете на железо)	0,0273611	0,016458
							0143	Марганец и его соединения (в пересчете на марганец	0,0004167	0,000248
							0301	(IV) оксид) Азота диоксид (Двуокись азота; пероксид азота)	0,0194036	0,017648
							0304	Азот (II) оксид (Азот монооксид)	0,0031530	0,002868
							0328	Углерод (Пигмент черный)	0,0007409	0,000974
							0330	Сера диоксид	0,0010179	0,001338
							0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,0458018	0,047190
							0616	Диметилбензол (смесь о-, м-, п- изомеров) (Метилтолуол)		
<u> </u>							0621	Метилбензол (Фенилметан)	0,0115741	0,100000
							1042	,	0,0034722	0,036754
							1061	Этанол (Этиловый спирт; метилкарбинол)	0,0023148	0,020000

04/2022-151-00000-OBOC-TY

Наименование источника	Номер	Высота	Диаметр			цушной смеси ника выброса	Заг	рязняющее вещество	Выбр загрязна веще	яющих
выброса загрязняющих веществ	источника выброса	источника выброса (м)	устья трубы (м)	скорость (м/с)	Объем на 1 трубу (м3/c)	Температур а (гр.С)	код	наименование	г/с	т/год
					()		1119	Этиловый эфир этиленгликоля	0,0018519	0,0164
							1210	Бутилацетат (Бутиловый эфир уксусной кислоты)	0,0023148	0,02000
							1401	Пропан-2-он (Диметилкетон; диметилформальдеги д)	0,0016204	0,01400
							2732	Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,0030533	0,0040
							2750	Сольвент нафта	0,0086787	0,0437
							2752	Уайт-спирит	0,0231481	0,2001
							2908	Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20	0,0023333	0,0001
Местный отсос	0005	5,00	0,20	3,20	0,100531	20,0	0123	диЖелезо триоксид (железа оксид) (в пересчете на железо)	0,0134130	0,0032
							0143	Марганец и его соединения (в пересчете на марганец (IV) оксид)	0,0015980	0,0003
							0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0015300	0,0003
							0304	Азот (II) оксид (Азот монооксид)	0,0002486	0,0000
							0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,0094208	0,0022
							0342	Гидрофторид (Водород фторид; фтороводород)	0,0009421	0,0002
							0344	Фториды неорганические плохо растворимые	0,0005667	0,0001
							2908	Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20	0,0005667	0,0001
Дефлектор	0006	5,90	0,25	·	0,073631		0123	диЖелезо триоксид (железа оксид) (в пересчете на железо)	0,0031900	
Местный отсос	0007	1,00	0,10	3,00	0,023562	20,0	0123	диЖелезо триоксид (железа оксид) (в пересчете на железо)	0,0072000	0,0186
					0.45-		2930	Пыль абразивная	0,0048000	0,0124
Дымовая труба	0008	14,69	0,53	2,20	0,485360	110,0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0036617	0,0528
							0304	Азот (II) оксид (Азот монооксид)	0,0005950	0,0085
							0330	Сера диоксид	0,0000072	0,0001
							0337	Углерода оксид (Углерод окись; углерод моноокись; угарны газ)	0,0122544	0,1766
							0703	Бенз/а/пирен	2,98e-10	1,16e-
Дефлектор	0009	6,60	0,10	1,00	0,007854	20,0		Метан	0,0067398	0,2125
Пофиотелов	0010	7.50	0.02	4.50	0.002101	20.0	1716	Одорант СПМ	1,00e-08	0,0000
Дефлектор	0010	7,50	0,03	4,50	0,003181	20,0	0410	Метан	0,0000466	5,95e-

Подп. и дата Инв. № подл.

Взам. Инв. №

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

Наименование	Haven	Высота	Диаметр	Параметры газовоздушной смеси на выходе из источника выброса				рязняющее вещество	Выбросы загрязняющих веществ	
источника выброса загрязняющих веществ	Номер источника выброса	источника выброса (м)	устья трубы (м)	скорость (м/с)	Объем на 1 трубу (м3/c)	Температур а (гр.С)	код	наименование	г/с	т/год
					(M3/C)		1716	Одорант СПМ	1,17e-10	1,40e-1
Дефлектор	0011	3,00	0,10	1,00	0,007854	20,0	0410	Метан	0,0067398	0,21254
							1716	Одорант СПМ	1,00e-08	0,00000
Дефлектор	0012	4,00	0,05	4,50	0,008836	20,0	0410	Метан	0,0024820	0,00000
							1716	Одорант СПМ	6,20e-09	7,45e-1
Дефлектор	0013	4,00	0,03	4,50	0,003181	20,0	0410	Метан	0,0000466	5,95e-0
							1716	Одорант СПМ	1,17e-10	1,40e-1
Дымовая труба	0014	9,00	0,22	2,50	0,095033	110,0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0016413	0,01767
							0304	Азот (II) оксид (Азот монооксид)	0,0002667	0,00287
							0330	Сера диоксид	0,0000033	0,00003
							0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,0057040	0,06142
							0703	Бенз/а/пирен	2,35e-11	2,52e-1
Дефлектор	0015	7,00	0,10	1,00	0,007854	20,0	0410	Метан	0,0067398	0,21254
							1716	Одорант СПМ	1,00e-08	0,00000
Продувочная свеча	0016	8,00	0,03	4,50	0,003181	20,0	0410	Метан	0,0000466	5,95e-0
ebe w							1716	Одорант СПМ	1,17e-10	1,40e-1
Дефлектор	0017	7,00	0,50	2,80	0,549779	20,0	0172	Алюминий,	0,0000513	0,00161
							2754	растворимые соли Алканы C12-19 (в пересчете на C)	0,0004500	0,21600
Дефлектор	0018	7,00	0,60	1,20	0,339292	20,0	2754	Алканы С12-19 (в пересчете на С)	0,0004500	0,50000
Вытяжная труба	0019	2,00	0,17	3,30	0,074903	20,0	0302	Азотная кислота (по молекуле HNO3)	1,97e-10	9,11e-1
							0303	Аммиак (Азота гидрид)	0,0000007	0,00001
							0316	Гидрохлорид (по молекуле НС1) (Водород хлорид)	0,0000040	0,00000
							0403	Гексан (н-Гексан; дипропил; Нехапе)	0,0002687	0,00000
							0898	Трихлорметан	0,0009556	
							0906	Тетрахлорметан	0,0012204	
							1061	Этанол (Этиловый спирт; метилкарбинол)	0,0000730	0,00000
							1513	Аскорбиновая кислота	1,97e-21	4,00e-2
							1555	Этановая кислота (Метанкарбоновая кислота)	0,0000196	6,77e-0
							1580	Лимонная кислота	1,64e-19	4,59e-2
							3337	2-Гидроксибензойная кислота (орто- Гидроксибензойная кислота)	6,28e-12	8,01e-1
Вентиляционная труба	0020	7,00	0,25	3,40	0,166897	20,0	0150	Натрий гидроксид (Натр едкий)	0,0000038	0,00000
-F) va							0155	диНатрий карбонат (Натрий углекисл.; натриев.соль угольной к-ты)	0,0000112	0,00002

Изм. Кол.уч Лист №док

Подп.

Дата

Взам. Инв. №

04/2022-151-00000-OBOC-TY

Наименование источника	Номер	Высота	Диаметр	Параметры газовоздушной смеси на выходе из источника выброса				рязняющее вещество	Выбросы загрязняющих веществ	
выброса загрязняющих веществ	источника выброса	источника выброса (м)	устья трубы (м)	скорость (м/с)	Объем на 1 трубу (м3/c)	Температур а (гр.С)	код	наименование	г/с	т/год
							0203	Хром (в пересчете на хрома (VI) оксид)	3aгрязі вен г/с 0,0000056 0,00000334 0,00008880 0,0000028 0,0000028 0,0001756 0,0000168 0,0000053 0,0000084 0,0000053 0,0000084 0,0000053 0,0000063 0,0000063 0,0000063 0,0000063 0,0000063 0,0000063	0,00001
							0302	Азотная кислота (по молекуле HNO3)	0,0000334	0,00005
							0303	Аммиак (Азота гидрид)	0,0008880	0,00156
							0316	Гидрохлорид (по молекуле НС1)	0,0000722	0,00012
							0322	(Водород хлорид) Серная кислота (по молекуле H2SO4)	0,0000028	0,00000
							0898	Трихлорметан	0,0033340	0,00480
							0906	Тетрахлорметан	0,0010280	0,00180
							1061	Этанол (Этиловый	0,0003520	0,00061
								спирт; метилкарбинол)	ŕ	
							1555	Этановая кислота (Метанкарбоновая кислота)	0,0001756	0,00030
Вентиляционная труба	0021	7,00	0,25	3,40	0,166897	20,0	0150	Натрий гидроксид (Натр едкий)	0,0000057	0,0000
							0155	диНатрий карбонат (Натрий углекисл.; натриев.соль угольной к-ты)	0,0000168	0,0000
							0203	Хром (в пересчете на хрома (VI) оксид)	0,0000084	0,0000
							0302	Азотная кислота (по молекуле HNO3)	0,0000501	0,0000
							0303	Аммиак (Азота гидрид)	0,0013320	0,0023
							0316	Гидрохлорид (по молекуле HC1) (Водород хлорид)	0,0001083	0,0001
							0322	Серная кислота (по молекуле H2SO4)	0,0000042	0,0000
							0898	Трихлорметан	0,0050010	0,00720
							0906 1061	Тетрахлорметан Этанол (Этиловый	0,0015420	0,0027
							1001	спирт; метилкарбинол)	0,0003280	0,0009.
							1555	Этановая кислота (Метанкарбоновая кислота)	0,0002634	0,0004
Вентиляционная труба	0022	7,00	0,25	3,40	0,166897	20,0	0150	Натрий гидроксид (Натр едкий)	0,0000057	
							0155	диНатрий карбонат (Натрий углекисл.; натриев.соль угольной к-ты)	0,0000168	0,0000
							0203	Хром (в пересчете на хрома (VI) оксид)	0,0000084	0,0000
							0302	Азотная кислота (по молекуле HNO3)	0,0000501	0,0000
							0303	Аммиак (Азота гидрид)	0,0013320	
							0316	Гидрохлорид (по молекуле НС1) (Водород хлорид)	0,0001083	0,0001
							0322	Серная кислота (по	0,0000042	0,0000
							0898	молекуле H2SO4) Трихлорметан	0,0050010	0,00720

Изм. Кол.уч Лист №док

Подп.

Дата

Взам. Инв. №

04/2022-151-00000-OBOC-TY

Наименование источника	Номер	Высота	Диаметр	Параметры газовоздушной смеси на выходе из источника выброса				рязняющее вещество	Выбросы загрязняющих веществ	
выброса загрязняющих веществ	источника выброса	источника выброса (м)	устья трубы (м)	скорость (м/с)	Объем на 1 трубу (м3/c)	Температур а (гр.С)	код	наименование	г/с	т/год
							0906	Тетрахлорметан	0,0015420	0,00270
							1061	Этанол (Этиловый спирт; метилкарбинол)	0,0005280	0,00092
							1555	Этановая кислота (Метанкарбоновая кислота)	0,0002634	0,00046
Вент.труба (блок механической очистки) проект.	0023	2,00	0,60	22,88	6,468000	20,0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0000244	0,00044
							0303	Аммиак (Азота гидрид)	0,0003119	0,0057
							0304	Азот (II) оксид (Азот монооксид)	0,0000990	0,0018
							0333	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	0,0000448	0,00082
							0410	Метан	0,0040005	0,0733
							0416	Смесь предельных углеводородов C6H14-C10H22	0,0019935	0,0365
							1071	Гидроксибензол (фенол)	0,0000231	0,0004
							1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	0,0000393	0,0007
							1728	Этантиол	0,0000019	0,0000
Вент.труба (блок обезвоживания осадка) проект.	0024	2,00	0,50	19,38	3,805000	20,0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0000035	0,0000
							0303	Аммиак (Азота гидрид)	0,0000214	0,0003
							0304	Азот (II) оксид (Азот монооксид)	0,0000060	0,0001
							0333	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	0,0000419	0,0007
							0410	Метан	0,0030094	0,0544
							0416	Смесь предельных углеводородов C6H14-C10H22	0,0001342	0,0024
							1071	Гидроксибензол (фенол)	0,0000022	0,0000
							1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	0,0000031	0,0000
							1728	Этантиол	0,0000002	0,0000
							2984	Полиакриламид катионный АК-617	0,0000171	0,00054
Вент.труба (блок доочистки) проект.	0025	2,00	0,50	21,34	4,190000	20,0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0000140	0,0002
							0303	Аммиак (Азота гидрид)	0,0000946	0,0017
							0304	Азот (II) оксид (Азот монооксид)	0,0000451	0,0008
							0333	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	0,0000210	0,0003

Изм. Кол.уч Лист №док

Подп.

Дата

Взам. Инв. №

04/2022

l

Наименование источника	Номер	Высота	Диаметр			цушной смеси ника выброса	Заг	рязняющее вещество	Выбр загрязн веще	яющих
выброса загрязняющих веществ	источника выброса	источника выброса (м)	устья трубы (м)	скорость (м/с)	Объем на 1 трубу (м3/c)	Температур а (гр.С)	код	наименование	г/с	т/год
							0410	Метан	0,0012698	0,02315
							0416	Смесь предельных углеводородов C6H14-C10H22	0,0005206	0,00949
							1071	Гидроксибензол (фенол)	0,0000161	0,00029
							1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	0,0000235	0,00042
							1728	Этантиол	0,0000008	0,00001
Вент.труба (насосная дренажа) проект.	0026	2,00	0,40	12,52	1,573000	20,0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0000358	0,00065
дренажаў проект.							0303	Аммиак (Азота	0,0002185	0,00399
							0304	гидрид) Азот (II) оксид (Азот монооксид)	0,0000612	0,00111
							0333	монооксид) Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	0,0004283	0,00782
							0410	Метан	0,0307646	-
							0416	Смесь предельных углеводородов C6H14-C10H22	0,0013722	0,0250
							1071	Гидроксибензол (фенол)	0,0000227	0,0004
							1325	Формальдегид (Муравьиный альдегид, оксометан,	0,0000315	0,0005
							1728	метиленоксид) Этантиол	0,0000016	0,00002
Неорганизованны й	6001	2,00	0,00	0,00	0,000000	0,0	0410	Метан	0,0016910	0,05332
н							1716	Одорант СПМ	2,60e-09	8,00e-0
Неорганизованны й	6002	2,00	0,00	0,00	0,000000	0,0	0410	Метан	0,0016910	0,05332
н							1716	Одорант СПМ	2,60e-09	8,00e-
Неорганизованны й	6003	2,00	0,00	0,00	0,000000	0,0	0410	Метан	0,0016910	0,05332
							1716	Одорант СПМ	2,60e-09	8,00e-0
Неорганизованны й	6004	2,00	0,00	0,00	0,000000	0,0	0410	Метан	0,0016910	0,05332
							1716	Одорант СПМ	2,60e-09	8,00e-0
Иловые площадки	6011	2,00	0,00	0,00	0,000000	0,0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0008043	0,01512
							0303	Аммиак (Азота гидрид)	0,0517079	0,9722
							0304	Азот (II) оксид (Азот монооксид)	0,0143633	0,2700
							0333	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	0,0041654	0,07832
							0410	Метан	0,2298129	4,32119
							0416	Смесь предельных углеводородов C6H14-C10H22	0,0718165	1,3503
							1071	Гидроксибензол (фенол)	0,0053144	
							1325	Формальдегид	0,0035908	0,0675

Изм. Кол.уч Лист №док

Подп.

Дата

Взам. Инв. №

04/2022-151-00000-OBOC-TY

Наименование источника	Номер	Высота	Диаметр	Параметры газовоздушной смеси на выходе из источника выброса				рязняющее вещество	Выбросы загрязняющих веществ	
выброса загрязняющих веществ	источника выброса	источника выброса (м)	устья трубы (м)	скорость (м/с)	Объем на 1 трубу (м3/c)	Температур а (гр.С)	код	наименование	г/с	т/год
								(Муравьиный альдегид, оксометан, метиленоксид)		
							1728	Этантиол	0,0001867	0,0035
Сливная станция проект.	6012	2,00	0,00	0,00	0,000000	0,0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0000053	0,0000
							0303	Аммиак (Азота гидрид) Азот (II) оксид (Азот	0,0000321	
								монооксид)	·	
							0333	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	0,0000629	0,0011
							0410	Метан	0,0045162	0,0817
							0416	Смесь предельных углеводородов	0,0002014	0,0036
							1071	С6Н14-С10Н22 Гидроксибензол (фенол)	0,0000033	0,0000
							1325	Формальдегид (Муравьиный альдегид, оксометан,	0,0000046	0,0000
							1728	метиленоксид) Этантиол	0,0000002	0,0000
II×	(012	2.00	0.00	0.00	0.000000	0.0				
Иловый стабилизатор проект.	6013	2,00	0,00	0,00	0,000000	0,0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0000195	
							0303	Аммиак (Азота гидрид) Азот (II) оксид (Азот	0,0001198	
							0304	монооксид)	0,0000932	0,0017
							0333	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	0,0000337	0,0006
							0410		0,0015973	0,0291
							0416	Смесь предельных углеводородов C6H14-C10H22	0,0006212	0,0113
							1071	Гидроксибензол (фенол)	0,0000328	
							1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	0,0000444	0,0008
							1728	Этантиол	0,0000013	0,0000
Блок биологической	6014	2,00	0,00	0,00	0,000000	0,0	0301	Азота диоксид (Двуокись азота;	0,0000607	0,0011
очистки проект.							0303	пероксид азота) Аммиак (Азота гидрид)	0,0014417	0,0266
							0304	Азот (II) оксид (Азот	0,0010623	0,0196
							0333	монооксид) Дигидросульфид	0,0004856	0,0089
								(Водород сернистый, дигидросульфид, гидросульфид)		
							0410	Метан	0,0390006	0,7207
							0416	Смесь предельных углеводородов C6H14-C10H22	0,0119126	·
							1071	Гидроксибензол (фенол)	0,0003824	0,0070

Взам. Инв. №

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

Наименование источника	Номер	Высота	Диаметр			цушной смеси ника выброса	Заг	рязняющее вещество	Выбр загрязн веще	яющих
выброса загрязняющих веществ	источника выброса	источника выброса (м)	устья трубы (м)	скорость (м/с)	Объем на 1 трубу (м3/c)	Температур а (гр.С)	код	наименование	г/с	т/год
							1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	0,0003946	0,00729
							1728	Этантиол	0,0000197	0,00036
Вторичный радиальный отстойник проект.	6015	2,00	0,00	0,00	0,000000	0,0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0000730	0,00134
							0303	Аммиак (Азота гидрид)	0,0004942	0,00912
							0304	Азот (II) оксид (Азот монооксид)	0,0002358	0,00435
							0333	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	0,0001094	0,00202
							0410	Метан	0,0066330	0,12250
							0416	Смесь предельных углеводородов C6H14-C10H22	0,0027195	0,05022
							1071	Гидроксибензол (фенол)	0,0000842	0,0015
							1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	0,0001227	0,0022
							1728	Этантиол	0,0000043	0,0000
Вторичный радиальный отстойник проект.	6016	2,00	0,00	0,00	0,000000	0,0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0000730	0,00134
отстоиник проскт.							0303	Аммиак (Азота гидрид)	0,0004942	0,00912
							0304	Азот (II) оксид (Азот монооксид)	0,0002358	0,0043
							0333	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	0,0001094	0,0020
							0410	Метан	0,0066330	0,1225
							0416	Смесь предельных углеводородов C6H14-C10H22	0,0027195	0,0502
							1071	Гидроксибензол (фенол)	0,0000842	0,0015
							1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	0,0001227	0,00220
							1728	Этантиол	0,0000043	0,0000
Биореактор проект.	6017	2,00	0,00	0,00	0,000000	0,0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0000035	0,0000
							0303	Аммиак (Азота гидрид)	0,0000843	0,0015
							0304	Азот (II) оксид (Азот монооксид)	0,0000621	0,0011
							0333	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	0,0000284	0,0005
							0410	Метан	0,0022805	0,0416
							0416	Смесь предельных углеводородов C6H14-C10H22	0,0006966	0,01272
							1071	Гидроксибензол	0,0000224	0,0004

Инв. № подл. Подп. и дата

Изм. Кол.уч Лист №док

Подп.

Дата

Взам. Инв. №

04/2022-151-00000-OBOC-TY

Наименование источника	Номер	Высота	Диаметр			ушной смеси ника выброса	Заг	рязняющее вещество	Выбр загрязн веще	яющих
выброса загрязняющих веществ	источника выброса	источника выброса (м)	устья трубы (м)	скорость (м/с)	Объем на 1 трубу (м3/c)	Температур а (гр.С)	код	наименование	г/с	т/год
							1325	(фенол) Формальдегид (Муравьиный альдегид, оксометан,	0,0000231	0,0004
							1728	метиленоксид) Этантиол	0,0000012	0,0000
Емкость сбора дренажа проект.	6018	2,00	0,00	0,00	0,000000	0,0	0301	Азота диоксид (Двуокись азота;	0,0000488	0,0008
							0303	пероксид азота) Аммиак (Азота гидрид)	0,0002977	0,0054
							0304	Азот (II) оксид (Азот монооксид)	0,0000834	0,0015
							0333	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	0,0005836	0,0106
							0410	Метан	0,0419231	0,7676
							0416	Смесь предельных углеводородов C6H14-C10H22	0,0018699	0,0342
							1071	Гидроксибензол (фенол)	0,0000310	0,0005
							1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	0,0000429	0,0007
							1728	Этантиол	0,0000021	0,0000
Камера отбора ила проект.	6019	2,00	0,00	0,00	0,000000	0,0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0000017	0,0000
							0303	Аммиак (Азота гидрид)	0,0000106	0,0001
							0304	Азот (II) оксид (Азот монооксид)	0,0000083	0,0001
							0333	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	0,0000030	0,0000
							0410	Метан	0,0001420	0,0025
							0416	Смесь предельных углеводородов C6H14-C10H22	0,0000552	0,0009
							1071	Гидроксибензол (фенол)	0,0000029	
							1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	0,0000039	0,0000
							1728	Этантиол	0,0000001	0,0000
Камера отбора ила проект.	6020	2,00	0,00	0,00	0,000000	0,0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0000017	0,0000
							0303	Аммиак (Азота гидрид)	0,0000106	
							0304	Азот (II) оксид (Азот монооксид)	0,0000083	,
							0333	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	0,0000030	0,0000
							0410	Метан	0,0001420	0,0025
							0416	Смесь предельных углеводородов C6H14-C10H22	0,0000552	0,0009

Инв. № подл.

Изм. Кол.уч Лист №док

Подп.

Дата

Взам. Инв. №

Подп. и дата

04/2022-151-00000-OBOC-TY

Наименование источника	очника Номер Высота Диаметр на выходе из источника выороса		загрязняющих веществ							
выброса загрязняющих веществ	источника выброса	выброса (м)	трубы (м)	скорость (м/с)	Объем на 1 трубу (м3/c)	Температур а (гр.С)	код	наименование	г/с	т/год
							1071	Гидроксибензол (фенол)	0,0000029	0,000053
							1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	0,0000039	0,000071
							1728	Этантиол	0,0000001	0,000002
Резервуар избыточного активного ила проект.	6021	2,00	0,00	0,00	0,000000	0,0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0000134	0,000244
							0303	Аммиак (Азота гидрид)	0,0000822	0,001498
							0304	Азот (II) оксид (Азот монооксид)	0,0000639	0,001165
							0333	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	0,0000231	0,000422
							0410	Метан	0,0010955	0,019973
							0416	Смесь предельных углеводородов C6H14-C10H22	0,0004260	0,007767
							1071	Гидроксибензол (фенол)	0,0000225	0,000411
							1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	0,0000304	0,000555
							1728	Этантиол	0,0000009	0,000017
Резервуар избыточного активного ила проект.	6022	2,00	0,00	0,00	0,000000	0,0	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0000134	0,000244
•							0303	Аммиак (Азота гидрид)	0,0000822	0,001498
							0304	Азот (II) оксид (Азот монооксид)	0,0000639	0,001165
							0333	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	0,0000231	0,000422
							0410	Метан	0,0010955	0,019973
							0416	Смесь предельных углеводородов C6H14-C10H22	0,0004260	0,007767
							1071	Гидроксибензол (фенол)	0,0000225	0,000411
							1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	0,0000304	0,000555
							1728	Этантиол	0,0000009	0,000017

Параметры газовоздушной смеси

Выбросы

Перечень загрязняющих веществ, выбрасываемых объектом после реконструкции, представлен в таблице 2.15.

Таблица 2.15 - Перечень загрязняющих веществ после реконструкции

Взам. Инв. №

Подп. и дата

						04/2022-151-00000-OBOC-TY	Лист
Изм.	Кол.уч	Лист	№док	Подп.	Дата	04/2022-151-00000-OBOC-19	598

	Загрязняющее вещество	Вид ПДК	Значение ПДК (ОБУВ)	Класс опас-	Суммарный загрязняющих	
код	наименование		мг/м3	ности	г/с	Τ/Γ
1	2	3	4	5	6	7
0101	диАлюминий триоксид (в пересчете на алюминий)	ПДК м/р ПДК с/с ПДК с/г	0,01000 0,00500	2	0,0041667	0,00060
0123	диЖелезо триоксид (железа оксид) (в пересчете на железо)	ПДК м/р ПДК с/с ПДК с/г	0,04000 	3	0,0511641	0,04092
0143	Марганец и его соединения (в пересчете на марганец (IV) оксид)	ПДК м/р ПДК с/с ПДК с/г	0,01000 0,00100 0,00100	2	0,0020147	0,00063
0150	Натрий гидроксид (Натр едкий)	ОБУВ	0,01000		0,0000152	0,00002
0155	диНатрий карбонат (Натрий углекисл.; натриев.соль угольной к-ты)	ПДК м/р ПДК с/с ПДК с/г	0,15000 0,05000 	3	0,0000448	0,00008
0172	Алюминий, растворимые соли	ОБУВ	0,01000		0,0000513	0,00161
0203	Хром (в пересчете на хрома (VI) оксид)	ПДК м/р ПДК с/с ПДК с/г	0,00150 0,00001	1	0,0000224	0,00004
0301	Азота диоксид (Двуокись азота; пероксид азота)	ПДК м/р ПДК с/с ПДК с/г	0,20000 0,10000 0,04000	3	0,0302300	0,14480
0302	Азотная кислота (по молекуле HNO3)	ПДК м/р ПДК с/с ПДК с/г	0,40000 0,15000 0,04000	2	0,0001336	0,00023
0303	Аммиак (Азота гидрид)	ПДК м/р ПДК с/с ПДК с/г	0,20000 0,10000 0,04000	4	0,0590566	1,04838
0304	Азот (П) оксид (Азот монооксид)	ПДК м/р ПДК с/с ПДК с/г	0,40000 0,06000	3	0,0212185	0,32933
0316	Гидрохлорид (по молекуле HC1) (Водород хлорид)	ПДК м/р ПДК с/с ПДК с/г	0,20000 0,10000 0,02000	2	0,0002928	0,00051
0322	Серная кислота (по молекуле H2SO4)	ПДК м/р ПДК с/с ПДК с/г	0,30000 0,10000 0,00100	2	0,0000112	0,00001
0328	Углерод (Пигмент черный)	ПДК м/р ПДК с/с ПДК с/г	0,15000 0,05000 0,02500	3	0,0007409	0,00097
0330	Сера диоксид	ПДК м/р ПДК с/с ПДК с/г	0,50000 0,05000 	3	0,0010340	0,00154
0333	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	ПДК м/р ПДК с/с ПДК с/г	0,00800 0,00200	2	0,0061666	0,11503
0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	ПДК м/р ПДК с/с ПДК с/г	5,00000 3,00000 3,00000	4	0,0826754	0,40272
0342	Гидрофторид (Водород фторид; фтороводород)	ПДК м/р ПДК с/с ПДК с/г	0,02000 0,01400 0,00500	2	0,0009421	0,00022
0344	Фториды неорганические плохо растворимые	ПДК м/р ПДК с/с ПДК с/г	0,20000 0,03000	2	0,0005667	0,00013

Инв. № подл. Подп. и дата

Взам. Инв. №

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

	Загрязняющее вещество	Вид ПДК	Значение ПДК (ОБУВ)	Класс опас-	Суммарный загрязняющих	
код	наименование		мг/м3	ности	г/с	т/г
1	2	3	4	5	6	7
0403	Гексан (н-Гексан; дипропил; Hexane)	ПДК м/р ПДК с/с ПДК с/г	60,00000 7,00000 0,70000	4	0,0002687	0,00000
0410	Метан	ОБУВ	50,00000		0,4103075	8,02877
0416	Смесь предельных углеводородов C6H14- C10H22	ПДК м/р ПДК с/с ПДК с/г	50,00000 5,00000 	3	0,0975401	1,82399
0616	Диметилбензол (смесь о-, м-, п- изомеров) (Метилтолуол)	ПДК м/р ПДК с/с ПДК с/г	0,20000 0,10000	3	0,0284091	0,40444
0621	Метилбензол (Фенилметан)	ПДК м/р ПДК с/с ПДК с/г	0,60000 0,40000	3	0,0115741	0,10000
0703	Бенз/а/пирен	ПДК м/р ПДК с/с ПДК с/г	1,00e-06 1,00e-06	1	5,03e-10	2,70e-0
0898	Трихлорметан	ПДК м/р ПДК с/с ПДК с/г	0,10000 0,03000 0,00400	2	0,0142916	0,01920
0906	Тетрахлорметан	ПДК м/р ПДК с/с ПДК с/г	4,00000 0,04000 0,01700	2	0,0053324	0,00723
1042	Бутан-1-ол (Бутиловый спирт)	ПДК м/р ПДК с/с ПДК с/г	0,10000	3	0,0034722	0,03675
1061	Этанол (Этиловый спирт; метилкарбинол)	ПДК м/р ПДК с/с ПДК с/г	5,00000	4	0,0037958	0,02247
1071	Гидроксибензол (фенол)	ПДК м/р ПДК с/с ПДК с/г	0,01000 0,00600 0,00300	2	0,0060696	0,11384
1119	Этиловый эфир этиленгликоля	ОБУВ	0,70000		0,0018519	0,01645
1210	Бутилацетат (Бутиловый эфир уксусной кислоты)	ПДК м/р ПДК с/с ПДК с/г	0,10000	4	0,0023148	0,02000
1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	ПДК м/р ПДК с/с ПДК с/г	0,05000 0,01000 0,00300	2	0,0045118	0,08447
1401	Пропан-2-он (Диметилкетон; диметилформальдегид)	ПДК м/р ПДК с/с ПДК с/г	0,35000	4	0,0016204	0,01400
1513	Аскорбиновая кислота	ОБУВ	0,50000		1,97e-21	4,00e-2
1555	Этановая кислота (Метанкарбоновая кислота)	ПДК м/р ПДК с/с ПДК с/г	0,20000 0,06000 	3	0,0007220	0,00123
1580	Лимонная кислота	ПДК м/р ПДК с/с ПДК с/г	0,10000 	3	1,64e-19	4,59e-2
1716	Одорант СПМ	ПДК м/р ПДК с/с ПДК с/г	0,01200	4	0,0000001	0,00001

Инв. № подл. Лодп. и дата

Взам. Инв. №

Изм.	Кол.уч	Лист	№док	Подп.	Дата

	Загрязняющее вещество	Вид ПДК	Значение ПДК (ОБУВ)	Класс опас-	Суммарныі загрязняющи	_
код	наименование	, ,	мг/м3	ности	г/с	т/г
1	2	3	4	5	6	7
1728	Этантиол	ПДК м/р ПДК с/с ПДК с/г	0,00005 	3	0,0002263	0,004244
2732	Керосин (Керосин прямой перегонки; керосин дезодорированный)	ОБУВ	1,20000		0,0030533	0,004012
2750	Сольвент нафта	ОБУВ	0,20000		0,0086787	0,043746
2752	Уайт-спирит	ОБУВ	1,00000		0,0231481	0,200104
2754	Алканы С12-19 (в пересчете на С)	ПДК м/р ПДК с/с ПДК с/г	1,00000 	4	0,0009000	0,716000
2908	Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20	ПДК м/р ПДК с/с ПДК с/г	0,30000 0,10000 	3	0,0029000	0,000237
2930	Пыль абразивная	ОБУВ	0,04000		0,0048000	0,012442
2984	Полиакриламид катионный АК-617	ОБУВ	0,25000		0,0000171	0,000540
3337	2-Гидроксибензойная кислота (орто- Гидроксибензойная кислота)	ОБУВ	0,01000		6,28e-12	8,01e-15
Всего в	еществ : 47		-		0,8963532	13,762069
в том ч	исле твердых : 13				0,0665039	0,058248
жидких	х/газообразных : 34				0,8298493	13,703822
	Смеси загрязняющих веществ, обладающих с	уммацией дей	ствия (комбиниј	ованным	действием):	
6003	(2) 303 333 Аммиак, сероводород					
6004	(3) 303 333 1325 Аммиак, сероводород, форма	альдегид				
6005	(2) 303 1325 Аммиак, формальдегид					
6007	(4) 301 337 403 1325 Азота диоксид, гексан, у	глерода оксид	ц, формальдегид			
6010	(4) 301 330 337 1071 Азота диоксид, серы дис	ксид, углерод	ца оксид, фенол			
6013	(2) 1071 1401 Ацетон и фенол					
6035	(2) 333 1325 Сероводород, формальдегид					
6038	(2) 330 1071 Серы диоксид и фенол					
6040	(5) 301 303 304 322 330 Серы диоксид и трехо	окись серы (аз	розоль серной к	ислоты), а	ммиак	
6041	(2) 322 330 Серы диоксид и кислота серная					
6043	(2) 330 333 Серы диоксид и сероводород					
6045	(3) 302 316 322 Сильные минеральные кислот	гы (серная, со.	ляная и азотная)			
6053	(2) 342 344 Фтористый водород и плохораств	оримые соли	фтора			
6204	(2) 301 330 Азота диоксид, серы диоксид					
6205	(2) 330 342 Серы диоксид и фтористый водор	од				

Расчет выбросов загрязняющих веществ (Приложение A) произведен согласно Перечню методик расчета выбросов вредных (загрязняющих) веществ в атмосферный воздух стационарными источниками (утв. Министерством природных ресурсов и экологии РФ распоряжение Минприроды от 26.12.2021 г. №38-Р).

С целью определения влияния загрязняющих веществ на состояние атмосферного воздуха в районе расположения объекта выполнен расчет рассеивания загрязняющих веществ в атмосфере и определены максимальные приземные концентрации по унифицированной

ı						
ı						
ı						
ı	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

Подп. и дата

Инв. № подл.

программе расчета загрязнений атмосферы УПРЗА «Эколог» (версия 4.70), разработанной фирмой «Интеграл» (г. Санкт-Петербург) и согласованной ГГО им. Войкова (на программу получено заключение Росгидромета о соответствии выполняемых расчетов МРР-2017 (требование приказа Минприроды от 20.11.2019 № 779)).

Размер расчетного прямоугольника принят равным: ширина — 2600 м; шаги координатной сетки — 200 м по осям ОХ и ОҮ. Шаг расчетной сетки принят согласно п.3.3. «Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух» и не превышает размеры СЗЗ. Система координат — локальная для площадки.

Таблица 2.16 - Расчетные точки

	Координат	ъ (м)	B	4116 55.000
Код	х	Y	Высота (м)	Тип точки
1	391,50	643,00	2,00	на границе СЗЗ
2	1058,20	457,50	2,00	на границе СЗЗ
3	1167,40	4,80	2,00	на границе СЗЗ
4	1116,10	-481,90	2,00	на границе СЗЗ
5	630,80	-873,20	2,00	на границе СЗЗ
6	86,40	-709,70	2,00	на границе СЗЗ
7	-412,40	-133,10	2,00	на границе СЗЗ
8	-127,10	396,40	2,00	на границе СЗЗ
9	-1095,40	88,20	2,00	на границе жилой зоны
10	-842,00	-161,20	2,00	на границе жилой зоны
11	-894,90	-417,80	2,00	на границе жилой зоны
12	-1095,90	-717,50	2,00	на границе жилой зоны

Согласно результатам расчетов рассеивания на период эксплуатации с учетом существующего положения с учетом фоновых концентраций после реконструкции на границе СЗЗ и жилой зоны максимально-разовые концентрации по всем веществам составляют менее 1 ПДК.

Следовательно корректировка размера санитарно-защитной зоны не требуется.

2.3 Воздействие объекта на земельные ресурсы и почвенный покров

2.3.1 Краткая характеристика земель района расположения объекта

Описание геологического строения и гидрогеологических условий участка изысканий приводится по данным технического отчета об инженерно-геологических изысканиях (том 2).

В геологическом строении участка до изученной глубины 23,0 м принимают участие четвертичная и пермская системы. Сводный геолого-литологический разрез следующий (сверху-вниз).

Четвертичная система (Q)

							Γ
	Изм.	Кол.уч	Лист	№док	Подп.	Дата	
_							_

Взам. Инв. №

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

2. Насыпной грунт (tQIV) — представлен смесью почвы, гравия, суглинка и глины коричневого цвета. Распространен повсеместно и вскрыт всеми скважинами. Мощность слоя 2,9-7,3 м. Данный грунт отнесен к инженерно-геологическому элементу №1 (ИГЭ 1).

Аллювиально-делювиальные отложения (adQ)

- 3. Суглинок коричневый, мягкопластичной консистенции (ИГЭ 2), залегает в верхней части разреза в интервале глубин 2,0-6,5 м и в нижней части разреза в интервале глубин от 10,2-13,5 до 17,5-20,5 м. Мощность суглинка 2,0-7,6 м.
- 4. Глина серая и серовато-коричневая, тугопластичной консистенции. Залегает повсеместно в средней части глинистого разреза в интервале глубин от 6,5-14,8 до 15,2-18,0 м. Мощность глины от 2,9 до 9,9 м. Данный грунт отнесен к инженерно-геологическому элементу N (ИГЭ 3).
- 5. Песок коричневый, серовато-коричневый, средней крупности, плотный, однородный, водонасыщенный. Залегает в подошве аллювиально-делювиальных отложений с глубины 17,5-20,5 м. Вскрытая мощность песка 2,5-5,5 м. Данный грунт отнесен к инженерно-геологическому элементу №4 (ИГЭ 4).

Непосредственно на площадке проектируемого строительства почвенный покров антропогенно нарушен. Повсеместно на поверхности присутствует насыпной грунт, представленный смесью почвы, гравия, суглинка и глины коричневого цвета, мощностью 2,9-7,3 м.

2.3.2 Воздействие на земельные ресурсы и почвенный покров

2.3.2.1 Период строительства

Территория характеризуется благоприятными факторами для проведения планируемых работ.

Антропотехническое воздействие строительства площадки на почвенный покров проявляется в виде нарушения и загрязнения.

Размеры земельного отвода для строительства определяются в соответствии с утвержденными нормативами землеёмкости строящегося объекта.

Обязательное воздействие проявляется также:

- в нарушении равновесия сложившегося микро- и мезорельефа при отсыпке песчаного основания площадок, сооружении опорных конструкций для проведения кабельных линий,
 - в возможной активизации опасных природных геологических процессов;
- во временном складировании и возможном захламлении территории строительства отходами производства и потребления;

						Γ
						l
						ı
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв. №

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

- в возможном загрязнении бытовыми и строительными отходами;
- в вероятном загрязнении почвы веществами, ухудшающими ее биологические, физические и химические свойства (ГСМ при работе техники, сточные воды);
- в возможном нарушении строения почвенно-растительного покрова в случае передвижении строительной техники и транспортных средств вне дорог за пределами арендованного земельного участка;
 - в использовании неисправной транспортной и строительной техники;
- в отсутствии специально обустроенных площадок для стоянки, обслуживания и ремонта техники;
 - в нарушении правил хранения ГСМ и заправки строительной техники;
- в отсутствии системы организованного сбора и размещения строительных и бытовых отходов;
 - в нарушении технологического процесса работы оборудования;
 - в отсутствии должного контроля над работой оборудования.

2.3.2 Период эксплуатации

Технико-экономические показатели земельного участка, предоставленного для размещения объекта капитального строительства:

Наименование	Площадь участка освоения, м ²	Площадь застройки, м ²	Площадь проездов, площадок, тротуаров (в т.ч. укрепление откосов), м ²	Площадь озеленения (в т.ч. откосы), м ²	Площадь сущ-го озеленения, м ²	Плотность застройки, %
Площадка БОС	42600	17947	8569	12130	3954	42

Вертикальная планировка территории решалась с учетом:

- обеспечения полного поверхностного отвода атмосферных осадков;
- обеспечения организации отвода атмосферных осадков и защиту территории от попадания извне талых и ливневых вод, устройство водосборного лотка для локализации поверхностных и талых вод в отстойники;
- организации водоотвода условно чистых талых и дождевых вод за пределы территории, а также через дренирующий слой из песка и путем естественного испарения.

Максимальные и минимальные уклоны поверхности принимаются согласно п. 5.49 СП 18.13330.2019 - не превышают нормативно допустимых для данных грунтов и составляют: минимальный уклон принят -0,003, максимальный -0,03.

						_
						ı
						l
						ı
						ı
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв. №

Подп. и дата

Инв. № подл.

2.4 Воздействие на состояние поверхностных и подземных вод

2.4.1 Характеристика поверхностных и подземных вод в районе расположения объекта

Основными водными артериями являются р. Белая и р. Кама, принимающие многочисленные мелкие притоки (ручьи, реки). Река Белая протекает в 25,7 км юго-западнее от участка работ. Река Кама - в 9,5 км западнее от участка работ. Ближайшим к участку водотоком является левосторонний приток р. Кама – р. Березовка- р. Полуденка, протекающая в 450 м юго-западнее участка.

Непосредственно в пределах участка работ поверхностные водотоки и водоемы отсутствуют. Участок расположен за пределами водоохранных зон и прибрежных защитных полос.

2.4.2.1 Водоснабжение и водоотведение при проведении строительно-монтажных и демонтажных работ

Вода на строительной площадке расходуется на производственные, частично хозяйственно-бытовые нужды и на случай пожаротушения.

Расход воды на производственные потребности определяется по формуле (12.4).

$$Q_{np} = K_H \cdot \frac{q_n \cdot \Pi_n \cdot K_u}{3600 \cdot t} \tag{12.4}$$

где Кн = 1,2 – коэффициент на неучтенный расход воды;

qп = 500 л – расход воды на производственного потребителя;

 Π п - число производственных потребителей в наиболее загруженную смену – 7.

Kч = 1,5 – коэффициент часовой неравномерности водопотребления;

t = 8 ч - число часов в смене.

Qпр =
$$1.2 \times (500 \times 7 \times 1.5 / (3600 \times 8) = 0.219 \text{ л/c}.$$

Потребление воды на производственные нужды безвозвратное.

Расход воды на хозяйственно-бытовые потребности, л/с:

Расход воды на хозяйственно-бытовые потребности определяется по формуле (12.5).

$$Q_{xo3} = \left(\frac{q_x \cdot \Pi_p \cdot K_q}{3600 \cdot t}\right) + \left(\frac{Q_{\partial} \cdot \Pi_{\partial}}{60 \cdot t_1}\right)$$
(12.5)

где qx = 15 л – удельный расход воды на хозяйственно-питьевые потребности работающего;

Пр – численность работающих в наиболее многочисленную смену - 54 чел.;

Кч = 2 – коэффициент часовой неравномерности потребления воды;

Qд = 30 л – расход воды на прием душа одним работающим;

 Π д – численность пользующихся душем (до 80% Π p) - 44 чел.;

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв.

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

T = 8 ч - число часов в смене;

t1 = 45 мин – продолжительность использования душевой установки.

Qxo3 =
$$((15 \times 23 \times 2) / (3600 \times 8) + (30 \times 20) / (60 \times 45) = 0.24 \text{ J/c}.$$

Потребность Qтр в воде определяется суммой расхода воды на производственные Qпр и хозяйственно-бытовые Qхоз нужды, л/с по формуле (12.6):

$$Q_{Tp} = Q_{Tp} + Q_{XO3} \tag{12.6}$$

$$Q_{Tp} = 0.219 + 0.24 = 0.459 \text{ л/с}.$$

Подвоз воды осуществляется автоцистернами Подрядчика.

Питьевая установка (кулер) располагается в вагон-конторе, комнате для обогрева.

Качество воды для питьевого водоснабжения должно удовлетворять требованиям СанПиН 2.1.4.1116-02, ГОСТ 32220-2013.

Среднегодовой объем поверхностных сточных вод, образующихся на площадке в период выпадения дождей, таяния снега и мойки дорожных покрытий, определяется по формуле:

$$W_{\Gamma} = W_{\Lambda} + W_{T} + W_{M} = 2779,42 \text{ m}^{3}$$

 W_{0} =2198 среднегодовой объем дождевых стоков, м³

 $W_m = 444$ среднегодовой объем талых стоков, м³

 $W_{\scriptscriptstyle M}=0$ среднегодовой объем поливомоечных вод, м³

Среднегодовой объем дождевых вод:

$$W_{\pi} = 10 \cdot h_{\pi} \cdot \Psi_{\pi} \cdot F = 10 \cdot 346 \ 0.31 \cdot 2.1 = 2198.0 \ \text{M}^3$$

10-переводной коэффициент

 $h_{\delta} = 346$ слой осадков за теплый период года

 $\Psi_{\delta} = 0.31$ общий коэффициент стока дождевых вод (п.7.1.4 Рекомендаций)

F= 2,07 общая площадь стока, га

Среднегодовой объем талых вод:

$$W_{T}=10\cdot h_{T}\cdot \Psi_{T}\cdot F\cdot K_{V}=10\cdot 143\cdot 0,5\cdot 2,1\cdot 0,3=443.9 \text{ m}^{3}$$

10 переводной коэффициент

 h_m =143 слой осадков за холодный период года

 Ψ_{m} = 0,5 общий коэффициент стока талых вод, согласно п.7.1.5 Рекомендаций

Ky = 0,3 коэффициент, учитывающий частичный вывоз и уборку снега

Расчет общего коэффициента стока Ψ_{π} приведен в таблице 2.17.

Таблица 2.17 - Расчет общего коэффициента дождевых стоков

Вид покрытия	<i>Ψ</i> ді	F, га	$\Psi_{\mu}F_{i}$	Ψд
Водонепроницаемые покрытия	0,6	0,86	0,51	
Грунтовые поверхности	0,2	0,00	0,00	0,31
Газоны	0,1	1,21	0,12	
Итого:		2,07	0,64	

Объем расчетного дождя определен по п.7.2.1 Рекомендаций:

$$W_{\text{oc.d.}} = 10 \cdot h_a \cdot \Psi_{\text{mid}} \cdot F = 10 \cdot 6, 1 \cdot 0, 452 \cdot 2, 07 = 56,57 \text{ m}^3$$

10 - переводной коэффициент

Взам.

Подп. и дата

№ подл.

 h_a = 6,05 максимальный суточный слой осадков, мм (по рисунку 1)

 $\Psi_{mid} = 0,45$ средний коэффициент стока для расчетного дождя, рассчитан в табл. 2

F = 2,07 общая площадь стока, га

Средний коэффициент стока для различного вида покрытий определен по формуле:

$$\Psi_{mid} = \frac{\sum F}{I} \tag{5}$$

Расчет приведен в таблице 2.18.

Таблица 2.18 - Расчет среднего коэффициента стока

						Г	
Изм.	Кол.уч	Лист	№док	Подп.	Дата		

04/2022-151-00000-OBOC-TY

Вид покрытия	$\Psi_{\rm i}$	F, га	$\Psi_i F_i$	Ψ_{mid}
Водонепроницаемые покрытия	0,95	0,86	0,81	
Щебеночные покрытия	0,6	0	0,00	
Щебеночные покрытия, не обработанные вяжущими материалами	0,4	0	0,00	0,45
Грунтовые поверхности (спланированные)	0,2	0,00	0,00	
Газоны	0,1	1,21	0,12	
Итого:		2,07	0,94	

В процессе строительства должен быть обеспечен постоянный отвод поверхностных вод из всей зоны производства работ. Организация стока поверхностных вод достигается посредством вертикальной планировки стройплощадки, с учетом существующего рельефа.

При отводе подземных и поверхностных вод следует исключать подтопление сооружений, размыв грунта, заболачивание местности, нарушение природных свойств грунтовых оснований.

Вертикальная планировка территории решалась с учетом:

- обеспечения полного поверхностного отвода атмосферных осадков;
- обеспечения организации отвода атмосферных осадков и защиту территории от попадания извне талых и ливневых вод, устройство водосборного лотка для локализации поверхностных и талых вод в отстойники.

Производится вертикальная планировка с отводом стоков во временную ёмкость, которая указана на строительном генеральном плане 04/2022-151-П-00000-ПОС-Ч1, после отстаивания вода сбрасывается в существующие отстойники. Далее происходит разбавление стока и естесвтенное испарение.

Максимальные и минимальные уклоны поверхности принимаются согласно п. 5.49 СП 18.13330.2019 - не превышают нормативно допустимых для данных грунтов и составляют: минимальный уклон принят -0,003, максимальный -0,03.

При устройстве вертикальной планировки выполняется послойная отсыпка территории с откасами и последующим уплотнением. В местах, где будут устраиваться фундаменты и подземные коммуникации отсыпка не выполняется.

Производство работ по вертикальной планировке состоит из подготовительных, основных и отделочных операций.

Хозяйственно-бытовые стоки отводятся во временную емкость.

На период реконструкции объекта поверхностные, хозяйственно-бытовые сточные воды с последующей их очисткой принимает МУП «Нефтекамскводоканал» согласно письму №14/8-6854 от 01.08.2023 г. (Приложение E).

На выездах со строительных площадок, выходящих на городскую территорию, предусмотрены пункт очистки или мойки колес транспортных средств.

Инв. № подл. Подп. и дата Взам. Инв. №

Изм	Коп уч	Пист	Voл∩к	Полп	Пата

2.4.2.2 Водоснабжение и водоотведение при эксплуатации

Строительство проектируемых объектов предусмотрено в границах существующей территории очистных сооружений. Источники водоснабжения на территории очистных сооружений отсутствуют.

Вода на хозяйственно-питьевые нужны подается на площадку от централизованной сети.

Для обеспечения хозяйственно-бытовых нужд работников на территории очистных сооружений имеется существующая система хозяйственно-питьевого водоснабжения, совмещенная с противопожарным водопроводом.

Вода питьевого качества подается в здание АБК, в котором организовано социальнобытовое обслуживание персонала, в гараж и насосную (поз. 6 по ГП), где размещены мойки и санузлы.

Проектом предусматривается строительство следующих систем:

- хозяйственно-питьевое водоснабжение для подачи воды на мытье рук и помещений проектируемых зданий;
 - противопожарное водоснабжение: новая система;
- производственное водоснабжение от резервуара чистой промывной воды на технологические нужны (см. том 04/2022-151-П-00000-ТХ)

В состав системы хозяйственно-питьевого водоснабжения входят участки подземного водопровода от точек подключения к существующей сети до проектируемых зданий:

- здание №10. Блок механической очистки (здание решеток) (поз.22 по ГП);
- здание №12. Блок обезвоживания осадка (поз.24 по ГП);
- здание №13. Блок доочистки.

Проектируемые участки водопровода тупиковые, подключение к сетям выполнено через запорную арматуру (дисковые затворы), размещенные в железобетонных колодцах.

В состав системы производственного водоснабжения входят:

- насосная станция технического водоснабжения (поз. H-21.1, 21.2 по технологической схеме тома том $04/2022-151-\Pi-00000-TX$);
 - сеть трубопровода чистой воды.

Забор воды на технологические нужны предусмотрен из резервуара чистой промывной воды. Размещение насосной станции предусмотрено в машинном зале насосной станции сброса очищенного стока (поз.33 по ГП).

К установке принято два вертикальных центробежных насоса марки KQDP(Q)40-10 (1 рабочий, 1 резервный) с рабочей характеристикой 10 м3/ч, 50 м.

Далее вода подается в сеть чистой воды на промывку оборудования и приготовление реагентов.

						Г
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв. №

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

На площадке имеется действующая система хозяйственно-бытовой канализации предназначенная для сбора стоков от зданий с последующей перекачкой насосной станцией (в здании Насосная-РУ поз.6 по ГП) в начало технологического процесса очистки стоков.

Проектными решениями предусмотрено:

- строительство новых участков сетей для подключения внутренних сетей проектируемых зданий. Так же предусмотрено подключение к системе сброса дренажных вод от технологического оборудования.
- реконструкция существующих участков: демонтаж трубопровод и прокладка новых с подключением существующих выпусков и подключений работоспособных участков;
 - демонтаж насосной станции;

Согласно принятым решениям, канализационный сток совместно с дренажными водами направлен в емкость сбора дренажа (поз.31 по ГП). Далее сточные воды подаются насосами дренажа (поз.8.1, 8.2 по технологической схеме тома 04/2022-151-П-00000-ТХ) в камеру гашения напора для очистки совместно с поступающим на площадку стоком.

В состав хозяйственно-бытовой канализации входят:

- сеть самотечной хозяйственно-бытовой канализации;
- напорная канализация от насосного дренажа (поз.37 по $\Gamma\Pi$) до камеры гашения напора (поз.21 по $\Gamma\Pi$).

Таблица 2.19 – Расчётные расходы хозяйственно-бытовых стоков

Потребители Измеритель			Количество		Норма водопотребления		Расходы водоотведения	
Персонал очистных сооружений 1 работник 17 9 25 9,4 0,43 0,08 Душевые сети в здании АБК* 1 душевой поддон 32 16 500 500 4,00 2,00	Потребители	Измеритель		в смену	Расчетная суточная, л/сут	Макс. часовой л/ч	Суточный м³/сут	Часовой ^{М³/ч}
сооружений 1 работник 17 9 25 9,4 0,43 0,08 Душевые сети в здании АБК* 1 душевой поддон 32 16 500 500 4,00 2,00	Персонал очистных	1 служащий (ИТР)	5	5	12	4,0	0,06	0,02
здании АБК* 1 душевой поддон 32 16 500 500 4,00 2,00	•	1 работник	17	9	25	9,4	0,43	0,08
Harri 22 14 440 2.10	, ,3	1 душевой поддон	32	16	500	500	4,00	2,00
MTOPO: 22 14 - - 4,49 2,10		Итого:	22	14	-	-	4,49	2,10

^{*} Продолжительность работы принята не более 15 мин.

Сбор и отвод поверхностного стока с территории очистных сооружений предусмотрен посредством вертикальной планировки поверхности.

Вертикальная планировка территории решалась с учетом:

- обеспечения полного поверхностного отвода атмосферных осадков;

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв.

Подп. и дата

- обеспечения организации отвода разлившихся продуктов с проездов, атмосферных осадков и защиту территории от попадания извне талых и ливневых вод;
- организации водоотвода условно чистых талых и дождевых вод за пределы территории, а также через дренирующий слой из песка и путем естественного испарения.

Наивысшие отметки площадки приняты в центре площадки, к краям - с понижением.

Сбор и отвод поверхностного стока с территории очистных сооружений не предусматривается.

Согласно Рекомендациям по расчету систем сбора, отведения и очистки поверхностного стока селитебных территорий, площадок предприятий и определению условий выпуска его в водные объекты, 2015 г. (п.5.1.8) очистные сооружения отнесены к первой группе предприятий (сток по составу примесей близок к поверхностному стоку селитебных территорий и не содержит специфических веществ).

Характеристика дождевых стоков принята по таблице 3 Рекомендаций и приведена в таблице 2.20:

Показатель	Значение
Взвешенные вещества	200
Солесодержание	200
ХПК	150
БПК20	20
Специфические компоненты	отсутствуют

Среднегодовой объем поверхностных сточных вод, образующихся на площадке в период выпадения дождей, таяния снега и мойки дорожных покрытий, определяется по формуле:

$$W_{\Gamma}=W_{\Pi}+W_{T}+W_{M}=2198+444+0=2642 \text{ m}^{3}$$

 W_{o} = 2198 среднегодовой объем дождевых стоков, м³

 $W_m = 444$ среднегодовой объем талых стоков, м³

 $W_{\rm M} = 0$ среднегодовой объем поливомоечных вод, м³

Среднегодовой объем дождевых вод:

$$W_{\pi}=10 \cdot h_{\pi} \cdot \Psi_{\pi} \cdot F = 10 \cdot 346 \cdot 0.31 \cdot 2.1 = 2198.0 \text{ m}^3$$

10-переводной коэффициент

 $h_{\partial} = 346$ слой осадков за теплый период года

 $\Psi_{\theta} = 0.31$ общий коэффициент стока дождевых вод (п.7.1.4 Рекомендаций)

F= 2.07 общая площадь стока, га

Среднегодовой объем талых вод:

 $W_T = 10 \cdot h_T \cdot \Psi_T \cdot F \cdot K_V = 10 \cdot 143 \cdot 0.5 \cdot 2.1 \cdot 0.3 = 444 \text{ m}^3$

10 - переводной коэффициент

Взам.

Подп. и дата

 $h_m = 143$ слой осадков за холодный период года

 $\Psi_m = 0.5$ общий коэффициент стока талых вод, согласно п.7.1.5

Ку= 0,3 коэффициент, учитывающий частичный вывоз и уборку снега

Расчет общего коэффициента стока Ψ_{π} приведен в таблице 2.21.

Таблица 2.21 - Расчет общего коэффициента дождевых стоков

ı							
							Γ
							ł
ı							l
	Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Вид покрытия	<i>Ψ</i> ді	F, га	$\Psi_{{}_{\!\mathcal{I}}}F_{i}$	Ψд
Водонепроницаемые покрытия	0,6	0,86	0,51	
Грунтовые поверхности	0,2	0,00	0,00	0,31
Газоны	0,1	1,21	0,12	
Итого:		2,07	0,64	

Объем расчетного дождя определен п.7.2.1 Рекомендаций:

$$W_{\text{oc.,d.}} = 10 \cdot h_a \cdot \Psi_{\text{mid}} \cdot F = 10 \cdot 6, 1 \cdot 0,452 \cdot 2,07 = 56,6 \text{ m}^3$$

10 - переводной коэффициент

 $h_a = 6.05$ максимальный суточный слой осадков, мм (по рисунку 1)

 $\Psi_{mid} = 0,45$ средний коэффициент стока для расчетного дождя, рассчитан в табл. 2

F = 2,07 общая площадь стока, га

Средний коэффициент стока для различного вида покрытий определен по формуле:

$$\Psi_{mid} = \frac{\sum F}{I} \tag{5}$$

Расчет приведен в таблице 2.22

Таблица 2.22 - Расчет среднего коэффициента стока

Вид покрытия	$\Psi_{\rm i}$	F, га	$\Psi_i F_i$	Ψ_{mid}
Водонепроницаемые покрытия	0,95	0,86	0,81	
Щебеночные покрытия	0,6	0	0,00	
Щебеночные покрытия, не обработанные вяжущими материалами	0,4	0	0,00	0,45
Грунтовые поверхности (спланированные)	0,2	0,00	0,00	
Газоны	0,1	1,21	0,12	
Итого:		2,07	0,94	

2.5 Воздействие на растительный и животный мир

2.5.1 Характеристика существующего состояния растительности и животного мира

Непосредственно на участке работ вследствие антропогенной нарушенности земель растительность характеризуется бедным флористическим составом, представлена сорными травами (одуванчик обыкновенный, пырей ползучий, вьюнок полевой, клевер полевой, подорожник большой, мятлик луговой, крапива двудомная, чистотел большой и др.).

Древесная растительность в пределах проектируемого участка присутствует локально, представлена березой, сосной, ивой, частично подлежит вырубке.

Редкие виды растений, занесенные в Красные книги Республики Башкортостан и Российской Федерации, на участке изысканий отсутствуют.

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

Подп. и дата

Фауна на участке работ и прилегающей территории представлена видами, приспособленными к обитанию на хозяйственно освоенной территории.

В первую очередь в районе изысканий встречаются беспозвоночные виды, относящиеся к типам плоских червей, кольчатых червей, круглых червей, коловраток, тихоходок, моллюсков, и членистоногих. На долю членистоногих приходится более 80% всех видов. Среди них по численности преобладают насекомые из отрядов жуков, клопов, бабочек, двукрылых, прямокрылых, перепончатокрылых, стрекоз.

Из позвоночных животных в городской среде могут обитать мелкие млекопитающие из отрядов грызуны (мыши, полевки, крысы и др.). В ходе рекогносцировочного обследования на участке изысканий следов обитания мелких млекопитающих (следы, помет, норы и т.п.) не зафиксировано.

Экологическая приспособленность птиц к обитанию в населенных пунктах гораздо выше по сравнению с млекопитающими. По данным наблюдений орнитологов [29, 30] в городе Нефтекамск постоянно обитают сизый голубь, сорока, галка, серая ворона, ворон, большая синица, домовой воробей, полевой воробей, обыкновенный снегирь.

В окрестностях города в лесных массивах в зимний период отмечено 10 видов птиц. Из них многочисленными видами были – длиннохвостая синица, буроголовая гаичка, обыкновенная пищуха; обычными – большой пёстрый дятел, ворон, большая синица, обыкновенный поползень (евр. п/в); редкими – ушастая сова, серая ворона; чрезвычайно редким – грач. В остальное время отмечено 55 видов птиц.

В летний период многочисленна большая синица; обычными видами являются чёрный коршун, болотный лунь, коростель, большой пёстрый дятел, лесной конёк, лесная завирушка, зелёная пересмешка, северная бормотушка, садовая славка, пеночка-весничка, мухоловка-пеструшка, малая мухоловка, серая мухоловка, зарянка, певчий дрозд, буроголовая гаичка, обыкновенная пищуха, зяблик, обыкновенная овсянка; редкими — хохлатая чернеть, озёрная чайка, чёрный стриж, белоспинный дятел, малый пёстрый дятел, белая трясогузка, обыкновенный жулан, обыкновенная иволга, сойка, серая славка, пеночка-теньковка, желтоголовый королёк, луговой чекан, обыкновенная горихвостка, варакушка, рябинник, обыкновенная лазоревка, черноголовый щегол, обыкновенная чечевица; очень редкими — кряква, речная крачка, грач, серая ворона, ворон, пеночка-трещотка, камышовая овсянка; чрезвычайно редкими — славка-завирушка, таёжная мухоловка, деряба, обыкновенный снегирь; минимально пролётными — обыкновенный канюк, сапсан; залётными — тетеревятник, средний пёстрый дятел, пятнистый сверчок.

Инв. № подл. Подп. и дата Взам. Инв. №

Изм.

Кол.уч

Лист №док

Дата

Подп.

Редкие виды животных занесенные в Красные Книги Республики Башкортостан и Российской Федерации, по данным рекогносцировочного обследования, на участке изысканий отсутствуют.

2.5.1.3 Воздействие на растительный и животный мир

Основное воздействие на животный мир связан с шумовым дискомфортом.

Воздействие на растительный и животный мир является краткосрочным и не приведет к значительному ухудшению состояния растительного и животного мира.

В целом можно сделать вывод, что при реконструкции объекта воздействие на животный и растительный мир будет иметь временный, локальный характер.

2.6 Сведения о видовом составе и количественном составе отходов, образующихся в периоды строительно-монтажных, демонтажных работ и эксплуатации

При проведении строительно-монтажных работ

Негативное воздействие отходов на компоненты окружающей среды на этапе строительства смягчается вследствие следующих факторов:

- отсутствие длительного накопления строительных отходов вывоз в места размещения ведется непосредственно в процессе производства строительных работ;
- технологические процессы строительства базируются на максимализации использования сырьевых материалов и оборудования, что обеспечивает минимальное количество отходов строительства;
 - ремонт и обслуживание строительной техники на территории базы Подрядчика.

Природопользователь, в данном случае на период проведения работ — Подрядная строительная организация, в соответствии с Федеральным законом от 24.06.1998 № 89-ФЗ и природоохранными нормативными документами РФ ведет учет наличия, образования, использования всех видов отходов производства и потребления.

Ответственным за сбор, накопление, отгрузку и вывоз отходов на размещение, и утилизацию в период проведения строительства является подрядная строительная организация. Подрядчик приказами назначает ответственных за соблюдение природоохранного законодательства, за сбор, накопление и сдачу отходов.

Количество применяемых материалов при проведении строительных работ принято по данным сметной документации.

Отходы от обслуживающего автотранспорта и строительной техники не приведены, т.к. данные виды отходов учтены на предприятии подрядчика, которому принадлежит автотранспорт. Техобслуживание и ремонт автотранспорта на строительной площадке не предусмотрен.

Взам. Инв.	
Подп. и дата	
Инв. Nº подл.	

Изм. Кол.уч Лист №док

Подп.

Дата

Вопросы размещения (вывоза) всех образующихся в ходе строительства отходов будут решаться подрядчиком. Генподрядная организация, осуществляющая реконструкция, является собственником отходов производства и потребления, образующихся в результате ее деятельности (как из собственного сырья и материалов, так и из давальческого сырья и материалов) при выполнении работ. Генподрядная организация самостоятельно осуществляет сбор, накопление, обезвреживание и вывоз отходов в специализированные организации по имеющимся у нее договорам.

В пределах производственно-хозяйственной площадки для нужд рабочих предполагается устройство биотуалета.

Обслуживание биотуалета, откачку и вывоз отходов специальной ассенизационной машиной, а также осуществлять санитарно-техническое обслуживание кабинки биотуалета будет осуществлять специализированная организация по сдаче в аренду и обслуживанию биотуалетов на основании заранее заключенного договора на аренду и обслуживание.

Наименование и коды отходов приведены в соответствии с Федеральным классификационным каталогом, утвержденным Приказом Росприроднадзора от 22.05.2017 г. № 242.

Расчет количества образующихся отходов в период работ представлен в приложении В.

Объемы образования и характеристика отходов, образующихся в период работ, приведены в таблице 2.23.

Таблица 2.23 - Объемы образования и характеристика отходов, образующихся в период работ

Код по ФККО; Процесс

	класс опасности	образования	хранения	отходов (т/период)	другим предприятиям для утилизации/ обезвреживани я, (т/период)	отходов, подлежащи х размещени ю на полигоне, (т/период)
Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный)	7 33 100 01 72 4, 4	Строительные работы	Накопление в металлическом контейнере. Передается на размещение региональному оператору ООО «Дюртюлимелиоводст рой» (лицензия Л020-00113-02/00154269)	2,430		2,430
Шлак сварочный	9 19 100 02 20 4, 4	Строительные работы	Накопление в металлическом контейнере. Вывоз на специализированный полигон ООО «Дюртюлимелиоводст рой» (лицензия Л020-00113-02/00154269)	0,030		0,030
Осадок (шлам) механической очистки нефтесодержащих	7 23 101 01 39 4, 4	Мойка колес	Накопление в герметичном контейнере. Вывоз на	17,028	17,028	

Изм. Кол.уч Лист №док Подп. Дата

Наименование отхода

Взам. Инв. №

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

Место складирования, Количество Передано

Лист

Количество

Наименование отхода	Код по ФККО; класс опасности	Процесс образования	Место складирования, хранения	Количество отходов (т/период)	Передано другим предприятиям для утилизации/ обезвреживани я, (т/период)	Количеств отходов, подлежащих размещению на полигоне, (т/период)
сточных вод, со- держащий нефтепродукты в количестве менее 15%, обводненный			обезвреживание ООО «Табигат»			
Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%)	9 19 204 02 60 4, 4	Строительные работы	Накопление в металлическом контейнере. Вывоз на специализированный полигон ООО «Дюртюлимелиоводст рой» (лицензия Л020-00113-02/00154269)	2,661		2,661
Отходы (остатки) демонтажа бытовой техники, компьютерного, телевизионного и прочего оборудования, непригодные для получения вторичного сырья	7 41 343 11 72	Демонтаж	Накапливается в контейнере. Вывоз на специализированный полигон ООО «Дюртюлимелиоводст рой» (лицензия Л020-00113-02/00154269)	0,220		0,220
Лом бетонных, железобетонных изделий в смеси при демонтаже строительных конструкций	8 22 911 11 20	Демонтаж	Накапливается навлом. Вывоз на утилизацию ООО НПП "АРЕАЛ" (лицензия Л020-00113-02/00043237)	54,500	54,500	
Итого IV класса			.1	76,869	71,528	5,341
Остатки и огарки стальных сварочных электродов	9 19 100 01 20 5, 5	Строительные работы	Накапливается в контейнере. Вывозится для утилизации на АО «Башвтормет»	0,017	0,017	
Лом и отходы, содержащие незагрязненные черные металлы в виде изделий, кусков, несортированные	4 61 010 01 20 5, 5	Строительные работы	Накапливается в металлическом контейнере. Вывозится для утилизации на АО «Башвтормет»		2,248	
Отходы изолированных проводов и кабелей	4 82 302 01 52 5, 5	Строительные работы	Накапливается в металлическом контейнере. Вывозится для утилизации на АО «Башвтормет»		0,013	
Отходы упаковочных материалов из бумаги и картона несортированные незагрязненные		Строительные работы	Накапливается в металлическом контейнере. Вывоз на специализированный полигон ООО «Дюртюлимелиоводст рой» (лицензия Л020-00113-02/00154269)	0,003		0,003
Лом кирпичной кладки от сноса и разборки зданий	8 12 201 01 20 5	Демонтаж	Накапливается навалом. Вывоз на специализированный полигон ООО «Дюртюлимелиоводст рой» (лицензия Л020-00113-02/00154269)	53,000		53,000
	4 61 200 01 51	Демонтаж	Накапливается	22445,579	22445,579	

Подп. и дата Инв. № подл.

Изм. Кол.уч Лист №док

Подп.

Дата

Взам. Инв. №

04/2022-151-00000-OBOC-TY

Наименование отхода	Код по ФККО; класс опасности	Процесс образования	Место складирования, хранения	Количество отходов (т/период)	Передано другим предприятиям для утилизации/ обезвреживани я, (т/период)	Количество отходов, подлежащи х размещени ю на полигоне, (т/период)
изделий незагрязненные	5		навалом. Вывоз на утилизацию АО «Башвтормет»			
Лом и отходы изделий из полиэтилена незагрязненные (кроме тары)	4 34 110 03 51 5	Демонтаж	Накапливается навалом. Вывоз на специализированный полигон ООО «Дюртюлимелиоводст рой» (лицензия Л020-00113-02/00154269)	123,035		123,035
Итого V класса				22623,895	22447,857	176,038
Итого				22700,764	22519,385	181,379

ООО "Дюртюлимелиоводстрой"

Номер лицензии

Л020-00113-02/00154269

ВыданаЮжно-Уральское межрегиональное управление Федеральной службы по надзору в сфере природопользования

Приказ лицензирующего органа о предоставлении лицензии

Код по

ФККО; класс

Приказ 1711-П

01.09.2016

Взам. Инв. №

Подп. и дата

Действующая

При эксплуатации

Наименование отхода

Таблица 2.24 - Объемы образования и характеристика отходов, образующихся в период эксплуатации

Место

складирования,

	опасности	хранения	т/год (т/период)	предприятиям т/год	подлежащих размещению
				(т/период)	на ТБО,
					т/год
					(т/период)
Мусор от офисных и	73310001724,	Накопление в	3,616		3,616
бытовых помещений	4	металлическом			
организаций		контейнере. Вывоз на			
несортированный		специализированный			
(исключая		полигон ТБО			
крупногабаритный)					
Спецодежда из	4 02 110 01 62	Накопление в	0,0203		0,0203
хлопчатобумажного и	4	металлическом			
смешанных волокон,		контейнере. Вывоз на			
утратившая		специализированный			
потребительские		полигон ТБО			
свойства,					
незагрязненная					
Обтирочный материал,	9 19 204 02 60	Накопление в	2,222		2,222
загрязненный нефтью	4	металлическом			
или нефтепродуктами		контейнере. Вывоз на			
(содержание нефти или		специализированный			

Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Передано

другим

Количество

отходов,

Количество

отходов

нефтепродуктов менее 15%)		полигон ТБО			
Мусор с защитных решеток хозяйственно- бытовой и смешанной канализации малоопасный	7 22 101 01 71 4	Накопление в металлическом контейнере. Вывоз на специализированный полигон.	1058,5		1058,5
Итого IV класса			1064,358	0,000	1064,358
Смет с территории предприятия практически неопасный	7 22 221 12 39 5	Накопление в металлическом контейнере. Вывоз на специализированный полигон.	42,845		42,845
Осадок биологических очистных сооружений хозяйственно-бытовых и смешанных сточных вод обезвоженный практически неопасный	7 22 221 12 39 5	Накопление в контейнере. Вывоз на специализированный полигон.	19680,8		19680,8
Резиновая обувь, утратившая потребительские свойства, незагрязненная практически неопасная	4 31 141 12 20 5	Накопление в металлическом контейнере. Вывоз на специализированный полигон.	0,004		0,004
Итого V класса			19723,649	0,000	19723,649
Всего			20788,007	0,000	20788,007

По мере накопления отходы вывозятся с площадки специализированными организациями в соответствии с договорами.

2.7 Сведения о шумовом воздействии и электромагнитном излучении

2.7.1 Воздействие в период производства строительных работ

В период производства работ источниками шумового воздействия являются строительная техника. Строительная техника, используемая при проведении работ, должны соответствовать требованиям санитарных норм.

Исходя из проектных решений, основное шумовое воздействие будут оказывать такие источники шума как автотранспорт, спецтехника. Основными автотранспортными средствами для проведения работ являются бульдозер, экскаватор, трактор, самосвал.

В связи с удаленностью жилой зоны расчетные точки взяты на границе промплощадки.

В таблице 2.25 приведены требования действующих в настоящее время санитарных норм СП 51.13330.2011 по шуму на рабочих местах.

Таблица 2.25 - Требования действующих строительных норм СП 51.13330.2011

Взам. Инв. №

Подп. и дата

						04/2022 151 00000 ODOC TU	Лист	
Изм	Коп уи	Пист	№док	Подп.	Дата	04/2022-151-00000-OBOC-TY	595	
VISIVI.		TIVICT	ч≖док	тюдп.	дата			

Помещения и территории	давлен	Уровень звукового давления (эквивалентный уровень звукового давления), дБ, в октавных полосах частот со среднегеометрическими частотами, Гц									Макси- мальный уровень
	31,5	63	125	250	500	1000	2000	4000	8000	L_{A} (эквива- лентный уровень звука L_{A_{2} кв}), дБА	звука L _{Амакс} , дБА
Работа, требующая сосредоточенности; работа с повышенными требованиями к процессам наблюдения и дистанционного управления производственными цикла-ми. Рабочие места за пультами в кабинах наблюдения и дистанционногоупра вления без речевой связи по телефону, в помещениях лабораторий сшумным оборудованием, впомещениях для размещенияшумных агрегатов вычислительных машин	103	91	83	77	73	70	68	66	64	75	

Расчет шумового воздействия был посчитан для наиболее интенсивного этапа.

Исходные данные уровней звука строительной техники взяты согласно Методическим рекомендациям по охране окружающей среды при реконструкции и реконструкции автомобильных дорог. - М.:СОЮЗДОРНИИ, 1999, Приложение 5.

Характеристики источников шума в период строительства приведены в таблице 2.26.

Таблица 2.26 - Шумовые характеристики источников шума постоянного типа

N	Объект	Коор	динаты	аты точки Уровни звукового давления (мощности, в случае R = 0), дЕ), дБ,	La.экв		
					в октавны	х пол	ocax c	о сред	негео	метрі	ическі	ими ч	астота	ами в	
									Гц						
		X (m)	Y (M)	Высота		31.5	63	125	250	500	1000	2000	4000	8000	
				подъема											
				(M)											
004	ДЭС	400.00	157.70	1.50		55.0	58.0	63.0	60.0	57.0	57.0	54.0	48.0	47.0	61.0

Таблица 2.27 - Шумовые характеристики источников шума непостоянного типа

N	Объект	Коо	рдинаты то	чки		L а.экв	Lа.ма кс
		X (M)	Y (M)	Высота подъема (м)	Дистанция замера (расчета) R (м)		
001	Экскаватор	429.20	172.30	1.50	7.5	76.0	81.0
002	Экскаватор	452.50	151.80	1.50	7.5	76.0	81.0
003	Автосамосвал	417.50	143.10	1.50	7.5	76.0	81.0

Расчет уровня звукового давления (дБ) выполнен по программе «Эколог-Шум», разработанной фирмой «Интеграл» г. Санкт-Петербурга.

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

Подп. и дата

Характеристики источников шумового воздействия на период строительства представлены в таблице 2.28.

Таблица 2.28 - Результаты в расчетной точке

Pac	четная точка	Коорди		Высот	31.5	63	125	250	500	1000	2000	4000	8000	La.экв	La. макс
		точ	ки	а (м)											
N	Название	Х (м)	Y (m)												
009	Расчетная	-	88.20	1.50	5.9	8.7	13.3	9.3	5	0	0	0	0	4.30	14.10
	точка	1095.4													
		0													
010	Расчетная	-842.00	-	1.50	7.2	10	14.7	10.8	6.7	0	0	0	0	5.90	15.80
	точка		161.2												
			0												
011	Расчетная	-894.90	-	1.50	6.3	9.2	13.8	9.9	5.6	0	0	0	0	4.90	14.70
	точка		417.8												
			0												
012	Расчетная	-	-	1.50	0	7.5	12	7.9	0	0	0	0	0	0.00	12.60
	точка	1095.9	717.5												
		0	0												

Кроме того, необходимо отметить, что период строительства ограничен во времени, вследствие чего шумовое воздействие в данный период будет непродолжительным.

Таким образом, источники шума при реконструкции не будут оказывать негативного влияния на рабочие места и на нормируемую территорию.

Специальные мероприятия по снижению физического воздействия не предусматриваются, его минимизация должна обеспечиваться исправностью строительных механизмов и техники. С учетом короткого срока выполнения строительных работ воздействие физических факторов может быть оценено как непродолжительное и умеренное.

2.7.2 Воздействие в период эксплуатации

Шумовые воздействия проектируемого объекта могут рассматриваться как энергетическое загрязнение окружающей среды, в частности атмосферы.

Характеристикой непостоянного шума является интегральный критерий - эквивалентный (по энергии) уровень звука.

Определение границ СЗЗ по шуму для площадки выполнено, согласно «Рекомендациям по разработке проектов санитарно-защитных зон промышленных предприятий, групп предприятий», Методическим указаниям МУК 4.3.2194-07, СП 51.13330.2011, СанПиН 1.2.3685-21, с использованием программы «Эколог-Шум».

В соответствии с СанПиН 1.2.3685-21, СП 51.13330.2011 эквивалентный уровень звука на территории непосредственно прилегающей к жилым зданиям в дневное время не должен превышать 55 дБА, в ночное время — 45 дБА. Максимальный (непостоянный, переменный) уровень звука на территории, непосредственно прилегающей к жилым зданиям в ночное время не должен превышать 60 дБА (в дневное время — 70 дБА).

Инв. № подл. Подп. и дата Взам. Инв. №

						0
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Таблица 2.29- Требования действующих строительных норм СП 51.13330.2011

Помещения и территории	5		ого дан	вления)	, дБ, в	октавнь	валентних полосистотами	ах часто		Уровень звука , L_{A} (эквива-	Макси- мальный
Территории, непосредст- венно	31,5	63	125	250	500	1000	2000	4000	8000	лентный уровень звука L _{Аэкв}), дБА	уровень звука L _{Амакс} , дБА
прилегающие к жилым зданиям, домам отдыха, домам-	90	75	66	59	54	50	47	45	44	55 (7.00-23.00)	70 (7.00- 23.00)
интернатам для престарелых и инвалидов	83	67	57	49	44	40	37	35	33	45 (23.00-7.00)	60 (23.00- 7.00)
На границе СЗЗ	90	75	66	59	54	50	47	45	44	55 (7.00-23.00)	70 (7.00- 23.00)
	83	67	57	49	44	40	37	35	33	45 (23.00-7.00)	60 (23.00- 7.00)

В период эксплуатации проектируемого объекта источниками шума будет технологическое и электротехническое оборудование.

Шумовые характеристики источников шума в октавных полосах со среднегеометрическими частотами в Гц взяты по данным заводов-изготовителей оборудования, а также «Каталога шумовых характеристик технологического оборудования (приложение к СНиП II-12-77)».

Согласно таблице 17 Справочника проектировщика «Защита от шума в градореконструкции» при движении «КамАЗ» со скоростью 60 км/час, максимальный уровень звука на расстоянии 7.5 м составляет 88дБА.

При скорости движения 10 км/час ориентировочный LAмакс будет равен: LAмакс,10.= LAмакс,60. + $30\lg 10/60 = 88 - 23.3 = 64.7$ дБА.

Эквивалентный уровень звука, создаваемый при заезде автомашин на территорию объекта, равен: LAэкв = $10\lg(\tau/T\ 100,1xLamakc) + 10\lg n = 10\lg(1/60x\ 100,1x65) + 10\lg 1 = 47,2 + 0 = 47,2 дБА – для дневного времени.$

Таблица 2.30 – Характеристики источников шума постоянного типа

	N	Объект	Коор	динаты	точки	Уровни зву			,				· / / · · · · ·		вных	La.экв
						I	олосах	со сред	негеом	етриче	скими	частота	мивГ	Ц		
			Х (м)	Y (m)	Высота	Дистанция	31.5	63	125	250	500	1000	2000	4000	8000	
					подъема											
					(M)	(расчета) R										
L						(M)										

ı						
	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

Подп. и дата

Инв. № подл.

100 Hacco (syul) 362,90 20760 0.00 95.0 98.0 103.0 100.0 97.0 97.0 97.0 94.0 85.0 85.0 95.0 202 Hacco 314.70 122.20 0.00 93.0 96.0 101.0 98.0 95.0 95.0 95.0 95.0 95.0 95.0 203 Hacco 314.70 122.20 0.00 93.0 96.0 101.0 98.0 85.0 95.0 95.0 95.0 95.0 95.0 95.0 204 Casponiisi necr(eyin) 56.10 1843.0 0.00 81.0 84.0 88.0 86.0 83.0 83.0 83.0 83.0 80.0 205 Temparametecini ripeco 527.90 218.0 0.00 98.0 97.0 102.0 99.0 96.0 96.0 96.0 96.0 96.0 96.0 96.0 207 Tocapinali crianoc 521.80 180.0 0.00 93.0 96.0 101.0 98.0 95.0 95.0 95.0 95.0 95.0 95.0 208 Casponiiniani crianoc 521.80 180.0 0.00 93.0 96.0 101.0 98.0 95.0 95.0 95.0 95.0 95.0 95.0 208 Casponiiniani crianoc 526.60 173.0 0.00 360.0 101.0 180.0 105.0 105.0 102.0 96.0 9															
1003 Насос 11470 1220 0.00 93.0 96.0 101.0 98.0 95.	001	Насос (сущ)	362.90	207.60	0.00	95.0	98.0	103.0	100.0	97.0	97.0	94.0	88.0	87.0	101.0
100 Сверонный пост (суш) 561,60 184,30 0.00 181,0 84,0 89,0 86,0 83,0	002	Hacoc	313.20	130.20	0.00	93.0	96.0	101.0	98.0	95.0	95.0	92.0	86.0	85.0	99.0
100 Сверонный пост (суш) 561,60 184,30 0.00 181,0 84,0 89,0 86,0 83,0	003	Насос	314.70	122.20	0.00	93.0	96.0	101.0	98.0	95.0	95.0	92.0	86.0	85.0	99.0
100 Перес-ножины 59.70 173.80 0.00 94.0 97.0 102.0 99.0 96.0 96.0 93.0 87.0 86.0 100.0	004	Сварочный пост (суш)		184.30	0.00	81.0	84.0	89.0	86.0	83.0		80.0	74.0	73.0	87.0
100 Покарный ставок 27.90 218.50 0.00 88.0 91.0 96.0 93.0 90.0 87.0 81.0 80.0 94.0 97.0	_	Пресс-ножницы													
Cyul) Cyu	006	Гидравлический пресс	527.90	218.50	0.00	88.0	91.0	96.0	93.0	90.0	90.0	87.0	81.0	80.0	94.0
Cyun	007		521.80	180.40	0.00	93.0	96.0	101.0	98.0	95.0	95.0	92.0	86.0	85.0	99.0
1909 Стротавльный станок (сущ) 1930 1960 111.0 1980 1950 195.0 192.0 96.0 95.0 192.0 190.0	008		521.30	174.70	0.00	86.0	89.0	94.0	91.0	88.0	88.0	85.0	79.0	78.0	92.0
(сушт)	009	Строгальный станок	526.60	177.30	0.00	103.0	106.0	111.0	108.0	105.0	105.0	102.0	96.0	95.0	109.0
Cyun) Cyu	010		524.40	172.50	0.00	94.0	97.0	102.0	99.0	96.0	96.0	93.0	87.0	86.0	100.0
Сушр	011		518.70	172.50	0.00	93.0	96.0	101.0	98.0	95.0	95.0	92.0	86.0	85.0	99.0
механической очистки) сванической очистки) свания №12 (Блок обезовоживания осалка) сванической очистки	012		520.50	172.50		85.0	88.0	93.0	90.0	87.0	87.0	84.0	78.0	77.0	91.0
механической очистки) сма развания №12 (Блок обезвоживания осадка) 585.30 137.00 0.00 85.0 88.0 93.0 90.0 87.0 87.0 70.0 71.0 91.0 016 ВЗ здания №12 (Блок обезвоживания осадка) 587.90 137.00 0.00 85.0 88.0 93.0 90.0 87.0 87.0 78.0 77.0 91.0 017 В Здания №12 (Блок обезвоживания осадка) 589.20 108.60 0.00 85.0 88.0 93.0 90.0 87.0 87.0 78.0 77.0 91.0 018 П1 Здания №12 (Блок обезвоживания осадка) 591.40 137.50 0.00 82.0 85.0 80.0 90.0 87.0 84.0 81.0 75.0 74.0 91.0 019 В Здание №13. Блок доочистки 355.70 82.70 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 020 В Здание №13. Блок доочистки 351.20 74.30 0.00 85.0 8	013	механической	531.40	185.20	3.20	82.0	85.0	90.0	87.0	84.0	84.0	81.0	75.0	74.0	88.0
обезвоживания осадка) содака) 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 016 ВЗ Здания №12 (Блок обезвоживания осадка) 1017 В1 Здания №12 (Блок обезвоживания осадка) 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 018 П1 Здания №12 (Блок обезвоживания осадка) 591.40 137.50 0.00 82.0 85.0 90.0 87.0 84.0 84.0 78.0 77.0 91.0 019 ВЗ Здание №13. Блок доочистки 355.70 82.70 0.00 85.0 88.0 93.0 90.0 87.0 84.0 84.0 78.0 77.0 91.0 020 В Здание №13. Блок доочистки 355.70 82.70 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 021 ВЗ Здание №13. Блок доочистки 351.20 74.30 0.00 85.0 88.0 93.0 90.0 87.0 84.0 <t< td=""><td>014</td><td>механической</td><td>530.50</td><td>181.70</td><td>3.20</td><td>85.0</td><td>88.0</td><td>93.0</td><td>90.0</td><td>87.0</td><td>87.0</td><td>84.0</td><td>78.0</td><td>77.0</td><td>91.0</td></t<>	014	механической	530.50	181.70	3.20	85.0	88.0	93.0	90.0	87.0	87.0	84.0	78.0	77.0	91.0
016 ВЗ Здания №12 (Блок обезвоживания осадка) 587.90 137.00 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 017 В1 Здания №12 (Блок обезвоживания осадка) 589.20 108.60 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 018 П1 Здания №12 (Блок обезвоживания осадка) 591.40 137.50 0.00 85.0 85.0 90.0 87.0 84.0 81.0 75.0 74.0 88.0 019 ВЗ Здание №13. Блок доочистки 355.70 82.70 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 020 В Здание №13. Блок доочистки 351.20 74.30 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 022 ВЗ Здание №13. Блок доочистки 351.20 74.30 0.00 85.0 88.0 93.0 90.0	015	обезвоживания	585.30	137.00	0.00	85.0	88.0	93.0	90.0	87.0	87.0	84.0	78.0	77.0	91.0
обезвоживания осадка) содка) 82.0 85.0 90.0 87.0 84.0 81.0 75.0 74.0 88.0 018 ПП Здания №12 (Блок обезвоживания осадка) 591.40 137.50 0.00 85.0 85.0 90.0 87.0 84.0 81.0 75.0 74.0 88.0 019 ВЗ здание №13. Блок дочистки 355.70 82.70 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 020 ВЗ здание №13. Блок дочистки 351.20 74.30 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 021 ВЗ здание №13. Блок дочистки 351.20 74.30 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 022 ВЗ здание №13. Блок дочистки 353.80 75.30 0.00 82.0 85.0 90.0 87.0 84.0 81.0 78.0 74.0 88.0	016	обезвоживания	587.90	137.00	0.00	85.0	88.0	93.0	90.0	87.0	87.0	84.0	78.0	77.0	91.0
обезвоживания осадка) садка) ваздание №13. Блок доочистки 355.70 82.70 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 020 В1 Здание №13. Блок доочистки 351.20 83.00 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 021 В3 Здание №13. Блок доочистки 351.20 74.30 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 022 В4 Здание №13. Блок доочистки 353.80 75.30 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 022 В4 Здание №13. Блок доочистки 353.80 75.30 0.00 85.0 88.0 93.0 90.0 87.0 84.0 81.0 78.0 77.0 91.0 024 В1 Насосной станции сброса очищенного стока 30.40 91.20 0.00 85.0 88.0	017	обезвоживания	589.20	108.60	0.00	85.0	88.0	93.0	90.0	87.0	87.0	84.0	78.0	77.0	91.0
019 ВЗ Здание №13. Блок доочистки 355.70 82.70 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 020 В1 Здание №13. Блок доочистки 351.20 83.00 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 021 ВЗ Здание №13. Блок доочистки 351.20 74.30 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 022 В4 Здание №13. Блок доочистки 353.80 75.30 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 023 П1 Здание №13. Блок доочистки 356.40 75.60 0.00 82.0 85.0 90.0 87.0 84.0 81.0 75.0 74.0 88.0 024 В1 Насосной станции сброса очищенного стока 303.30 90.70 0.00 82.0 85.0 88.0 93.0 90.0	018	обезвоживания	591.40	137.50	0.00	82.0	85.0	90.0	87.0	84.0	84.0	81.0	75.0	74.0	88.0
020 В1 Здание №13. Блок доочистки 351.20 83.00 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 021 ВЗ Здание №13. Блок доочистки 351.20 74.30 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 022 В4 Здание №13. Блок доочистки 353.80 75.30 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 023 П1 Здание №13. Блок доочистки 356.40 75.60 0.00 82.0 85.0 90.0 87.0 84.0 81.0 75.0 74.0 88.0 024 В1 Насосной станции сброса очищенного стока 300.40 91.20 0.00 85.0 88.0 93.0 90.0 87.0 84.0 84.0 78.0 77.0 91.0 025 П1 Насосной станции сброса очищенного стока 303.30 90.70 0.00 85.0 85.0 90.0 <t< td=""><td>019</td><td>ВЗ Здание №13. Блок</td><td>355.70</td><td>82.70</td><td>0.00</td><td>85.0</td><td>88.0</td><td>93.0</td><td>90.0</td><td>87.0</td><td>87.0</td><td>84.0</td><td>78.0</td><td>77.0</td><td>91.0</td></t<>	019	ВЗ Здание №13. Блок	355.70	82.70	0.00	85.0	88.0	93.0	90.0	87.0	87.0	84.0	78.0	77.0	91.0
021 ВЗ Здание №13. Блок дочистки 351.20 74.30 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 022 В4 Здание №13. Блок дочистки 353.80 75.30 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 023 П1 Здание №13. Блок дочистки 356.40 75.60 0.00 85.0 88.0 93.0 90.0 87.0 84.0 81.0 75.0 74.0 88.0 024 В1 Насосной станции сброса очищенного стока 303.30 90.70 0.00 85.0 85.0 90.0 87.0 84.0 81.0 75.0 74.0 88.0 025 П1 Насосной станции сброса очищенного стока 303.30 90.70 0.00 85.0 85.0 90.0 87.0 84.0 84.0 75.0 74.0 88.0 026 В1 Насосной ила 362.50 151.20 0.00 85.0 88.0 93.0 90.0	020	В1 Здание №13. Блок	351.20	83.00	0.00	85.0	88.0	93.0	90.0	87.0	87.0	84.0	78.0	77.0	91.0
022 В4 Здание №13. Блок доочистки 353.80 75.30 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 023 П1 Здание №13. Блок доочистки 356.40 75.60 0.00 82.0 85.0 90.0 87.0 84.0 84.0 81.0 75.0 74.0 88.0 024 В1 Насосной станции сброса очищенного стока 303.30 90.70 0.00 82.0 85.0 90.0 87.0 84.0 81.0 75.0 74.0 88.0 025 П1 Насосной станции сброса очищенного стока 303.30 90.70 0.00 82.0 85.0 90.0 87.0 84.0 81.0 75.0 74.0 88.0 026 В1 Насосной ила 362.50 151.20 0.00 85.0 88.0 93.0 90.0 87.0 84.0 84.0 78.0 77.0 91.0 026 В1 Насосной ила 353.00 144.20 0.00 85.0 88.0 93.0 90	021	доочистки	351.20	74.30	0.00	85.0	88.0	93.0	90.0	87.0	87.0	84.0	78.0	77.0	91.0
доочистки доочистки 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 024 В1 Насосной станции сброса очищенного стока 303.30 90.70 0.00 85.0 88.0 93.0 90.0 87.0 84.0 84.0 78.0 77.0 91.0 025 П1 Насосной станции сброса очищенного стока 303.30 90.70 0.00 85.0 85.0 90.0 87.0 84.0 81.0 75.0 74.0 88.0 026 В1 Насосной ила 362.50 151.20 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 027 П1 Насосной ила 353.00 144.20 0.00 82.0 85.0 90.0 87.0 84.0 81.0 75.0 74.0 88.0 028 В1 КПП 453.20 247.00 0.00 85.0 88.0 93.0 90.0 87.0 84.0 84.0 78.0 77.0 <t< td=""><td>022</td><td>В4 Здание №13. Блок</td><td>353.80</td><td>75.30</td><td>0.00</td><td>85.0</td><td>88.0</td><td>93.0</td><td>90.0</td><td>87.0</td><td>87.0</td><td>84.0</td><td>78.0</td><td>77.0</td><td>91.0</td></t<>	022	В4 Здание №13. Блок	353.80	75.30	0.00	85.0	88.0	93.0	90.0	87.0	87.0	84.0	78.0	77.0	91.0
сброса очищенного стока вестока весток	023		356.40	75.60	0.00	82.0	85.0		87.0	84.0	84.0	81.0	75.0	74.0	88.0
сброса очищенного стока вестока сороса очищенного стока вестока	024	сброса очищенного			0.00					87.0	87.0				91.0
027 П1 Насосной ила 353.00 144.20 0.00 82.0 85.0 90.0 87.0 84.0 84.0 81.0 75.0 74.0 88.0 028 В1 КПП 453.20 247.00 0.00 85.0 88.0 93.0 90.0 87.0 87.0 84.0 78.0 77.0 91.0 029 К1 КПП 454.20 247.40 0.00 49.0 52.0 57.0 54.0 51.0 51.0 48.0 42.0 41.0 55.0	025	сброса очищенного	303.30				85.0			84.0	84.0	81.0		74.0	88.0
028 Β1 ΚΠΠ 453.20 247.00 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 029 Κ1 ΚΠΠ 454.20 247.40 0.00 49.0 52.0 57.0 54.0 51.0 48.0 42.0 41.0 55.0	026	В1 Насосной ила	362.50	151.20	0.00	85.0	88.0	93.0	90.0	87.0	87.0	84.0	78.0	77.0	91.0
028 Β1 ΚΠΠ 453.20 247.00 0.00 85.0 88.0 93.0 90.0 87.0 84.0 78.0 77.0 91.0 029 Κ1 ΚΠΠ 454.20 247.40 0.00 49.0 52.0 57.0 54.0 51.0 51.0 48.0 42.0 41.0 55.0	027	П1 Насосной ила	353.00	144.20	0.00	82.0	85.0	90.0	87.0	84.0	84.0	81.0	75.0	74.0	88.0
029 K1 KIIII 454.20 247.40 0.00 49.0 52.0 57.0 54.0 51.0 51.0 48.0 42.0 41.0 55.0	028		453.20	247.00	0.00		88.0	93.0	90.0	87.0	87.0	84.0		77.0	91.0
	029	К1 КПП	454.20			49.0	52.0	57.0	54.0	51.0		48.0		41.0	55.0
	031	КТП	313.60	114.20	1.50	69.0	72.0	77.0	74.0	71.0	71.0	68.0	62.0	61.0	75.0

Таблица 2.31 – Характеристики источников шума непостоянного типа

N	Объект	Координаты точек (X, Y, Высота подъема)	Ширина (м)		La. экв	La.макс
		·		Дистанция замера (расчета) R (м)		
030	транспорт	(379.2, 179.6, 1.5), (431, 187.2, 1.5)	4.00	7.5	47.7	64.2

Таблица 2.32 – Результаты расчета

Расчетная точка	Координаты	Высот	31.5	63	125	250	500	1000	2000	4000	8000	La.экв	La.макс

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

Подп. и дата

		точ		а (м)											
N	Название	Х (м)	Y (M)												
001	Расчетная точка на границе санитарно- защитной зоны	391.50	643.0	1.50	40.8	43.7	48.6	45.3	41.8	41	35	16.8	0	44.80	45.20
002	Расчетная точка на границе санитарно- защитной зоны	1058.2	457.5 0	1.50	38.5	41.4	46.2	42.8	39.3	38.1	31.3	6.9	0	42.10	42.30
003	Расчетная точка на границе санитарно- защитной зоны	1167.4 0	4.80	1.50	37.8	40.7	45.5	42.1	38.5	37.3	30.1	2.4	0	41.20	41.40
004	Расчетная точка на границе санитарно- защитной зоны	1116.1	481.9 0	1.50	35.7	38.6	43.3	39.8	36	34.4	25.9	0	0	38.40	38.70
005	Расчетная точка на границе санитарно- защитной зоны	630.80	873.2 0	1.50	34.6	37.5	42.2	38.5	34.6	32.8	23.5	0	0	37.00	37.20
006	Расчетная точка на границе санитарно- защитной зоны	86.40	709.7 0	1.50	35.5	38.5	43.2	39.6	35.8	34.2	25.6	0	0	38.30	38.50
007	Расчетная точка на границе санитарно- защитной зоны	-412.40	133.1	1.50	35.9	38.9	43.6	40	36.3	34.7	26.5	0	0	38.80	39.10
008	Расчетная точка на границе санитарно- защитной зоны	-127.10	396.4	1.50	39.1	42	46.9	43.5	39.9	38.9	32.3	11.2	0	42.80	43.10
009	Расчетная точка на границе жилой зоны	1095.4 0	88.20	1.50	31.2	34.1	38.7	34.7	30.3	27.7	14	0	0	32.40	32.60
010	Расчетная точка на границе жилой зоны	-842.00	161.2 0	1.50	32.6	35.4	40.1	36.2	32.1	29.8	18.8	0	0	34.30	34.50
011	Расчетная точка на границе жилой зоны	-894.90	417.8 0	1.50	31.7	34.6	39.2	35.3	31	28.5	15.9	0	0	33.10	33.40
012	Расчетная точка на границе жилой зоны	1095.9 0	717.5 0	1.50	30	32.9	37.4	33.2	28.7	25.7	8.5	0	0	30.60	30.90

Согласно расчету шума на границе санитарно-защитной зоны и на границе жилой зоны отсутствуют превышения нормативных значений для дневного и ночного времени.

Проект санитарно-защитной зоны биологических очистных сооружений г.Нефтекамск разработан согласно Постановлению Правительства РФ от 3 марта 2018 г. № 222 «Об

Изм.	Кол.уч	Лист	№док	Подп.	Дата			

Взам. Инв. №

Подп. и дата

утверждении Правил установления санитарно-защитных зон и использования земельных участков, расположенных в границах санитарно-защитных зон» и СанПиН 2.2.1/2.1.1.1200-03 «Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов» на производительность $EOC - 25\ 000\ M^3/cyt$ (приложение Γ).

Согласно п.7.1.13 санитарной классификации объектов воздействия на среду обитания и здоровье человека по СанПиН 2.2.1/2.1.1.1200-03 для сооружений с механической и биологической очисткой с иловыми площадками для сброженных осадков производительностью более 5 000 до 50 000 м³/сут установлена санитарно-защитная зона 400 м.

Поскольку данным проектом реконструкции объекта увеличение производительности очистных сооружений не предусматривается и принципиальный состав сооружений не меняется, граница санитарно-защитной зоны принята без изменений.

Результаты расчета шумового воздействия приведены в приложении Д.

2.8 Воздействие объекта при аварийных ситуациях

При проектировании объектов использовано современное оборудование. При эксплуатации должны соблюдаться требования инструкций по безопасной эксплуатации оборудования.

Таким образом, уровень безопасности проектируемых объектов можно считать приемлемым.

2.9 Особо охраняемые природные территории и другие экологические ограничения природопользования

- 1. В соответствии с Перечнем муниципальных образований субъектов РФ, в границах которых имеются ООПТ федерального значения, изложенным в письме Минприроды России №15-47/10213 от 30.04.2020 г., на территории города Нефтекамск и Краснокамского района РБ ООПТ федерального значения отсутствуют.
- 2. В соответствии с Письмом Минэкологии РБ №М09-10-04-312 от 13.01.2023 г. на участке изысканий особо охраняемые природные территории республиканского значения не имеется.
- 3. В соответствии с Письмом Минэкологии РБ №М09-10-04-614 от 18.01.2023 г. на участке изысканий лесопарковый зеленый пояс отсутствует.
- 4. В соответствии с Письмом Минэкологии РБ №М09-214-214 от 12.01.2023 г. участок находится по сильным антропогенным воздействием и не является местом обитания и миграции диких животных.

- 1							
							ſ
							l
	Изм.	Кол.уч	Лист	№док	Подп.	Дата	l

Взам. Инв. №

Подп. и дата

Инв. № подл.

- 6. По данным ГКУ РБ Управления по мелиорации земель (письмо №32 от 16.01.2023 г,) на участке изысканий государственных мелиоративных систем и мелиорируемых земель, находящихся в оперативном управлении Учреждения, не имеется.
- 7. Согласно письму Администрации ГО г.Нефтекамск №29/8-487 от 24.01.2023 г. на участке изысканий ООПТ местного значения, санитарно-защитные зоны кладбищ, защитные леса, лечебно-оздоровительные местности, зоны ограничения застройки от источников электромагнитного излучения отсутствуют.

Участок расположен в границах второго пояса зоны санитарной охраны источника питьевого водоснабжения.

- 8. По данным Минэкологии РБ (письмо № М09-06-1931 от 01.02.2023 г.) на участке изысканий зоны санитарной охраны источников питьевого водоснабжения министерством не утверждались, материалы на утверждение проектов зон санитарной охраны на земельном участке в министерство не поступали.
- 9. По данным Минэкологии РБ (письмо № М09-06-1808 от 31.01.2023 г.) на участке изысканий месторождений общераспространенных полезных ископаемых и действующих лицензий на ОПИ не зарегистрировано.
- 10. По данным Управления по государственной охране объектов культурного наследия РБ (письмо №У02-07-375 от 31.01.2023 г.) на участке изысканий объекты культурного наследия, включенные в Единый государственный реестр объектов культурного наследия (памятников истории и культуры) народов РФ, отсутствуют.

Для получения сведений об отсутствии на участке выявленных объектов культурного наследия либо объектов, обладающих признаками объекта культурного наследия, необходимо проведение историко-культурной экспертизы земельного участка.

- 11. В соответствии с Распоряжением Правительства Республики Башкортостан №637-р от 29.06.2020 г. «Об утверждении перечня особо ценных продуктивных сельскохозяйственных угодий, использование которых не допускается для целей, не связанных с сельскохозяйственным производством», на территории городского округа города Нефтекамск и Краснокамского района РБ особо ценные продуктивные сельскохозяйственные угодья отсутствуют.
- 12. Водно-болотные угодья на территории Республики Башкортостан отсутствуют, согласно списку водно-болотных угодий России, приведенному на сайте «Водно-болотные угодья России» (http://www.fesk.ru/regions/index).

Инв. № подл. Подп. и дата Взам. Инв. №

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

По данным интерактивной Ключевые карты орнитологические территории, представленной на сайте Союза охраны птиц, (https://huntmap.ru/kljuchevye-ornitologicheskieterritorii-rossii), на участке изысканий ключевых орнитологических территорий не имеется. Ближайшая КОТР - Краснокамский лес (код БС-005) расположена на расстоянии 1,1 км к западу от участка изысканий. Лист 04/2022-151-00000-OBOC-TY Изм. Кол.уч Лист №док

Взам. Инв. №

Подп. и дата

Инв. № подл.

Подп.

Дата

3 Перечень мероприятий по предотвращению и (или) снижению возможного негативного воздействия намечаемой хозяйственной деятельности на окружающую среду и рациональному использованию природных ресурсов на период строительства, реконструкции, капитального ремонта эксплуатации объекта капитального И строительства

Результаты расчетов приземных концентраций загрязняющих веществ, анализ и предложения по предельно допустимым и временно согласованным выбросам

Согласно расчетам рассеивания на период строительства с учетом фона максимально-разовые концентрации на границе жилой зоны по всем веществам составляют менее 1,0 ПДК.

Т.к. в результате анализа расчета рассеивания установлено соблюдение санитарногигиенических требований по всем загрязняющим веществам, предлагается установить нормативы предельно-допустимых выбросов на основе значений расчетных максимальноразовых и валовых выбросов загрязняющих веществ (таблица 3.1).

Таблица 3.1 – ПДВ/НДВ этап строительства

3	вагрязняющее вещество	р п пі/	Значение	Класс		ПДВ/НДВ	
код	наименование	Вид ПДК	ПДК (ОБУВ) мг/м3	опас- ности	г/с	т/год	т/период
1	2	3	4	5	6	7	8
0143	Марганец и его соединения (в пересчете на марганец (IV) оксид)	ПДК м/р ПДК с/с ПДК с/г	0,01000 0,00100 0,00100	2	0,0002574	0,000185	0,000278
0301	Азота диоксид (Двуокись азота; пероксид азота)	ПДК м/р ПДК с/с ПДК с/г	0,20000 0,10000 0,04000	3	0,1813558	2,536403	3,804605
0304	Азот (II) оксид (Азот монооксид)	ПДК м/р ПДК с/с ПДК с/г	0,40000 0,06000	3	0,0294684	0,412101	0,618152
0328	Углерод (Пигмент черный)	ПДК м/р ПДК с/с ПДК с/г	0,15000 0,05000 0,02500	3	0,0206070	0,468155	0,702233
0330	Сера диоксид	ПДК м/р ПДК с/с ПДК с/г	0,50000 0,05000 	3	0,0453256	0,296536	0,444804
0333	Дигидросульфид (Водород сернистый, дигидросульфид,	ПДК м/р ПДК с/с ПДК с/г	0,00800 0,00200	2	0,0001350	0,000026	0,000039
0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	ПДК м/р ПДК с/с ПДК с/г	5,00000 3,00000 3,00000	4	0,1898137	2,307483	3,461224
0342	Гидрофторид (Водород фторид; фтороводород)	ПДК м/р ПДК с/с ПДК с/г	0,02000 0,01400 0,00500	2	0,0002196	0,000158	0,000237
0344	Фториды неорганические плохо растворимые	ПДК м/р ПДК с/с ПДК с/г	0,20000 0,03000 	2	0,0002361	0,000170	0,000255

Взам. Инв. №

Подп. и дата

3	вагрязняющее вещество	Значени Вид ПДК ПДК (ОБУ		Класс опас-		ПДВ/НДВ	
код	наименование	вид пдк	мг/м3	ности	г/с	т/год	т/период
1	2	3	4	5	6	7	8
0616	Диметилбензол (смесь о-, м-, п- изомеров) (Метилтолуол)	ПДК м/р ПДК с/с ПДК с/г	0,20000 0,10000	3	0,0036124	0,041250	0,061875
0703	Бенз/а/пирен	ПДК м/р ПДК с/с ПДК с/г	1,00e-06 1,00e-06	1	0,0000001	0,000000	2,24e-08
1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	ПДК м/р ПДК с/с ПДК с/г	0,05000 0,01000 0,00300	2	0,0009444	0,000133	0,000200
1537	Метановая кислота	ПДК м/р ПДК с/с ПДК с/г	0,20000 0,05000 	2	0,0003060	0,000004	0,000006
2732	Керосин (Керосин прямой перегонки; керосин	ОБУВ	1,20000		0,0532126	0,661008	0,991512
2752	Уайт-спирит	ОБУВ	1,00000		0,0018365	0,012750	0,019125
2754	Алканы C12-19 (в пересчете на C)	ПДК м/р ПДК с/с ПДК с/г	1,00000 	4	0,0279900	0,005374	0,008061
2902	Взвешенные вещества	ПДК м/р ПДК с/с ПДК с/г	0,50000 0,15000 0,07500	3	0,0341708	0,029840	0,044760
2908	Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20	ПДК м/р ПДК с/с ПДК с/г	0,30000 0,10000 	3	0,0244928	0,024091	0,036137
Всего	веществ : 18				0,6139842	6,795669	10,193504
	числе твердых : 6				0,0797642	0,522442	0,783663
жидки	х/газообразных : 12				0,5342200	6,273227	9,409841

Согласно результатам расчетов рассеивания на период эксплуатации с учетом существующего положения с учетом фоновых концентраций после реконструкции на границе СЗЗ и жилой зоны максимально-разовые концентрации по всем веществам составляют менее 1 ПДК.

Следовательно корректировка размера санитарно-защитной зоны не требуется.

Т.к. в результате анализа расчета рассеивания установлено соблюдение санитарно-гигиенических требований по всем загрязняющим веществам, предлагается установить нормативы предельнодопустимых выбросов на основе значений расчетных максимально-разовых и валовых выбросов загрязняющих веществ (таблица 3.2).

Таблица 3.2 – ПДВ/НДВ этап эксплуатации

Взам. Инв. №

Подп. и дата

						04/2022-151-00000-OBOC-TY
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

	Загрязняющее вещество	Вид ПДК	Значение ПДК (ОБУВ)	Класс опас-	ПДВ/Н,	ДВ
код	наименование		мг/м3	ности	г/с	т/г
1	2	3	4	5	6	7
0101	диАлюминий триоксид (в пересчете на алюминий)	ПДК м/р ПДК с/с ПДК с/г	0,01000 0,00500	2	0,0041667	0,00060
0123	диЖелезо триоксид (железа оксид) (в пересчете на железо)	ПДК м/р ПДК с/с ПДК с/г	0,04000 	3	0,0511641	0,04092
0143	Марганец и его соединения (в пересчете на марганец (IV) оксид)	ПДК м/р ПДК с/с ПДК с/г	0,01000 0,00100 0,00100	2	0,0020147	0,00063
0150	Натрий гидроксид (Натр едкий)	ОБУВ	0,01000		0,0000152	0,00002
0155	диНатрий карбонат (Натрий углекисл.; натриев.соль угольной к-ты)	ПДК м/р ПДК с/с ПДК с/г	0,15000 0,05000 		0,0000448	0,00008
0172	Алюминий, растворимые соли	ОБУВ	0,01000		0,0000513	0,00161
0203	Хром (в пересчете на хрома (VI) оксид)	ПДК м/р ПДК с/с ПДК с/г	0,00150 0,00001	1	0,0000224	0,00004
0301	Азота диоксид (Двуокись азота; пероксид азота)	ПДК м/р ПДК с/с ПДК с/г	0,20000 0,10000 0,04000	3	0,0302300	0,14480
0302	Азотная кислота (по молекуле HNO3)	ПДК м/р ПДК с/с ПДК с/г	0,40000 0,15000 0,04000	2	0,0001336	0,00023
0303	Аммиак (Азота гидрид)	ПДК м/р ПДК с/с ПДК с/г	0,20000 0,10000 0,04000	4	0,0590566	1,04838
0304	Азот (II) оксид (Азот монооксид)	ПДК м/р ПДК с/с ПДК с/г	0,40000 0,06000	3	0,0212185	0,32933
0316	Гидрохлорид (по молекуле НС1) (Водород хлорид)	ПДК м/р ПДК с/с ПДК с/г	0,20000 0,10000 0,02000	2	0,0002928	0,00051
0322	Серная кислота (по молекуле H2SO4)	ПДК м/р ПДК с/с ПДК с/г	0,30000 0,10000 0,00100	2	0,0000112	0,00001
0328	Углерод (Пигмент черный)	ПДК м/р ПДК с/с ПДК с/г	0,15000 0,05000 0,02500	3	0,0007409	0,00097
0330	Сера диоксид	ПДК м/р ПДК с/с ПДК с/г	0,50000 0,05000 	3	0,0010340	0,00154
0333	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	ПДК м/р ПДК с/с ПДК с/г	0,00800 0,00200	2	0,0061666	0,11503
0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	ПДК м/р ПДК с/с ПДК с/г	5,00000 3,00000 3,00000	4	0,0826754	0,40272
0342	Гидрофторид (Водород фторид; фтороводород)	ПДК м/р ПДК с/с ПДК с/г	0,02000 0,01400 0,00500	2	0,0009421	0,00022
0344	Фториды неорганические плохо растворимые	ПДК м/р ПДК с/с ПДК с/г	0,20000 0,03000	2	0,0005667	0,00013

Инв. № подл. Подп. и дата

Взам. Инв. №

 Изм.
 Кол.уч
 Лист
 №док
 Подп.
 Дата

04/2022-151-00000-OBOC-TY

	Загрязняющее вещество	Вид ПДК	Значение ПДК (ОБУВ)	Класс опас-	ПДВ/Н,	ДВ
код	наименование		мг/м3	ности	г/с	т/г
0403	Гексан (н-Гексан; дипропил; Hexane)	ПДК м/р ПДК с/с ПДК с/г	60,00000 7,00000 0,70000	4	0,0002687	0,00000
0410	Метан	ОБУВ	50,00000		0,4103075	8,02877
0416	Смесь предельных углеводородов С6H14-C10H22	ПДК м/р ПДК с/с ПДК с/г	50,00000 5,00000 	3	0,0975401	1,82399
0616	Диметилбензол (смесь о-, м-, п- изомеров) (Метилтолуол)	ПДК м/р ПДК с/с ПДК с/г	0,20000 0,10000	3	0,0284091	0,40444
0621	Метилбензол (Фенилметан)	ПДК м/р ПДК с/с ПДК с/г	0,60000 0,40000	3	0,0115741	0,10000
0703	Бенз/а/пирен	ПДК м/р ПДК с/с ПДК с/г	1,00e-06 1,00e-06	1	5,03e-10	2,70e-0
0898	Трихлорметан	ПДК м/р ПДК с/с ПДК с/г	0,10000 0,03000 0,00400	2	0,0142916	0,01920
0906	Тетрахлорметан	ПДК м/р ПДК с/с ПДК с/г	4,00000 0,04000 0,01700	2	0,0053324	0,00723
1042	Бутан-1-ол (Бутиловый спирт)	ПДК м/р ПДК с/с ПДК с/г	0,10000	3	0,0034722	0,03675
1061	Этанол (Этиловый спирт; метилкарбинол)	ПДК м/р ПДК с/с ПДК с/г	5,00000 	4	0,0037958	0,02247
1071	Гидроксибензол (фенол)	ПДК м/р ПДК с/с ПДК с/г	0,01000 0,00600 0,00300	2	0,0060696	0,11384
1119	Этиловый эфир этиленгликоля	ОБУВ	0,70000		0,0018519	0,01645
1210	Бутилацетат (Бутиловый эфир уксусной кислоты)	ПДК м/р ПДК с/с ПДК с/г	0,10000	4	0,0023148	0,02000
1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	ПДК м/р ПДК с/с ПДК с/г	0,05000 0,01000 0,00300	2	0,0045118	0,08447
1401	Пропан-2-он (Диметилкетон; диметилформальдегид)	ПДК м/р ПДК с/с ПДК с/г	0,35000	4	0,0016204	0,01400
1513	Аскорбиновая кислота	ОБУВ	0,50000		1,97e-21	4,00e-2
1555	Этановая кислота (Метанкарбоновая кислота)	ПДК м/р ПДК с/с ПДК с/г	0,20000 0,06000 	3	0,0007220	0,00123
1580	Лимонная кислота	ПДК м/р ПДК с/с ПДК с/г	0,10000 	3	1,64e-19	4,59e-2
1716	Одорант СПМ	ПДК м/р ПДК с/с ПДК с/г	0,01200 	4	0,0000001	0,00001
1728	Этантиол	ПДК м/р ПДК с/с ПДК с/г	0,00005	3	0,0002263	0,00424

Инв. № подл. Подп. и дата

Взам. Инв. №

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

	Загрязняющее вещество	Вид ПДК	Значение ПДК (ОБУВ)	Класс опас-	ПДВ/НДВ		
код	наименование		мг/м3	ности	г/с	т/г	
2732	Керосин (Керосин прямой перегонки; керосин дезодорированный)	ОБУВ	1,20000		0,0030533	0,004012	
2750	Сольвент нафта	ОБУВ	0,20000		0,0086787	0,043746	
2752	Уайт-спирит	ОБУВ	1,00000		0,0231481	0,200104	
2754	Алканы С12-19 (в пересчете на С)	ПДК м/р ПДК с/с ПДК с/г	1,00000 	4	0,0009000	0,716000	
2908	Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20	ПДК м/р ПДК с/с ПДК с/г	0,30000 0,10000 	3	0,0029000	0,000237	
2930	Пыль абразивная	ОБУВ	0,04000		0,0048000	0,012442	
2984	Полиакриламид катионный АК-617	ОБУВ	0,25000		0,0000171	0,000540	
3337	2-Гидроксибензойная кислота (орто- Гидроксибензойная кислота)	ОБУВ	0,01000		6,28e-12	8,01e-15	
Всего в	еществ : 47	•			0,8963532	13,762069	
в том ч	исле твердых : 13				0,0665039	0,058248	
жидких	/газообразных : 34				0,8298493	13,703822	

Обоснование решений по очистке сточных вод и утилизации обезвреженных элементов, по предотвращению аварийных сбросов сточных вод

На площадке имеется действующая система хозяйственно-бытовой канализации предназначенная для сбора стоков от зданий с последующей перекачкой насосной станцией (в здании Насосная-РУ поз.6 по ГП) в начало технологического процесса очистки стоков.

Проектными решениями предусмотрено:

- строительство новых участков сетей для подключения сетей проектируемых зданий. Так же предусмотрено подключение к системе сброса дренажных вод от технологического оборудования.
- реконструкция существующих участков: демонтаж трубопровод и прокладка новых с подключением существующих выпусков и подключений работоспособных участков;
 - демонтаж насосной станции.

Подключение существующих зданий выполнено на выпусках из зданий, существующие внутренние сети проектом не рассматриваются.

Согласно принятым решениям, канализационный сток совместно с дренажными водами направлен в емкость сбора дренажа (поз.31 по ГП). Далее сточные воды подаются насосами дренажа (поз.8.1, 8.2 по технологической схеме тома 04/2022-151-П-00000-ТХ) в камеру гашения напора для очистки совместно с поступающим на площадку стоком.

В состав хозяйственно-бытовой канализации входят:

- сеть самотечной хозяйственно-бытовой канализации;

Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв. №

Подп. и дата

04/2022-151-00000-OBOC-TY

- напорная канализация от насосной дренажа (поз.37 по ГП) до камеры гашения напора (поз.21 по ГП).

Проектом предусмотрен сбор хозяйственно-бытовых сточных вод от существующих зданий:

- АБК (поз.4 по ГП);
- гараж (поз.5 по ГП);
- здание №6. Насосная-РУ (поз.6 по ГП);

и от проектируемых зданий:

- здание №10. Блок механической очистки (здание решеток) (поз.22 по ГП);
- здание №12. Блок обезвоживания осадка (поз.24 по ГП);
- здание №13. Блок доочистки (поз28 по ГП)

Проектируемые сети самотечные, накопление стока предусмотрено в емкости сбора дренажа (поз.31 по ГП). Далее сток откачивается на очистку в общем потоке.

Аварийные сбросы сточных вод отсутствуют.

3.1 Мероприятия по охране атмосферного воздуха

При СМР. Для уменьшения вредного воздействия на атмосферный воздух в период строительства необходимо выполнять следующие мероприятия:

- выбор строительных машин, оборудования и транспортных средств необходимо производить с учетом минимального количества выделяемых токсичных газов при работе;
- до начала строительных работ система питания двигателей дорожно-строительных и транспортных машин должна быть отрегулирована. Содержание выбросов вредных веществ с отработанными газами дизелей должно соответствовать ГОСТ Р 41.96-2011. Контроль за техническим состоянием должно осуществлять ответственное лицо за производство работ на участке и механик подрядной организации;
- при производстве строительно-монтажных работ не допускать запыленности и загазованности воздуха сверх предельно-допустимых концентраций.

При эксплуатации. Для обеспечения надежности и безопасной эксплуатации систем сбора и транспорта нефти, а также рационального использования растительного мира и предупреждения загрязнения водоемов и почвы необходимо предусмотреть комплекс мероприятий:

- закрытая герметизированная система сбора и транспорта;
- подземный способ прокладки проектируемых трубопроводов;
- использование труб с наружной заводской антикоррозионной изоляцией и материалов, соответствующих климатическим условиям района строительства;
- секционирование трубопроводов и выделение ремонтно-эксплуатационных участков установкой задвижек;

							Г
							1
							l
ı							1
	Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв. №

Подп. и дата

Инв. № подл.

- испытания проектируемых трубопроводов после строительно-монтажных работ, перед пуском в эксплуатацию;
 - календарное планирование строительно-монтажных работ;
 - захоронение порубочных остатков для расчистки трасс от леса и кустарника;
 - рекультивация строительной полосы;
- своевременное обследование и диагностика трубопроводов, организация планового текущего и капитального ремонта;
 - своевременное проведение реконструкции трубопроводов.

3.2 Мероприятия по оборотному водоснабжению

Проектом не предусмотрено использование оборотного водоснабжения.

3.3 Мероприятия по охране и рациональному использованию земельных ресурсов и почвенного покрова, в том числе мероприятия по рекультивации нарушенных или загрязненных земельных участков и почвенного покрова

По охране почвенного и растительного покрова:

- осуществление хозяйственной деятельности только в пределах площадки, отведенной под производство работ;
- организация системы сбора, транспортировки отходов, образующихся в процессе проведения работ;
- своевременное удаление проливов отработанных масел с целью предотвращения загрязнения нефтепродуктами почв и подземных вод;
- по окончании работ открытые участки площадки должны быть надёжно укрыты элементами благоустройства (озеленение, асфальтирование проездов, отсыпка газонов грунтом).
- строгое соблюдение мер противопожарной безопасности и мероприятий по уменьшению воздействия на компоненты окружающей среды в период реконструкции и эксплуатации реконструируемого объекта.

Проектом установлены твердые границы отвода земель, обязывающие не допускать использования земель за их пределами.

В целях уменьшения негативного влияния па почвенный покров движение и маневрирование техники и автотранспорта осуществлять строго на территории, отведенной в землепользование, необходим контроль за соблюдением ограничений беспорядочного проезда транспорта.

В целях снижения отрицательного воздействия при реконструкции предусмотрены следующие мероприятия:

- заправка строительной техники предусматривается «с колес» автозаправщиком с обязательным применением инвентарных металлических поддонов;

ŀ							_
ı							ı
L							ı
ı							ı
L							ı
I	Изм.	Кол.уч	Лист	№док	Подп.	Дата	

NHB. №

Взам.

Подп. и дата

Инв. № подл.

- накопление производственных отходов в строго отведенных для этого местах, оснащение бригады контейнерами для бытовых и строительных отходов и емкостями для сбора отработанных ГСМ;
 - исключение сброса загрязнённого и аварийного стока на рельеф;
- хранение сыпучих материалов и химических реагентов в закрытом складе с гидроизолированным настилом.

Для предотвращения загрязнения почв разделом ПОС предусмотрено накопление бытовых и строительных отходов на специально-обустроенных площадках.

3.4 Мероприятия по сбору, накоплению, транспортированию, обработке, утилизации, обезвреживанию, размещению отходов производства и потребления

Для накопления отходов V, IV класса опасности на территории стройплощадки выделена специальная площадка, где размещены контейнеры с удобными подъездами для транспорта. Площадка накопления отходов должна иметь ограждение и твердое основание.

Обращение с отходами должно осуществляться с соблюдением экологических требований, правил техники безопасности и пожарной безопасности с целью исключения аварийных ситуаций, возгораний, причинения вреда окружающей среде и здоровью людей.

3.5 Мероприятия по охране недр

Под недрами понимают верхнюю часть земной коры, в пределах которой возможна добыча полезных ископаемых. Охрана недр имеет комплексный характер и рассматривается во взаимосвязи с охраной всей окружающей среды, поскольку использование недр, как правило, влечет за собой нарушение земель, уничтожение лесов и иной растительности, изменение режима поверхностных и подземных вод, загрязнение почв, вод и атмосферы.

Для снижения и предотвращения воздействия на недра проектом предусмотрены в соответствии с «Правилами охраны недр» следующие мероприятия и технологические решения:

- проведение СМР строго в границах отведенной территории;
- предотвращение загрязнения недр (водоемов, почв);
- вывоз сточных вод, производственных и хозяйственно-бытовых отходов;
- надежная защита оборудования и коммуникаций от коррозионного воздействия;
- своевременная ликвидация возможных аварий при разгерметизации оборудования;
- сбор хозяйственно-бытовых сточных вод в септике, по мере накопления вывоз на очистные сооружения;
- оборудование мест накопления отходов производств и потребления на период строительства и эксплуатации;

						Г
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв. №

Подп. и дата

Инв. № подл.

- отсыпка и обваловка площадок запорной арматуры.

Во время строительства проектируемых объектов будут применяться современные технологии и оборудование, обеспечивающие противопожарную, эксплуатационную и экологическую безопасность объекта.

Мероприятия по охране подземных вод

В период производства работ проектом предусмотрены мероприятия по снижению воздействия на водную среду:

- строгое соблюдение проведения работ, в том числе проезд строительной и дорожной техники в пределах границы полосы отвода;
- опережающее устройство внутриплощадочных проездов, временных переездов для использования их в процессе строительства. Передвижение и проезд строительной техники должен осуществляться по существующим и проектируемым проездам;
 - оборудование рабочих мест и бытовых помещений контейнерами для бытовых отходов;
 - своевременный и правильное накопление производственных и бытовых отходов;
 - санкционированный вывоз отходов в специальные места накопления и утилизации;
- запрещение мойки и ремонта машин и механизмов в не предусмотренных для этих целей местах;
- заправку строительной техники выполнять из транспортных средств "с колес" специальными шлангами;
 - исключить хранение топлива на строительной площадке;
 - эксплуатация машин и механизмов только в исправном состоянии;
 - применение строительных материалов, имеющих сертификат качества.

При соблюдении проектных решений и вышеперечисленных мероприятий воздействие на водную среду будет минимальным.

Воздействие характеризуется краткосрочным периодом проведения работ, что снизит степень воздействия на водную среду рассматриваемой территории.

В период эксплуатации

Взам. Инв. №

Подп. и дата

Инв. № подл.

В мероприятиях по уменьшению воздействия на подземные воды в период эксплуатации объекта предусмотрено:

- проведения мониторинга за состоянием подземных вод, расположенных на территориях предприятий загрязнителей;
 - оснащение технологического оборудования предохранительными устройствами;

						ſ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	l

- предупреждение фильтрации загрязненных вод с поверхности почвы водоносные горизонты;
 - в случае аварийной ситуации своевременно принять меры по ее ликвидации.

Рабочие и инженерно-технический персонал должны пройти инструктаж по соблюдению требований охраны окружающей среды.

3.5 Мероприятия по охране объектов растительного и животного мира и среды их обитания

Основное воздействие при реконструкции проектируемых объектов происходит на почвенно-растительный покров.

При проведении строительных работ возможно вытеснение и уничтожение отдельных видов растений (вытаптывание, уничтожение лекарственных трав и т.п.), деградация растительного покрова при перестройке структуры растительных сообществ, их вырубке, подтоплении, иссушении, эрозии, дефляции и механическом повреждении поверхности.

В целях минимизации отрицательного влияния на почвенно-растительный покров проектом предусматривается:

- соблюдение границ землеотвода;
- запрещение использования неисправных, пожароопасных транспортных и строительномонтажных средств;
- запрещение накопления горюче-смазочных материалов, заправки техники, ремонта автомобилей в непредусмотренных для этих целей местах;
 - уборка строительного мусора, выравнивание ям, котлованов и траншей;
 - благоустройство

NHB. №

Взам.

Подп. и дата

Инв. № подл.

- накопление строительного мусора и отходов в инвентарные контейнеры, накопление строительных материалов и накопление отходов строительства осуществлять на специально отведенных бетонированных площадках с последующим вывозом для утилизации;
- запрещение несанкционированных свалок на строительных площадках и за территорией строительства;
- утилизация отходов на основании договоров со специализированными предприятиями, имеющими лицензии по накоплению, использованию, обезвреживанию, транспортировке, размещению опасных отходов.

Согласно отчету по инженерно-экологическим изысканиям при проведении инженерно-экологических работ на участке работ растений, занесенных в Красную книгу, не встречено.

Мероприятия по охране объектов животного мира и среды их обитания

Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Основными видами воздействий на животный мир в районе проектируемого объекта можно считать следующие факторы:

- шумовое воздействие и другие факторы беспокойства (временное отпугивание птиц от насиженных мест, особенно неблагоприятно это может отразиться при проведении строительных работ в период яйцекладки);
 - засорение территории строительным мусором и бытовыми отходами;
- загрязнение среды обитания, произошедшее во время аварий или вызванное работой двигателей транспорта, дизельгенераторов, утечкой ГСМ;
 - гибель животных от столкновения с транспортом;
- возникновение пожаров и, как следствие, выгорание растительного покрова и гибель животных;
 - рост пресса охоты и браконьерства.

Проектом предусмотрены мероприятия по охране животного мира:

- строгое соблюдение границ отведенной территории;
- выполнение строительно-монтажных работ в зимний период для уменьшения воздействия строительных машин на почвенно-растительный покров;
- утилизация отходов на основании договоров со специализированными предприятиями для предотвращения загрязнения среды их обитания;
 - запрет несанкционированной охоты;
 - ограждение площадочных объектов;

При проведении маршрутных наблюдений на территории производства работ не было встречено растений и животных, занесенных в Красные книги.

Вероятность присутствия «краснокнижных» видов значительно снижается вследствие проявления фактора беспокойства в результате существующего освоения территории.

В случае обнаружения в период производства работ редких видов животных и птиц на территории производственного объекта необходимо:

- обеспечить беспрепятственный выход животного с территории производственного объекта;
- в случае гибели животного необходимо направить информацию в адрес департамента природно-ресурсного регулирования, лесных отношений и развития.

Общие требования по охране объектов животного мира и среды их обитания, направленные на предотвращение гибели объектов животного мира, установлены главой III Федерального закона «О животном мире».

В целях предотвращения гибели объектов животного мира запрещается:

Инв. № подл. Подп. и дата Взам. Инв.

Изм.	Кол.уч	Лист	№док	Подп.	Дата

- установление сплошных, не имеющих специальных проходов заграждений и сооружений на путях массовой миграции животных;
- устройство в реках или протоках запаней или установление орудий лова, размеры которых превышают две трети ширины водотока;
- расчистка просек под линиями связи и электропередачи вдоль трубопроводов от подроста древесно-кустарниковой растительности в период размножения животных.

3.6 Мероприятия по минимизации вероятности возникновения возможных аварийных ситуаций на объекте и последствий их воздействия на экосистему региона

Для предотвращения чрезвычайных ситуаций, связанных с разгерметизацией оборудования и аварийными выбросами опасных веществ, ликвидации и снижения тяжести их последствий в проекте предусмотрены следующие технические решения и организационные мероприятия:

- расчетная толщина стенок трубопроводов определена с учетом планируемого срока эксплуатации и учета допуска сверх расчетного значения для компенсации коррозионных процессов;
- при любом виде (режиме) управления (автоматическом, дистанционном или местном) действуют автоматические защиты и блокировки технологического оборудования;
- для предотвращения террористического акта предусмотрено ограждение и охрана объекта;
- 3.7 Мероприятия, технические решения и сооружения, обеспечивающие рациональное использование и охрану водных объектов, а также сохранение водных биологических ресурсов (в том числе предотвращение попадания рыб и других водных биологических ресурсов в водозаборные сооружения) и среды их обитания, в том числе условий их размножения, нагула, путей миграции

Мероприятия по охране водных ресурсов при реконструкции проектируемого объекта:

- строгое соблюдение проведения работ, в том числе проезд строительной и дорожной техники в пределах границы полосы отвода;

Инв. № подл. Подп. и дата

Взам.

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

- оборудование рабочих мест и бытовых помещений контейнерами для бытовых отходов;
- с целью повышения качества строительства и обеспечения эксплуатационной надежности на всех этапах предусмотрен входной, операционный и приемочный контроль;
 - все производственные и бытовые сточные воды после очистки утилизируются;
- в зоне работы транспорта и строительной техники не разрешается слив ГСМ. Все строительные и дорожные машины снабжены поддонами для улавливания ГСМ в период их заправки;
 - своевременное и правильное накопление производственных и бытовых отходов;
 - санкционированный вывоз отходов в специальные места накопления и утилизации;
- запрещение мойки и ремонта машин и механизмов в не предусмотренных для этих целей местах;
 - исключить хранение топлива на строительной площадке;
 - эксплуатация машин и механизмов только в исправном состоянии;
 - применение строительных материалов, имеющих сертификат качества.

Период строительства

В процессе строительства должен быть обеспечен постоянный отвод поверхностных вод из всей зоны производства работ. Организация стока поверхностных вод достигается посредством вертикальной планировки стройплощадки, с учетом существующего рельефа.

При отводе подземных и поверхностных вод следует исключать подтопление сооружений, размыв грунта, заболачивание местности, нарушение природных свойств грунтовых оснований.

При отводе подземных и поверхностных вод следует исключать подтопление сооружений, размыв грунта, заболачивание местности, нарушение природных свойств грунтовых оснований.

Вертикальная планировка территории решалась с учетом:

- обеспечения полного поверхностного отвода атмосферных осадков;
- обеспечения организации отвода атмосферных осадков и защиту территории от попадания извне талых и ливневых вод, устройство водосборного лотка для локализации поверхностных и талых вод в отстойники;
- организации водоотвода условно чистых талых и дождевых вод за пределы территории, а также через дренирующий слой из песка и путем естественного испарения.

Максимальные и минимальные уклоны поверхности принимаются согласно п. 5.49 СП 18.13330.2019 - не превышают нормативно допустимых для данных грунтов и составляют: минимальный уклон принят -0,003, максимальный -0,03.

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв. №

Подп. и дата

ИНВ. № ПОДЛ.

04/2022-151-00000-OBOC-TY

При устройстве вертикальной планировки выполняется послойная отсыпка территории с откасами и последующим уплотнением. В местах, где будут устраиваться фундаменты и подземные коммуникации отсыпка не выполняется.

Производство работ по вертикальной планировке состоит из подготовительных, основных и отделочных операций.

В период реконструкции производится вертикальная планировка с отводом стоков во временную ёмкость, которая указана на строительном генеральном плане 04/2022-151-П-00000-ПОС-Ч1. На период реконструкции объекта поверхностные, хозяйственно-бытовые сточные воды с последующей их очисткой принимает МУП «Нефтекамскводоканал» согласно письму №14/8-6854 от 01.08.2023 г. (Приложение E).

Сбор и отвод поверхностного стока с территории очистных сооружений предусмотрен посредством вертикальной планировки поверхности.

Вертикальная планировка территории решалась с учетом:

- обеспечения полного поверхностного отвода атмосферных осадков;
- предотвращении попадания продуктов при аварийном розливе с участков одних объектов на участки других;
- обеспечения организации отвода разлившихся продуктов с проездов, атмосферных осадков и защиту территории от попадания извне талых и ливневых вод;
- организации водоотвода условно чистых талых и дождевых вод за пределы территории, а также через дренирующий слой из песка и путем естественного испарения.

Наивысшие отметки площадки приняты в центре площадки, к краям - с понижением.

Сбор и отвод поверхностного стока с территории очистных сооружений при эксплуатации предусмотрен посредством вертикальной планировки поверхности.

3.8 Программа производственного экологического контроля (мониторинга) за характером изменения всех компонентов экосистемы при реконструкции и эксплуатации объекта, а также при авариях

3.8.1 Период эксплуатации

В результате анализа воздействия объекта после реконструкции - установлено соблюдение саниатрно-гигиенических нормативов, в связи с чем действующая Программа производственного экологического контроля (Приложение Ж) не требует корректировки.

3.8.2 Период реконструкции

Атмосферный воздух. Периодичность опробования атмосферного воздуха — 1 раз за период строительства по следующим показателям: взвешенные вещества, оксид углерода, диоксид азота.

Пункты контроля за состоянием атмосферного воздуха – граница земельного участка.

Изм.	Кол.уч	Лист	№док	Подп.	Дата	
_						

Взам. Инв. №

Подп. и дата

№ подл.

04/2022-151-00000-OBOC-TY

Поверхностные воды и донные отложения. Участок работ располагается вне пределов водоохранных зон водотоков, прибрежно-защитных полос. В связи с этим, мониторинг не предусмотрен.

Мониторинг подземных вод для проектируемого объекта не предусмотрен.

Почвы. Количественный состав почв контролируется один раз в год (сентябрь) по следующим физико-химическим показателям: нефтепродукты.

На период строительства рекомендуется использовать пункты мониторинга — на границе земельного участка куста.

3.9 Мероприятия по сбору и накоплению медицинских и радиоактивных отходов Радиоактивные и медицинские отходы отсутствуют.

3.10 Мероприятия по защите от шума территории жилой застройки

В качестве общих мер по снижению шума в жилых помещениях в соответствии с требованиями СП 42.13330.2011 «Градостроительство. Планировка и застройка городских и сельских поселений» предусматриваются следующие мероприятия:

- звукоизолировать локальные источники шума (трансформаторы, компрессоры и пр.) при помощи противошумных экранов, завес, палаток. Во многих случаях снижение шума достигается герметизацией отверстий в противошумных покрытиях и кожухах;
- использовать строительные машины, механизмы и транспортные средства, главным образом, в период с 7.00 до 23.00 часов, что позволит организовать полноценный отдых для жителей близлежащей жилой застройки;
- ограничить количество одновременно работающей техники, сосредоточенной в одном месте;
 организовать площадки разгрузки стройматериалов и въезд/выезд автотранспорта на стройплощадку на максимальном удалении от жилых зданий.

Подп. и дата Взам. Инв. №					
подл.					
в. № подл.				04/2022-151-00000-OBOC-TY	Лист

Изм. Кол.уч

Лист №док

Подп.

4 Перечень и расчет затрат на реализацию природоохранных мероприятий и компенсационных выплат

4.1 Расчет платы за выбросы загрязняющих веществ в атмосферу

Согласно постановлению Правительства Российской Федерации от 13.09.2016 г. № 913 «О ставках платы за негативное воздействие на окружающую среду и дополнительных коэффициентах» предприятия, деятельность которых сопровождается выбросами в окружающую среду вредных веществ, обязаны вносить плату за выбросы. Расчет проведен в соответствии с вышеуказанным постановлением.

Результаты расчетов платы за выбросы загрязняющих веществ в атмосферу в период СМР представлены в таблице 4.1.

Таблица 4.1 - Плата за выбросы загрязняющих веществ в атмосферу при проведении строительно-монтажных работ

Код ЗВ	Наименование ЗВ	Валовый выброс, т	Норматив платы за выброс,	Плата за выброс, руб
			руб/т	
123	диЖелезо триоксид (железа оксид) (в пересчете на железо)	0,019096	36,6	0,70
143	Марганец и его соединения (в пересчете на марганец (IV) оксид)	0,000278	5473,5	1,52
301	Азота диоксид (Двуокись азота; пероксид азота)	3,804605	138,8	528,08
304	Азот (II) оксид (Азот монооксид)	0,618152	93,5	57,80
328	Углерод (Пигмент черный)	0,702233	36,6	25,70
330	Сера диоксид	0,444804	45,4	20,19
333	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	0,000039	686,2	0,03
337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	3,461224	1,6	5,54
342	Гидрофторид (Водород фторид; фтороводород)	0,000237	547,4	0,13
344	Фториды неорганические плохо растворимые	0,000255	181,6	0,05
616	Диметилбензол (смесь о-, м-, п- изомеров) (Метилтолуол)	0,061875	29,9	1,85
703	Бенз/а/пирен	0,000000	5472969	0,12
1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	0,000200	1823,6	0,36
1537	Метановая кислота	0,000006	45,4	0,00
2732	Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,991512	6,7	6,64
2752	Уайт-спирит	0,019125	6,7	0,13
2754	Алканы С12-19 (в пересчете на С)	0,008061	10,8	0,09
2902	Взвешенные вещества	0,044760	36,6	1,64
2908	Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20	0,036137	56,1	2,03
2930	Пыль абразивная	0,010368	36,6	0,38
	Итого			652,97
	С учетом коэффициента 1,26			822,75

нв. № подл. Подп. и дата Взам. Инв. №

Изм.	Кол.уч	Лист	№док	Подп.	Дата

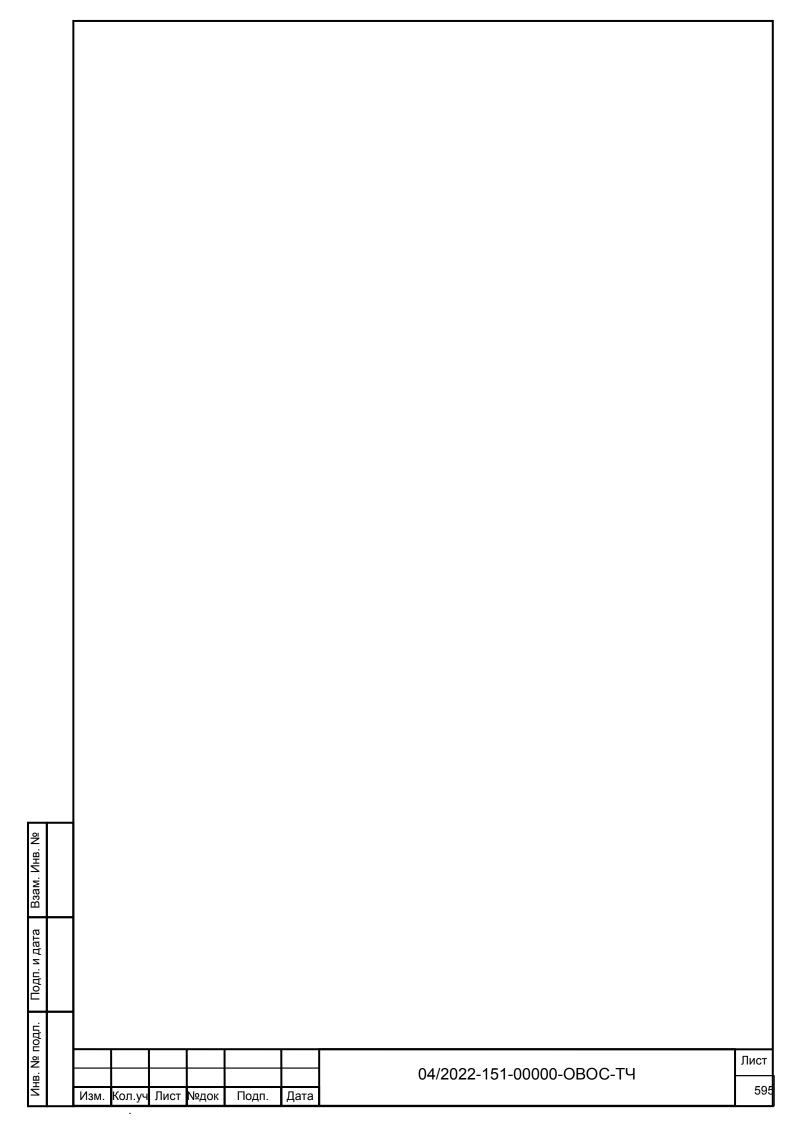


Таблица 4.2 - Плата за выбросы загрязняющих веществ в атмосферу в период эксплуатации

Код 3В	Наименование ЗВ	Валовый выброс, т	Норматив платы за выброс,	Плата за выброс, руб
			руб/т	руб
101	диАлюминий триоксид (в пересчете на алюминий)	0,0006	442,8	0,27
123	дижлюминии триоксид (в пересчете на алюминии) дижелезо триоксид (железа оксид) (в пересчете на железо)	0,040926	36,6	1,50
143	Марганец и его соединения (в пересчете на марганец (IV)	0,000632	5473,5	3,46
143	оксид)	0,000032	3473,3	3,40
150	Натрий гидроксид (Натр едкий)	0,000024	36,6	0,00
155	диНатрий карбонат (Натрий углекисл.; натриев.соль	0,00008	138,8	0,01
	угольной к-ты)			
172	Алюминий, растворимые соли	0,001617	36,6	0,06
203	Хром (в пересчете на хрома (VI) оксид)	0,00004	3647,2	0,15
301	Азота диоксид (Двуокись азота; пероксид азота)	0,1448	138,8	20,10
302	Азотная кислота (по молекуле HNO3)	0,000232	36,6	0,01
303	Аммиак (Азота гидрид)	1,048381	138,8	145,52
304	Азот (II) оксид (Азот монооксид)	0,329339	93,5	30,79
316 322	Гидрохлорид (по молекуле HC1) (Водород хлорид) Серная кислота (по молекуле H2SO4)	0,000512 0,000016	29,9	0,02
328	Углерод (Пигмент черный)	0,000974	45,4 36,6	0,00
330	Сера диоксид	0,000974	45,4	0,04
333	Дигидросульфид (Водород сернистый, дигидросульфид,	0,001340	686,2	78,94
333	гидросульфид)	0,113034	080,2	76,54
337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,402725	1,6	0,64
342	Гидрофторид (Водород фторид; фтороводород)	0,000226	547,4	0,12
344	Фториды неорганические плохо растворимые	0,000136	181,6	0,02
403	Гексан (н-Гексан; дипропил; Нехапе)	0,000005	1473,8	0,01
410	Метан	8,028776	108	867,11
416	Смесь предельных углеводородов С6Н14-С10Н22	1,823991	0,1	0,18
616	Диметилбензол (смесь о-, м-, п- изомеров) (Метилтолуол)	0,404442	29,9	12,09
621	Метилбензол (Фенилметан)	0,1	275	27,50
703	Бенз/а/пирен	2,70E-09	5472969	0,01
898	Трихлорметан	0,019209	181,6	3,49
906	Тетрахлорметан	0,007232	9,9	0,07
1042 1061	Бутан-1-ол (Бутиловый спирт)	0,036754	56,1	2,06 0,02
1071	Этанол (Этиловый спирт; метилкарбинол) Гидроксибензол (фенол)	0,022477 0,113843	1823,6	207,60
1119	Этиловый эфир этиленгликоля	0,016455	0	0,00
1210	Бутилацетат (Бутиловый эфир уксусной кислоты)	0,010433	56,1	1,12
1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	0,084476	1823,6	154,05
1401	Пропан-2-он (Диметилкетон; диметилформальдегид)	0,014	16,6	0,23
1513	Аскорбиновая кислота	4,00E-25	0	0,00
1555	Этановая кислота (Метанкарбоновая кислота)	0,001232	93,5	0,12
1580	Лимонная кислота	4,59E-23	0	0,00
1716	Одорант СПМ	0,000012	54729,7	0,66
1728	Этантиол	0,004244	54729,7	232,27
2732	Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,004012	6,7	0,03
2750	Сольвент нафта	0,043746	29,9	1,31
2752	Уайт-спирит	0,200104	6,7	1,34
2754	Алканы C12-19 (в пересчете на C)	0,716	10,8	7,73
2908	Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20	0,000237	56,1	0,01
2930	Пыль абразивная	0,012442	36,6	0,46
2984	Полиакриламид катионный АК-617	0,00054	36,6	0,02
3337	2-Гидроксибензойная кислота (орто-Гидроксибензойная	8,01E-15	0	0,00

Инв. № подл. Подп. и дата Взам. Инв. №

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

Код	Наименование ЗВ	Валовый	Норматив	Плата за
3B		выброс, т	платы за	выброс,
			выброс,	руб
			руб/т	
	кислота)			
	Итого			1801,21
	С учетом коэффициента 1,26			2269,52

4.2 Расчет платы за размещение отходов

Расчет платы производится в соответствии с постановлением Правительства Российской Федерации от 13.09.2016 г. № 913 «О ставках платы за негативное воздействие на окружающую среду и дополнительных коэффициентах»

Следует отметить, что не все полученные отходы размещаются на полигонах. Поэтому плата за размещение отходов определялась только по тем позициям, по которым планируется размещение на полигонах.

Компенсационные выплаты за негативное воздействие на окружающую среду в период строительства осуществляет подрядная организация.

Результаты расчета платы за размещение отходов при проведении СМР и при эксплуатации приведены в таблицах 4.3 и 4.4, соответственно.

Таблица 4.3 - Плата за размещение отходов при проведении строительно-монтажных работ

Класс опасности	Количество отхода, т/год	Норматив платы,руб.	Плата,руб.
Отходы 4 класса	5,341	663,2	3542,15
Отходы 5 класса	176,038	17,3	3045,46
Итого	6587,61		
С учетом коэффициента 1,2	6		8300,39

Таблица 4.4 - Плата за размещение отходов при эксплуатации

Класс опасности	Количество отхода, т/год	Норматив платы,руб.	Плата,руб.
Отходы 4 класса	1064,358	663,2	705882,23
Отходы 5 класса	19723,649	17,3	341219,13
Итого	1047101,35		
С учетом коэффициента 1,20	6		1319347,71

Таблица 4.5 - Расчет мониторинга на период строительства

Наименование работ и затрат	Ед.изм	М Объе Обоснование Расчет стоимости (расценка*коэффициент*объем работ)		Стоимость, руб				
				Расценка	К1	К2	Объем работ	
Полевые работы					•			
Отбор проб атмосферного воздуха из приземной атмосферы воздуха	1 проба	1	СБЦ-99 т. 60 §8, прим 2	9,7			1	9,7
Отбор проб почв на химическое загрязнение	1 проба	1	СБЦ-99 т.60	37,7			1	37,7
Итого по полевым работам	:							47,4

ш							
Г							Γ
Γ							l
	Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв. №

Подп. и дата

Наименование работ и затрат	Ед.изм	Объе м работ	Обоснование стоимости	Расчет стоимости (расценка*коэффициент*объем работ)				Стоимость, руб
		1		Расценка	К1	К2	Объем работ	
Лабораторные работы	1	l .	•			1		
Анализ проб почв, грунтог	3							
Нефтепродукты	1 проба	1	СБЦ-99 т.70, §63	19,7			1	19,7
Анализ атмосферного возд	ıyxa							
Азота диоксид	1 проба	1	Согласно СБЦ-99, т.61	6,5			1	6,5
Взвешенные вещества	1 проба	1		6,5			1	6,5
Углерода оксид	1 проба	1		6,5			1	6,5
Итого по лабораторным ра				•		·		26
Итого по смете в базовых	ценах:							93,1
ИТОГО с учетом К=45Д2 (Письмо Минстроя России от 05.12.2017 N 45082-XM/09)				62,19				5785,88
НДС20%								1175,18
Итого с учетом НДС	1		1	1	I		ı	6961,06

Взам. Инв. №	
Подп. и дата	
в. № подл.	

			-		
Изм.	Кол.уч	Лист	№док	Подп.	Дата

- 1 Федеральный закон от 10 января 2002 г. № 7-ФЗ «Об охране окружающей среды;
- 2 Федеральный закон от 14.03.1995 г. № 33-ФЗ «Об особо охраняемых природных территориях»;
- 3 Федеральный закон от 30.03.1999 г. № 52-ФЗ «О санитарно-эпидемиологическом благополучии населения»;
- 4 Федеральный закон от 25.06.2002 г. № 73-ФЗ «Об объектах культурного наследия (памятниках истории и культуры) народов Российской Федерации»;
- 5 Федеральный закон от 24 июня 1998 г. № 89-ФЗ «Об отходах производства и потребления»;
 - 6 Федеральный закон от 4 мая 1999 г. № 96-ФЗ «Об охране атмосферного воздуха»;
 - 7 Федеральный закон РФ «О животном мире» от 24.04.1995 № 52-ФЗ;
 - 8 Земельный кодекс РФ от 25.10.2001 № 136-ФЗ.
- 9 Постановление Правительства РФ от 16.02.2008 № 87 «О составе разделов проектной документации и требования к их содержанию».
- 10 Постановление Правительства РФ от 10.07.2018 № 800 «О проведении рекультивации и консервации земель».
- 11 Приказ Минприроды России от 18.02.2022 N 109 "Об утверждении требований к содержанию программы производственного экологического контроля, порядка и сроков представления отчета об организации и о результатах осуществления производственного экологического контроля" (Зарегистрировано в Минюсте России 25.02.2022 N 67461).
- 12 МУК 4.3.3722-21 Контроль уровня шума на территории жилой застройки, в жилых и общественных зданиях и помещениях.
- 13 Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов. Новороссийск: 2000.
- 14 ГОСТ Р 56164-2014 Выбросы загрязняющих веществ в атмосферу. Метод расчета выбросов при сварочных работах на основе удельных показателей.
- 15 Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий: утв. 28.10.1998.
- 16 Дополнения к методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий: утв. 01.01.1999.
- 17 Методическое пособие по расчету нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух. СПб, НИИ «Атмосфера», 2012.
- 18 ГОСТ Р 56163-2019 Выбросы загрязняющих веществ в атмосферу. Метод расчета выбросов загрязняющих веществ в атмосферу стационарными дизельными установками

Взам. Инв
Подп. и дата
Инв. № подл.

Изм. Кол.уч Лист №док

Подп.

Дата

(новыми и после капитального ремонта) различной мощности и назначения при их эксплуатации. - М, 2014.

- 19 Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных показателей). 1997.
- 20 Приказ Минприроды РФ от $06.06.2017\ N$ 273 "Об утверждении методов расчетов рассеивания выбросов вредных (загрязняющих) веществ в атмосферном воздухе", MPP-2017 (Зарегистрировано в Минюсте РФ $10.08.2017\ N$ 47734).
 - 21 Сборник методик по расчету объемов образования отходов. СПб., 2004.
- 22 СанПиН 2.2.1/2.1.1.1200-03. Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов от 25.09.2007.
 - 23 СП 131.13330.2020 Строительная климатология СНИП 23-01-99*.
 - 24 СП 51.13330.2011 «СНиП 23-03-2003. Защита от шума».
- 25 Постановление Главного государственного санитарного врача РФ от 28.01.2021 N 2 "Об утверждении санитарных правил и норм СанПиН 1.2.3685-21 "Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания" (вместе с "СанПиН 1.2.3685-21. Санитарные правила и нормы...") (Зарегистрировано в Минюсте России 29.01.2021 N 62296)
- 26 Постановление Главного государственного санитарного врача РФ от 28.01.2021 N 3 (ред. от 26.06.2021) "Об утверждении санитарных правил и норм СанПиН 2.1.3684-21 "Санитарно-эпидемиологические требования к содержанию территорий городских и сельских поселений, к водным объектам, питьевой воде и питьевому водоснабжению, атмосферному воздуху, почвам, жилым помещениям, эксплуатации производственных, общественных помещений, организации и проведению санитарно-противоэпидемических (профилактических) мероприятий" (вместе с "СанПиН 2.1.3684-21. Санитарные правила и нормы...") (Зарегистрировано в Минюсте России 29.01.2021 N 62297)
- 27 Приказ Росприроднадзора от 22.05.2017 N 242 "Об утверждении Федерального классификационного каталога отходов" (Зарегистрировано в Минюсте России 08.06.2017 N 47008)
- 28 ГОСТ Р 59057-2020 Охрана окружающей среды. Земли. Общие требования по рекультивации нарушенных земель.
- 29 ГОСТ Р 21.101-2020 Система проектной документации для строительства. Основные требования к проектной и рабочей документации.
- 30 Сборник удельных показателей образования отходов производства и потребления: утв. Госкомэкологии России 28.01.1997.

Инв. № подл. | Подп. и дата | Взам. Инв. №

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

- 31 И.И. Мазур, О.И. Молдаванов, В.Н. Шишов. Инженерная экология. Общий курс: в 2х томах: Т. 2. Справочное пособие / Под ред. И.И. Мазура. М.: Высш. шк., 1996. 655 с. 32 Рекомендации по расчету систем сбора, отведения и очистки поверхностного стока с селитебных территорий, площадок предприятий и определению условий выпуска его в водные объекты. М.: ФГУП «НИИ ВОДГЕО», 2006.
 - 33 Правила охраны поверхностных вод: утв. Госкомприродой СССР 21.02.1991.
 - 34 Красная книга Российской Федерации. Животные. М.: Астрель, 2000. 908 с.

Взам. Инв. №								
Подп. и дата								
Инв. № подл.	Изм.	Кол.уч	Лист	№док	Подп.	Дата	04/2022-151-00000-OBOC-TY	Лист 59

Расчет выбросов загрязняющих веществ

Эксплуатация

ИЗА №0017. Вентиляционная труба. Коагулянт сульфат алюминия

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с «Методическим пособием по расчету выбросов от неорганизованных источников в промышленности строительных материалов», Новороссийск, 2001; «Методическим пособием по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», СПб., 2012.

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, закрытые с 4-х сторон ($K_4 = 0,005$). Высота падения материала при пересыпке составляет 0,5 м (B = 0,4). Залповый сброс при разгрузке автосамосвала отсутствует ($K_9 = 1$). Расчетные скорости ветра, м/с: 6 ($K_3 = 1,4$). Средняя годовая скорость ветра 6 м/с ($K_3 = 1,4$).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Гоновой выблас т/гон	
код	наименование	выброс, г/с	Годовой выброс, т/год	
0172	Алюминий, растворимые соли (нитрат, сульфат,	0,0000513	0,0016166	
	хлорид, алюминиевые квасцы - аммониевые,			
	калиевые) /в пересчете на алюминий/			

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

		Однов
Материал	Параметры	ременн
		ость
Коагулянт сульфат алюминия	Количество перерабатываемого материала: Gч = 0,029424	+
	т/час; Gгод = 257,751 т/год. Весовая доля пылевой фракции в	
	материале: $K_1 = 0.07$. Доля пыли, переходящая в аэрозоль: $K_2 =$	
	$0,05$. Влажность до 3% ($K_5 = 0,8$). Размер куска 3-1 мм ($K_7 = 0,8$).	
	0,8).	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{IP} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_4 \cdot 10^6 / 3600, z/c$$

$$(1.1.1)$$

где K_I - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 K_2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

						Г
						ı
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

ZHB.

Взам.

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

К₃ - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К5 - коэффициент, учитывающий влажность материала;

 K_7 - коэффициент, учитывающий крупность материала;

 ${\it K}_8$ - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств ${\it K}_8=1$;

 K_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_y - суммарное количество перерабатываемого материала в час, m/uac.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\mathbf{\Pi}_{IP} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{200}, \, m/200$$
(1.1.2)

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Коагулянт сульфат алюминия

$$M_{172}^{6 \text{ M/c}} = 0.07 \cdot 0.05 \cdot 1.4 \cdot 0.005 \cdot 0.8 \cdot 0.8 \cdot 1.1 \cdot 0.4 \cdot 0.029424 \cdot 10^6 / 3600 = 0.0000513 \ e/c;$$

 $\Pi_{172} = 0.07 \cdot 0.05 \cdot 1.4 \cdot 0.005 \cdot 0.8 \cdot 0.8 \cdot 1.1 \cdot 0.4 \cdot 257.751 = 0.0016166 \ m/200.$

Взам. Г									
Подп. и дата									
подл.									
읟								04/2022-151-00000-OBOC-TY	Лист
NHB.		Мзм	Коп уч	Пист	№док	Подп.	Дата	04/2022-131-00000-OBOC-19	595
	ldot	VISIVI.	INOJI. Y 9	JIVICI	ч=д∪к	тюдп.	дата		ш

Расчет произведен программой «Станции аэрации», версия 1.3.10 от 14.09.2021 Copyright© 2012-2021 Фирма «Интеграл»

Название источника выбросов: №23 Вент.труба (блок механической очистки)

Результаты расчетов по источнику выбросов

Код	Название вещества	Максимальный	Валовой выброс, т/год
		выброс, г/с	
0301	Азота диоксид (Азот (IV) оксид)	0,0000244	0,000447
0303	Аммиак	0,0003119	0,005716
0304	Азот (II) оксид (Азота оксид)	0,0000990	0,001814
0333	Дигидросульфид (Сероводород)	0,0000448	0,000820
0410	Метан	0,0040005	0,073318
0416	Смесь предельных углеводородов	0,0019935	0,036535
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0000231	0,000423
1325	Формальдегид	0,0000393	0,000721
1728	Этантиол (Этилмеркаптан)	0,0000019	0,000035

Источники выделений

источники выде	лении		
Код	Название вещества	Максимальный	Среднегодовой
		выброс, г/с	выброс, т/год
Автономный	[1] И	сточник №1	
источник			
0301	Азота диоксид (Азот (IV) оксид)	0,0000244	0,000447
0303	Аммиак	0,0003119	0,005716
0304	Азот (II) оксид (Азота оксид)	0,0000990	0,001814
0333	Дигидросульфид (Сероводород)	0,0000448	0,000820
0410	Метан	0,0040005	0,073318
0416	Смесь предельных углеводородов	0,0019935	0,036535
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0000231	0,000423
1325	Формальдегид	0,0000393	0,000721
1728	Этантиол (Этилмеркаптан)	0,0000019	0,000035

B								
Подп. и дата								
подл.								
읟							04/2022-151-00000-OBOC-TY	Лист
NHB.	Изм.	Кол.уч	Лист	№док	Подп.	Дата	0 4 /2022-131-00000-OBOC-1 4	595
						•		

Источник выделения: №1 Источник №1

Тип источника: Песколовки

Результаты расчетов по источнику выделения

resymbiand	pac icrob no nero minky bbigenenni		
Код	Название вещества	Максимальный выброс,	Среднегодовой выброс,
		г/с	т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000244	0,000447
0303	Аммиак	0,0003119	0,005716
0304	Азот (II) оксид (Азота оксид)	0,0000990	0,001814
0333	Дигидросульфид (Сероводород)	0,0000448	0,000820
0410	Метан	0,0040005	0,073318
0416	Смесь предельных углеводородов С6Н14-	0,0019935	0,036535
	C10H22		
1071	Гидроксибензол (Фенол)	0,0000231	0,000423
1325	Формальдегид	0,0000393	0,000721
1728	Этантиол (Этилмеркаптан)	0,0000019	0,000035

Расчетные формулы

Расчет производился по осредненным концентрациям веществ

Максимальный выброс (M^{max}), г/с

При u<=3

$$M^{\text{max}} = 2.7 \cdot 10^{-5} \cdot a_1^{\phi} \cdot C_{\text{max}} \cdot S^{0.93} (1 [1])$$

При и>3

$$M^{max}=0.9\cdot10^{-5}\cdot u\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (2 [1])

u - скорость ветра, зафиксированная в период времени года, когда была измерена концентрация C_{max} , m/c

 a_1^{ϕ} - безразмерный коэффициент, учитывающий влияние превышения температуры водной поверхности над температурой воздуха на высоте 2 м вблизи сооружения

 C_{max} - осредненная концентрация 3В над поверхностью испарения, мг/м³

S - полная площадь водной поверхности (включая укрытые участки)

Валовый выброс (G), т/год

$$G=31.5 \cdot SP_i \cdot M_i$$
 (13 [1])

P_i - безразмерная повторяемость градации скорости ветра

 M_i - мощность выброса i-ого вещества для средней концентрации вблизи водной поверхности при скорости ветра, отнесенной к середине градации

Учет механических укрытий

$$M^{max}=M^{max}\cdot a_3$$
, (π . 5.6 [1])

G=G·a₃, (
$$\pi$$
. 5.6 [1])

аз - безразмерный коэффициент, учитывающий механические укрытия

Результаты замеров

Взам.

Подп. и дата

Среднегодовая температура воды ($t_{вод}^{cp}$): 20 °C

Фактическая температура воды ($t_{вод}^{\phi}$): 0 °C

Температура воздуха на высоте 2 м над водной поверхностью ($t_{воз}^{\phi}$): 0 °C

Превышение температуры водной поверхности над температурой воздуха:

Фактическое (DT $^{\phi}$): DT $^{\phi}$ = $t_{вод}^{\phi}$ - $t_{воз}^{\phi}$ = 0° С

Среднее (DT^{cp}): DT^{cp}= $t_{вод}^{cp}$ - $t_{воз}^{cp}$ =18,5°C

Полная площадь водной поверхности (включая укрытые участки) (S): 340,8 м²

Площадь укрытия сооружений (So): 340,8 м²

[301] Азота диоксид (Азот (IV) оксид)

						Γ
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Результаты расчётов

1 csynthatis pacteros					
	Выброс	Выброс	Безразмерный		
	вещества	вещества, без	коэффициент,		
		учёта внешних	учитывающий		
		факторов	механические		
			укрытия (а3)		
Максимальный	0,0000244	0,0002569, г/с	0,095000		
выброс					
Валовый	0,000447	0,0047091, т/год	0,095000		
выброс					

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,018 мг/м³ при скорости ветра 7 м/с

Средняя концентрация вещества в воздухе (C_{ϕ}): 0,018 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,018

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При и<=3

$$M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$$
, (1 [1])

При и>3

M=0.9·10⁻⁵·u·a₁^{cp}·C_{$$\phi$$}·S^{0.93}, (2 [1])

$$a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	-
3	0,502	1,030533445	0,000113481
3,5	0,164	1,025691851	0,000131772
4,5	0,14	1,019388919	0,000168381
5,5	0,092	1,015486219	0,000205011
6,5	0,044	1,012843655	0,000241655
7,5	0,0295	1,010941654	0,000278309
8,5	0,015	1,009510479	0,000314970
9,5	0,00875	1,008396556	0,000351637
10,5	0,0025	1,007506191	0,000388308
11,5	0,0015	1,006779069	0,000424983
12,5	0,0005	1,006174651	0,000461661

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0002569 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,004709 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[303] Аммиак

NHB. Nº

Взам. І

Подп. и дата

Инв. № подл.

Результаты расчётов

гезультаты расчетов								
	Выброс	Выброс	Безразмерный					
	вещества	вещества, без	коэффициент,					
		учёта внешних	учитывающий					
		факторов	механические					
			укрытия (a_3)					

						_
						ı
						ı
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Максимальный	0,0003119	0,0032832, г/с	0,095000
выброс			
Валовый	0,005716	0,0601720, т/год	0,095000
выброс	·		

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,23 мг/м 3 при скорости ветра 7 м/с

Средняя концентрация вещества в воздухе (C_{ϕ}): 0,23 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
7	0,23

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

$$M{=}2.7{\cdot}10^{\text{-5}}{\cdot}a_1{^\text{cp}}{\cdot}C_\varphi{\cdot}S^{0.93}, (1~[1])$$

При и>3

$$M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$$

$$a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$$
 (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,030533445	0,001450034
3,5	0,164	1,025691851	0,001683759
4,5	0,14	1,019388919	0,002151530
5,5	0,092	1,015486219	0,002619580
6,5	0,044	1,012843655	0,003087811
7,5	0,0295	1,010941654	0,003556168
8,5	0,015	1,009510479	0,004024618
9,5	0,00875	1,008396556	0,004493140
10,5	0,0025	1,007506191	0,004961717
11,5	0,0015	1,006779069	0,005430339
12,5	0,0005	1,006174651	0,005898999

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0032832 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,060172 т/год

Учет механических укрытий

$$a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[304] Азот (II) оксид (Азота оксид)

Результаты расчётов

Взам.

Подп. и дата

1 cojiibiaibi pac	10100		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000990	0,0010420, г/с	0,095000
выброс			
Валовый	0,001814	0,0190981, т/год	0,095000
выброс			

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,073 мг/м³ при

L						
ı						
ŀ						
L						
ſ	Изм.	Кол.уч	Лист	№док	Подп.	Дата

скорости ветра 7 м/с

Средняя концентрация вещества в воздухе (C_{ϕ}): 0,073 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,073

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При и<=3

 $M=2.7{\cdot}10^{\text{-5}}{\cdot}a_1{^\text{cp}}{\cdot}C_{\varphi}{\cdot}S^{0.93},\,(1\,\,[1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (2 [1])

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,030533445	0,000460228
3,5	0,164	1,025691851	0,000534410
4,5	0,14	1,019388919	0,000682877
5,5	0,092	1,015486219	0,000831432
6,5	0,044	1,012843655	0,000980044
7,5	0,0295	1,010941654	0,001128697
8,5	0,015	1,009510479	0,001277379
9,5	0,00875	1,008396556	0,001426083
10,5	0,0025	1,007506191	0,001574806
11,5	0,0015	1,006779069	0,001723543
12,5	0,0005	1,006174651	0,001872291

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0010420 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,019098 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0,095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[333] Дигидросульфид (Сероводород)

Результаты расчётов

Взам.

Подп. и дата

	1 vojvisimisi puv ivios				
	Выброс	Выброс	Безразмерный		
	вещества	вещества, без	коэффициент,		
		учёта внешних	учитывающий		
		факторов	механические		
			укрытия (а3)		
Максимальный	0,0000448	0,0004711, г/с	0,095000		
выброс					
Валовый	0,000820	0,0086334, т/год	0,095000		
выброс					

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,033 мг/м³ при скорости ветра 7 м/с

Средняя концентрация вещества в воздухе (C_{ϕ}): 0,033 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	l

04/2022-151-00000-OBOC-TY

7 0,033

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

M=2.7·10⁻⁵· a_1^{cp} · C_{ϕ} · $S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,030533445	0,000208048
3,5	0,164	1,025691851	0,000241583
4,5	0,14	1,019388919	0,000308698
5,5	0,092	1,015486219	0,000375853
6,5	0,044	1,012843655	0,000443034
7,5	0,0295	1,010941654	0,000510233
8,5	0,015	1,009510479	0,000577445
9,5	0,00875	1,008396556	0,000644668
10,5	0,0025	1,007506191	0,000711899
11,5	0,0015	1,006779069	0,000779136
12,5	0,0005	1,006174651	0,000846378

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0004711 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,008633 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[410] Метан

NHB.

Взам.

Подп. и дата

Результаты расчётов

•	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0040005	0,0421102, г/с	0,095000
выброс			
Валовый	0,073318	0,7717718, т/год	0,095000
выброс			

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 2,95 мг/м³ при скорости ветра 7 м/с

Средняя концентрация вещества в воздухе (C_{ϕ}): 2,95 мг/м³

I	Скорость ветра, повторяемость	Концентрация вещества,
I	* * * *	-
I	превышения которой составляет 5%,	мг/куб. м
l	M/C	
I	7	2,95

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

						Г
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1 [1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,030533445	0,018598267
3,5	0,164	1,025691851	0,021596038
4,5	0,14	1,019388919	0,027595709
5,5	0,092	1,015486219	0,033598962
6,5	0,044	1,012843655	0,039604534
7,5	0,0295	1,010941654	0,045611725
8,5	0,015	1,009510479	0,051620107
9,5	0,00875	1,008396556	0,057629400
10,5	0,0025	1,007506191	0,063639413
11,5	0,0015	1,006779069	0,069650006
12,5	0,0005	1,006174651	0,075661078

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0421102 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,771772 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[416] Смесь предельных углеводородов С6Н14-С10Н22

Результаты расчётов

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0019935	0,0209837, г/с	0,095000
выброс			
Валовый	0,036535	0,3845778, т/год	0,095000
выброс			

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 1,47 мг/м³ при скорости ветра 7 м/с

Средняя концентрация вещества в воздухе (C_{ϕ}): 1,47 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м	
M/C		
7	1,47	

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

Взам.

Подп. и дата

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1 [1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

$a_1^{cp} = 1 + 0.0009 \cdot u^{-1.12} \cdot S^{0.315} * DT^{cp}$	(3	[1])
---	----	------

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,030533445	0,009267611
3,5	0,164	1,025691851	0,010761416
4,5	0,14	1,019388919	0,013751082
5,5	0,092	1,015486219	0,016742534
6,5	0,044	1,012843655	0,019735141
7,5	0,0295	1,010941654	0,022728554
8,5	0,015	1,009510479	0,025722562
9,5	0,00875	1,008396556	0,028717023
10,5	0,0025	1,007506191	0,031711843
11,5	0,0015	1,006779069	0,034706952
12,5	0,0005	1,006174651	0,037702300

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0209837 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,384578 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1071] Гидроксибензол (Фенол)

Результаты расчётов

1 csymbrath pac	14102		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000231	0,0002427, г/с	0,095000
выброс			
Валовый	0,000423	0,0044475, т/год	0,095000
выброс			

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,017 мг/м³ при скорости ветра 7 м/с

Средняя концентрация вещества в воздухе (C_{φ}): 0,017 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	-
7	0,017

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При и<=3

$$M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1 [1])$$

При и>3

Взам.

Подп. и дата

$$M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$$

$$a_{1}{}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\left(3\;[1]\right)$$

Градации скорости ветра Повторяемость градации		Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,030533445	0,000107176
3,5	0,164	1,025691851	0,000124452

						Γ
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

4,5	0,14	1,019388919	0,000159026
5,5	0,092	1,015486219	0,000193621
6,5	0,044	1,012843655	0,000228230
7,5	0,0295	1,010941654	0,000262847
8,5	0,015	1,009510479	0,000297472
9,5	0,00875	1,008396556	0,000332102
10,5	0,0025	1,007506191	0,000366736
11,5	0,0015	1,006779069	0,000401373
12,5	0,0005	1,006174651	0,000436013

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0002427 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,004447 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0,095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1325] Формальдегид

Результаты расчётов

сзультаты расчетов					
	Выброс	Выброс	Безразмерный		
	вещества	вещества, без	коэффициент,		
		учёта внешних	учитывающий		
		факторов	механические		
			укрытия (а3)		
Максимальный	0,0000393	0,0004140, г/с	0,095000		
выброс					
Валовый	0,000721	0,0075869, т/год	0,095000		
выброс					

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,029 мг/м³ при скорости ветра 7 м/с

Средняя концентрация вещества в воздухе (C_{ϕ}): 0,029 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	-
7	0,029

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1[1])$

При и>3

Взам. Инв. №

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра		Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,030533445	0,000182830
3,5	0,164	1,025691851	0,000212300
4,5	0,14	1,019388919	0,000271280
5,5	0,092	1,015486219	0,000330295
6,5	0,044	1,012843655	0,000389333
7,5	0,0295	1,010941654	0,000448386
8,5	0,015	1,009510479	0,000507452
9,5	0,00875	1,008396556	0,000566526

Изм.	Кол.уч	Лист	№док	Подп.	Дата

10,5	0,0025	1,007506191	0,000625608
11,5	0,0015	1,006779069	0,000684695
12,5	0,0005	1,006174651	0,000743787

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0004140 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,007587 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1728] Этантиол (Этилмеркаптан)

Результаты расчётов

T COJUIDIUI DI PUC			
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000019	0,0000200, г/с	0,095000
выброс			
Валовый	0,000035	0,0003663, т/год	0,095000
выброс			

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0014 мг/м³ при скорости ветра 7 м/с

Средняя концентрация вещества в воздухе (C_{φ}): 0,0014 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%, м/с	мг/куб. м
7	0.0014

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При и<=3

$$M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1 [1])$$

При и>3

Взам.

Подп. и дата

$$M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$$

$$a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$$

Ги о остан о остан - остан	П	Гаанаа заны	По(М) -/-
Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,030533445	0,000008826
3,5	0,164	1,025691851	0,000010249
4,5	0,14	1,019388919	0,000013096
5,5	0,092	1,015486219	0,000015945
6,5	0,044	1,012843655	0,000018795
7,5	0,0295	1,010941654	0,000021646
8,5	0,015	1,009510479	0,000024498
9,5	0,00875	1,008396556	0,000027350
10,5	0,0025	1,007506191	0,000030202
11,5	0,0015	1,006779069	0,000033054
12,5	0,0005	1,006174651	0,000035907

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000200 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000366 т/год

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0,095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

Программа основана на следующих методических документах:

- 1. «Методические рекомендации по расчету выбросов загрязняющих веществ в атмосферный воздух от неорганизованных источников станций аэрации сточных вод», НИИ Атмосфера, Санкт-Петербург, 2015 год
- 2. Информационное письмо №5. Исх. 07-2-748/16-0 от 06.10.2016. НИИ Атмосфера
- 3. Методическое письмо. Исх. 1-1160/17-0-1 от 09.06.2017. НИИ Атмосфера

Расчет произведен программой «Станции аэрации», версия 1.3.10 от 14.09.2021 Copyright© 2012-2021 Фирма «Интеграл»

Название источника выбросов: №24 Вент.труба (блок обезвоживания осадка)

Результаты расчетов по источнику выбросов

Код	Название вещества	Максимальный	Валовой
		выброс, г/с	выброс, т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000035	0,000063
0303	Аммиак	0,0000214	0,000387
0304	Азот (II) оксид (Азота оксид)	0,0000060	0,000108
0333	Дигидросульфид (Сероводород)	0,0000419	0,000758
0410	Метан	0,0030094	0,054420
0416	Смесь предельных углеводородов	0,0001342	0,002427
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0000022	0,000040
1325	Формальдегид	0,0000031	0,000056
1728	Этантиол (Этилмеркаптан)	0,0000002	0,000003

Источники выделений

Код	Название вещества	Максимальный выброс, г/с	Среднегодово й выброс, т/год
Автономный источник	[1] Источни	к №1	1/10д
0301	Азота диоксид (Азот (IV) оксид)	0,0000035	0,000063
0303	Аммиак	0,0000214	0,000387
0304	Азот (II) оксид (Азота оксид)	0,0000060	0,000108
0333	Дигидросульфид (Сероводород)	0,0000419	0,000758
0410	Метан	0,0030094	0,054420
0416	Смесь предельных углеводородов C6H14-C10H22	0,0001342	0,002427
1071	Гидроксибензол (Фенол)	0,0000022	0,000040
1325	Формальдегид	0,0000031	0,000056
1728	Этантиол (Этилмеркаптан)	0,0000002	0,000003

B3								
Подп. и дата								
подл.								
읟							04/2022 454 00000 ODOC TU	Лист
NHB.							04/2022-151-00000-OBOC-TY	
Z	Изм.	Кол.уч	Лист	№док	Подп.	Дата		595

Результаты расчетов по источнику выделения

Код	Название вещества	Максимальный выброс,	Среднегодовой выброс,
		г/с	т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000035	0,000063
0303	Аммиак	0,0000214	0,000387
0304	Азот (II) оксид (Азота оксид)	0,0000060	0,000108
0333	Дигидросульфид (Сероводород)	0,0000419	0,000758
0410	Метан	0,0030094	0,054420
0416	Смесь предельных углеводородов С6Н14-	0,0001342	0,002427
	C10H22		
1071	Гидроксибензол (Фенол)	0,0000022	0,000040
1325	Формальдегид	0,0000031	0,000056
1728	Этантиол (Этилмеркаптан)	0,0000002	0,000003

Расчетные формулы

Расчет производился по осредненным концентрациям веществ

Максимальный выброс (M^{max}), г/с

При и<=3

$$M^{max}=2.7\cdot10^{-5}\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (1 [1])

При и>3

$$M^{max}=0.9\cdot10^{-5}\cdot u\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (2 [1])

- u скорость ветра, зафиксированная в период времени года, когда была измерена концентрация C_{max} , м/с
- a_1^{ϕ} безразмерный коэффициент, учитывающий влияние превышения температуры водной поверхности над температурой воздуха на высоте 2 м вблизи сооружения

 C_{max} - осредненная концентрация ${\bf \widehat{3B}}$ над поверхностью испарения, мг/м³

S - полная площадь водной поверхности (включая укрытые участки)

Валовый выброс (G), т/год

 $G=31.5 \cdot SP_i \cdot M_i (13[1])$

- $P_{\rm i}$ безразмерная повторяемость градации скорости ветра
- M_i мощность выброса i-ого вещества для средней концентрации вблизи водной поверхности при скорости ветра, отнесенной к середине градации

Учет механических укрытий

$$M^{max}=M^{max}\cdot a_3$$
, (π . 5.6 [1])

G=G·a₃, (п. 5.6 [1])

аз - безразмерный коэффициент, учитывающий механические укрытия

Результаты замеров

Среднегодовая температура воды (t_{вод} ср): 20 °C

Фактическая температура воды $(t_{вод}^{\phi})$: 0 °C

Температура воздуха на высоте 2 м над водной поверхностью ($t_{воз}^{\varphi}$): 0 °C

Превышение температуры водной поверхности над температурой воздуха:

Фактическое (DT $^{\phi}$): DT $^{\phi}$ = $t_{вод}{}^{\phi}$ - $t_{воз}{}^{\phi}$ =0°C

Среднее (DT^{cp}): DT^{cp}= t_{BO3}^{cp} - t_{BO3}^{cp} =18,5°C

Полная площадь водной поверхности (включая укрытые участки) (S): 17,45 м²

Площадь укрытия сооружений (So): 17,45 м²

[301] Азота диоксид (Азот (IV) оксид)

Результаты расчётов

Взам.

Подп. и дата

Результаты расчет	ОВ		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000035	0,0000369, г/с	0,095000
выброс			

						Г
						ı
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Валовый	0,000063	0,0006672,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,041 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,041 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,041

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M \!\!=\!\! 0.9 \!\!\cdot\! 10^{\text{-5}} \!\!\cdot\! u \!\!\cdot\! a_1^{\text{cp.}} \!\!\cdot\! C_{\varphi} \!\!\cdot\! S^{0.93} \!, \, (2 \, [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ ^{cp})	
3	0,502	1,011973028	0,000016002
3,5	0,164	1,010074502	0,000018634
4,5	0,14	1,007602944	0,000023900
5,5	0,092	1,006072585	0,000029167
6,5	0,044	1,005036361	0,000034434
7,5	0,0295	1,004290532	0,000039702
8,5	0,015	1,003729328	0,000044971
9,5	0,00875	1,003292527	0,000050240
10,5	0,0025	1,002943390	0,000055509
11,5	0,0015	1,002658265	0,000060778
12,5	0,0005	1,002421255	0,000066048

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000369 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000667 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[303] Аммиак

Взам.

Подп. и дата

Результаты расчётов

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000214	0,0002250, г/с	0,095000
выброс			
Валовый	0,000387	0,0040685,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,25 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,25 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%, м/с	Концентрация вещества, мг/куб. м
7	0,25

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	-
3	0,502	1,011973028	0,000097576
3,5	0,164	1,010074502	0,000113625
4,5	0,14	1,007602944	0,000145732
5,5	0,092	1,006072585	0,000177846
6,5	0,044	1,005036361	0,000209965
7,5	0,0295	1,004290532	0,000242088
8,5	0,015	1,003729328	0,000274213
9,5	0,00875	1,003292527	0,000306340
10,5	0,0025	1,002943390	0,000338468
11,5	0,0015	1,002658265	0,000370598
12,5	0,0005	1,002421255	0,000402729

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0002250~r/c

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,004069 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[304] Азот (II) оксид (Азота оксид)

Результаты расчётов

гезультаты расчетов				
	Выброс	Выброс	Безразмерный	
	вещества	вещества, без	коэффициент,	
		учёта внешних	учитывающий	
		факторов	механические	
			укрытия (а3)	
Максимальный	0,0000060	0,0000630, г/с	0,095000	
выброс				
Валовый	0,000108	0,0011392,	0,095000	
выброс		т/год		

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,07 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{Φ}): 0,07 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,07

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

Взам.

Подп. и дата

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1[1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

						Г
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,011973028	0,000027321
3,5	0,164	1,010074502	0,000031815
4,5	0,14	1,007602944	0,000040805
5,5	0,092	1,006072585	0,000049797
6,5	0,044	1,005036361	0,000058790
7,5	0,0295	1,004290532	0,000067785
8,5	0,015	1,003729328	0,000076780
9,5	0,00875	1,003292527	0,000085775
10,5	0,0025	1,002943390	0,000094771
11,5	0,0015	1,002658265	0,000103767
12,5	0,0005	1,002421255	0,000112764

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000630 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,001139 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[333] Дигидросульфид (Сероводород)

Результаты расчётов

1 coynbrain pacter	0.5		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000419	0,0004410, г/с	0,095000
выброс			
Валовый	0,000758	0,0079743,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,49 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,49 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/C	
7	0,49

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{\text{-5}}\cdot a_1^{\text{cp}}\cdot C_{\phi}\cdot S^{0.93},\,(1\,\,[1])$

При и>3

Взам. Инв. №

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (2 [1])

 ${a_1}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,011973028	0,000191249
3,5	0,164	1,010074502	0,000222705
4,5	0,14	1,007602944	0,000285634
5,5	0,092	1,006072585	0,000348578
6,5	0,044	1,005036361	0,000411532
7,5	0,0295	1,004290532	0,000474492
8,5	0,015	1,003729328	0,000537457
9,5	0,00875	1,003292527	0,000600426

				·	
Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

10,5	0,0025	1,002943390	0,000663398
11,5	0,0015	1,002658265	0,000726372
12,5	0,0005	1,002421255	0,000789348

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0004410 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,007974 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[410] Метан

Результаты расчётов

resymbiath pacter			
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0030094	0,0316777, г/с	0,095000
выброс			
Валовый	0,054420	0,5728461,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 35,2 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 35,2 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	35,2

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1[1])$

При и>3

Взам.

Подп. и дата

 $M = 0.9 \cdot 10^{-5} \cdot u \cdot a_1^{cp} \cdot C_{\phi} \cdot S^{0.93}, (2 [1])$

 $a_1{}^{cp}\!\!=\!\!1\!\!+\!\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\left(3\;[1]\right)$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,011973028	0,013738683
3,5	0,164	1,010074502	0,015998394
4,5	0,14	1,007602944	0,020519032
5,5	0,092	1,006072585	0,025040727
6,5	0,044	1,005036361	0,029563106
7,5	0,0295	1,004290532	0,034085962
8,5	0,015	1,003729328	0,038609170
9,5	0,00875	1,003292527	0,043132647
10,5	0,0025	1,002943390	0,047656335
11,5	0,0015	1,002658265	0,052180196
12,5	0,0005	1,002421255	0,056704197

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0316777 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,572846 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

						Г
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

[416] Смесь предельных углеводородов С6Н14-С10Н22

Результаты расчётов

1 csysibiaibi pac ici	<u></u>		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0001342	0,0014129, г/с	0,095000
выброс			
Валовый	0,002427	0,0255502,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 1,57 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 1,57 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/C	
7	1,57

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

M=2.7·10⁻⁵· a_1^{cp} · C_{ϕ} · $S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц		
3	0,502	1,011973028	0,000612777
3,5	0,164	1,010074502	0,000713565
4,5	0,14	1,007602944	0,000915195
5,5	0,092	1,006072585	0,001116873
6,5	0,044	1,005036361	0,001318582
7,5	0,0295	1,004290532	0,001520311
8,5	0,015	1,003729328	0,001722057
9,5	0,00875	1,003292527	0,001923814
10,5	0,0025	1,002943390	0,002125581
11,5	0,0015	1,002658265	0,002327355
12,5	0,0005	1,002421255	0,002529136

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0014129 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,025550 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1071] Гидроксибензол (Фенол)

Результаты расчётов

Взам.

Подп. и дата

1 cojmbiaibi pac ici			
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000022	0,0000234, г/с	0,095000
выброс		·	
Валовый	0,000040	0,0004231,	0,095000
			·

Изм.	Кол.уч	Лист	№док	Подп.	Дата

_	,	
выброс	т/гол	
выорос	1/1 ОД	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,026 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,026 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
м/с	MI/KyO. M
7	0,026

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (2 [1])

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ ^{cp})	
3	0,502	1,011973028	0,000010148
3,5	0,164	1,010074502	0,000011817
4,5	0,14	1,007602944	0,000015156
5,5	0,092	1,006072585	0,000018496
6,5	0,044	1,005036361	0,000021836
7,5	0,0295	1,004290532	0,000025177
8,5	0,015	1,003729328	0,000028518
9,5	0,00875	1,003292527	0,000031859
10,5	0,0025	1,002943390	0,000035201
11,5	0,0015	1,002658265	0,000038542
12,5	0,0005	1,002421255	0,000041884

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000234 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000423 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1325] Формальдегид

Результаты расчётов

Взам.

Подп. и дата

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000031	0,0000324, г/с	0,095000
выброс			
Валовый	0,000056	0,0005859,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,036 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,036 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/c	
7	0,036

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

							Г
							ı
							ı
							ı
Из	М.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1{}^{cp}\cdot C_{\varphi}\cdot S^{0.93},\,(1\,\,[1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (2 [1])

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	-
3	0,502	1,011973028	0,000014051
3,5	0,164	1,010074502	0,000016362
4,5	0,14	1,007602944	0,000020985
5,5	0,092	1,006072585	0,000025610
6,5	0,044	1,005036361	0,000030235
7,5	0,0295	1,004290532	0,000034861
8,5	0,015	1,003729328	0,000039487
9,5	0,00875	1,003292527	0,000044113
10,5	0,0025	1,002943390	0,000048739
11,5	0,0015	1,002658265	0,000053366
12,5	0,0005	1,002421255	0,000057993

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000324~r/c

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000586 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1728] Этантиол (Этилмеркаптан)

Результаты расчётов

Результаты расчет	ОВ		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000002	0,0000016, г/с	0,095000
выброс			
Валовый	0,000003	0,0000293,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0018 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0018 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,0018

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

Взам.

Подп. и дата

M=2.7·10⁻⁵· a_1^{cp} · C_{ϕ} · $S^{0.93}$, (1 [1])

При и>3

 $M \!\!=\!\! 0.9 \!\!\cdot\! 10^{\text{-5}} \!\!\cdot\! u \!\!\cdot\! a_1^{\text{cp.}} \!\!\cdot\! C_{\varphi} \!\!\cdot\! S^{0.93} \!, \, (2 \, [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (M), г/c
T pagagnii ekopoetii betpa j	повторисмоств градации	Безразмерный	доли градации (141), 1/С

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,011973028	0,000000703
3,5	0,164	1,010074502	0,000000818
4,5	0,14	1,007602944	0,000001049
5,5	0,092	1,006072585	0,000001280
6,5	0,044	1,005036361	0,000001512
7,5	0,0295	1,004290532	0,000001743
8,5	0,015	1,003729328	0,000001974
9,5	0,00875	1,003292527	0,000002206
10,5	0,0025	1,002943390	0,000002437
11,5	0,0015	1,002658265	0,000002668
12,5	0,0005	1,002421255	0,000002900

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000016 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000029 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

Программа основана на следующих методических документах:

- 1. «Методические рекомендации по расчету выбросов загрязняющих веществ в атмосферный воздух от неорганизованных источников станций аэрации сточных вод», НИИ Атмосфера, Санкт-Петербург, 2015 год
- 2. Информационное письмо №5. Исх. 07-2-748/16-0 от 06.10.2016. НИИ Атмосфера
- 3. Методическое письмо. Исх. 1-1160/17-0-1 от 09.06.2017. НИИ Атмосфера

ИЗА №0024. Вент.труба (блок обезвоживания осадка) Флокулянт полиакриламид катионный

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с «Методическим пособием по расчету выбросов от неорганизованных источников в промышленности строительных материалов», Новороссийск, 2001; «Методическим пособием по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», СПб., 2012.

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, закрытые с 4-х сторон ($\mathbf{K}_4 = 0,005$). Высота падения материала при пересыпке составляет 0,5 м ($\mathbf{B} = 0,4$). Залповый сброс при разгрузке автосамосвала отсутствует ($\mathbf{K}_9 = 1$). Расчетные скорости ветра, м/с: 6 ($\mathbf{K}_3 = 1,4$). Средняя годовая скорость ветра 6 м/с ($\mathbf{K}_3 = 1,4$).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Faranay ny finana m/man
код	наименование	выброс, г/с	I одовой выброс, т/год
2984	Полиакриламид катионный АК-617	0,0000171	0,00054

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Материал	Параметры	Одновр еменнос
		ТЬ
Флокулянт полиакриламид	Количество перерабатываемого материала: Gч = 0,009828 т/час; Gгод	+
катионный	$= 86,093$ т/год. Весовая доля пылевой фракции в материале: $K_I = 0,07$.	
	Доля пыли, переходящая в аэрозоль: $\mathbf{K}_2 = 0.05$. Влажность до 3% ($\mathbf{K}_5 =$	
	$0,8$). Размер куска 3-1 мм ($K_7 = 0,8$).	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{TP} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_4 \cdot 10^6 / 3600, \, z/c$$

$$(1.1.1)$$

где K_I - весовая доля пылевой фракции (0 до 200 мкм) в материале;

И	Ізм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам.

Подп. и дата

04/2022-151-00000-OBOC-TY

- K_2 доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);
- **К**₃ коэффициент, учитывающий местные метеоусловия;
- K_4 коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;
- **К**₅ коэффициент, учитывающий влажность материала;
- **К**₇ коэффициент, учитывающий крупность материала;
- K_8 поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств $K_8 = 1$;
- K_{9} поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;
- В коэффициент, учитывающий высоту пересыпки;
- G_{y} суммарное количество перерабатываемого материала в час, m/vac.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{TP} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{200}, m/200$$
(1.1.2)

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Флокулянт полиакриламид катионный

 $\mathbf{M}_{2984}^{6 \text{ w/c}} = 0.07 \cdot 0.05 \cdot 1.4 \cdot 0.005 \cdot 0.8 \cdot 0.8 \cdot 1 \cdot 1 \cdot 0.4 \cdot 0.009828 \cdot 10^{6} / 3600 = 0.0000171 \ z/c;$ $\mathbf{\Pi}_{2984} = 0.07 \cdot 0.05 \cdot 1.4 \cdot 0.005 \cdot 0.8 \cdot 0.8 \cdot 1 \cdot 1 \cdot 0.4 \cdot 86.093 = 0.00054 \ m/zoo.$

Расчет произведен программой «Станции аэрации», версия 1.3.10 от 14.09.2021 Copyright© 2012-2021 Фирма «Интеграл»

Название источника выбросов: №25 Вент.труба (блок доочистки)

Результаты расчетов по источнику выбросов

Код	Код Название вещества		Валовой
		выброс, г/с	выброс, т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000140	0,000255
0303	Аммиак	0,0000946	0,001725
0304	Азот (II) оксид (Азота оксид)	0,0000451	0,000823
0333	Дигидросульфид (Сероводород)	0,0000210	0,000382
0410	Метан	0,0012698	0,023157
0416	Смесь предельных углеводородов	0,0005206	0,009494
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0000161	0,000294
1325	Формальдегид	0,0000235	0,000428
1728	Этантиол (Этилмеркаптан)	0,0000008	0,000015

Источники выделений

Взам.

Подп. и дата

Код	Название вещества	Максимальный выброс, г/с	Среднегодово й выброс, т/год
Автономный	[1] Источни	к №1	
источник			
0301	Азота диоксид (Азот (IV) оксид)	0,0000140	0,000255
0303	Аммиак	0,0000946	0,001725
0304	Азот (II) оксид (Азота оксид)	0,0000451	0,000823
0333	Дигидросульфид (Сероводород)	0,0000210	0,000382
0410	Метан	0,0012698	0,023157
0416	Смесь предельных углеводородов C6H14-C10H22	0,0005206	0,009494
1071	Гидроксибензол (Фенол)	0,0000161	0,000294
1325	Формальдегид	0,0000235	0,000428
1728	Этантиол (Этилмеркаптан)	0,0000008	0,000015

						ſ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Результаты расчетов по источнику выделения

Код	Название вещества	Максимальный выброс,	Среднегодовой выброс,
		г/с	т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000140	0,000255
0303	Аммиак	0,0000946	0,001725
0304	Азот (II) оксид (Азота оксид)	0,0000451	0,000823
0333	Дигидросульфид (Сероводород)	0,0000210	0,000382
0410	Метан	0,0012698	0,023157
0416	Смесь предельных углеводородов С6Н14-	0,0005206	0,009494
	C10H22		
1071	Гидроксибензол (Фенол)	0,0000161	0,000294
1325	Формальдегид	0,0000235	0,000428
1728	Этантиол (Этилмеркаптан)	0,0000008	0,000015

Расчетные формулы

Расчет производился по осредненным концентрациям веществ

Максимальный выброс (M^{max}), г/с

При и<=3

$$M^{max}=2.7\cdot10^{-5}\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (1 [1])

При и>3

$$M^{max}=0.9\cdot10^{-5}\cdot u\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (2 [1])

u - скорость ветра, зафиксированная в период времени года, когда была измерена концентрация C_{max} , м/с

 a_1^{ϕ} - безразмерный коэффициент, учитывающий влияние превышения температуры водной поверхности над температурой воздуха на высоте 2 м вблизи сооружения

 C_{max} - осредненная концентрация ${\bf \widehat{3B}}$ над поверхностью испарения, мг/м³

S - полная площадь водной поверхности (включая укрытые участки)

Валовый выброс (G), т/год

 $G=31.5 \cdot SP_i \cdot M_i (13[1])$

 $P_{\rm i}$ - безразмерная повторяемость градации скорости ветра

 M_i - мощность выброса i-ого вещества для средней концентрации вблизи водной поверхности при скорости ветра, отнесенной к середине градации

Учет механических укрытий

$$M^{max}=M^{max}\cdot a_3$$
, (π . 5.6 [1])

G=G·a₃, (п. 5.6 [1])

аз - безразмерный коэффициент, учитывающий механические укрытия

Результаты замеров

Среднегодовая температура воды (t_{вод} ср): 20 °C

Фактическая температура воды ($t_{вод}^{\phi}$): 0 °C

Температура воздуха на высоте 2 м над водной поверхностью ($t_{воз}^{\phi}$): 0 °C

Превышение температуры водной поверхности над температурой воздуха:

Фактическое (DT $^{\phi}$): DT $^{\phi} = t_{\text{вод}} + t_{\text{вод}} = 0^{\circ} \text{С}$

Среднее (DT^{cp}): DT^{cp}= t_{BO3}^{cp} - t_{BO3}^{cp} =18,5°C

Полная площадь водной поверхности (включая укрытые участки) (S): 150,7 м²

Площадь укрытия сооружений (So): 150,7 м²

[301] Азота диоксид (Азот (IV) оксид)

Результаты расчётов

Взам.

Подп. и дата

Результаты расчет	ОВ		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000140	0,0001470, г/с	0,095000
выброс			

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Валовый	0,000255	0,0026813,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,022 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,022 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,022

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M \!\!=\!\! 0.9 \!\!\cdot\! 10^{\text{-5}} \!\!\cdot\! u \!\!\cdot\! a_1^{\text{cp.}} \!\!\cdot\! C_{\varphi} \!\!\cdot\! S^{0.93} \!, \, (2 \, [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ cp)	1
3	0,502	1,023612616	0,000064501
3,5	0,164	1,019868437	0,000074976
4,5	0,14	1,014994152	0,000095937
5,5	0,092	1,011976053	0,000116908
6,5	0,044	1,009932463	0,000137885
7,5	0,0295	1,008461577	0,000158866
8,5	0,015	1,007354797	0,000179851
9,5	0,00875	1,006493360	0,000200838
10,5	0,0025	1,005804809	0,000221827
11,5	0,0015	1,005242499	0,000242817
12,5	0,0005	1,004775081	0,000263809

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0001470 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,002681 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[303] Аммиак

Взам.

Подп. и дата

Результаты расчётов

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000946	0,0009958, г/с	0,095000
выброс			
Валовый	0,001725	0,0181599,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,149 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,149 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
м/с	-
7	0,149

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,023612616	0,000436849
3,5	0,164	1,019868437	0,000507793
4,5	0,14	1,014994152	0,000649756
5,5	0,092	1,011976053	0,000791785
6,5	0,044	1,009932463	0,000933856
7,5	0,0295	1,008461577	0,001075957
8,5	0,015	1,007354797	0,001218079
9,5	0,00875	1,006493360	0,001360218
10,5	0,0025	1,005804809	0,001502371
11,5	0,0015	1,005242499	0,001644534
12,5	0,0005	1,004775081	0,001786705

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0009958 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,018160 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[304] Азот (II) оксид (Азота оксид)

Результаты расчётов

езультаты расчетов				
	Выброс	Выброс	Безразмерный	
	вещества	вещества, без	коэффициент,	
		учёта внешних	учитывающий	
		факторов	механические	
			укрытия (а3)	
Максимальный	0,0000451	0,0004752, г/с	0,095000	
выброс				
Валовый	0,000823	0,0086656,	0,095000	
выброс		т/год		

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0711 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0711 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,0711

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

Взам.

Подп. и дата

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1[1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

						Г
						ı
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,023612616	0,000208456
3,5	0,164	1,019868437	0,000242309
4,5	0,14	1,014994152	0,000310051
5,5	0,092	1,011976053	0,000377825
6,5	0,044	1,009932463	0,000445618
7,5	0,0295	1,008461577	0,000513426
8,5	0,015	1,007354797	0,000581244
9,5	0,00875	1,006493360	0,000649071
10,5	0,0025	1,005804809	0,000716903
11,5	0,0015	1,005242499	0,000784741
12,5	0,0005	1,004775081	0,000852582

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0004752~г/c

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,008666 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[333] Дигидросульфид (Сероводород)

Результаты расчётов

r csymbrathi pacter	OB		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000210	0,0002205, г/с	0,095000
выброс			
Валовый	0,000382	0,0040220,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,033 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,033 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м	
M/C	-	
7	0,033	

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1{}^{cp}\cdot C_{\varphi}\cdot S^{0.93},\,(1\,\,[1])$

При и>3

Взам. Инв. №

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$

 ${a_1}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,023612616	0,000096752
3,5	0,164	1,019868437	0,000112464
4,5	0,14	1,014994152	0,000143906
5,5	0,092	1,011976053	0,000175362
6,5	0,044	1,009932463	0,000206827
7,5	0,0295	1,008461577	0,000238299
8,5	0,015	1,007354797	0,000269776
9,5	0,00875	1,006493360	0,000301256

Изм.	Кол.уч	Лист	№док	Подп.	Дата

10,5	0,0025	1,005804809	0,000332740
11,5	0,0015	1,005242499	0,000364226
12,5	0,0005	1,004775081	0,000395713

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0002205 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,004022 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[410] Метан

Результаты расчётов

T esjublatbi pae iei	<u> </u>		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0012698	0,0133664, г/с	0,095000
выброс			
Валовый	0,023157	0,2437574,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 2 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 2 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
м/с	
7	2

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1 [1])$

При и>3

Взам.

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (2 [1])

 $a_1{}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,023612616	0,005863740
3,5	0,164	1,019868437	0,006816007
4,5	0,14	1,014994152	0,008721554
5,5	0,092	1,011976053	0,010627981
6,5	0,044	1,009932463	0,012534976
7,5	0,0295	1,008461577	0,014442369
8,5	0,015	1,007354797	0,016350055
9,5	0,00875	1,006493360	0,018257964
10,5	0,0025	1,005804809	0,020166050
11,5	0,0015	1,005242499	0,022074278
12,5	0,0005	1,004775081	0,023982624

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0133664 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,243757 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

						Г
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

[416] Смесь предельных углеводородов С6Н14-С10Н22

Результаты расчётов

resymptator pacter	~ -		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0005206	0,0054802, г/с	0,095000
выброс			
Валовый	0,009494	0,0999405,	0,095000
выброс	·	т/год	·

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,82 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,82 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
м/с	
7	0,82

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

M=2.7·10⁻⁵· a_1^{cp} · C_{ϕ} · $S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ cp)	1
3	0,502	1,023612616	0,002404133
3,5	0,164	1,019868437	0,002794563
4,5	0,14	1,014994152	0,003575837
5,5	0,092	1,011976053	0,004357472
6,5	0,044	1,009932463	0,005139340
7,5	0,0295	1,008461577	0,005921371
8,5	0,015	1,007354797	0,006703522
9,5	0,00875	1,006493360	0,007485765
10,5	0,0025	1,005804809	0,008268080
11,5	0,0015	1,005242499	0,009050454
12,5	0,0005	1,004775081	0,009832876

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0054802 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,099941 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1071] Гидроксибензол (Фенол)

Результаты расчётов

Взам.

Подп. и дата

1 cojubrarbi pac ici	<u>-</u>		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000161	0,0001698, г/с	0,095000
выброс			
Валовый	0,000294	0,0030957,	0,095000

Изм.	Кол.уч	Лист	№док	Подп.	Дата

_	,	
выброс	т/гол	
выорос	1/1 ОД	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0254 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0254 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,0254

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	- ' '
3	0,502	1,023612616	0,000074469
3,5	0,164	1,019868437	0,000086563
4,5	0,14	1,014994152	0,000110764
5,5	0,092	1,011976053	0,000134975
6,5	0,044	1,009932463	0,000159194
7,5	0,0295	1,008461577	0,000183418
8,5	0,015	1,007354797	0,000207646
9,5	0,00875	1,006493360	0,000231876
10,5	0,0025	1,005804809	0,000256109
11,5	0,0015	1,005242499	0,000280343
12,5	0,0005	1,004775081	0,000304579

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0001698 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,003096 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1325] Формальдегид

Результаты расчётов

Взам.

Подп. и дата

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000235	0,0002473, г/с	0,095000
выброс			
Валовый	0,000428	0,0045095,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,037 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,037 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
м/с	
7	0,037

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

						Г
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

595

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,023612616	0,000108479
3,5	0,164	1,019868437	0,000126096
4,5	0,14	1,014994152	0,000161349
5,5	0,092	1,011976053	0,000196618
6,5	0,044	1,009932463	0,000231897
7,5	0,0295	1,008461577	0,000267184
8,5	0,015	1,007354797	0,000302476
9,5	0,00875	1,006493360	0,000337772
10,5	0,0025	1,005804809	0,000373072
11,5	0,0015	1,005242499	0,000408374
12,5	0,0005	1,004775081	0,000443679

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0002473~r/c

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,004510 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1728] Этантиол (Этилмеркаптан)

Результаты расчётов

езультаты расчетов				
	Выброс	Выброс	Безразмерный	
	вещества	вещества, без	коэффициент,	
		учёта внешних	учитывающий	
		факторов	механические	
			укрытия (а3)	
Максимальный	0,0000008	0,0000087, г/с	0,095000	
выброс				
Валовый	0,000015	0,0001584,	0,095000	
выброс		т/год		

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0013 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{φ}): 0,0013 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,0013

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

Взам.

Подп. и дата

 $M \!\!=\!\! 2.7 \cdot \! 10^{\text{-}5} \cdot \! a_1{}^{cp} \cdot \! C_{\varphi} \cdot \! S^{0.93} \text{, (1 [1])}$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра Повторяемость градации Безразмерный Доля градации (М), г/с

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,023612616	0,000003811
3,5	0,164	1,019868437	0,000004430
4,5	0,14	1,014994152	0,000005669
5,5	0,092	1,011976053	0,000006908
6,5	0,044	1,009932463	0,000008148
7,5	0,0295	1,008461577	0,000009388
8,5	0,015	1,007354797	0,000010628
9,5	0,00875	1,006493360	0,000011868
10,5	0,0025	1,005804809	0,000013108
11,5	0,0015	1,005242499	0,000014348
12,5	0,0005	1,004775081	0,000015589

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000087 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000158 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

Программа основана на следующих методических документах:

- 1. «Методические рекомендации по расчету выбросов загрязняющих веществ в атмосферный воздух от неорганизованных источников станций аэрации сточных вод», НИИ Атмосфера, Санкт-Петербург, 2015 год
- 2. Информационное письмо №5. Исх. 07-2-748/16-0 от 06.10.2016. НИИ Атмосфера
- 3. Методическое письмо. Исх. 1-1160/17-0-1 от 09.06.2017. НИИ Атмосфера

Расчет произведен программой «Станции аэрации», версия 1.3.10 от 14.09.2021 Copyright© 2012-2021 Фирма «Интеграл»

Название источника выбросов: №26 Вент.труба (насосная дренажа)

Результаты расчетов по источнику выбросов

		Tala	
Код	Название вещества	Максимальный	Валовой выброс,
		выброс, г/с	т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000358	0,000655
0303	Аммиак	0,0002185	0,003992
0304	Азот (II) оксид (Азота оксид)	0,0000612	0,001118
0333	Дигидросульфид (Сероводород)	0,0004283	0,007825
0410	Метан	0,0307646	0,562129
0416	Смесь предельных углеводородов	0,0013722	0,025072
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0000227	0,000415
1325	Формальдегид	0,0000315	0,000575
1728	Этантиол (Этилмеркаптан)	0,0000016	0,000029

Источники выделений

Взам. Инв.

Подп. и дата

Код	Название вещества	Максимальный	Среднегодовой
		выброс, г/с	выброс, т/год
Автономный	[1] Источн	ик №1	
источник			
0301	Азота диоксид (Азот (IV) оксид)	0,0000358	0,000655
0303	Аммиак	0,0002185	0,003992
0304	Азот (II) оксид (Азота оксид)	0,0000612	0,001118
0333	Дигидросульфид (Сероводород)	0,0004283	0,007825
0410	Метан	0,0307646	0,562129
0416	Смесь предельных углеводородов	0,0013722	0,025072
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0000227	0,000415
1325	Формальдегид	0,0000315	0,000575
1728	Этантиол (Этилмеркаптан)	0,0000016	0,000029

						Ī
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Результаты расчетов по источнику выделения

Код	Название вещества	Максимальный выброс,	Среднегодовой выброс,
		г/с	т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000358	0,000655
0303	Аммиак	0,0002185	0,003992
0304	Азот (II) оксид (Азота оксид)	0,0000612	0,001118
0333	Дигидросульфид (Сероводород)	0,0004283	0,007825
0410	Метан	0,0307646	0,562129
0416	Смесь предельных углеводородов С6Н14-	0,0013722	0,025072
	C10H22		
1071	Гидроксибензол (Фенол)	0,0000227	0,000415
1325	Формальдегид	0,0000315	0,000575
1728	Этантиол (Этилмеркаптан)	0,0000016	0,000029

Расчетные формулы

Расчет производился по осредненным концентрациям веществ

Максимальный выброс (M^{max}), г/с

При и<=3

$$M^{max}=2.7\cdot10^{-5}\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (1 [1])

При и>3

$$M^{max}=0.9\cdot10^{-5}\cdot u\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (2 [1])

- u скорость ветра, зафиксированная в период времени года, когда была измерена концентрация C_{max} , м/с
- a_1^{ϕ} безразмерный коэффициент, учитывающий влияние превышения температуры водной поверхности над температурой воздуха на высоте 2 м вблизи сооружения

 C_{max} - осредненная концентрация ${\bf \widehat{3B}}$ над поверхностью испарения, мг/м³

S - полная площадь водной поверхности (включая укрытые участки)

Валовый выброс (G), т/год

 $G=31.5 \cdot SP_i \cdot M_i (13[1])$

- $P_{\rm i}$ безразмерная повторяемость градации скорости ветра
- M_i мощность выброса i-ого вещества для средней концентрации вблизи водной поверхности при скорости ветра, отнесенной к середине градации

Учет механических укрытий

$$M^{max}=M^{max}\cdot a_3$$
, (π . 5.6 [1])

G=G·a₃, (п. 5.6 [1])

аз - безразмерный коэффициент, учитывающий механические укрытия

Результаты замеров

Среднегодовая температура воды (t_{вод} ср): 20 °C

Фактическая температура воды $(t_{вод}^{\phi})$: 0 °C

Температура воздуха на высоте 2 м над водной поверхностью $(t_{воз}^{\phi})$: 0 °C

Превышение температуры водной поверхности над температурой воздуха:

Фактическое (DT $^{\phi}$): DT $^{\phi} = t_{\text{вод}} + t_{\text{вод}} = 0^{\circ} \text{С}$

Среднее (DT^{cp}): DT^{cp}= t_{BO3}^{cp} - t_{BO3}^{cp} =18,5°C

Полная площадь водной поверхности (включая укрытые участки) (S): 212,5 м²

Площадь укрытия сооружений (So): 212,5 м²

[301] Азота диоксид (Азот (IV) оксид)

Результаты расчётов

Взам.

Подп. и дата

т сзультаты расчет	ОВ		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000358	0,0003772, г/с	0,095000
выброс			

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Валовый	0,000655	0,0068921,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,041 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,041 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/C	
7	0,041

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M \!\!=\!\! 0.9 \!\!\cdot\! 10^{\text{-5}} \!\!\cdot\! u \!\!\cdot\! a_1^{\, cp} \!\!\cdot\! C_\varphi \!\!\cdot\! S^{0.93} \!, \, (2 \, [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ cp)	1
3	0,502	1,026312160	0,000165909
3,5	0,164	1,022139922	0,000192774
4,5	0,14	1,016708378	0,000246535
5,5	0,092	1,013345231	0,000300324
6,5	0,044	1,011068005	0,000354131
7,5	0,0295	1,009428958	0,000407950
8,5	0,015	1,008195644	0,000461779
9,5	0,00875	1,007235722	0,000515614
10,5	0,0025	1,006468451	0,000569455
11,5	0,0015	1,005841854	0,000623301
12,5	0,0005	1,005320998	0,000677150

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0003772 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,006892 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0,095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[303] Аммиак

Взам.

Подп. и дата

Результаты расчётов

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0002185	0,0023000, г/с	0,095000
выброс			
Валовый	0,003992	0,0420252,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,25 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,25 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/C	
7	0,25

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M{=}0.9{\cdot}10^{\text{-5}}{\cdot}u{\cdot}a_1{^{cp}}{\cdot}C_\varphi{\cdot}S^{0.93}\text{, (2 [1])}$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,026312160	0,001011642
3,5	0,164	1,022139922	0,001175452
4,5	0,14	1,016708378	0,001503264
5,5	0,092	1,013345231	0,001831245
6,5	0,044	1,011068005	0,002159335
7,5	0,0295	1,009428958	0,002487501
8,5	0,015	1,008195644	0,002815724
9,5	0,00875	1,007235722	0,003143989
10,5	0,0025	1,006468451	0,003472288
11,5	0,0015	1,005841854	0,003800615
12,5	0,0005	1,005320998	0,004128964

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0023000 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,042025 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[304] Азот (II) оксид (Азота оксид)

Результаты расчётов

гезультаты расчетов				
	Выброс	Выброс	Безразмерный	
	вещества	вещества, без	коэффициент,	
		учёта внешних	учитывающий	
		факторов	механические	
			укрытия (а3)	
Максимальный	0,0000612	0,0006440, г/с	0,095000	
выброс				
Валовый	0,001118	0,0117671,	0,095000	
выброс		т/год		

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,07 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,07 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	-
7	0,07

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

Взам.

Подп. и дата

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1[1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

						Г
						ı
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,026312160	0,000283260
3,5	0,164	1,022139922	0,000329126
4,5	0,14	1,016708378	0,000420914
5,5	0,092	1,013345231	0,000512749
6,5	0,044	1,011068005	0,000604614
7,5	0,0295	1,009428958	0,000696500
8,5	0,015	1,008195644	0,000788403
9,5	0,00875	1,007235722	0,000880317
10,5	0,0025	1,006468451	0,000972241
11,5	0,0015	1,005841854	0,001064172
12,5	0,0005	1,005320998	0,001156110

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0006440 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,011767 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0,095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[333] Дигидросульфид (Сероводород)

Результаты расчётов

1 cognibitation pacticit	0.5		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0004283	0,0045080, г/с	0,095000
выброс			
Валовый	0,007825	0,0823694,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,49 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,49 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/C	
7	0,49

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1{}^{cp}\cdot C_{\varphi}\cdot S^{0.93},\,(1\,\,[1])$

При и>3

Взам. Инв. №

Подп. и дата

M=0.9·10⁻⁵·u·a₁^{cp}·C_{ϕ}·S^{0.93}, (2 [1])

 ${a_1}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

		-	
Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,026312160	0,001982819
3,5	0,164	1,022139922	0,002303885
4,5	0,14	1,016708378	0,002946397
5,5	0,092	1,013345231	0,003589240
6,5	0,044	1,011068005	0,004232297
7,5	0,0295	1,009428958	0,004875503
8,5	0,015	1,008195644	0,005518819
9,5	0,00875	1,007235722	0,006162219

						Г
						ı
						1
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

10,5	0,0025	1,006468451	0,006805685
11,5	0,0015	1,005841854	0,007449205
12,5	0,0005	1,005320998	0,008092769

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0045080 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,082369 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[410] Метан

Результаты расчётов

r esymptathi pae iet	*-		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0307646	0,3238374, г/с	0,095000
выброс			
Валовый	0,562129	5,9171511,	0,095000
выброс	·	т/год	·

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 35,2 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 35,2 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
м/с	
7	35,2

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1 [1])$

При и>3

Взам.

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1{}^{cp}\!\!=\!\!1\!\!+\!\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\left(3\;[1]\right)$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,026312160	0,142439261
3,5	0,164	1,022139922	0,165503574
4,5	0,14	1,016708378	0,211659564
5,5	0,092	1,013345231	0,257839292
6,5	0,044	1,011068005	0,304034387
7,5	0,0295	1,009428958	0,350240210
8,5	0,015	1,008195644	0,396453927
9,5	0,00875	1,007235722	0,442673686
10,5	0,0025	1,006468451	0,488898210
11,5	0,0015	1,005841854	0,535126583
12,5	0,0005	1,005320998	0,581358128

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,3238374 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 5,917151 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

[416] Смесь предельных углеводородов С6Н14-С10Н22

Результаты расчётов

resymptator pacter	~ -		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0013722	0,0144439, г/с	0,095000
выброс			
Валовый	0,025072	0,2639184,	0,095000
выброс	·	т/год	·

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 1,57 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 1,57 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/C	
7	1,57

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

M=2.7·10⁻⁵· a_1^{cp} · C_{ϕ} · $S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ cp)	1
3	0,502	1,026312160	0,006353115
3,5	0,164	1,022139922	0,007381836
4,5	0,14	1,016708378	0,009440498
5,5	0,092	1,013345231	0,011500218
6,5	0,044	1,011068005	0,013560625
7,5	0,0295	1,009428958	0,015621509
8,5	0,015	1,008195644	0,017682746
9,5	0,00875	1,007235722	0,019744252
10,5	0,0025	1,006468451	0,021805971
11,5	0,0015	1,005841854	0,023867862
12,5	0,0005	1,005320998	0,025929894

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0144439 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,263918 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1071] Гидроксибензол (Фенол)

Результаты расчётов

Взам.

Подп. и дата

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (a_3)
Максимальный	0,0000227	0,0002392, г/с	0,095000
выброс			
Валовый	0,000415	0,0043706,	0,095000

Изм.	Кол.уч	Лист	№док	Подп.	Дата

_	,
выброс	т/голі
IDDIOUC	1/10/11

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,026 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,026 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%, м/с	мг/куб. м
7	0,026

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,026312160	0,000105211
3,5	0,164	1,022139922	0,000122247
4,5	0,14	1,016708378	0,000156339
5,5	0,092	1,013345231	0,000190449
6,5	0,044	1,011068005	0,000224571
7,5	0,0295	1,009428958	0,000258700
8,5	0,015	1,008195644	0,000292835
9,5	0,00875	1,007235722	0,000326975
10,5	0,0025	1,006468451	0,000361118
11,5	0,0015	1,005841854	0,000395264
12,5	0,0005	1,005320998	0,000429412

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0002392 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,004371 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1325] Формальдегид

Результаты расчётов

Взам.

Подп. и дата

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000315	0,0003312, г/с	0,095000
выброс			
Валовый	0,000575	0,0060516,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,036 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,036 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
м/с	
7	0,036

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

- 1							
							Γ
							l
	Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1{}^{cp}\cdot C_{\varphi}\cdot S^{0.93},\,(1\,\,[1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{cp})	
3	0,502	1,026312160	0,000145677
3,5	0,164	1,022139922	0,000169265
4,5	0,14	1,016708378	0,000216470
5,5	0,092	1,013345231	0,000263699
6,5	0,044	1,011068005	0,000310944
7,5	0,0295	1,009428958	0,000358200
8,5	0,015	1,008195644	0,000405464
9,5	0,00875	1,007235722	0,000452734
10,5	0,0025	1,006468451	0,000500010
11,5	0,0015	1,005841854	0,000547289
12,5	0,0005	1,005320998	0,000594571

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0003312~г/c

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,006052 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1728] Этантиол (Этилмеркаптан)

Результаты расчётов

гезультаты расчетов					
	Выброс	Выброс	Безразмерный		
	вещества	вещества, без	коэффициент,		
		учёта внешних	учитывающий		
		факторов	механические		
			укрытия (а3)		
Максимальный	0,0000016	0,0000166, г/с	0,095000		
выброс					
Валовый	0,000029	0,0003026,	0,095000		
выброс		т/год			

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0018 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0018 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,0018

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

Взам.

Подп. и дата

 $M \!\!=\!\! 2.7 \cdot \! 10^{\text{-}5} \cdot \! a_1{}^{cp} \cdot \! C_{\varphi} \cdot \! S^{0.93} \text{, (1 [1])}$

При и>3

 $M{=}0.9{\cdot}10^{\text{-5}}{\cdot}u{\cdot}a_1{^{cp}}{\cdot}C_\varphi{\cdot}S^{0.93}\text{, (2 [1])}$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (M), г/c
T pagagnii ekopoetii betpa j	повторисмоств градации	Безразмерный	доли градации (141), 1/С

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,026312160	0,000007284
3,5	0,164	1,022139922	0,000008463
4,5	0,14	1,016708378	0,000010824
5,5	0,092	1,013345231	0,000013185
6,5	0,044	1,011068005	0,000015547
7,5	0,0295	1,009428958	0,000017910
8,5	0,015	1,008195644	0,000020273
9,5	0,00875	1,007235722	0,000022637
10,5	0,0025	1,006468451	0,000025000
11,5	0,0015	1,005841854	0,000027364
12,5	0,0005	1,005320998	0,000029729

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000166 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000303 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

Программа основана на следующих методических документах:

- 1. «Методические рекомендации по расчету выбросов загрязняющих веществ в атмосферный воздух от неорганизованных источников станций аэрации сточных вод», НИИ Атмосфера, Санкт-Петербург, 2015 год
- 2. Информационное письмо №5. Исх. 07-2-748/16-0 от 06.10.2016. НИИ Атмосфера
- 3. Методическое письмо. Исх. 1-1160/17-0-1 от 09.06.2017. НИИ Атмосфера

Расчет произведен программой «Станции аэрации», версия 1.3.10 от 14.09.2021 Copyright© 2012-2021 Фирма «Интеграл»

Название источника выбросов: №6011 Иловые площадки

Результаты расчетов по источнику выбросов

Код	Название вещества	Максимальный	Валовой
		выброс, г/с	выброс, т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0008043	0,015124
0303	Аммиак	0,0517079	0,972270
0304	Азот (II) оксид (Азота оксид)	0,0143633	0,270075
0333	Дигидросульфид (Сероводород)	0,0041654	0,078322
0410	Метан	0,2298129	4,321198
0416	Смесь предельных углеводородов	0,0718165	1,350374
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0053144	0,099928
1325	Формальдегид	0,0035908	0,067519
1728	Этантиол (Этилмеркаптан)	0,0001867	0,003511

Источники выделений

Взам. Инв. №

Подп. и дата

Код	Название вещества	Максимальный	Среднегодовой
		выброс, г/с	выброс, т/год
Автономный	[1] Источ	ник №1	
источник			
0301	Азота диоксид (Азот (IV) оксид)	0,0008043	
0303	Аммиак	0,0517079	0,972270
0304	Азот (II) оксид (Азота оксид)	0,0143633	0,270075
0333	Дигидросульфид (Сероводород)	0,0041654	0,078322
0410	Метан	0,2298129	4,321198
0416	Смесь предельных углеводородов	0,0718165	1,350374
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0053144	0,099928
1325	Формальдегид	0,0035908	0,067519
1728	Этантиол (Этилмеркаптан)	0,0001867	0,003511

						ſ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	l

Результаты расчетов по источнику выделения

Код	Название вещества	Максимальный выброс,	Среднегодовой выброс,
		г/с	т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0008043	0,015124
0303	Аммиак	0,0517079	0,972270
0304	Азот (II) оксид (Азота оксид)	0,0143633	0,270075
0333	Дигидросульфид (Сероводород)	0,0041654	0,078322
0410	Метан	0,2298129	4,321198
0416	Смесь предельных углеводородов C6H14- C10H22	0,0718165	1,350374
1071	Гидроксибензол (Фенол)	0,0053144	0,099928
1325	Формальдегид	0,0035908	0,067519
1728	Этантиол (Этилмеркаптан)	0,0001867	0,003511

Расчетные формулы

Расчет производился по осредненным концентрациям веществ

Максимальный выброс (M^{max}), г/с

При и<=3

$$M^{max}=2.7\cdot10^{-5}\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (1 [1])

При и>3

$$M^{max}=0.9\cdot10^{-5}\cdot u\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (2 [1])

- u скорость ветра, зафиксированная в период времени года, когда была измерена концентрация C_{max} , м/с
- a_1^{ϕ} безразмерный коэффициент, учитывающий влияние превышения температуры водной поверхности над температурой воздуха на высоте 2 м вблизи сооружения

 C_{max} - осредненная концентрация ${\bf \widehat{3B}}$ над поверхностью испарения, мг/м³

S - полная площадь водной поверхности (включая укрытые участки)

Валовый выброс (G), т/год

 $G=31.5 \cdot SP_i \cdot M_i (13[1])$

- $P_{\rm i}$ безразмерная повторяемость градации скорости ветра
- M_i мощность выброса i-ого вещества для средней концентрации вблизи водной поверхности при скорости ветра, отнесенной к середине градации

Учет механических укрытий

$$M^{max}=M^{max}\cdot a_3$$
, (π . 5.6 [1])

G=G·a₃, (п. 5.6 [1])

аз - безразмерный коэффициент, учитывающий механические укрытия

Результаты замеров

Среднегодовая температура воды (t_{вод} ср): 20 °C

Фактическая температура воды ($t_{вод}^{\phi}$): 0 °C

Температура воздуха на высоте 2 м над водной поверхностью ($t_{воз}^{\phi}$): 0 °C

Превышение температуры водной поверхности над температурой воздуха:

Фактическое (DT $^{\phi}$): DT $^{\phi}$ = $t_{вод}^{\phi}$ - $t_{воз}^{\phi}$ =0°C

Среднее (DT^{cp}): DT^{cp}= $t_{вод}^{cp}$ - $t_{воз}^{cp}$ =18,5°C

Полная площадь водной поверхности (включая укрытые участки) (S): 4080 м²

Площадь укрытия сооружений (So): 0 м²

[301] Азота диоксид (Азот (IV) оксид)

Результаты расчётов

Взам.

Подп. и дата

Результаты расчет	ОВ		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0008043	0,0008043, г/с	1,000000
выброс			

ш							
Г							Γ
Γ							l
	Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Валовый	0,015124	0,0151242,	1,000000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0056 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0056 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%, м/с	мг/куб. м
7	0,0056

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M \!\!=\!\! 0.9 \!\!\cdot\! 10^{\text{-5}} \!\!\cdot\! u \!\!\cdot\! a_1^{\, cp} \!\!\cdot\! C_\varphi \!\!\cdot\! S^{0.93} \!, \, (2 \, [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,066741565	0,000367727
3,5	0,164	1,056158562	0,000424758
4,5	0,14	1,042381290	0,000538994
5,5	0,092	1,033850569	0,000653379
6,5	0,044	1,028074319	0,000767861
7,5	0,0295	1,023916828	0,000882410
8,5	0,015	1,020788492	0,000997009
9,5	0,00875	1,018353621	0,001111647
10,5	0,0025	1,016407415	0,001226314
11,5	0,0015	1,014818035	0,001341005
12,5	0,0005	1,013496867	0,001455717

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0008043 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,015124 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 1,000000 (9 [1])$

Степень укрытости сооружений n=So/S=0,0000 (7 [1])

[303] Аммиак

Взам.

Подп. и дата

Результаты расчётов

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0517079	0,0517079, г/с	1,000000
выброс			
Валовый	0,972270	0,9722696,	1,000000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,36 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,36 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/C	,
7	0,36

14	16	П	Na	П	П
ИЗМ.	Кол.уч	JINCT	№ДОК	Подп.	дата

04/2022-151-00000-OBOC-TY

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M{=}0.9{\cdot}10^{\text{-5}}{\cdot}u{\cdot}a_1{^{cp}}{\cdot}C_\varphi{\cdot}S^{0.93}\text{, (2 [1])}$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,066741565	0,023639562
3,5	0,164	1,056158562	0,027305877
4,5	0,14	1,042381290	0,034649589
5,5	0,092	1,033850569	0,042002914
6,5	0,044	1,028074319	0,049362464
7,5	0,0295	1,023916828	0,056726359
8,5	0,015	1,020788492	0,064093451
9,5	0,00875	1,018353621	0,071462989
10,5	0,0025	1,016407415	0,078834458
11,5	0,0015	1,014818035	0,086207486
12,5	0,0005	1,013496867	0,093581798

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0517079 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,972270 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=1,000000(9[1])$

Степень укрытости сооружений n=So/S=0,0000 (7 [1])

[304] Азот (II) оксид (Азота оксид)

Результаты расчётов

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0143633	0,0143633, г/с	1,000000
выброс			
Валовый	0,270075	0,2700749,	1,000000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,1 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,1 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,1

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

Взам.

Подп. и дата

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1[1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

						Г
						ı
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,066741565	0,006566545
3,5	0,164	1,056158562	0,007584966
4,5	0,14	1,042381290	0,009624886
5,5	0,092	1,033850569	0,011667476
6,5	0,044	1,028074319	0,013711796
7,5	0,0295	1,023916828	0,015757322
8,5	0,015	1,020788492	0,017803736
9,5	0,00875	1,018353621	0,019850830
10,5	0,0025	1,016407415	0,021898461
11,5	0,0015	1,014818035	0,023946524
12,5	0,0005	1,013496867	0,025994944

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0143633~г/c

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,270075 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 1,0000000 (9 [1])$

Степень укрытости сооружений n=So/S=0,0000 (7 [1])

[333] Дигидросульфид (Сероводород)

Результаты расчётов

1 cognibitation pactical	· -		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0041654	0,0041654, г/с	1,000000
выброс			
Валовый	0,078322	0,0783217,	1,000000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,029 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,029 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м	
M/C		
7	0,029	

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1{}^{cp}\cdot C_{\varphi}\cdot S^{0.93},\,(1\,\,[1])$

При и>3

Взам. Инв. №

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$

 ${a_1}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

	ı		
Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,066741565	0,001904298
3,5	0,164	1,056158562	0,002199640
4,5	0,14	1,042381290	0,002791217
5,5	0,092	1,033850569	0,003383568
6,5	0,044	1,028074319	0,003976421
7,5	0,0295	1,023916828	0,004569623
8,5	0,015	1,020788492	0,005163084
9,5	0,00875	1,018353621	0,005756741

		L	_	_
Кол.уч	Лист	№док	Подп.	Дата
	Кол.уч	Кол.уч Лист	Кол.уч Лист №док	Кол.уч Лист №док Подп.

10,5	0,0025	1,016407415	0,006350554
11,5	0,0015	1,014818035	0,006944492
12,5	0,0005	1,013496867	0,007538534

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0041654 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,078322 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 1,0000000 (9 [1])$

Степень укрытости сооружений n=So/S=0,0000 (7 [1])

[410] Метан

Результаты расчётов

r esymptator pae ier			
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,2298129	0,2298129, г/с	1,000000
выброс			
Валовый	4,321198	4,3211983,	1,000000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 1,6 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 1,6 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	-
7	1,6

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1 [1])$

При и>3

Взам.

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (2 [1])

 $a_1{}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,066741565	0,105064722
3,5	0,164	1,056158562	0,121359454
4,5	0,14	1,042381290	0,153998172
5,5	0,092	1,033850569	0,186679618
6,5	0,044	1,028074319	0,219388728
7,5	0,0295	1,023916828	0,252117149
8,5	0,015	1,020788492	0,284859780
9,5	0,00875	1,018353621	0,317613286
10,5	0,0025	1,016407415	0,350375369
11,5	0,0015	1,014818035	0,383144381
12,5	0,0005	1,013496867	0,415919103

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,2298129 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 4,321198 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 1,0000000 (9 [1])$

Степень укрытости сооружений n=So/S=0,0000 (7 [1])

Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

[416] Смесь предельных углеводородов С6Н14-С10Н22

Результаты расчётов

r esjustansi pae ier			
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0718165	0,0718165, г/с	1,000000
выброс			
Валовый	1,350374	1,3503745,	1,000000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,5 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{φ}): 0,5 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%, м/с	Концентрация вещества, мг/куб. м
7	0,5

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

M=2.7·10⁻⁵· a_1^{cp} · C_{ϕ} · $S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,066741565	0,032832726
3,5	0,164	1,056158562	0,037924829
4,5	0,14	1,042381290	0,048124429
5,5	0,092	1,033850569	0,058337381
6,5	0,044	1,028074319	0,068558978
7,5	0,0295	1,023916828	0,078786609
8,5	0,015	1,020788492	0,089018681
9,5	0,00875	1,018353621	0,099254152
10,5	0,0025	1,016407415	0,109492303
11,5	0,0015	1,014818035	0,119732619
12,5	0,0005	1,013496867	0,129974720

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0718165 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 1,350374 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 1,000000 (9 [1])$

Степень укрытости сооружений n=So/S=0,0000 (7 [1])

[1071] Гидроксибензол (Фенол)

Результаты расчётов

Взам.

Подп. и дата

1 cognibilation pactici			
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0053144	0,0053144, г/с	1,000000
выброс			
Валовый	0,099928	0,0999277,	1,000000

						_
						ſ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	l

_	,
выброс	т/голі
IDDIOUC	1/10/11

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,037 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{Φ}): 0,037 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%, м/с	мг/куб. м
7	0,037

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (2 [1])

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	- ' '
3	0,502	1,066741565	0,002429622
3,5	0,164	1,056158562	0,002806437
4,5	0,14	1,042381290	0,003561208
5,5	0,092	1,033850569	0,004316966
6,5	0,044	1,028074319	0,005073364
7,5	0,0295	1,023916828	0,005830209
8,5	0,015	1,020788492	0,006587382
9,5	0,00875	1,018353621	0,007344807
10,5	0,0025	1,016407415	0,008102430
11,5	0,0015	1,014818035	0,008860214
12,5	0,0005	1,013496867	0,009618129

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0053144 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,099928 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=1,000000(9[1])$

Степень укрытости сооружений n=So/S=0,0000 (7 [1])

[1325] Формальдегид

Результаты расчётов

Взам.

Подп. и дата

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0035908	0,0035908, г/с	1,000000
выброс			
Валовый	0,067519	0,0675187,	1,000000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,025 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,025 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
м/с	
7	0,025

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

						Г
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{cp})	
3	0,502	1,066741565	0,001641636
3,5	0,164	1,056158562	0,001896241
4,5	0,14	1,042381290	0,002406221
5,5	0,092	1,033850569	0,002916869
6,5	0,044	1,028074319	0,003427949
7,5	0,0295	1,023916828	0,003939330
8,5	0,015	1,020788492	0,004450934
9,5	0,00875	1,018353621	0,004962708
10,5	0,0025	1,016407415	0,005474615
11,5	0,0015	1,014818035	0,005986631
12,5	0,0005	1,013496867	0,006498736

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0035908~r/c

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,067519 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2-0.2 \cdot n) = 1,0000000 (9 [1])$

Степень укрытости сооружений n=So/S=0,0000 (7 [1])

[1728] Этантиол (Этилмеркаптан)

Результаты расчётов

гезультаты расчет	ОВ		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0001867	0,0001867, г/с	1,000000
выброс			
Валовый	0,003511	0,0035110,	1,000000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0013 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0013 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,	
превышения которой составляет 5%,	мг/куб. м	
M/C	-	
7	0,0013	

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

Взам.

Подп. и дата

 $M \!\!=\!\! 2.7 \cdot \! 10^{\text{-}5} \cdot \! a_1{}^{cp} \cdot \! C_{\varphi} \cdot \! S^{0.93} \text{, (1 [1])}$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра Повторяемость градации Безразмерный Доля градации (М), г/с

<u> </u>	_				
Изм.	Кол.уч	Лист	№док	Подп.	Дата

(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,066741565	0,000085365
3,5	0,164	1,056158562	0,000098605
4,5	0,14	1,042381290	0,000125124
5,5	0,092	1,033850569	0,000151677
6,5	0,044	1,028074319	0,000178253
7,5	0,0295	1,023916828	0,000204845
8,5	0,015	1,020788492	0,000231449
9,5	0,00875	1,018353621	0,000258061
10,5	0,0025	1,016407415	0,000284680
11,5	0,0015	1,014818035	0,000311305
12,5	0,0005	1,013496867	0,000337934

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0001867 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,003511 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 1,0000000 (9 [1])$

Степень укрытости сооружений n=So/S=0,0000 (7 [1])

Программа основана на следующих методических документах:

- 1. «Методические рекомендации по расчету выбросов загрязняющих веществ в атмосферный воздух от неорганизованных источников станций аэрации сточных вод», НИИ Атмосфера, Санкт-Петербург, 2015 год
- 2. Информационное письмо №5. Исх. 07-2-748/16-0 от 06.10.2016. НИИ Атмосфера
- 3. Методическое письмо. Исх. 1-1160/17-0-1 от 09.06.2017. НИИ Атмосфера

Расчет произведен программой «Станции аэрации», версия 1.3.10 от 14.09.2021 Copyright© 2012-2021 Фирма «Интеграл»

Название источника выбросов: №6012 Сливная станция

Результаты расчетов по источнику выбросов

Код	Название вещества	Максимальный	Валовой выброс,
		выброс, г/с	т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000053	0,000095
0303	Аммиак	0,0000321	0,000581
0304	Азот (II) оксид (Азота оксид)	0,0000090	0,000163
0333	Дигидросульфид (Сероводород)	0,0000629	0,001138
0410	Метан	0,0045162	0,081774
0416	Смесь предельных углеводородов	0,0002014	0,003647
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0000033	0,000060
1325	Формальдегид	0,0000046	0,000084
1728	Этантиол (Этилмеркаптан)	0,0000002	0,000004

Источники выделений

Взам. Инв. №

Подп. и дата

Код	Название вещества	Максимальный выброс, г/с	Среднегодовой выброс, т/год
Автономный	[1] Источ	ник №1	-
источник			
0301	Азота диоксид (Азот (IV) оксид)	0,0000053	0,000095
0303	Аммиак	0,0000321	0,000581
0304	Азот (II) оксид (Азота оксид)	0,0000090	0,000163
0333	Дигидросульфид (Сероводород)	0,0000629	0,001138
0410	Метан	0,0045162	0,081774
0416	Смесь предельных углеводородов C6H14-C10H22	0,0002014	0,003647
1071	Гидроксибензол (Фенол)	0,0000033	0,000060
	Формальдегид	0,0000033	
	Этантиол (Этилмеркаптан)	0,0000000	0,000004

						_
						ı
						l
						ı
						ı
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Результаты расчетов по источнику выделения

Код	Название вещества	Максимальный выброс,	Среднегодовой выброс,
		г/с	т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000053	0,000095
0303	Аммиак	0,0000321	0,000581
0304	Азот (II) оксид (Азота оксид)	0,0000090	0,000163
0333	Дигидросульфид (Сероводород)	0,0000629	0,001138
0410	Метан	0,0045162	0,081774
0416	Смесь предельных углеводородов С6Н14-	0,0002014	0,003647
	C10H22		
1071	Гидроксибензол (Фенол)	0,0000033	0,000060
1325	Формальдегид	0,0000046	0,000084
1728	Этантиол (Этилмеркаптан)	0,0000002	0,000004

Расчетные формулы

Расчет производился по осредненным концентрациям веществ

Максимальный выброс (M^{max}), г/с

При и<=3

$$M^{max}=2.7\cdot10^{-5}\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (1 [1])

При и>3

$$M^{max}=0.9\cdot10^{-5}\cdot u\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (2 [1])

u - скорость ветра, зафиксированная в период времени года, когда была измерена концентрация C_{max} , м/с

 a_1^{ϕ} - безразмерный коэффициент, учитывающий влияние превышения температуры водной поверхности над температурой воздуха на высоте 2 м вблизи сооружения

 C_{max} - осредненная концентрация ${\bf \widehat{3B}}$ над поверхностью испарения, мг/м³

S - полная площадь водной поверхности (включая укрытые участки)

Валовый выброс (G), т/год

 $G=31.5 \cdot SP_i \cdot M_i (13[1])$

 $P_{\rm i}$ - безразмерная повторяемость градации скорости ветра

 M_i - мощность выброса i-ого вещества для средней концентрации вблизи водной поверхности при скорости ветра, отнесенной к середине градации

Учет механических укрытий

$$M^{max}=M^{max}\cdot a_3$$
, (π . 5.6 [1])

G=G·a₃, (п. 5.6 [1])

аз - безразмерный коэффициент, учитывающий механические укрытия

Результаты замеров

Среднегодовая температура воды (t_{вод} ср): 20 °C

Фактическая температура воды $(t_{вод}^{\phi})$: 0 °C

Температура воздуха на высоте 2 м над водной поверхностью ($t_{воз}^{\varphi}$): 0 °C

Превышение температуры водной поверхности над температурой воздуха:

Фактическое (DT $^{\phi}$): DT $^{\phi}$ = $t_{вод}{}^{\phi}$ - $t_{воз}{}^{\phi}$ =0°C

Среднее (DT^{cp}): DT^{cp}= t_{BO3}^{cp} - t_{BO3}^{cp} =18,5°C

Полная площадь водной поверхности (включая укрытые участки) (S): 27 м²

Площадь укрытия сооружений (So): 27 м²

[301] Азота диоксид (Азот (IV) оксид)

Результаты расчётов

Взам.

Подп. и дата

Результаты расчет	ОВ		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000053	0,0000554, г/с	0,095000
выброс			

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Валовый	0,000095	0,0010026,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,041 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,041 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/C	
7	0,041

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M \!\!=\!\! 0.9 \!\!\cdot\! 10^{\text{-5}} \!\!\cdot\! u \!\!\cdot\! a_1^{\, cp} \!\!\cdot\! C_\varphi \!\!\cdot\! S^{0.93} \!, \, (2 \, [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ cp)	1
3	0,502	1,013737826	0,000024057
3,5	0,164	1,011559462	0,000028006
4,5	0,14	1,008723601	0,000035907
5,5	0,092	1,006967671	0,000043810
6,5	0,044	1,005778710	0,000051714
7,5	0,0295	1,004922948	0,000059620
8,5	0,015	1,004279023	0,000067526
9,5	0,00875	1,003777838	0,000075432
10,5	0,0025	1,003377239	0,000083339
11,5	0,0015	1,003050087	0,000091246
12,5	0,0005	1,002778143	0,000099154

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000554 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,001003 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0,095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[303] Аммиак

Взам.

Подп. и дата

Результаты расчётов

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000321	0,0003376, г/с	0,095000
выброс			
Валовый	0,000581	0,0061135,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,25 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,25 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,25

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M{=}0.9{\cdot}10^{\text{-5}}{\cdot}u{\cdot}a_1{^{cp}}{\cdot}C_\varphi{\cdot}S^{0.93}\text{, (2 [1])}$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,013737826	0,000146689
3,5	0,164	1,011559462	0,000170769
4,5	0,14	1,008723601	0,000218945
5,5	0,092	1,006967671	0,000267134
6,5	0,044	1,005778710	0,000315331
7,5	0,0295	1,004922948	0,000363534
8,5	0,015	1,004279023	0,000411741
9,5	0,00875	1,003777838	0,000459951
10,5	0,0025	1,003377239	0,000508165
11,5	0,0015	1,003050087	0,000556380
12,5	0,0005	1,002778143	0,000604597

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0003376 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,006114 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[304] Азот (II) оксид (Азота оксид)

Результаты расчётов

•	Выброс	Выброс	Безразмерный
	*	-	
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000090	0,0000945, г/с	0,095000
выброс			
Валовый	0,000163	0,0017118,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,07 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,07 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,07

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

Взам.

Подп. и дата

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1[1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

						Г
						ı
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,013737826	0,000041073
3,5	0,164	1,011559462	0,000047815
4,5	0,14	1,008723601	0,000061305
5,5	0,092	1,006967671	0,000074797
6,5	0,044	1,005778710	0,000088293
7,5	0,0295	1,004922948	0,000101789
8,5	0,015	1,004279023	0,000115287
9,5	0,00875	1,003777838	0,000128786
10,5	0,0025	1,003377239	0,000142286
11,5	0,0015	1,003050087	0,000155786
12,5	0,0005	1,002778143	0,000169287

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000945 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,001712 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[333] Дигидросульфид (Сероводород)

Результаты расчётов

esymbiatis pae ieros					
	Выброс	Выброс	Безразмерный		
	вещества	вещества, без	коэффициент,		
		учёта внешних	учитывающий		
		факторов	механические		
			укрытия (а3)		
Максимальный	0,0000629	0,0006618, г/с	0,095000		
выброс					
Валовый	0,001138	0,0119825,	0,095000		
выброс		т/год			

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,49 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,49 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м	
M/C	_	
7	0,49	

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1{}^{cp}\cdot C_{\varphi}\cdot S^{0.93},\,(1\,\,[1])$

При и>3

Взам. Инв. №

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$

 ${a_1}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

		-	
Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,013737826	0,000287511
3,5	0,164	1,011559462	0,000334708
4,5	0,14	1,008723601	0,000429133
5,5	0,092	1,006967671	0,000523582
6,5	0,044	1,005778710	0,000618049
7,5	0,0295	1,004922948	0,000712526
8,5	0,015	1,004279023	0,000807012
9,5	0,00875	1,003777838	0,000901505

						_
						l
						1
						ı
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

10,5	0,0025	1,003377239	0,000996003
11,5	0,0015	1,003050087	0,001090504
12,5	0,0005	1,002778143	0,001185009

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0006618 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,011982 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[410] Метан

Результаты расчётов

J -			
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0045162	0,0475392, г/с	0,095000
выброс			
Валовый	0,081774	0,8607816,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 35,2 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 35,2 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	35,2

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1 [1])$

При и>3

Взам.

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (2 [1])

 $a_1{}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,013737826	0,020653820
3,5	0,164	1,011559462	0,024044344
4,5	0,14	1,008723601	0,030827490
5,5	0,092	1,006967671	0,037612456
6,5	0,044	1,005778710	0,044398599
7,5	0,0295	1,004922948	0,051185565
8,5	0,015	1,004279023	0,057973136
9,5	0,00875	1,003777838	0,064761169
10,5	0,0025	1,003377239	0,071549568
11,5	0,0015	1,003050087	0,078338262
12,5	0,0005	1,002778143	0,085127199

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0475392 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,860782 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

	Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

[416] Смесь предельных углеводородов С6Н14-С10Н22

Результаты расчётов

r esjustansi pae ier			
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0002014	0,0021204, г/с	0,095000
выброс			
Валовый	0,003647	0,0383928,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 1,57 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 1,57 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м	
M/c	MI/RyO. M	
7	1,57	

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

M=2.7·10⁻⁵· a_1^{cp} · C_{ϕ} · $S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ ^{cp})	
3	0,502	1,013737826	0,000921207
3,5	0,164	1,011559462	0,001072432
4,5	0,14	1,008723601	0,001374976
5,5	0,092	1,006967671	0,001677601
6,5	0,044	1,005778710	0,001980278
7,5	0,0295	1,004922948	0,002282993
8,5	0,015	1,004279023	0,002585734
9,5	0,00875	1,003777838	0,002888495
10,5	0,0025	1,003377239	0,003191273
11,5	0,0015	1,003050087	0,003494065
12,5	0,0005	1,002778143	0,003796867

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0021204 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,038393 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1071] Гидроксибензол (Фенол)

Результаты расчётов

Взам.

Подп. и дата

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (a_3)
Максимальный	0,0000033	0,0000351, г/с	0,095000
выброс			
Валовый	0,000060	0,0006358,	0,095000

Изм.	Кол.уч	Лист	№док	Подп.	Дата

_	,	
выброс	т/гол	
выорос	1/1 ОД	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,026 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,026 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
м/с	MI/KyO. M
7	0,026

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (2 [1])

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ ^{cp})	
3	0,502	1,013737826	0,000015256
3,5	0,164	1,011559462	0,000017760
4,5	0,14	1,008723601	0,000022770
5,5	0,092	1,006967671	0,000027782
6,5	0,044	1,005778710	0,000032794
7,5	0,0295	1,004922948	0,000037808
8,5	0,015	1,004279023	0,000042821
9,5	0,00875	1,003777838	0,000047835
10,5	0,0025	1,003377239	0,000052849
11,5	0,0015	1,003050087	0,000057863
12,5	0,0005	1,002778143	0,000062878

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000351 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000636 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1325] Формальдегид

Результаты расчётов

Взам.

Подп. и дата

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000046	0,0000486, г/с	0,095000
выброс			
Валовый	0,000084	0,0008803,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,036 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,036 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
м/с	
7	0,036

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

						Г
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (2 [1])

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{cp})	-
3	0,502	1,013737826	0,000021123
3,5	0,164	1,011559462	0,000024591
4,5	0,14	1,008723601	0,000031528
5,5	0,092	1,006967671	0,000038467
6,5	0,044	1,005778710	0,000045408
7,5	0,0295	1,004922948	0,000052349
8,5	0,015	1,004279023	0,000059291
9,5	0,00875	1,003777838	0,000066233
10,5	0,0025	1,003377239	0,000073176
11,5	0,0015	1,003050087	0,000080119
12,5	0,0005	1,002778143	0,000087062

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000486 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000880 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2-0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1728] Этантиол (Этилмеркаптан)

Результаты расчётов

гезультаты расчетов					
	Выброс	Выброс	Безразмерный		
	вещества	вещества, без	коэффициент,		
		учёта внешних	учитывающий		
		факторов	механические		
			укрытия (а3)		
Максимальный	0,0000002	0,0000024, г/с	0,095000		
выброс					
Валовый	0,000004	0,0000440,	0,095000		
выброс		т/год			

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0018 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0018 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%, м/с	мг/куб. м
7	0,0018

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

Взам.

Подп. и дата

M=2.7·10⁻⁵· a_1^{cp} · C_{ϕ} · $S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра Повторяемость градации Безразмерный Доля градации (М), г/с

Изм.	Кол.уч	Лист	№док	Подп.	Дата

(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,013737826	0,000001056
3,5	0,164	1,011559462	0,000001230
4,5	0,14	1,008723601	0,000001576
5,5	0,092	1,006967671	0,000001923
6,5	0,044	1,005778710	0,000002270
7,5	0,0295	1,004922948	0,000002617
8,5	0,015	1,004279023	0,000002965
9,5	0,00875	1,003777838	0,000003312
10,5	0,0025	1,003377239	0,000003659
11,5	0,0015	1,003050087	0,000004006
12,5	0,0005	1,002778143	0,000004353

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000024 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000044 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0,095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

Программа основана на следующих методических документах:

- 1. «Методические рекомендации по расчету выбросов загрязняющих веществ в атмосферный воздух от неорганизованных источников станций аэрации сточных вод», НИИ Атмосфера, Санкт-Петербург, 2015 год
- 2. Информационное письмо №5. Исх. 07-2-748/16-0 от 06.10.2016. НИИ Атмосфера
- 3. Методическое письмо. Исх. 1-1160/17-0-1 от 09.06.2017. НИИ Атмосфера

Расчет произведен программой «Станции аэрации», версия 1.3.10 от 14.09.2021 Copyright© 2012-2021 Фирма «Интеграл»

Название источника выбросов: №6013 Иловый стабилизатор

Результаты расчетов по источнику выбросов

Код	Название вещества	Максимальный	Валовой
		выброс, г/с	выброс, т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000195	0,000357
0303	Аммиак	0,0001198	0,002189
0304	Азот (II) оксид (Азота оксид)	0,0000932	0,001703
0333	Дигидросульфид (Сероводород)	0,0000337	0,000616
0410	Метан	0,0015973	0,029188
0416	Смесь предельных углеводородов	0,0006212	0,011351
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0000328	0,000600
1325	Формальдегид	0,0000444	0,000811
1728	Этантиол (Этилмеркаптан)	0,0000013	0,000024

Источники выделен	ий
-------------------	----

Взам. Инв.

Подп. и дата

Код	Название вещества	Максимальный выброс, г/с	Среднегодовой выброс, т/год		
Автономный	выорос, 1/с выорос, 1/10д [1] Источник №1				
источник					
0301	Азота диоксид (Азот (IV) оксид)	0,0000195	0,000357		
0303	Аммиак	0,0001198	0,002189		
0304	Азот (II) оксид (Азота оксид)	0,0000932	0,001703		
0333	Дигидросульфид (Сероводород)	0,0000337	0,000616		
0410	Метан	0,0015973	0,029188		
0416	Смесь предельных углеводородов	0,0006212	0,011351		
	C6H14-C10H22				
1071	Гидроксибензол (Фенол)	0,0000328	0,000600		
1325	Формальдегид	0,0000444	0,000811		
1728	Этантиол (Этилмеркаптан)	0,0000013	0,000024		

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Результаты расчетов по источнику выделения

Код	Название вещества	Максимальный выброс,	Среднегодовой выброс,
		г/с	т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000195	0,000357
0303	Аммиак	0,0001198	0,002189
0304	Азот (II) оксид (Азота оксид)	0,0000932	0,001703
0333	Дигидросульфид (Сероводород)	0,0000337	0,000616
0410	Метан	0,0015973	0,029188
0416	Смесь предельных углеводородов С6Н14-	0,0006212	0,011351
	C10H22		
1071	Гидроксибензол (Фенол)	0,0000328	0,000600
1325	Формальдегид	0,0000444	0,000811
1728	Этантиол (Этилмеркаптан)	0,0000013	0,000024

Расчетные формулы

Расчет производился по осредненным концентрациям веществ

Максимальный выброс (M^{max}), г/с

При и<=3

$$M^{max}=2.7\cdot10^{-5}\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (1 [1])

При и>3

$$M^{max}=0.9\cdot10^{-5}\cdot u\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (2 [1])

- u скорость ветра, зафиксированная в период времени года, когда была измерена концентрация C_{max} , м/с
- a_1^{ϕ} безразмерный коэффициент, учитывающий влияние превышения температуры водной поверхности над температурой воздуха на высоте 2 м вблизи сооружения

 C_{max} - осредненная концентрация ${\bf \widehat{3B}}$ над поверхностью испарения, мг/м³

S - полная площадь водной поверхности (включая укрытые участки)

Валовый выброс (G), т/год

 $G=31.5 \cdot SP_i \cdot M_i (13[1])$

- $P_{\rm i}$ безразмерная повторяемость градации скорости ветра
- M_i мощность выброса i-ого вещества для средней концентрации вблизи водной поверхности при скорости ветра, отнесенной к середине градации

Учет механических укрытий

$$M^{max}=M^{max}\cdot a_3$$
, (π . 5.6 [1])

G=G·a₃, (п. 5.6 [1])

аз - безразмерный коэффициент, учитывающий механические укрытия

Результаты замеров

Среднегодовая температура воды (t_{вод} ср): 20 °C

Фактическая температура воды $(t_{вод}^{\phi})$: 0 °C

Температура воздуха на высоте 2 м над водной поверхностью $(t_{воз}^{, \phi})$: 0 °C

Превышение температуры водной поверхности над температурой воздуха:

Фактическое (DT $^{\phi}$): DT $^{\phi}=t_{\text{вод}}{}^{\phi}-t_{\text{воз}}{}^{\phi}=0$ °C

Среднее (DT^{cp}): DT^{cp}= t_{BO3}^{cp} - t_{BO3}^{cp} =18,5°C

Полная площадь водной поверхности (включая укрытые участки) (S): 216 м²

Площадь укрытия сооружений (So): 216 м²

[301] Азота диоксид (Азот (IV) оксид)

Результаты расчётов

Взам.

Подп. и дата

Результаты расчет	ОВ		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000195	0,0002055, г/с	0,095000
выброс			
	0,0000195	факторов	механические укрытия (а ₃)

						Г
						ı
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Валовый	0,000357	0,0037552,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,022 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,022 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%, м/с	мг/куб. м
7	0,022

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M \!\!=\!\! 0.9 \!\!\cdot\! 10^{\text{-5}} \!\!\cdot\! u \!\!\cdot\! a_1^{\text{cp.}} \!\!\cdot\! C_{\varphi} \!\!\cdot\! S^{0.93} \!, \, (2 \, [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,026447910	0,000090399
3,5	0,164	1,022254147	0,000105035
4,5	0,14	1,016794580	0,000134324
5,5	0,092	1,013414082	0,000163628
6,5	0,044	1,011125107	0,000192941
7,5	0,0295	1,009477604	0,000222262
8,5	0,015	1,008237928	0,000251588
9,5	0,00875	1,007273053	0,000280917
10,5	0,0025	1,006501823	0,000310249
11,5	0,0015	1,005871994	0,000339584
12,5		1,005348450	0,000368921

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0002055 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,003755 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[303] Аммиак

Взам.

Подп. и дата

Результаты расчётов

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0001198	0,0012610, г/с	0,095000
выброс			
Валовый	0,002189	0,0230433,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,135 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,135 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	, J.,
7	0,135

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	- ' '
3	0,502	1,026447910	0,000554723
3,5	0,164	1,022254147	0,000644533
4,5	0,14	1,016794580	0,000824260
5,5	0,092	1,013414082	0,001004079
6,5	0,044	1,011125107	0,001183959
7,5	0,0295	1,009477604	0,001363880
8,5	0,015	1,008237928	0,001543833
9,5	0,00875	1,007273053	0,001723809
10,5	0,0025	1,006501823	0,001903804
11,5	0,0015	1,005871994	0,002083813
12,5	0,0005	1,005348450	0,002263836

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0012610 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,023043 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[304] Азот (II) оксид (Азота оксид)

Результаты расчётов

гезультаты расчет	ОВ		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000932	0,0009808, г/с	0,095000
выброс			
Валовый	0,001703	0,0179226,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,105 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{Φ}): 0,105 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,105

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

Взам.

Подп. и дата

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1[1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

						Г
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,026447910	0,000431451
3,5	0,164	1,022254147	0,000501303
4,5	0,14	1,016794580	0,000641091
5,5	0,092	1,013414082	0,000780950
6,5	0,044	1,011125107	0,000920857
7,5	0,0295	1,009477604	0,001060796
8,5	0,015	1,008237928	0,001200759
9,5	0,00875	1,007273053	0,001340740
10,5	0,0025	1,006501823	0,001480736
11,5	0,0015	1,005871994	0,001620744
12,5	0,0005	1,005348450	0,001760761

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0009808 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,017923 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0,095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[333] Дигидросульфид (Сероводород)

Результаты расчётов

i coynbraibi pac ici	OB		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000337	0,0003549, г/с	0,095000
выброс			
Валовый	0,000616	0,0064863,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,038 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,038 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/C	
7	0,038

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1{}^{cp}\cdot C_{\varphi}\cdot S^{0.93},\,(1\,\,[1])$

При и>3

Взам. Инв. №

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$

 ${a_1}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ cp)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3	0,502	1,026447910	0,000156144
3,5	0,164	1,022254147	0,000181424
4,5	0,14	1,016794580	0,000232014
5,5	0,092	1,013414082	0,000282630
6,5	0,044	1,011125107	0,000333262
7,5	0,0295	1,009477604	0,000383907
8,5	0,015	1,008237928	0,000434560
9,5	0,00875	1,007273053	0,000485220

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

10,5	0,0025	1,006501823	0,000535885
11,5	0,0015	1,005871994	0,000586555
12,5	0,0005	1,005348450	0,000637228

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0003549 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,006486 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[410] Метан

Результаты расчётов

r esymptathi pae iet	* =		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0015973	0,0168134, г/с	0,095000
выброс			
Валовый	0,029188	0,3072438,	0,095000
выброс	·	т/год	·

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 1,8 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 1,8 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
м/с	
7	1,8

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1 [1])$

При и>3

Взам.

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (2 [1])

 $a_1{}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,026447910	0,007396311
3,5	0,164	1,022254147	0,008593774
4,5	0,14	1,016794580	0,010990128
5,5	0,092	1,013414082	0,013387720
6,5	0,044	1,011125107	0,015786115
7,5	0,0295	1,009477604	0,018185069
8,5	0,015	1,008237928	0,020584435
9,5	0,00875	1,007273053	0,022984117
10,5	0,0025	1,006501823	0,025384047
11,5	0,0015	1,005871994	0,027784178
12,5	0,0005	1,005348450	0,030184475

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0168134 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,307244 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

[416] Смесь предельных углеводородов С6Н14-С10Н22

Результаты расчётов

r esjubrarbi pae ier			
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0006212	0,0065385, г/с	0,095000
выброс			
Валовый	0,011351	0,1194837,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0.7 мг/м^3 при скорости ветра 7 м/cСредняя концентрация вещества в воздухе (C_{ϕ}): 0,7 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%, м/с	мг/куб. м
7	0,7

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

M=2.7·10⁻⁵· a_1^{cp} · C_{ϕ} · $S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\varphi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{cp})	
3	0,502	1,026447910	0,002876343
3,5	0,164	1,022254147	0,003342023
4,5	0,14	1,016794580	0,004273939
5,5	0,092	1,013414082	0,005206336
6,5	0,044	1,011125107	0,006139045
7,5	0,0295	1,009477604	0,007071971
8,5	0,015	1,008237928	0,008005058
9,5	0,00875	1,007273053	0,008938268
10,5	0,0025	1,006501823	0,009871574
11,5	0,0015	1,005871994	0,010804958
12,5	0,0005	1,005348450	0,011738407

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0065385 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,119484 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1071] Гидроксибензол (Фенол)

Взам.

Подп. и дата

Результаты расчётов					
	Выброс	Выброс	Безразмерный		
	вещества	вещества, без	коэффициент,		
		учёта внешних	учитывающий		
		факторов	механические		
			укрытия (а3)		
Максимальный	0,0000328	0,0003456, г/с	0,095000		
выброс					
Валовый	0,000600	0,0063156,	0,095000		

Изм.	Кол.уч	Лист	№док	Подп.	Дата

выброс	т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,037 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,037 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,037

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	- ' '
3	0,502	1,026447910	0,000152035
3,5	0,164	1,022254147	0,000176650
4,5	0,14	1,016794580	0,000225908
5,5	0,092	1,013414082	0,000275192
6,5	0,044	1,011125107	0,000324492
7,5	0,0295	1,009477604	0,000373804
8,5	0,015	1,008237928	0,000423125
9,5	0,00875	1,007273053	0,000472451
10,5	0,0025	1,006501823	0,000521783
11,5	0,0015	1,005871994	0,000571119
12,5	0,0005	1,005348450	0,000620459

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0003456 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,006316 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1325] Формальдегид

Результаты расчётов

Взам.

Подп. и дата

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000444	0,0004670, г/с	0,095000
выброс			
Валовый	0,000811	0,0085345,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,05 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,05 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м	
M/C	, 11, 0.1.12	
7	0,05	

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

						Г
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,026447910	0,000205453
3,5	0,164	1,022254147	0,000238716
4,5	0,14	1,016794580	0,000305281
5,5	0,092	1,013414082	0,000371881
6,5	0,044	1,011125107	0,000438503
7,5	0,0295	1,009477604	0,000505141
8,5	0,015	1,008237928	0,000571790
9,5	0,00875	1,007273053	0,000638448
10,5	0,0025	1,006501823	0,000705112
11,5	0,0015	1,005871994	0,000771783
12,5	0,0005	1,005348450	0,000838458

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0004670 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,008535 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1728] Этантиол (Этилмеркаптан)

Результаты расчётов

результаты расчет	OB		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000013	0,0000140, г/с	0,095000
выброс			
Валовый	0,000024	0,0002560,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0015 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0015 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	-
7	0,0015

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

Взам.

Подп. и дата

M=2.7·10⁻⁵· a_1^{cp} · C_{ϕ} · $S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра Повторяемость градации Безразмерный Доля градации (М), г/с

<u> </u>	_				
Изм.	Кол.уч	Лист	№док	Подп.	Дата

(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,026447910	0,000006164
3,5	0,164	1,022254147	0,000007161
4,5	0,14	1,016794580	0,000009158
5,5	0,092	1,013414082	0,000011156
6,5	0,044	1,011125107	0,000013155
7,5	0,0295	1,009477604	0,000015154
8,5	0,015	1,008237928	0,000017154
9,5	0,00875	1,007273053	0,000019153
10,5	0,0025	1,006501823	0,000021153
11,5	0,0015	1,005871994	0,000023153
12,5	0,0005	1,005348450	0,000025154

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000140 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000256 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0,095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

Программа основана на следующих методических документах:

- 1. «Методические рекомендации по расчету выбросов загрязняющих веществ в атмосферный воздух от неорганизованных источников станций аэрации сточных вод», НИИ Атмосфера, Санкт-Петербург, 2015 год
- 2. Информационное письмо №5. Исх. 07-2-748/16-0 от 06.10.2016. НИИ Атмосфера
- 3. Методическое письмо. Исх. 1-1160/17-0-1 от 09.06.2017. НИИ Атмосфера

Расчет произведен программой «Станции аэрации», версия 1.3.10 от 14.09.2021 Copyright© 2012-2021 Фирма «Интеграл»

Название источника выбросов: №6014 Блок биологической очистки

Результаты расчетов по источнику выбросов

resymbian paciero.	b no nero mnky bbiopocob		
Код	Название вещества	Максимальный	Валовой
		выброс, г/с	выброс, т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000607	0,001122
0303	Аммиак	0,0014417	0,026641
0304	Азот (II) оксид (Азота оксид)	0,0010623	0,019630
0333	Дигидросульфид (Сероводород)	0,0004856	0,008974
0410	Метан	0,0390006	0,720707
0416	Смесь предельных углеводородов	0,0119126	0,220138
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0003824	0,007067
1325	Формальдегид	0,0003946	0,007291
1728	Этантиол (Этилмеркаптан)	0,0000197	0,000365

Источники выделений

Взам. Инв.

Подп. и дата

пето инисп выденени			
Код	Название вещества	Максимальный	Среднегодовой
		выброс, г/с	выброс, т/год
Автономный	[1] Источни	к №1	
источник			
0301	Азота диоксид (Азот (IV) оксид)	0,0000607	0,001122
0303	Аммиак	0,0014417	0,026641
0304	Азот (II) оксид (Азота оксид)	0,0010623	0,019630
0333	Дигидросульфид (Сероводород)	0,0004856	0,008974
0410	Метан	0,0390006	0,720707
0416	Смесь предельных углеводородов	0,0119126	0,220138
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0003824	0,007067
1325	Формальдегид	0,0003946	0,007291
1728	Этантиол (Этилмеркаптан)	0,0000197	0,000365

						Γ
						ł
						ı
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Источник выделения: №1 Источник №1

Тип источника: Аэротенки

Результаты расчетов по источнику выделения

Код	Название вещества	Максимальный выброс,	Среднегодовой выброс,
		г/с	т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000607	0,001122
0303	Аммиак	0,0014417	0,026641
0304	Азот (II) оксид (Азота оксид)	0,0010623	0,019630
0333	Дигидросульфид (Сероводород)	0,0004856	0,008974
0410	Метан	0,0390006	0,720707
0416	Смесь предельных углеводородов С6Н14-	0,0119126	0,220138
	C10H22		
1071	Гидроксибензол (Фенол)	0,0003824	0,007067
1325	Формальдегид	0,0003946	0,007291
1728	Этантиол (Этилмеркаптан)	0,0000197	0,000365

Расчетные формулы

Расчет производился по осредненным концентрациям веществ

Максимальный выброс (M^{max}), г/с

При и<=3

$$M^{max}=2.7\cdot10^{-5}\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (1 [1])

При и>3

$$M^{max}=0.9\cdot10^{-5}\cdot u\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (2 [1])

u - скорость ветра, зафиксированная в период времени года, когда была измерена концентрация C_{max} , м/с

 a_1^{ϕ} - безразмерный коэффициент, учитывающий влияние превышения температуры водной поверхности над температурой воздуха на высоте 2 м вблизи сооружения

 C_{max} - осредненная концентрация $\stackrel{\sim}{3B}$ над поверхностью испарения, мг/м 3

S - полная площадь водной поверхности (включая укрытые участки)

Валовый выброс (G), т/год

 $G=31.5 \cdot SP_i \cdot M_i (13[1])$

P_i - безразмерная повторяемость градации скорости ветра

 M_i - мощность выброса i-ого вещества для средней концентрации вблизи водной поверхности при скорости ветра, отнесенной к середине градации

Учет аэрации воздухом через сооружение:

$$M^{max}=M^{max}+C_{max}\cdot W\cdot 10^{-3}$$
, (π . 6.2 [1])

$$G = G + C_{\phi} \cdot SW \cdot 10^{-3}$$

W - расход воздуха на аэрацию сооружения, м³/с

Учет механических укрытий

$$M^{max}=M^{max} \cdot a_3$$
, (π . 5.6 [1])

аз - безразмерный коэффициент, учитывающий механические укрытия

Результаты замеров

Взам.

Подп. и дата

Среднегодовая температура воды ($t_{\tiny BOД}^{\ \ cp}$): 20 °C

Фактическая температура воды $(t_{вод}^{\ \phi})$: 0 °C

Температура воздуха на высоте 2 м над водной поверхностью ($t_{\text{воз}}^{\varphi}$): 0 °C

Превышение температуры водной поверхности над температурой воздуха:

Фактическое (DT $^{\phi}$): DT $^{\phi}$ = $t_{вод}{}^{\phi}$ - $t_{воз}{}^{\phi}$ =0 $^{\circ}$ С

Среднее (DT^{cp}): DT^{cp}=t_{вод}^{cp}-t_{воз}^{cp}=18,5°C

Полная площадь водной поверхности (включая укрытые участки) (S): 4482,6 м²

Площадь укрытия сооружений (So): 4482,6 м²

[301] Азота диоксид (Азот (IV) оксид)

Результаты расчётов

	-			
Выброс		Выброс	Учет аэрации	Безразмерный
	вещества	вещества, без	воздухом через	коэффициент,

<u> </u>	_				
Изм.	Кол.уч	Лист	№док	Подп.	Дата

<u> 14/2022.</u>	.151_00($100-\Omega R$	∩∩₋Tu

		учёта внешних	сооружение	учитывающий
		факторов		механические
				укрытия (а3)
Максимальный	0,0000607	0,0006271, г/с	0,0000119, г/с	0,095000
выброс				
Валовый	0,001122	0,0118076,	0,000000, т/год	0,095000
выброс		т/год		

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,004 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,004 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	-
7	0,004

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1 [1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	-
3	0,502	1,068749632	0,000287225
3,5	0,164	1,057848217	0,000331678
4,5	0,14	1,043656425	0,000420722
5,5	0,092	1,034869038	0,000509886
6,5	0,044	1,028918997	0,000599128
7,5	0,0295	1,024636418	0,000688425
8,5	0,015	1,021413960	0,000777761
9,5	0,00875	1,018905830	0,000867128
10,5	0,0025	1,016901069	0,000956519
11,5	0,0015	1,015263868	0,001045929
12,5	0,0005	1,013902950	0,001135355

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0006271 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,011808 т/год

Учет аэрации воздухом через сооружение:

Максимальная добавка к выбросу (q):

 $q=0.001\cdot C_{max}\cdot W=0,000012$

Максимальный расход воздуха на аэрацию сооружения (W): 2,97 м³/с

Расход воздуха при нормальных условиях:

ibin y colobiinin.	
Время работы (t), дни	Годовая добавка к
	выбросу
	q=0.000000001·C _φ
	·W·t/365
	0,000000

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[303] Аммиак

Взам.

Подп. и дата

Результаты расчётов

						Γ
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

	Выброс	Выброс	Учет аэрации	Безразмерный
	вещества	вещества, без	воздухом через	коэффициент,
		учёта внешних	сооружение	учитывающий
		факторов		механические
				укрытия (а3)
Максимальный	0,0014417	0,0148932, г/с	0,0002822, г/с	0,095000
выброс				
Валовый	0,026641	0,2804307,	0,000000, т/год	0,095000
выброс		т/год		

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,095 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,095 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/C	
7	0.095

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M = 0.9 \cdot 10^{-5} \cdot u \cdot a_1^{cp} \cdot C_{\phi} \cdot S^{0.93}, (2 [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,068749632	0,006821600
3,5	0,164	1,057848217	0,007877355
4,5	0,14	1,043656425	0,009992153
5,5	0,092	1,034869038	0,012109803
6,5	0,044	1,028918997	0,014229300
7,5	0,0295	1,024636418	0,016350086
8,5	0,015	1,021413960	0,018471821
9,5	0,00875	1,018905830	0,020594282
10,5	0,0025	1,016901069	0,022717315
11,5	0,0015	1,015263868	0,024840811
12,5	0,0005	1,013902950	0,026964688

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0148932 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,280431 т/год

Учет аэрации воздухом через сооружение:

Максимальная добавка к выбросу (q):

 $q=0.001 \cdot C_{max} \cdot W=0,000282$

Взам.

Подп. и дата

Максимальный расход воздуха на аэрацию сооружения (W): 2,97 $\mbox{m}^{3}\!/\mbox{c}$

Расход воздуха при нормальных условиях:

wined bead in the neparational forestime.					
эздуха (W), куб.	Время работы (t), дни	Годовая добавка к			
м/год		выбросу			
		q=0.000000001·C _φ			
		·W·t/365			
Итого:		0,000000			
	оздуха (W), куб. м/год	время работы (t), дни м/год			

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

[304] Азот (II) оксид (Азота оксид)

Результаты расчётов

r coynbraible pacter	<u></u>			
	Выброс	Выброс	Учет аэрации	Безразмерный
	вещества	вещества, без	воздухом через	коэффициент,
		учёта внешних	сооружение	учитывающий
		факторов		механические
				укрытия (а3)
Максимальный	0,0010623	0,0109739, г/с	0,0002079, г/с	0,095000
выброс				
Валовый	0,019630	0,2066332,	0,000000, т/год	0,095000
выброс		т/год		

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,07 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,07 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м	
M/C	, , , , ,	
7	0,07	

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1{}^{cp}\cdot C_{\varphi}\cdot S^{0.93},\,(1\,\,[1])$

При и>3

 $M{=}0.9{\cdot}10^{\text{-5}}{\cdot}u{\cdot}a_1{^{cp}}{\cdot}C_\varphi{\cdot}S^{0.93}\text{, (2 [1])}$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	-
3	0,502	1,068749632	0,005026442
3,5	0,164	1,057848217	0,005804367
4,5	0,14	1,043656425	0,007362639
5,5	0,092	1,034869038	0,008923013
6,5	0,044	1,028918997	0,010484748
7,5	0,0295	1,024636418	0,012047432
8,5	0,015	1,021413960	0,013610816
9,5	0,00875	1,018905830	0,015174734
10,5	0,0025	1,016901069	0,016739074
11,5	0,0015	1,015263868	0,018303756
12,5	0,0005	1,013902950	0,019868718

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0109739 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,206633 т/год

Учет аэрации воздухом через сооружение:

Максимальная добавка к выбросу (q):

 $q\!\!=\!\!0.001\!\cdot\! C_{max}\!\cdot\! W\!\!=\!\!0,\!000208$

Взам.

Подп. и дата

Максимальный расход воздуха на аэрацию сооружения (W): 2,97 м³/с

Расход воздуха при нормальных условиях:

і аслод воздула при пормальп	ых условиях.	
Расход воздуха (W), куб.	Время работы (t), дни	Годовая добавка к
м/год		выбросу
		$q=0.000000001 \cdot C_{\phi}$
		·W·t/365
Итого:		0,000000

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

						Γ
						l
14.	16.	_		-		l
Изм.	Кол.уч	ЛИСТ	№док	Подп.	Дата	L

04/2022-151-00000-OBOC-TY

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[333] Дигидросульфид (Сероводород)

Результаты расчётов

т сзультаты расчет	ОВ			
	Выброс	Выброс	Учет аэрации	Безразмерный
	вещества	вещества, без	воздухом через	коэффициент,
		учёта внешних	сооружение	учитывающий
		факторов		механические
				укрытия (а3)
Максимальный	0,0004856	0,0050166, г/с	0,0000950, г/с	0,095000
выброс				
Валовый	0,008974	0,0944609,	0,000000, т/год	0,095000
выброс		т/год		

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,032 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,032 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0.032

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

$$M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$$
, (1 [1])

При и>3

$$M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$$

$$a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	-
3	0,502	1,068749632	0,002297802
3,5	0,164	1,057848217	0,002653425
4,5	0,14	1,043656425	0,003365778
5,5	0,092	1,034869038	0,004079092
6,5	0,044	1,028918997	0,004793027
7,5	0,0295	1,024636418	0,005507398
8,5	0,015	1,021413960	0,006222087
9,5	0,00875	1,018905830	0,006937021
10,5	0,0025	1,016901069	0,007652148
11,5	0,0015	1,015263868	0,008367431
12,5	0,0005	1,013902950	0,009082842

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0050166 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,094461 т/год

Учет аэрации воздухом через сооружение:

Максимальная добавка к выбросу (q):

 $q=0.001\cdot C_{max}\cdot W=0,000095$

Взам.

Подп. и дата

Максимальный расход воздуха на аэрацию сооружения (W): 2,97 м³/с

Расход воздуха при нормальных условиях:

т асход воздуха при пормальн	ых условиях.	
Расход воздуха (W), куб.	Время работы (t), дни	Годовая добавка к
м/год		выбросу
		q=0.000000001·C _φ
		·W·t/365
Итого:		0,000000

Учет механических укрытий

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0,095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[410] Метан

Результаты расчётов

тезультаты расчет				
	Выброс	Выброс	Учет аэрации	Безразмерный
	вещества	вещества, без	воздухом через	коэффициент,
		учёта внешних	сооружение	учитывающий
		факторов		механические
				укрытия (а3)
Максимальный	0,0390006	0,4028993, г/с	0,0076329, г/с	0,095000
выброс				
Валовый	0,720707	7,5863897,	0,000000, т/год	0,095000
выброс	·	т/год	•	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 2,57 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{Φ}): 2,57 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
м/с	MI/KyO. M
7	2,57

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M{=}2.7{\cdot}10^{\text{-5}}{\cdot}a_1{^\text{cp}}{\cdot}C_\varphi{\cdot}S^{0.93},\,(1\;[1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,068749632	0,184542225
3,5	0,164	1,057848217	0,213103176
4,5	0,14	1,043656425	0,270314029
5,5	0,092	1,034869038	0,327602045
6,5	0,044	1,028918997	0,384940018
7,5	0,0295	1,024636418	0,442312865
8,5	0,015	1,021413960	0,499711375
9,5	0,00875	1,018905830	0,557129523
10,5	0,0025	1,016901069	0,614563161
11,5	0,0015	1,015263868	0,672009312
12,5	0,0005	1,013902950	0,729465775

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,4028993 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 7,586390 т/год

Учет аэрации воздухом через сооружение:

Максимальная добавка к выбросу (q):

 $q=0.001 \cdot C_{max} \cdot W=0,007633$

Взам.

Подп. и дата

Максимальный расход воздуха на аэрацию сооружения (W): 2,97 м 3 /с

Расход воздуха при нормальных условиях:

Расход воздуха (W), куб. м/год	Время работы (t), дни	Годовая добавка к выбросу q=0.000000001·C _ф ·W·t/365
Итого:		0,000000

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[416] Смесь предельных углеводородов С6Н14-С10Н22

Результаты расчётов

т сзультаты расчет	ОВ			
	Выброс	Выброс	Учет аэрации	Безразмерный
	вещества	вещества, без	воздухом через	коэффициент,
		учёта внешних	сооружение	учитывающий
		факторов		механические
				укрытия (а3)
Максимальный	0,0119126	0,1230646, г/с	0,0023315, г/с	0,095000
выброс				
Валовый	0,220138	2,3172436,	0,000000, т/год	0,095000
выброс		т/год		

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,785 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,785 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/C	
7	0,785

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1 [1])$

При и>3

 $M \!\!=\!\! 0.9 \!\!\cdot\! 10^{\text{-5}} \!\!\cdot\! u \!\!\cdot\! a_1^{\text{cp}} \!\!\cdot\! C_{\varphi} \!\!\cdot\! S^{0.93} \!, \, (2 \, [1])$

 $a_1{}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\! u^{\text{--}1.12}\!\cdot\! S^{0.315}\!\!*\! DT^{cp} \ (3\ [1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,068749632	0,056367956
3,5	0,164	1,057848217	0,065091826
4,5	0,14	1,043656425	0,082566736
5,5	0,092	1,034869038	0,100065216
6,5	0,044	1,028918997	0,117578955
7,5	0,0295	1,024636418	0,135103346
8,5	0,015	1,021413960	0,152635576
9,5	0,00875	1,018905830	0,170173804
10,5	0,0025	1,016901069	0,187716763
11,5	0,0015	1,015263868	0,205263545
12,5	0,0005	1,013902950	0,222813476

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,1230646 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 2,317244 т/год

Учет аэрации воздухом через сооружение:

Максимальная добавка к выбросу (q):

 $q=0.001\cdot C_{max}\cdot W=0,002331$

Взам.

Подп. и дата

Максимальный расход воздуха на аэрацию сооружения (W): 2,97 м³/с

Расход воздуха при нормальных условиях:

т испод воздупи при пормильн	т искод воздуки при пормальных условиях.				
Расход воздуха (W), куб.	Время работы (t), дни	Годовая добавка к			
м/год		выбросу			
		$q=0.000000001 \cdot C_{\Phi}$			
		·W·t/365			

						Γ
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Итого:	0,000000

 $a_3 = (1-0.705 \cdot n^2-0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1071] Гидроксибензол (Фенол)

Результаты расчётов

1 csymbiaibi pac ici	O.D.			
	Выброс	Выброс	Учет аэрации	Безразмерный
	вещества	вещества, без	воздухом через	коэффициент,
		учёта внешних	сооружение	учитывающий
		факторов		механические
				укрытия (а3)
Максимальный	0,0003824	0,0039506, г/с	0,0000748, г/с	0,095000
выброс				
Валовый	0,007067	0,0743879,	0,000000, т/год	0,095000
выброс		т/год		

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0252 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0252 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
м/с	
7	0.0252

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1[1])$

При и>3

 $M{=}0.9{\cdot}10^{\text{-5}}{\cdot}u{\cdot}a_1{^{cp}}{\cdot}C_\varphi{\cdot}S^{0.93}\text{, (2 [1])}$

 $a_1{}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\left(3\;[1]\right)$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,068749632	0,001809519
3,5	0,164	1,057848217	0,002089572
4,5	0,14	1,043656425	0,002650550
5,5	0,092	1,034869038	0,003212285
6,5	0,044	1,028918997	0,003774509
7,5	0,0295	1,024636418	0,004337076
8,5	0,015	1,021413960	0,004899894
9,5	0,00875	1,018905830	0,005462904
10,5	0,0025	1,016901069	0,006026067
11,5	0,0015	1,015263868	0,006589352
12,5	0,0005	1,013902950	0,007152738

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): $0,0039506\ r/c$

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,074388 т/год

Учет аэрации воздухом через сооружение:

Максимальная добавка к выбросу (q):

 $q=0.001\cdot C_{max}\cdot W=0,000075$

Взам.

Подп. и дата

Максимальный расход воздуха на аэрацию сооружения (W): 2,97 м³/с

Расход воздуха при нормальных условиях:

Расход воздуха (W), куб.	Время работы (t), дни	Годовая добавка к
м/год		выбросу

						Γ
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

	q=0.000000001 \cdot C _{ϕ} \cdot W \cdot t/365
Итого:	0,000000

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1325] Формальдегид

Результаты расчётов

тезультаты расчет	ОВ			
	Выброс	Выброс	Учет аэрации	Безразмерный
	вещества	вещества, без	воздухом через	коэффициент,
		учёта внешних	сооружение	учитывающий
		факторов		механические
				укрытия (а3)
Максимальный	0,0003946	0,0040760, г/с	0,0000772, г/с	0,095000
выброс				
Валовый	0,007291	0,0767495,	0,000000, т/год	0,095000
выброс		т/год		

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,026 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,026 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	-
7	0.026

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

Взам.

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (2 [1])

 ${a_1}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\left(3\;[1]\right)$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,068749632	0,001866964
3,5	0,164	1,057848217	0,002155908
4,5	0,14	1,043656425	0,002734694
5,5	0,092	1,034869038	0,003314262
6,5	0,044	1,028918997	0,003894335
7,5	0,0295	1,024636418	0,004474761
8,5	0,015	1,021413960	0,005055446
9,5	0,00875	1,018905830	0,005636330
10,5	0,0025	1,016901069	0,006217370
11,5	0,0015	1,015263868	0,006798538
12.5	0.0005	1.013902950	0.007379809

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0040760 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,076749 т/год

Учет аэрации воздухом через сооружение:

Максимальная добавка к выбросу (q):

 $q=0.001\cdot C_{max}\cdot W=0.000077$

Максимальный расход воздуха на аэрацию сооружения (W): 2,97 м³/с

Расход воздуха при нормальных условиях:

L							
I							ſ
ŀ							l
L							ı
I	Изм.	Кол.уч	Лист	№док	Подп.	Дата	l

04/2022-151-00000-OBOC-TY

Расход воздуха (W), куб. м/год	Время работы (t), дни	Годовая добавка к выбросу q=0.000000001·C _ф ·W·t/365
Итого:		0,000000

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1728] Этантиол (Этилмеркаптан)

Результаты расчётов

т сзультаты расчет	ОВ			
	Выброс	Выброс	Учет аэрации	Безразмерный
	вещества	вещества, без	воздухом через	коэффициент,
		учёта внешних	сооружение	учитывающий
		факторов		механические
				укрытия (а3)
Максимальный	0,0000197	0,0002038, г/с	0,0000039, г/с	0,095000
выброс				
Валовый	0,000365	0,0038375,	0,000000, т/год	0,095000
выброс		т/год		

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0013 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0013 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
м/с	
7	0,0013

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1[1])$

При и>3

Взам.

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 ${a_1}^{cp}\!\!=\!\!1\!\!+\!\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\left(3\;[1]\right)$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,068749632	0,000093348
3,5	0,164	1,057848217	0,000107795
4,5	0,14	1,043656425	0,000136735
5,5	0,092	1,034869038	0,000165713
6,5	0,044	1,028918997	0,000194717
7,5	0,0295	1,024636418	0,000223738
8,5	0,015	1,021413960	0,000252772
9,5	0,00875	1,018905830	0,000281816
10,5	0,0025	1,016901069	0,000310869
11,5	0,0015	1,015263868	0,000339927
12,5	0,0005	1,013902950	0,000368990

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0002038 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,003837 т/год

Учет аэрации воздухом через сооружение:

Максимальная добавка к выбросу (q):

 $q=0.001\cdot C_{max}\cdot W=0.000004$

						г
						1
						ı
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Максимальный расход воздуха на аэрацию сооружения (W): 2,97 м³/с

Расход воздуха при нормальных условиях:

Расход воздуха (W), куб. м/год	Время работы (t), дни	Годовая добавка к выбросу q=0.000000001·C _ф ·W·t/365
Итого:		0,000000

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

Программа основана на следующих методических документах:

- 1. «Методические рекомендации по расчету выбросов загрязняющих веществ в атмосферный воздух от неорганизованных источников станций аэрации сточных вод», НИИ Атмосфера, Санкт-Петербург, 2015 год
- 2. Информационное письмо №5. Исх. 07-2-748/16-0 от 06.10.2016. НИИ Атмосфера
- 3. Методическое письмо. Исх. 1-1160/17-0-1 от 09.06.2017. НИИ Атмосфера

Расчет произведен программой «Станции аэрации», версия 1.3.10 от 14.09.2021 Copyright© 2012-2021 Фирма «Интеграл»

Название источника выбросов: №6015 Вторичный радиальный отстойник

Результаты расчетов по источнику выбросов

Код	Название вещества	Максимальный	Валовой
		выброс, г/с	выброс, т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000730	0,001348
0303	Аммиак	0,0004942	0,009127
0304	Азот (II) оксид (Азота оксид)	0,0002358	0,004355
0333	Дигидросульфид (Сероводород)	0,0001094	0,002021
0410	Метан	0,0066330	0,122506
0416	Смесь предельных углеводородов	0,0027195	0,050228
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0000842	0,001556
1325	Формальдегид	0,0001227	0,002266
1728	Этантиол (Этилмеркаптан)	0,0000043	0,000080

Источники	•
источники	выпепении

источники выделени	an e e e e e e e e e e e e e e e e e e e		
Код	Название вещества	Максимальный	Среднегодовой
		выброс, г/с	выброс, т/год
Автономный	[1] Источн	ик №1	
источник			
0301	Азота диоксид (Азот (IV) оксид)	0,0000730	0,001348
0303	Аммиак	0,0004942	0,009127
0304	Азот (II) оксид (Азота оксид)	0,0002358	0,004355
0333	Дигидросульфид (Сероводород)	0,0001094	0,002021
0410	Метан	0,0066330	0,122506
0416	Смесь предельных углеводородов C6H14-C10H22	0,0027195	0,050228
1071	Гидроксибензол (Фенол)	0,0000842	0,001556
1325	Формальдегид	0,0001227	0,002266
1728	Этантиол (Этилмеркаптан)	0,0000043	0,000080

Взам. Инв.	
Подп. и дата	
Инв. № подл.	

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Результаты расчетов по источнику выделения

Код	Название вещества	Максимальный выброс,	Среднегодовой выброс,
		г/с	т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000730	0,001348
0303	Аммиак	0,0004942	0,009127
0304	Азот (II) оксид (Азота оксид)	0,0002358	0,004355
0333	Дигидросульфид (Сероводород)	0,0001094	0,002021
0410	Метан	0,0066330	0,122506
0416	Смесь предельных углеводородов С6Н14-	0,0027195	0,050228
	C10H22		
1071	Гидроксибензол (Фенол)	0,0000842	0,001556
1325	Формальдегид	0,0001227	0,002266
1728	Этантиол (Этилмеркаптан)	0,0000043	0,000080

Расчетные формулы

Расчет производился по осредненным концентрациям веществ

Максимальный выброс (M^{max}), г/с

При и<=3

$$M^{max}=2.7\cdot10^{-5}\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (1 [1])

При и>3

$$M^{max}=0.9\cdot10^{-5}\cdot u\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (2 [1])

u - скорость ветра, зафиксированная в период времени года, когда была измерена концентрация C_{max} , м/с

 a_1^{ϕ} - безразмерный коэффициент, учитывающий влияние превышения температуры водной поверхности над температурой воздуха на высоте 2 м вблизи сооружения

 C_{max} - осредненная концентрация ${\bf \widehat{3B}}$ над поверхностью испарения, мг/м³

S - полная площадь водной поверхности (включая укрытые участки)

Валовый выброс (G), т/год

 $G=31.5 \cdot SP_i \cdot M_i (13[1])$

 $P_{\rm i}$ - безразмерная повторяемость градации скорости ветра

 M_i - мощность выброса i-ого вещества для средней концентрации вблизи водной поверхности при скорости ветра, отнесенной к середине градации

Учет механических укрытий

$$M^{max}=M^{max}\cdot a_3$$
, (π . 5.6 [1])

G=G·a₃, (п. 5.6 [1])

аз - безразмерный коэффициент, учитывающий механические укрытия

Результаты замеров

Среднегодовая температура воды (t_{вод} ср): 20 °C

Фактическая температура воды $(t_{вод}^{\phi})$: 0 °C

Температура воздуха на высоте 2 м над водной поверхностью ($t_{воз}^{\varphi}$): 0 °C

Превышение температуры водной поверхности над температурой воздуха:

Фактическое (DT $^{\phi}$): DT $^{\phi}$ = $t_{вод}{}^{\phi}$ - $t_{воз}{}^{\phi}$ =0°C

Среднее (DT^{cp}): DT^{cp}= t_{BO3}^{cp} - t_{BO3}^{cp} =18,5°C

Полная площадь водной поверхности (включая укрытые участки) (S): 891,5 м²

Площадь укрытия сооружений (So): 891,5 м²

[301] Азота диоксид (Азот (IV) оксид)

Результаты расчётов

Взам.

Подп. и дата

Результаты расчет	ОВ		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000730	0,0007680, г/с	0,095000
выброс			

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Валовый	0,001348	0,0141849,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,022 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,022 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,022

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M \!\!=\!\! 0.9 \!\!\cdot\! 10^{\text{-5}} \!\!\cdot\! u \!\!\cdot\! a_1^{\text{cp.}} \!\!\cdot\! C_{\varphi} \!\!\cdot\! S^{0.93} \!, \, (2 \, [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,041335829	0,000342760
3,5	0,164	1,034781335	0,000397370
4,5	0,14	1,026248497	0,000506691
5,5	0,092	1,020965067	0,000616101
6,5	0,044	1,017387594	0,000725568
7,5	0,0295	1,014812687	0,000835074
8,5	0,015	1,012875179	0,000944611
9,5	0,00875	1,011367161	0,001054170
10,5	0,0025	1,010161795	0,001163746
11,5	0,0015	1,009177426	0,001273337
12,5	0,0005	1,008359172	0,001382940

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0007680 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,014185 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[303] Аммиак

Взам.

Подп. и дата

Результаты расчётов

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0004942	0,0052016, г/с	0,095000
выброс			
Валовый	0,009127	0,0960708,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,149 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,149 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	-
7	0,149

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	- ' '
3	0,502	1,041335829	0,002321420
3,5	0,164	1,034781335	0,002691276
4,5	0,14	1,026248497	0,003431679
5,5	0,092	1,020965067	0,004172681
6,5	0,044	1,017387594	0,004914071
7,5	0,0295	1,014812687	0,005655731
8,5	0,015	1,012875179	0,006397591
9,5	0,00875	1,011367161	0,007139603
10,5	0,0025	1,010161795	0,007881736
11,5	0,0015	1,009177426	0,008623965
12,5	0,0005	1,008359172	0,009366275

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0052016 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,096071 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[304] Азот (II) оксид (Азота оксид)

Результаты расчётов

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0002358	0,0024821, г/с	0,095000
выброс			
Валовый	0,004355	0,0458432,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0711 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0711 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,0711

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

Взам.

Подп. и дата

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1[1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

						l
						ı
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,041335829	0,001107738
3,5	0,164	1,034781335	0,001284226
4,5	0,14	1,026248497	0,001637533
5,5	0,092	1,020965067	0,001991125
6,5	0,044	1,017387594	0,002344902
7,5	0,0295	1,014812687	0,002698809
8,5	0,015	1,012875179	0,003052810
9,5	0,00875	1,011367161	0,003406885
10,5	0,0025	1,010161795	0,003761016
11,5	0,0015	1,009177426	0,004115194
12,5	0,0005	1,008359172	0,004469410

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0024821~г/c

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,045843 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[333] Дигидросульфид (Сероводород)

Результаты расчётов

esymbiatisi pae ietos					
	Выброс	Выброс	Безразмерный		
	вещества	вещества, без	коэффициент,		
		учёта внешних	учитывающий		
		факторов	механические		
			укрытия (а3)		
Максимальный	0,0001094	0,0011520, г/с	0,095000		
выброс					
Валовый	0,002021	0,0212774,	0,095000		
выброс		т/год			

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,033 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,033 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м	
M/C	-	
7	0,033	

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1{}^{cp}\cdot C_{\varphi}\cdot S^{0.93},\,(1\,\,[1])$

При и>3

Взам. Инв. №

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$

 ${a_1}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

		-	
Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,041335829	0,000514140
3,5	0,164	1,034781335	0,000596054
4,5	0,14	1,026248497	0,000760036
5,5	0,092	1,020965067	0,000924151
6,5	0,044	1,017387594	0,001088351
7,5	0,0295	1,014812687	0,001252612
8,5	0,015	1,012875179	0,001416916
9,5	0,00875	1,011367161	0,001581254

Изм.	Кол.уч	Лист	№док	Подп.	Дата

10,5	0,0025	1,010161795	0,001745619
11,5	0,0015	1,009177426	0,001910006
12,5	0,0005	1,008359172	0,002074410

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0011520 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,021277 т/год

Учет механических укрытий

 a_3 =(1-0.705·n²-0.2·n)=0,095000 (9 [1])

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[410] Метан

Результаты расчётов

r esymptathi pae iet	*-		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0066330	0,0698206, г/с	0,095000
выброс			
Валовый	0,122506	1,2895406,	0,095000
выброс	·	т/год	·

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 2 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 2 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/c	MI/RyO. M
7	2

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1 [1])$

При и>3

Взам.

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (2 [1])

 $a_1{}^{cp}\!\!=\!\!1\!\!+\!\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\left(3\;[1]\right)$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,041335829	0,031159998
3,5	0,164	1,034781335	0,036124512
4,5	0,14	1,026248497	0,046062808
5,5	0,092	1,020965067	0,056009143
6,5	0,044	1,017387594	0,065960684
7,5	0,0295	1,014812687	0,075915859
8,5	0,015	1,012875179	0,085873707
9,5	0,00875	1,011367161	0,095833602
10,5	0,0025	1,010161795	0,105795111
11,5	0,0015	1,009177426	0,115757923
12,5	0,0005	1,008359172	0,125721810

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0698206 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 1,289541 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

						Г
						ı
						ı
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

[416] Смесь предельных углеводородов С6Н14-С10Н22

Результаты расчётов

1 csymbrath pacter	<u>-</u>		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0027195	0,0286264, г/с	0,095000
выброс			
Валовый	0,050228	0,5287116,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,82 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,82 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м	
м/с		
7	0,82	

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

M=2.7·10⁻⁵· a_1^{cp} · C_{ϕ} · $S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	-
3	0,502	1,041335829	0,012775599
3,5	0,164	1,034781335	0,014811050
4,5	0,14	1,026248497	0,018885751
5,5	0,092	1,020965067	0,022963749
6,5	0,044	1,017387594	0,027043881
7,5	0,0295	1,014812687	0,031125502
8,5	0,015	1,012875179	0,035208220
9,5	0,00875	1,011367161	0,039291777
10,5	0,0025	1,010161795	0,043375995
11,5	0,0015	1,009177426	0,047460748
12,5	0,0005	1,008359172	0,051545942

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0286264 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,528712 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1071] Гидроксибензол (Фенол)

Взам.

Подп. и дата

Результаты расчетов				
	Выброс	Выброс	Безразмерный	
	вещества	вещества, без	коэффициент,	
		учёта внешних	учитывающий	
		факторов	механические	
			укрытия (а3)	
Максимальный	0,0000842	0,0008867, г/с	0,095000	
выброс				
Валовый	0,001556	0,0163772,	0,095000	

Изм.	Кол.уч	Лист	№док	Подп.	Дата

выброс	т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0254 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0254 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%, м/с	мг/куб. м
7	0,0254

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (2 [1])

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	-
3	0,502	1,041335829	0,000395732
3,5	0,164	1,034781335	0,000458781
4,5	0,14	1,026248497	0,000584998
5,5	0,092	1,020965067	0,000711316
6,5	0,044	1,017387594	0,000837701
7,5	0,0295	1,014812687	0,000964131
8,5	0,015	1,012875179	0,001090596
9,5	0,00875	1,011367161	0,001217087
10,5	0,0025	1,010161795	0,001343598
11,5	0,0015	1,009177426	0,001470126
12,5	0,0005	1,008359172	0,001596667

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0008867 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,016377 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1325] Формальдегид

Результаты расчётов

Взам.

Подп. и дата

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0001227	0,0012917, г/с	0,095000
выброс			
Валовый	0,002266	0,0238565,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,037 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,037 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
м/с	
7	0,037

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

						Г
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1{}^{cp}\cdot C_{\varphi}\cdot S^{0.93},\,(1\,\,[1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,041335829	0,000576460
3,5	0,164	1,034781335	0,000668303
4,5	0,14	1,026248497	0,000852162
5,5	0,092	1,020965067	0,001036169
6,5	0,044	1,017387594	0,001220273
7,5	0,0295	1,014812687	0,001404443
8,5	0,015	1,012875179	0,001588664
9,5	0,00875	1,011367161	0,001772922
10,5	0,0025	1,010161795	0,001957210
11,5	0,0015	1,009177426	0,002141522
12,5	0,0005	1,008359172	0,002325853

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0012917 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,023857 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1728] Этантиол (Этилмеркаптан)

Результаты расчётов

Результаты расчет	OB		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000043	0,0000454, г/с	0,095000
выброс			
Валовый	0,000080	0,0008382,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0013 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0013 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	-
7	0,0013

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

Взам.

Подп. и дата

 $M \!\!=\!\! 2.7 \cdot \! 10^{\text{-}5} \cdot \! a_1{}^{cp} \cdot \! C_{\varphi} \cdot \! S^{0.93} \text{, (1 [1])}$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра Повторяемость градации Безразмерный Доля градации (М), г/с

Изм.	Кол.уч	Лист	№док	Подп.	Дата

(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,041335829	0,000020254
3,5	0,164	1,034781335	0,000023481
4,5	0,14	1,026248497	0,000029941
5,5	0,092	1,020965067	0,000036406
6,5	0,044	1,017387594	0,000042874
7,5	0,0295	1,014812687	0,000049345
8,5	0,015	1,012875179	0,000055818
9,5	0,00875	1,011367161	0,000062292
10,5	0,0025	1,010161795	0,000068767
11,5	0,0015	1,009177426	0,000075243
12,5	0,0005	1,008359172	0,000081719

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000454 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000838 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

Программа основана на следующих методических документах:

- 1. «Методические рекомендации по расчету выбросов загрязняющих веществ в атмосферный воздух от неорганизованных источников станций аэрации сточных вод», НИИ Атмосфера, Санкт-Петербург, 2015 год
- 2. Информационное письмо №5. Исх. 07-2-748/16-0 от 06.10.2016. НИИ Атмосфера
- 3. Методическое письмо. Исх. 1-1160/17-0-1 от 09.06.2017. НИИ Атмосфера

Расчет произведен программой «Станции аэрации», версия 1.3.10 от 14.09.2021 Copyright© 2012-2021 Фирма «Интеграл»

Название источника выбросов: №6016 Вторичный радиальный отстойник

Результаты расчетов по источнику выбросов

Код	Название вещества	Максимальный	Валовой выброс,
		выброс, г/с	т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000730	0,001348
0303	Аммиак	0,0004942	0,009127
0304	Азот (II) оксид (Азота оксид)	0,0002358	0,004355
0333	Дигидросульфид (Сероводород)	0,0001094	0,002021
0410	Метан	0,0066330	0,122506
0416	Смесь предельных углеводородов	0,0027195	0,050228
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0000842	0,001556
1325	Формальдегид	0,0001227	0,002266
1728	Этантиол (Этилмеркаптан)	0,0000043	0,000080

источники выделении	Источники	выделений
---------------------	-----------	-----------

Взам. Инв.

Подп. и дата

Код	Название вещества	Максимальный выброс, г/с	Среднегодовой выброс, т/год
Автономный	[1] Исто	чник №1	
источник			
0301	Азота диоксид (Азот (IV) оксид)	0,0000730	0,001348
0303	Аммиак	0,0004942	0,009127
0304	Азот (II) оксид (Азота оксид)	0,0002358	0,004355
0333	Дигидросульфид (Сероводород)	0,0001094	0,002021
0410	Метан	0,0066330	0,122506
0416	Смесь предельных углеводородов C6H14-C10H22	0,0027195	0,050228
1071	Гидроксибензол (Фенол)	0,0000842	0,001556
1325	Формальдегид	0,0001227	0,002266
1728	Этантиол (Этилмеркаптан)	0,0000043	0,000080

_							
							ſ
Н							l
							ı
V	1зм.	Кол.уч	Лист	№док	Подп.	Дата	l

Результаты расчетов по источнику выделения

Код	Название вещества	Максимальный выброс,	Среднегодовой выброс,
		г/с	т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000730	0,001348
0303	Аммиак	0,0004942	0,009127
0304	Азот (II) оксид (Азота оксид)	0,0002358	0,004355
0333	Дигидросульфид (Сероводород)	0,0001094	0,002021
0410	Метан	0,0066330	0,122506
0416	Смесь предельных углеводородов С6Н14-	0,0027195	0,050228
	C10H22		
1071	Гидроксибензол (Фенол)	0,0000842	0,001556
1325	Формальдегид	0,0001227	0,002266
1728	Этантиол (Этилмеркаптан)	0,0000043	0,000080

Расчетные формулы

Расчет производился по осредненным концентрациям веществ

Максимальный выброс (M^{max}), г/с

При и<=3

$$M^{max}=2.7\cdot10^{-5}\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (1 [1])

При и>3

$$M^{max}=0.9\cdot10^{-5}\cdot u\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (2 [1])

u - скорость ветра, зафиксированная в период времени года, когда была измерена концентрация C_{max} , м/с

 a_1^{ϕ} - безразмерный коэффициент, учитывающий влияние превышения температуры водной поверхности над температурой воздуха на высоте 2 м вблизи сооружения

 C_{max} - осредненная концентрация ${\bf \widehat{3B}}$ над поверхностью испарения, мг/м³

S - полная площадь водной поверхности (включая укрытые участки)

Валовый выброс (G), т/год

 $G=31.5 \cdot SP_i \cdot M_i (13[1])$

 $P_{\rm i}$ - безразмерная повторяемость градации скорости ветра

 M_i - мощность выброса i-ого вещества для средней концентрации вблизи водной поверхности при скорости ветра, отнесенной к середине градации

Учет механических укрытий

$$M^{max}=M^{max}\cdot a_3$$
, (π . 5.6 [1])

G=G·a₃, (п. 5.6 [1])

аз - безразмерный коэффициент, учитывающий механические укрытия

Результаты замеров

Среднегодовая температура воды (t_{вод} ср): 20 °C

Фактическая температура воды $(t_{вод}^{\phi})$: 0 °C

Температура воздуха на высоте 2 м над водной поверхностью ($t_{воз}^{\varphi}$): 0 °C

Превышение температуры водной поверхности над температурой воздуха:

Фактическое (DT $^{\phi}$): DT $^{\phi}$ = $t_{вод}{}^{\phi}$ - $t_{воз}{}^{\phi}$ =0°C

Среднее (DT^{cp}): DT^{cp}= t_{BO3}^{cp} - t_{BO3}^{cp} =18,5°C

Полная площадь водной поверхности (включая укрытые участки) (S): 891,5 м²

Площадь укрытия сооружений (So): 891,5 м²

[301] Азота диоксид (Азот (IV) оксид)

Результаты расчётов

Взам.

Подп. и дата

Результаты расчет	ОВ		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000730	0,0007680, г/с	0,095000
выброс			

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Валовый	0,001348	0,0141849,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,022 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,022 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,022

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M \!\!=\!\! 0.9 \!\!\cdot\! 10^{\text{-5}} \!\!\cdot\! u \!\!\cdot\! a_1^{\text{cp.}} \!\!\cdot\! C_{\varphi} \!\!\cdot\! S^{0.93} \!, \, (2 \, [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,041335829	0,000342760
3,5	0,164	1,034781335	0,000397370
4,5	0,14	1,026248497	0,000506691
5,5	0,092	1,020965067	0,000616101
6,5	0,044	1,017387594	0,000725568
7,5	0,0295	1,014812687	0,000835074
8,5	0,015	1,012875179	0,000944611
9,5	0,00875	1,011367161	0,001054170
10,5	0,0025	1,010161795	0,001163746
11,5	0,0015	1,009177426	0,001273337
12,5	0,0005	1,008359172	0,001382940

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0007680 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,014185 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[303] Аммиак

Взам.

Подп. и дата

Результаты расчётов

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0004942	0,0052016, г/с	0,095000
выброс			
Валовый	0,009127	0,0960708,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,149 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,149 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
м/с	-
7	0,149

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/с (P), доли единиц		коэффициент (a ₁ ^{ср})	- ' '
3	0,502	1,041335829	0,002321420
3,5	0,164	1,034781335	0,002691276
4,5	0,14	1,026248497	0,003431679
5,5	0,092	1,020965067	0,004172681
6,5	0,044	1,017387594	0,004914071
7,5	0,0295	1,014812687	0,005655731
8,5	0,015	1,012875179	0,006397591
9,5	0,00875	1,011367161	0,007139603
10,5	0,0025	1,010161795	0,007881736
11,5	0,0015	1,009177426	0,008623965
12,5	0,0005	1,008359172	0,009366275

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0052016 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,096071 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[304] Азот (II) оксид (Азота оксид)

Результаты расчётов

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0002358	0,0024821, г/с	0,095000
выброс			
Валовый	0,004355	0,0458432,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0711 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0711 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,	
превышения которой составляет 5%,	мг/куб. м	
M/C		
7	0,0711	

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

Взам.

Подп. и дата

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1[1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

						l
						l
						ı
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,041335829	0,001107738
3,5	0,164	1,034781335	0,001284226
4,5	0,14	1,026248497	0,001637533
5,5	0,092	1,020965067	0,001991125
6,5	0,044	1,017387594	0,002344902
7,5	0,0295	1,014812687	0,002698809
8,5	0,015	1,012875179	0,003052810
9,5	0,00875	1,011367161	0,003406885
10,5	0,0025	1,010161795	0,003761016
11,5	0,0015	1,009177426	0,004115194
12,5	0,0005	1,008359172	0,004469410

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0024821~г/c

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,045843 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[333] Дигидросульфид (Сероводород)

Результаты расчётов

1 cognibitation pacticit	0.5		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0001094	0,0011520, г/с	0,095000
выброс			
Валовый	0,002021	0,0212774,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,033 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,033 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/C	-
7	0,033

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1{}^{cp}\cdot C_{\varphi}\cdot S^{0.93},\,(1\,\,[1])$

При и>3

Взам. Инв. №

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (2 [1])

 ${a_1}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

		-	
Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,041335829	0,000514140
3,5	0,164	1,034781335	0,000596054
4,5	0,14	1,026248497	0,000760036
5,5	0,092	1,020965067	0,000924151
6,5	0,044	1,017387594	0,001088351
7,5	0,0295	1,014812687	0,001252612
8,5	0,015	1,012875179	0,001416916
9,5	0,00875	1,011367161	0,001581254

Изм.	Кол.уч	Лист	№док	Подп.	Дата

10,5	0,0025	1,010161795	0,001745619
11,5	0,0015	1,009177426	0,001910006
12,5	0,0005	1,008359172	0,002074410

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0011520 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,021277 т/год

Учет механических укрытий

 a_3 =(1-0.705·n²-0.2·n)=0,095000 (9 [1])

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[410] Метан

Результаты расчётов

r esymptathi pae iet	*-		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0066330	0,0698206, г/с	0,095000
выброс			
Валовый	0,122506	1,2895406,	0,095000
выброс	·	т/год	·

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 2 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 2 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/c	MI/RyO. M
7	2

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1 [1])$

При и>3

Взам.

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1{}^{cp}\!\!=\!\!1\!\!+\!\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\left(3\;[1]\right)$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,041335829	0,031159998
3,5	0,164	1,034781335	0,036124512
4,5	0,14	1,026248497	0,046062808
5,5	0,092	1,020965067	0,056009143
6,5	0,044	1,017387594	0,065960684
7,5	0,0295	1,014812687	0,075915859
8,5	0,015	1,012875179	0,085873707
9,5	0,00875	1,011367161	0,095833602
10,5	0,0025	1,010161795	0,105795111
11,5	0,0015	1,009177426	0,115757923
12,5	0,0005	1,008359172	0,125721810

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0698206 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 1,289541 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

						Г
						ı
						ı
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

[416] Смесь предельных углеводородов С6Н14-С10Н22

Результаты расчётов

1 csymbrath pacter	<u>-</u>		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0027195	0,0286264, г/с	0,095000
выброс			
Валовый	0,050228	0,5287116,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,82 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,82 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
м/с	
7	0,82

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

M=2.7·10⁻⁵· a_1^{cp} · C_{ϕ} · $S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	-
3	0,502	1,041335829	0,012775599
3,5	0,164	1,034781335	0,014811050
4,5	0,14	1,026248497	0,018885751
5,5	0,092	1,020965067	0,022963749
6,5	0,044	1,017387594	0,027043881
7,5	0,0295	1,014812687	0,031125502
8,5	0,015	1,012875179	0,035208220
9,5	0,00875	1,011367161	0,039291777
10,5	0,0025	1,010161795	0,043375995
11,5	0,0015	1,009177426	0,047460748
12,5	0,0005	1,008359172	0,051545942

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0286264 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,528712 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1071] Гидроксибензол (Фенол)

Взам.

Результаты расчет	OB		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000842	0,0008867, г/с	0,095000
выброс			
Валовый	0,001556	0,0163772,	0,095000

Изм.	Кол.уч	Лист	№док	Подп.	Дата

выброс	т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0254 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0254 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%, м/с	мг/куб. м
7	0,0254

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	-
3	0,502	1,041335829	0,000395732
3,5	0,164	1,034781335	0,000458781
4,5	0,14	1,026248497	0,000584998
5,5	0,092	1,020965067	0,000711316
6,5	0,044	1,017387594	0,000837701
7,5	0,0295	1,014812687	0,000964131
8,5	0,015	1,012875179	0,001090596
9,5	0,00875	1,011367161	0,001217087
10,5	0,0025	1,010161795	0,001343598
11,5	0,0015	1,009177426	0,001470126
12,5	0,0005	1,008359172	0,001596667

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0008867 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,016377 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1325] Формальдегид

Результаты расчётов

Взам.

Подп. и дата

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0001227	0,0012917, г/с	0,095000
выброс			
Валовый	0,002266	0,0238565,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,037 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,037 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
м/с	
7	0,037

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

						Г
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

M= $2.7 \cdot 10^{-5} \cdot a_1^{cp} \cdot C_{\phi} \cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,041335829	0,000576460
3,5	0,164	1,034781335	0,000668303
4,5	0,14	1,026248497	0,000852162
5,5	0,092	1,020965067	0,001036169
6,5	0,044	1,017387594	0,001220273
7,5	0,0295	1,014812687	0,001404443
8,5	0,015	1,012875179	0,001588664
9,5	0,00875	1,011367161	0,001772922
10,5	0,0025	1,010161795	0,001957210
11,5	0,0015	1,009177426	0,002141522
12,5	0,0005	1,008359172	0,002325853

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0012917 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,023857 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1728] Этантиол (Этилмеркаптан)

Результаты расчётов

Результаты расчет	OB		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000043	0,0000454, г/с	0,095000
выброс			
Валовый	0,000080	0,0008382,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0013 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0013 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	-
7	0,0013

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

Взам.

Подп. и дата

 $M \!\!=\!\! 2.7 \cdot \! 10^{\text{-}5} \cdot \! a_1{}^{cp} \cdot \! C_{\varphi} \cdot \! S^{0.93} \text{, (1 [1])}$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра Повторяемость градации Безразмерный Доля градации (М), г/с

Изм.	Кол.уч	Лист	№док	Подп.	Дата

(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,041335829	0,000020254
3,5	0,164	1,034781335	0,000023481
4,5	0,14	1,026248497	0,000029941
5,5	0,092	1,020965067	0,000036406
6,5	0,044	1,017387594	0,000042874
7,5	0,0295	1,014812687	0,000049345
8,5	0,015	1,012875179	0,000055818
9,5	0,00875	1,011367161	0,000062292
10,5	0,0025	1,010161795	0,000068767
11,5	0,0015	1,009177426	0,000075243
12,5	0,0005	1,008359172	0,000081719

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000454 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000838 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

Программа основана на следующих методических документах:

- 1. «Методические рекомендации по расчету выбросов загрязняющих веществ в атмосферный воздух от неорганизованных источников станций аэрации сточных вод», НИИ Атмосфера, Санкт-Петербург, 2015 год
- 2. Информационное письмо №5. Исх. 07-2-748/16-0 от 06.10.2016. НИИ Атмосфера
- 3. Методическое письмо. Исх. 1-1160/17-0-1 от 09.06.2017. НИИ Атмосфера

Расчет произведен программой «Станции аэрации», версия 1.3.10 от 14.09.2021 Copyright© 2012-2021 Фирма «Интеграл»

Название источника выбросов: №6017 Биореактор

Результаты расчетов по источнику выбросов

1 csysibiaibi pac icioi	no hero maky bhopocob		
Код	Название вещества	Максимальный	Валовой выброс,
		выброс, г/с	т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000035	0,000065
0303	Аммиак	0,0000843	0,001540
0304	Азот (II) оксид (Азота оксид)	0,0000621	0,001135
0333	Дигидросульфид (Сероводород)	0,0000284	0,000519
0410	Метан	0,0022805	0,041674
0416	Смесь предельных углеводородов	0,0006966	0,012729
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0000224	0,000409
1325	Формальдегид	0,0000231	0,000422
1728	Этантиол (Этилмеркаптан)	0,0000012	0,000021

Источники выделений

Взам. Инв. №

Код	Название вещества	Максимальный	Среднегодовой
		выброс, г/с	выброс, т/год
Автономный	[1] Источ	ник №1	
источник			
0301	Азота диоксид (Азот (IV) оксид)	0,0000035	0,000065
0303	Аммиак	0,0000843	0,001540
0304	Азот (II) оксид (Азота оксид)	0,0000621	0,001135
0333	Дигидросульфид (Сероводород)	0,0000284	0,000519
0410	Метан	0,0022805	0,041674
0416	Смесь предельных углеводородов	0,0006966	0,012729
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0000224	0,000409
1325	Формальдегид	0,0000231	0,000422
1728	Этантиол (Этилмеркаптан)	0,0000012	0,000021

							Г
							ı
							ı
							ı
Из	М.	Кол.уч	Лист	№док	Подп.	Дата	

Источник выделения: №1 Источник №1

Тип источника: Аэротенки

Результаты расчетов по источнику выделения

Код	Название вещества	Максимальный выброс,	Среднегодовой выброс,
		г/с	т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000035	0,000065
0303	Аммиак	0,0000843	0,001540
0304	Азот (II) оксид (Азота оксид)	0,0000621	0,001135
0333	Дигидросульфид (Сероводород)	0,0000284	0,000519
0410	Метан	0,0022805	0,041674
0416	Смесь предельных углеводородов С6Н14-	0,0006966	0,012729
	C10H22		
1071	Гидроксибензол (Фенол)	0,0000224	0,000409
1325	Формальдегид	0,0000231	0,000422
1728	Этантиол (Этилмеркаптан)	0,0000012	0,000021

Расчетные формулы

Расчет производился по осредненным концентрациям веществ

Максимальный выброс (M^{max}), г/с

При и<=3

$$M^{max}=2.7\cdot10^{-5}\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (1 [1])

При и>3

$$M^{max}=0.9\cdot10^{-5}\cdot u\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (2 [1])

u - скорость ветра, зафиксированная в период времени года, когда была измерена концентрация С_{тах}, м/с

 a_1^{ϕ} - безразмерный коэффициент, учитывающий влияние превышения температуры водной поверхности над температурой воздуха на высоте 2 м вблизи сооружения

 C_{max} - осредненная концентрация ${\bf \widehat{3B}}$ над поверхностью испарения, мг/м³

S - полная площадь водной поверхности (включая укрытые участки)

Валовый выброс (G), т/год

 $G=31.5 \cdot SP_i \cdot M_i (13 [1])$

 $P_{\rm i}$ - безразмерная повторяемость градации скорости ветра

 M_i - мощность выброса i-ого вещества для средней концентрации вблизи водной поверхности при скорости ветра, отнесенной к середине градации

Учет механических укрытий

$$M^{max}=M^{max}\cdot a_3$$
, (π . 5.6 [1])

G=G·a₃, (п. 5.6 [1])

аз - безразмерный коэффициент, учитывающий механические укрытия

Результаты замеров

Среднегодовая температура воды (t_{вод} ср): 20 °C

Фактическая температура воды $(t_{вод}^{\phi})$: 0 °C

Температура воздуха на высоте 2 м над водной поверхностью ($t_{воз}^{\varphi}$): 0 °C

Превышение температуры водной поверхности над температурой воздуха:

Фактическое (DT $^{\phi}$): DT $^{\phi}$ = $t_{вод}^{\phi}$ - $t_{воз}^{\phi}$ =0°C

Среднее (DT^{cp}): DT^{cp}= t_{BO3}^{cp} - t_{BO3}^{cp} =18,5°C

Полная площадь водной поверхности (включая укрытые участки) (S): 216 м²

Площадь укрытия сооружений (So): 216 м²

[301] Азота диоксид (Азот (IV) оксид)

Результаты расчётов

Взам.

Подп. и дата

Результаты расчет	ОВ		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000035	0,0000374, г/с	0,095000
выброс			

						Ī
						١
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Валовый	0,000065	0,0006828,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,004 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,004 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
м/с	MI/KyO. W
7	0,004

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M \!\!=\!\! 0.9 \!\!\cdot\! 10^{\text{-5}} \!\!\cdot\! u \!\!\cdot\! a_1^{\text{cp.}} \!\!\cdot\! C_{\varphi} \!\!\cdot\! S^{0.93} \!, \, (2 \, [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ ^{cp})	
3	0,502	1,026447910	0,000016436
3,5	0,164	1,022254147	0,000019097
4,5	0,14	1,016794580	0,000024423
5,5	0,092	1,013414082	0,000029750
6,5	0,044	1,011125107	0,000035080
7,5	0,0295	1,009477604	0,000040411
8,5	0,015	1,008237928	0,000045743
9,5	0,00875	1,007273053	0,000051076
10,5	0,0025	1,006501823	0,000056409
11,5	0,0015	1,005871994	0,000061743
12,5	0,0005	1,005348450	0,000067077

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000374 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000683 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[303] Аммиак

Взам.

Подп. и дата

Результаты расчётов

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000843	0,0008874, г/с	0,095000
выброс			
Валовый	0,001540	0,0162156,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,095 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,095 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%, м/с	мг/куб. м
7	0.095

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M \!\!=\!\! 0.9 \!\!\cdot\! 10^{\text{-5}} \!\!\cdot\! u \!\!\cdot\! a_1^{\text{cp.}} \!\!\cdot\! C_{\varphi} \!\!\cdot\! S^{0.93} \!, \, (2 \, [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,026447910	0,000390361
3,5	0,164	1,022254147	0,000453560
4,5	0,14	1,016794580	0,000580035
5,5	0,092	1,013414082	0,000706574
6,5	0,044	1,011125107	0,000833156
7,5	0,0295	1,009477604	0,000959768
8,5	0,015	1,008237928	0,001086401
9,5	0,00875	1,007273053	0,001213051
10,5	0,0025	1,006501823	0,001339714
11,5	0,0015	1,005871994	0,001466387
12,5	0,0005	1,005348450	0,001593070

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0008874 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,016216 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[304] Азот (II) оксид (Азота оксид)

Результаты расчётов

езультаты расчетов				
	Выброс	Выброс	Безразмерный	
	вещества	вещества, без	коэффициент,	
		учёта внешних	учитывающий	
		факторов	механические	
			укрытия (а3)	
Максимальный	0,0000621	0,0006539, г/с	0,095000	
выброс				
Валовый	0,001135	0,0119484,	0,095000	
выброс		т/год		

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,07 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,07 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
м/с	
7	0,07

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

Взам.

Подп. и дата

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1 [1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

						l
						ı
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,026447910	0,000287634
3,5	0,164	1,022254147	0,000334202
4,5	0,14	1,016794580	0,000427394
5,5	0,092	1,013414082	0,000520634
6,5	0,044	1,011125107	0,000613904
7,5	0,0295	1,009477604	0,000707197
8,5	0,015	1,008237928	0,000800506
9,5	0,00875	1,007273053	0,000893827
10,5	0,0025	1,006501823	0,000987157
11,5	0,0015	1,005871994	0,001080496
12,5	0,0005	1,005348450	0,001173841

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0006539 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,011948 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[333] Дигидросульфид (Сероводород)

Результаты расчётов

esymbiatisi pae ieros					
	Выброс	Выброс	Безразмерный		
	вещества	вещества, без	коэффициент,		
		учёта внешних	учитывающий		
		факторов	механические		
			укрытия (а3)		
Максимальный	0,0000284	0,0002989, г/с	0,095000		
выброс					
Валовый	0,000519	0,0054621,	0,095000		
выброс		т/год			

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,032 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,032 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/c	MI/RyO. W
7	0,032

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1{}^{cp}\cdot C_{\varphi}\cdot S^{0.93},\,(1\,\,[1])$

При и>3

Взам. Инв. №

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (2 [1])

 ${a_1}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,026447910	0,000131490
3,5	0,164	1,022254147	0,000152778
4,5	0,14	1,016794580	0,000195380
5,5	0,092	1,013414082	0,000238004
6,5	0,044	1,011125107	0,000280642
7,5	0,0295	1,009477604	0,000323290
8,5	0,015	1,008237928	0,000365946
9,5	0,00875	1,007273053	0,000408607

				·	
Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

10,5	0,0025	1,006501823	0,000451272
11,5	0,0015	1,005871994	0,000493941
12,5	0,0005	1,005348450	0,000536613

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0002989 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,005462 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0,095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[410] Метан

Результаты расчётов

r esystemen pae ier		D .	Б "
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0022805	0,0240058, г/с	0,095000
выброс			
Валовый	0,041674	0,4386758,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 2,57 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 2,57 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	2,57

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1 [1])$

При и>3

Взам.

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1{}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,026447910	0,010560289
3,5	0,164	1,022254147	0,012270000
4,5	0,14	1,016794580	0,015691460
5,5	0,092	1,013414082	0,019114689
6,5	0,044	1,011125107	0,022539064
7,5	0,0295	1,009477604	0,025964237
8,5	0,015	1,008237928	0,029389999
9,5	0,00875	1,007273053	0,032816212
10,5	0,0025	1,006501823	0,036242779
11,5	0,0015	1,005871994	0,039669633
12,5	0,0005	1,005348450	0,043096723

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0240058 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,438676 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

						Г
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

[416] Смесь предельных углеводородов С6Н14-С10Н22

Результаты расчётов

1 csysibiaibi pac ici	<u></u>		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0006966	0,0073325, г/с	0,095000
выброс			
Валовый	0,012729	0,1339924,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,785 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,785 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м	
M/C	_	
7	0,785	

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1{}^{cp}\cdot C_{\varphi}\cdot S^{0.93},\,(1\,\,[1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ cp)	1
3	0,502	1,026447910	0,003225613
3,5	0,164	1,022254147	0,003747840
4,5	0,14	1,016794580	0,004792917
5,5	0,092	1,013414082	0,005838534
6,5	0,044	1,011125107	0,006884500
7,5	0,0295	1,009477604	0,007930711
8,5	0,015	1,008237928	0,008977101
9,5	0,00875	1,007273053	0,010023629
10,5	0,0025	1,006501823	0,011070265
11,5	0,0015	1,005871994	0,012116989
12,5	0,0005	1,005348450	0,013163785

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0073325 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,133992 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1071] Гидроксибензол (Фенол)

Результаты расчётов

Взам.

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (a_3)
Максимальный	0,0000224	0,0002354, г/с	0,095000
выброс			
Валовый	0,000409	0,0043014,	0,095000

Изм.	Кол.уч	Лист	№док	Подп.	Дата

_	,	
выброс	т/гол	
выорос	1/1 ОД	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0252 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0252 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
м/с	
7	0,0252

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ ^{cp})	
3	0,502	1,026447910	0,000103548
3,5	0,164	1,022254147	0,000120313
4,5	0,14	1,016794580	0,000153862
5,5	0,092	1,013414082	0,000187428
6,5	0,044	1,011125107	0,000221006
7,5	0,0295	1,009477604	0,000254591
8,5	0,015	1,008237928	0,000288182
9,5	0,00875	1,007273053	0,000321778
10,5	0,0025	1,006501823	0,000355377
11,5	0,0015	1,005871994	0,000388978
12,5	0,0005	1,005348450	0,000422583

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0002354 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,004301 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1325] Формальдегид

Результаты расчётов

Взам.

Подп. и дата

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000231	0,0002429, г/с	0,095000
выброс			
Валовый	0,000422	0,0044380,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,026 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,026 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,026

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,026447910	0,000106836
3,5	0,164	1,022254147	0,000124132
4,5	0,14	1,016794580	0,000158746
5,5	0,092	1,013414082	0,000193378
6,5	0,044	1,011125107	0,000228022
7,5	0,0295	1,009477604	0,000262673
8,5	0,015	1,008237928	0,000297331
9,5	0,00875	1,007273053	0,000331993
10,5	0,0025	1,006501823	0,000366658
11,5	0,0015	1,005871994	0,000401327
12,5	0,0005	1,005348450	0,000435998

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0002429 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,004438 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1728] Этантиол (Этилмеркаптан)

Результаты расчётов

гезультаты расчетов					
	Выброс	Выброс	Безразмерный		
	вещества	вещества, без	коэффициент,		
		учёта внешних	учитывающий		
		факторов	механические		
			укрытия (а3)		
Максимальный	0,0000012	0,0000121, г/с	0,095000		
выброс					
Валовый	0,000021	0,0002219,	0,095000		
выброс		т/год			

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0013 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0013 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,0013

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

Взам.

Подп. и дата

 $M \!\!=\!\! 2.7 \cdot \! 10^{\text{-}5} \cdot \! a_1{}^{cp} \cdot \! C_{\varphi} \cdot \! S^{0.93} \text{, (1 [1])}$

При и>3

M=0.9·10⁻⁵·u· a_1^{cp} · C_{ϕ} · $S^{0.93}$, (2 [1])

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра Повторяемость градации Безразмерный Доля градации (М), г/с

	—				
Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,026447910	0,000005342
3,5	0,164	1,022254147	0,000006207
4,5	0,14	1,016794580	0,000007937
5,5	0,092	1,013414082	0,000009669
6,5	0,044	1,011125107	0,000011401
7,5	0,0295	1,009477604	0,000013134
8,5	0,015	1,008237928	0,000014867
9,5	0,00875	1,007273053	0,000016600
10,5	0,0025	1,006501823	0,000018333
11,5	0,0015	1,005871994	0,000020066
12,5	0,0005	1,005348450	0,000021800

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000121 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000222 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

Программа основана на следующих методических документах:

- 1. «Методические рекомендации по расчету выбросов загрязняющих веществ в атмосферный воздух от неорганизованных источников станций аэрации сточных вод», НИИ Атмосфера, Санкт-Петербург, 2015 год
- 2. Информационное письмо №5. Исх. 07-2-748/16-0 от 06.10.2016. НИИ Атмосфера
- 3. Методическое письмо. Исх. 1-1160/17-0-1 от 09.06.2017. НИИ Атмосфера

Расчет произведен программой «Станции аэрации», версия 1.3.10 от 14.09.2021 Copyright© 2012-2021 Фирма «Интеграл»

Название источника выбросов: №6018 Емкость сбора дренажа

Результаты расчетов по источнику выбросов

Код	Название вещества	Максимальный	Валовой
		выброс, г/с	выброс, т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000488	0,000894
0303	Аммиак	0,0002977	0,005452
0304	Азот (II) оксид (Азота оксид)	0,0000834	0,001527
0333	Дигидросульфид (Сероводород)	0,0005836	0,010686
0410	Метан	0,0419231	0,767620
0416	Смесь предельных углеводородов	0,0018699	0,034238
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0000310	0,000567
1325	Формальдегид	0,0000429	0,000785
1728	Этантиол (Этилмеркаптан)	0,0000021	0,000039

Источники выделений

Взам. Инв.

Код	Название вещества	Максимальный	Среднегодовой
		выброс, г/с	выброс, т/год
Автономный	[1] Источн	ик №1	
источник			
0301	Азота диоксид (Азот (IV) оксид)	0,0000488	0,000894
0303	Аммиак	0,0002977	0,005452
0304	Азот (II) оксид (Азота оксид)	0,0000834	0,001527
0333	Дигидросульфид (Сероводород)	0,0005836	0,010686
0410	Метан	0,0419231	0,767620
0416	Смесь предельных углеводородов	0,0018699	0,034238
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0000310	0,000567
1325	Формальдегид	0,0000429	0,000785
1728	Этантиол (Этилмеркаптан)	0,0000021	0,000039

						_
						ı
						ı
						ı
						1
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Результаты расчетов по источнику выделения

Код	Название вещества	Максимальный выброс,	Среднегодовой выброс,
		г/с	т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000488	0,000894
0303	Аммиак	0,0002977	0,005452
0304	Азот (II) оксид (Азота оксид)	0,0000834	0,001527
0333	Дигидросульфид (Сероводород)	0,0005836	0,010686
0410	Метан	0,0419231	0,767620
0416	Смесь предельных углеводородов С6Н14-	0,0018699	0,034238
	C10H22		
1071	Гидроксибензол (Фенол)	0,0000310	0,000567
1325	Формальдегид	0,0000429	0,000785
1728	Этантиол (Этилмеркаптан)	0,0000021	0,000039

Расчетные формулы

Расчет производился по осредненным концентрациям веществ

Максимальный выброс (M^{max}), г/с

При и<=3

$$M^{max}=2.7\cdot10^{-5}\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (1 [1])

При и>3

$$M^{max}=0.9\cdot10^{-5}\cdot u\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (2 [1])

- u скорость ветра, зафиксированная в период времени года, когда была измерена концентрация C_{max} , м/с
- a_1^{ϕ} безразмерный коэффициент, учитывающий влияние превышения температуры водной поверхности над температурой воздуха на высоте 2 м вблизи сооружения

 C_{max} - осредненная концентрация ${\bf \widehat{3B}}$ над поверхностью испарения, мг/м³

S - полная площадь водной поверхности (включая укрытые участки)

Валовый выброс (G), т/год

 $G=31.5 \cdot SP_i \cdot M_i (13 [1])$

- $P_{\rm i}$ безразмерная повторяемость градации скорости ветра
- M_i мощность выброса i-ого вещества для средней концентрации вблизи водной поверхности при скорости ветра, отнесенной к середине градации

Учет механических укрытий

$$M^{max}=M^{max}\cdot a_3$$
, (π . 5.6 [1])

G=G·a₃, (п. 5.6 [1])

аз - безразмерный коэффициент, учитывающий механические укрытия

Результаты замеров

Среднегодовая температура воды (t_{вод} ср): 20 °C

Фактическая температура воды $(t_{вод}^{\phi})$: 0 °C

Температура воздуха на высоте 2 м над водной поверхностью $(t_{воз}^{\phi})$: 0 °C

Превышение температуры водной поверхности над температурой воздуха:

Фактическое (DT $^{\phi}$): DT $^{\phi}$ = $t_{вод}^{\phi}$ - $t_{воз}^{\phi}$ = 0° С

Среднее (DT^{cp}): DT^{cp}= t_{BO3}^{cp} - t_{BO3}^{cp} =18,5°C

Полная площадь водной поверхности (включая укрытые участки) (S): 296,4 м²

Площадь укрытия сооружений (So): 296,4 м²

[301] Азота диоксид (Азот (IV) оксид)

Результаты расчётов

Взам.

Подп. и дата

Результаты расчет	ОВ		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000488	0,0005140, г/с	0,095000
выброс			

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Валовый	0,000894	0,0094116,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,041 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,041 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
м/с	MI/KyO. W
7	0,041

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M \!\!=\!\! 0.9 \!\!\cdot\! 10^{\text{-5}} \!\!\cdot\! u \!\!\cdot\! a_1^{\, cp} \!\!\cdot\! C_\varphi \!\!\cdot\! S^{0.93} \!, \, (2 \, [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ ^{cp})	
3	0,502	1,029219990	0,000226727
3,5	0,164	1,024586667	0,000263324
4,5	0,14	1,018554867	0,000336566
5,5	0,092	1,014820050	0,000409850
6,5	0,044	1,012291161	0,000483161
7,5	0,0295	1,010470978	0,000556491
8,5	0,015	1,009101368	0,000629835
9,5	0,00875	1,008035362	0,000703190
10,5	0,0025	1,007183298	0,000776553
11,5	0,0015	1,006487454	0,000849922
12,5	0,0005	1,005909036	0,000923298

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0005140~r/c

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,009412 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[303] Аммиак

Взам.

Подп. и дата

Результаты расчётов

	Выброс		
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0002977	0,0031342, г/с	0,095000
выброс			
Валовый	0,005452	0,0573878,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,25 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,25 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
м/с	
7	0,25

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ ^{cp})	
3	0,502	1,029219990	0,001382480
3,5	0,164	1,024586667	0,001605632
4,5	0,14	1,018554867	0,002052231
5,5	0,092	1,014820050	0,002499085
6,5	0,044	1,012291161	0,002946104
7,5	0,0295	1,010470978	0,003393238
8,5	0,015	1,009101368	0,003840458
9,5	0,00875	1,008035362	0,004287742
10,5	0,0025	1,007183298	0,004735077
11,5	0,0015	1,006487454	0,005182454
12,5	0,0005	1,005909036	0,005629865

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0031342 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,057388 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[304] Азот (II) оксид (Азота оксид)

Результаты расчётов

езультаты расчетов				
	Выброс	Выброс	Безразмерный	
	вещества	вещества, без	коэффициент,	
		учёта внешних	учитывающий	
		факторов	механические	
			укрытия (а3)	
Максимальный	0,0000834	0,0008776, г/с	0,095000	
выброс				
Валовый	0,001527	0,0160686,	0,095000	
выброс		т/год		

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,07 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,07 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,07

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

Взам.

Подп. и дата

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1[1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

						Γ
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,029219990	0,000387094
3,5	0,164	1,024586667	0,000449577
4,5	0,14	1,018554867	0,000574625
5,5	0,092	1,014820050	0,000699744
6,5	0,044	1,012291161	0,000824909
7,5	0,0295	1,010470978	0,000950107
8,5	0,015	1,009101368	0,001075328
9,5	0,00875	1,008035362	0,001200568
10,5	0,0025	1,007183298	0,001325822
11,5	0,0015	1,006487454	0,001451087
12,5	0,0005	1,005909036	0,001576362

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0008776 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,016069 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[333] Дигидросульфид (Сероводород)

Результаты расчётов

1 cognibitation pacticit	0.5		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0005836	0,0061430, г/с	0,095000
выброс			
Валовый	0,010686	0,1124802,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,49 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,49 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/C	
7	0,49

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1{}^{cp}\cdot C_{\varphi}\cdot S^{0.93},\,(1\,\,[1])$

При и>3

Взам. Инв. №

Подп. и дата

M=0.9·10⁻⁵·u·a₁^{cp}·C_{ϕ}·S^{0.93}, (2 [1])

 ${a_1}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

		-	
Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,029219990	0,002709660
3,5	0,164	1,024586667	0,003147039
4,5	0,14	1,018554867	0,004022372
5,5	0,092	1,014820050	0,004898206
6,5	0,044	1,012291161	0,005774363
7,5	0,0295	1,010470978	0,006650747
8,5	0,015	1,009101368	0,007527297
9,5	0,00875	1,008035362	0,008403974

						_
						l
						1
						ı
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

10,5	0,0025	1,007183298	0,009280751
11,5	0,0015	1,006487454	0,010157610
12,5	0,0005	1,005909036	0,011034535

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0061430 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,112480 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[410] Метан

Результаты расчётов

т сзультаты расчет	<u> </u>		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0419231	0,4412959, г/с	0,095000
выброс			
Валовый	0,767620	8,0802090,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 35,2 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 35,2 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	35,2

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1 [1])$

При и>3

Взам.

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1{}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\left(3\;[1]\right)$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,029219990	0,194653118
3,5	0,164	1,024586667	0,226072972
4,5	0,14	1,018554867	0,288954086
5,5	0,092	1,014820050	0,351871123
6,5	0,044	1,012291161	0,414811416
7,5	0,0295	1,010470978	0,477767943
8,5	0,015	1,009101368	0,540736417
9,5	0,00875	1,008035362	0,603714033
10,5	0,0025	1,007183298	0,666698860
11,5	0,0015	1,006487454	0,729689512
12,5	0,0005	1,005909036	0,792684965

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,4412959 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 8,080209 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0,095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-T ^L	
	1

[416] Смесь предельных углеводородов С6Н14-С10Н22

Результаты расчётов

1 csysibiaibi pac ici	<u></u>		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0018699	0,0196828, г/с	0,095000
выброс			
Валовый	0,034238	0,3603957,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 1,57 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 1,57 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/C	
7	1,57

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1{}^{cp}\cdot C_{\varphi}\cdot S^{0.93},\,(1\,\,[1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ cp)	rts rs, to ())
3	0,502	1,029219990	0,008681971
3,5	0,164	1,024586667	0,010083368
4,5	0,14	1,018554867	0,012888009
5,5	0,092	1,014820050	0,015694252
6,5	0,044	1,012291161	0,018501532
7,5	0,0295	1,010470978	0,021309536
8,5	0,015	1,009101368	0,024118073
9,5	0,00875	1,008035362	0,026927018
10,5	0,0025	1,007183298	0,029736284
11,5	0,0015	1,006487454	0,032545811
12,5	0,0005	1,005909036	0,035355551

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0196828 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,360396 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1071] Гидроксибензол (Фенол)

Результаты расчётов

Взам.

1 cognibilation paction			
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000310	0,0003260, г/с	0,095000
выброс			
Валовый	0,000567	0,0059683,	0,095000

Изм.	Кол.уч	Лист	№док	Подп.	Дата

_	,	
выброс	т/гол	
выорос	1/1 ОД	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,026 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,026 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,026

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	- ' '
3	0,502	1,029219990	0,000143778
3,5	0,164	1,024586667	0,000166986
4,5	0,14	1,018554867	0,000213432
5,5	0,092	1,014820050	0,000259905
6,5	0,044	1,012291161	0,000306395
7,5	0,0295	1,010470978	0,000352897
8,5	0,015	1,009101368	0,000399408
9,5	0,00875	1,008035362	0,000445925
10,5	0,0025	1,007183298	0,000492448
11,5	0,0015	1,006487454	0,000538975
12,5	0,0005	1,005909036	0,000585506

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0003260 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,005968 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1325] Формальдегид

Результаты расчётов

Взам.

Подп. и дата

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000429	0,0004513, г/с	0,095000
выброс			
Валовый	0,000785	0,0082639,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,036 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,036 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%, м/с	мг/куб. м
7	0,036

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

						Г
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{cp})	
3	0,502	1,029219990	0,000199077
3,5	0,164	1,024586667	0,000231211
4,5	0,14	1,018554867	0,000295521
5,5	0,092	1,014820050	0,000359868
6,5	0,044	1,012291161	0,000424239
7,5	0,0295	1,010470978	0,000488626
8,5	0,015	1,009101368	0,000553026
9,5	0,00875	1,008035362	0,000617435
10,5	0,0025	1,007183298	0,000681851
11,5	0,0015	1,006487454	0,000746273
12,5	0,0005	1,005909036	0,000810701

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0004513 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,008264 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2-0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1728] Этантиол (Этилмеркаптан)

Результаты расчётов

гезультаты расчетов					
	Выброс	Выброс	Безразмерный		
	вещества	вещества, без	коэффициент,		
		учёта внешних	учитывающий		
		факторов	механические		
			укрытия (а3)		
Максимальный	0,0000021	0,0000226, г/с	0,095000		
выброс					
Валовый	0,000039	0,0004132,	0,095000		
выброс		т/год			

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0018 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0018 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	-
7	0,0018

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

Взам.

Подп. и дата

 $M \!\!=\!\! 2.7 \cdot \! 10^{\text{-}5} \cdot \! a_1{}^{cp} \cdot \! C_{\varphi} \cdot \! S^{0.93} \text{, (1 [1])}$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра Повторяемость градации Безразмерный Доля градации (М), г/с

Изм.	Кол.уч	Лист	№док	Подп.	Дата

(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,029219990	0,000009954
3,5	0,164	1,024586667	0,000011561
4,5	0,14	1,018554867	0,000014776
5,5	0,092	1,014820050	0,000017993
6,5	0,044	1,012291161	0,000021212
7,5	0,0295	1,010470978	0,000024431
8,5	0,015	1,009101368	0,000027651
9,5	0,00875	1,008035362	0,000030872
10,5	0,0025	1,007183298	0,000034093
11,5	0,0015	1,006487454	0,000037314
12,5	0,0005	1,005909036	0,000040535

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000226 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000413 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

Программа основана на следующих методических документах:

- 1. «Методические рекомендации по расчету выбросов загрязняющих веществ в атмосферный воздух от неорганизованных источников станций аэрации сточных вод», НИИ Атмосфера, Санкт-Петербург, 2015 год
- 2. Информационное письмо №5. Исх. 07-2-748/16-0 от 06.10.2016. НИИ Атмосфера
- 3. Методическое письмо. Исх. 1-1160/17-0-1 от 09.06.2017. НИИ Атмосфера

Расчет произведен программой «Станции аэрации», версия 1.3.10 от 14.09.2021 Copyright© 2012-2021 Фирма «Интеграл»

Название источника выбросов: №6019 Камера отбора ила

Результаты расчетов по источнику выбросов

1 coyabrarbi pac icroi	no hero maky bhopocob		
Код	Название вещества	Максимальный	Валовой
		выброс, г/с	выброс, т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000017	0,000031
0303	Аммиак	0,0000106	0,000192
0304	Азот (II) оксид (Азота оксид)	0,0000083	0,000150
0333	Дигидросульфид (Сероводород)	0,0000030	0,000054
0410	Метан	0,0001420	0,002567
0416	Смесь предельных углеводородов	0,0000552	0,000998
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0000029	0,000053
1325	Формальдегид	0,0000039	0,000071
1728	Этантиол (Этилмеркаптан)	0,0000001	0,000002

Источники выделений

Взам. Инв. №

Код	Название вещества	Максимальный	1 '' ''
		выброс, г/с	й выброс,
			т/год
Автономный	[1] Источни	c №1	
источник			
0301	Азота диоксид (Азот (IV) оксид)	0,0000017	0,000031
0303	Аммиак	0,0000106	0,000192
0304	Азот (II) оксид (Азота оксид)	0,0000083	0,000150
0333	Дигидросульфид (Сероводород)	0,0000030	0,000054
0410	Метан	0,0001420	0,002567
0416	Смесь предельных углеводородов	0,0000552	0,000998
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0000029	0,000053
1325	Формальдегид	0,0000039	0,000071
1728	Этантиол (Этилмеркаптан)	0,0000001	0,000002

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Результаты расчетов по источнику выделения

Код	Название вещества	Максимальный выброс,	Среднегодовой выброс,
		г/с	т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000017	0,000031
0303	Аммиак	0,0000106	0,000192
0304	Азот (II) оксид (Азота оксид)	0,0000083	0,000150
0333	Дигидросульфид (Сероводород)	0,0000030	0,000054
0410	Метан	0,0001420	0,002567
0416	Смесь предельных углеводородов С6Н14-	0,0000552	0,000998
	C10H22		
1071	Гидроксибензол (Фенол)	0,0000029	0,000053
1325	Формальдегид	0,0000039	0,000071
1728	Этантиол (Этилмеркаптан)	0,0000001	0,000002

Расчетные формулы

Расчет производился по осредненным концентрациям веществ

Максимальный выброс (M^{max}), г/с

При и<=3

$$M^{max}=2.7\cdot10^{-5}\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (1 [1])

При и>3

$$M^{max}=0.9\cdot10^{-5}\cdot u\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (2 [1])

- u скорость ветра, зафиксированная в период времени года, когда была измерена концентрация С_{тах}, м/с
- a_1^{ϕ} безразмерный коэффициент, учитывающий влияние превышения температуры водной поверхности над температурой воздуха на высоте 2 м вблизи сооружения

 C_{max} - осредненная концентрация ${\bf \widehat{3B}}$ над поверхностью испарения, мг/м³

S - полная площадь водной поверхности (включая укрытые участки)

Валовый выброс (G), т/год

 $G=31.5 \cdot SP_i \cdot M_i (13 [1])$

- $P_{\rm i}$ безразмерная повторяемость градации скорости ветра
- М₁ мощность выброса і-ого вещества для средней концентрации вблизи водной поверхности при скорости ветра, отнесенной к середине градации

Учет механических укрытий

$$M^{max}=M^{max}\cdot a_3$$
, (π . 5.6 [1])

G=G·а₃, (п. 5.6 [1])

аз - безразмерный коэффициент, учитывающий механические укрытия

Результаты замеров

Среднегодовая температура воды (t_{вод} ср.): 20 °C

Фактическая температура воды ($t_{вод}^{\phi}$): 0 °C

Температура воздуха на высоте 2 м над водной поверхностью ($t_{воз}^{\phi}$): 0 °C

Превышение температуры водной поверхности над температурой воздуха:

Фактическое (DT $^{\phi}$): DT $^{\phi}$ = $t_{вод}^{\phi}$ - $t_{воз}^{\phi}$ =0°C

Среднее (DT^{cp}): DT^{cp}= $t_{вод}^{cp}$ - $t_{воз}^{cp}$ =18,5°C

Полная площадь водной поверхности (включая укрытые участки) (S): 16 м²

Площадь укрытия сооружений (So): 16 м²

[301] Азота диоксид (Азот (IV) оксид)

Результаты пасцётов

Взам.

Результаты расчето	OB		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000017	0,0000183, г/с	0,095000
выброс			

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Валовый	0,000031	0,0003302,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,022 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,022 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,022

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (2 [1])

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,011650276	0,000007919
3,5	0,164	1,009802928	0,000009221
4,5	0,14	1,007397995	0,000011828
5,5	0,092	1,005908889	0,000014435
6,5	0,044	1,004900598	0,000017042
7,5	0,0295	1,004174874	0,000019650
8,5	0,015	1,003628798	0,000022258
9,5	0,00875	1,003203772	0,000024866
10,5	0,0025	1,002864046	0,000027474
11,5	0,0015	1,002586607	0,000030083
12,5	0,0005	1,002355987	0,000032691

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000183 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000330 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[303] Аммиак

Взам.

Подп. и дата

Результаты расчётов

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000106	0,0001121, г/с	0,095000
выброс			
Валовый	0,000192	0,0020262,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,135 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,135 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
м/с	
7	0,135

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,011650276	0,000048591
3,5	0,164	1,009802928	0,000056586
4,5	0,14	1,007397995	0,000072581
5,5	0,092	1,005908889	0,000088579
6,5	0,044	1,004900598	0,000104579
7,5	0,0295	1,004174874	0,000120581
8,5	0,015	1,003628798	0,000136584
9,5	0,00875	1,003203772	0,000152588
10,5	0,0025	1,002864046	0,000168593
11,5	0,0015	1,002586607	0,000184598
12,5	0,0005	1,002355987	0,000200604

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0001121 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,002026 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[304] Азот (II) оксид (Азота оксид)

Результаты расчётов

езультаты расчетов				
	Выброс	Выброс	Безразмерный	
	вещества	вещества, без	коэффициент,	
		учёта внешних	учитывающий	
		факторов	механические	
			укрытия (а3)	
Максимальный	0,0000083	0,0000872, г/с	0,095000	
выброс				
Валовый	0,000150	0,0015760,	0,095000	
выброс		т/год		

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,105 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{Φ}): 0,105 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,105

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

Взам.

Подп. и дата

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1[1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

						Г
						ı
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,011650276	0,000037793
3,5	0,164	1,009802928	0,000044012
4,5	0,14	1,007397995	0,000056452
5,5	0,092	1,005908889	0,000068895
6,5	0,044	1,004900598	0,000081339
7,5	0,0295	1,004174874	0,000093785
8,5	0,015	1,003628798	0,000106232
9,5	0,00875	1,003203772	0,000118680
10,5	0,0025	1,002864046	0,000131128
11,5	0,0015	1,002586607	0,000143576
12,5	0,0005	1,002355987	0,000156025

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000872 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,001576 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[333] Дигидросульфид (Сероводород)

Результаты расчётов

1 cognibitation pacticit	0.5		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000030	0,0000315, г/с	0,095000
выброс			
Валовый	0,000054	0,0005703,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,038 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,038 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м	
м/с		
7	0,038	

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1{}^{cp}\cdot C_{\varphi}\cdot S^{0.93},\,(1\,\,[1])$

При и>3

Взам. Инв. №

Подп. и дата

M=0.9·10⁻⁵·u·a₁^{cp}·C_{ϕ}·S^{0.93}, (2 [1])

 ${a_1}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

		-	-
Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,011650276	0,000013678
3,5	0,164	1,009802928	0,000015928
4,5	0,14	1,007397995	0,000020430
5,5	0,092	1,005908889	0,000024933
6,5	0,044	1,004900598	0,000029437
7,5	0,0295	1,004174874	0,000033941
8,5	0,015	1,003628798	0,000038446
9,5	0,00875	1,003203772	0,000042951

						_
						l
						1
						ı
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

10,5	0,0025	1,002864046	0,000047456
11,5	0,0015	1,002586607	0,000051961
12,5	0,0005	1,002355987	0,000056466

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000315 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000570 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[410] Метан

Результаты расчётов

r esymbiatible pacticit			
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0001420	0,0014943, г/с	0,095000
выброс			
Валовый	0,002567	0,0270164,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 1,8 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{φ}): 1,8 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
м/с	
7	1,8

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1 [1])$

При и>3

Взам.

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1{}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,011650276	0,000647885
3,5	0,164	1,009802928	0,000754486
4,5	0,14	1,007397995	0,000967743
5,5	0,092	1,005908889	0,001181049
6,5	0,044	1,004900598	0,001394386
7,5	0,0295	1,004174874	0,001607745
8,5	0,015	1,003628798	0,001821120
9,5	0,00875	1,003203772	0,002034508
10,5	0,0025	1,002864046	0,002247905
11,5	0,0015	1,002586607	0,002461310
12,5	0,0005	1,002355987	0,002674722

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0014943 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,027016 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

[416] Смесь предельных углеводородов С6Н14-С10Н22

Результаты расчётов

1 csymbrath pacter	<u></u>		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000552	0,0005811, г/с	0,095000
выброс			
Валовый	0,000998	0,0105064,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,7 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{φ}): 0,7 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/C	
7	0,7

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

M=2.7·10⁻⁵· a_1^{cp} · C_{ϕ} · $S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ cp)	rts rs, to ())
3	0,502	1,011650276	0,000251955
3,5	0,164	1,009802928	0,000293411
4,5	0,14	1,007397995	0,000376345
5,5	0,092	1,005908889	0,000459297
6,5	0,044	1,004900598	0,000542261
7,5	0,0295	1,004174874	0,000625234
8,5	0,015	1,003628798	0,000708213
9,5	0,00875	1,003203772	0,000791197
10,5	0,0025	1,002864046	0,000874185
11,5	0,0015	1,002586607	0,000957176
12,5	0,0005	1,002355987	0,001040170

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0005811 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,010506 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1071] Гидроксибензол (Фенол)

Результаты расчётов

Взам.

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000029	0,0000307, г/с	0,095000
выброс			
Валовый	0,000053	0,0005553,	0,095000

Изм.	Кол.уч	Лист	№док	Подп.	Дата

_	,
выброс	т/голі
IDDIOUC	1/10/11

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,037 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,037 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%, м/с	мг/куб. м
7	0,037

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ ^{cp})	
3	0,502	1,011650276	0,000013318
3,5	0,164	1,009802928	0,000015509
4,5	0,14	1,007397995	0,000019893
5,5	0,092	1,005908889	0,000024277
6,5	0,044	1,004900598	0,000028662
7,5	0,0295	1,004174874	0,000033048
8,5	0,015	1,003628798	0,000037434
9,5	0,00875	1,003203772	0,000041820
10,5	0,0025	1,002864046	0,000046207
11,5	0,0015	1,002586607	0,000050594
12,5	0,0005	1,002355987	0,000054980

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000307 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000555 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1325] Формальдегид

Результаты расчётов

Взам.

Подп. и дата

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000039	0,0000415, г/с	0,095000
выброс			
Валовый	0,000071	0,0007505,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,05 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,05 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%, м/с	мг/куб. м
7	0,05

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

- 1							
							Γ
							l
	Изм.	Кол.уч	Лист	№док	Подп.	Дата	

595

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,011650276	0,000017997
3,5	0,164	1,009802928	0,000020958
4,5	0,14	1,007397995	0,000026882
5,5	0,092	1,005908889	0,000032807
6,5	0,044	1,004900598	0,000038733
7,5	0,0295	1,004174874	0,000044660
8,5	0,015	1,003628798	0,000050587
9,5	0,00875	1,003203772	0,000056514
10,5	0,0025	1,002864046	0,000062442
11,5	0,0015	1,002586607	0,000068370
12,5	0,0005	1,002355987	0,000074298

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000415 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000750 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1728] Этантиол (Этилмеркаптан)

Результаты расчётов

Результаты расчет	OB		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000001	0,0000012, г/с	0,095000
выброс			
Валовый	0,000002	0,0000225,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0015 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0015 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,	
превышения которой составляет 5%,	мг/куб. м	
M/C	-	
7	0,0015	

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

Взам.

Подп. и дата

 $M{=}2.7{\cdot}10^{\text{-}5}{\cdot}a_1{^\text{cp}}{\cdot}C_\varphi{\cdot}S^{0.93}\text{, (1 [1])}$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра Повторяемость градации Безразмерный Доля градации (М), г/с

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,011650276	0,000000540
3,5	0,164	1,009802928	0,000000629
4,5	0,14	1,007397995	0,000000806
5,5	0,092	1,005908889	0,000000984
6,5	0,044	1,004900598	0,000001162
7,5	0,0295	1,004174874	0,000001340
8,5	0,015	1,003628798	0,000001518
9,5	0,00875	1,003203772	0,000001695
10,5	0,0025	1,002864046	0,000001873
11,5	0,0015	1,002586607	0,000002051
12,5	0,0005	1,002355987	0,000002229

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000012 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000023 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

Программа основана на следующих методических документах:

- 1. «Методические рекомендации по расчету выбросов загрязняющих веществ в атмосферный воздух от неорганизованных источников станций аэрации сточных вод», НИИ Атмосфера, Санкт-Петербург, 2015 год
- 2. Информационное письмо №5. Исх. 07-2-748/16-0 от 06.10.2016. НИИ Атмосфера
- 3. Методическое письмо. Исх. 1-1160/17-0-1 от 09.06.2017. НИИ Атмосфера

Расчет произведен программой «Станции аэрации», версия 1.3.10 от 14.09.2021 Copyright© 2012-2021 Фирма «Интеграл»

Название источника выбросов: №6020 Камера отбора ила

Результаты расчетов по источнику выбросов

Код	Название вещества	Максимальн	Валовой
		ый выброс,	выброс,
		г/с	т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000017	0,000031
0303	Аммиак	0,0000106	0,000192
0304	Азот (II) оксид (Азота оксид)	0,0000083	0,000150
0333	Дигидросульфид (Сероводород)	0,0000030	0,000054
0410	Метан	0,0001420	0,002567
0416	Смесь предельных углеводородов	0,0000552	0,000998
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0000029	0,000053
1325	Формальдегид	0,0000039	0,000071
1728	Этантиол (Этилмеркаптан)	0,0000001	0,000002

Источники	вылепений

Взам. Инв.

Код	Название вещества	Максимальный	Среднегодовой
		выброс, г/с	выброс, т/год
Автономный	[1] Источн	ик №1	
источник			
0301	Азота диоксид (Азот (IV) оксид)	0,0000017	0,000031
0303	Аммиак	0,0000106	0,000192
0304	Азот (II) оксид (Азота оксид)	0,0000083	0,000150
0333	Дигидросульфид (Сероводород)	0,0000030	0,000054
0410	Метан	0,0001420	0,002567
0416	Смесь предельных углеводородов C6H14-C10H22	0,0000552	0,000998
1071	Гидроксибензол (Фенол)	0,0000029	0,000053
1325	Формальдегид	0,0000039	0,000071
1728	Этантиол (Этилмеркаптан)	0,0000001	0,000002

						_
						ı
						ı
						ı
						1
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Результаты расчетов по источнику выделения

Код	Название вещества	Максимальный выброс,	Среднегодовой выброс,
		г/с	т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000017	0,000031
0303	Аммиак	0,0000106	0,000192
0304	Азот (II) оксид (Азота оксид)	0,0000083	0,000150
0333	Дигидросульфид (Сероводород)	0,0000030	0,000054
0410	Метан	0,0001420	0,002567
0416	Смесь предельных углеводородов С6Н14-	0,0000552	0,000998
	C10H22		
1071	Гидроксибензол (Фенол)	0,0000029	0,000053
1325	Формальдегид	0,0000039	0,000071
1728	Этантиол (Этилмеркаптан)	0,0000001	0,000002

Расчетные формулы

Расчет производился по осредненным концентрациям веществ

Максимальный выброс (M^{max}), г/с

При и<=3

$$M^{max}=2.7\cdot10^{-5}\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (1 [1])

При и>3

$$M^{max}=0.9\cdot10^{-5}\cdot u\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (2 [1])

- u скорость ветра, зафиксированная в период времени года, когда была измерена концентрация С_{тах}, м/с
- a_1^{ϕ} безразмерный коэффициент, учитывающий влияние превышения температуры водной поверхности над температурой воздуха на высоте 2 м вблизи сооружения

 C_{max} - осредненная концентрация ${\bf \widehat{3B}}$ над поверхностью испарения, мг/м³

S - полная площадь водной поверхности (включая укрытые участки)

Валовый выброс (G), т/год

 $G=31.5 \cdot SP_i \cdot M_i (13 [1])$

- $P_{\rm i}$ безразмерная повторяемость градации скорости ветра
- М₁ мощность выброса і-ого вещества для средней концентрации вблизи водной поверхности при скорости ветра, отнесенной к середине градации

Учет механических укрытий

$$M^{max}=M^{max}\cdot a_3$$
, (π . 5.6 [1])

G=G·а₃, (п. 5.6 [1])

аз - безразмерный коэффициент, учитывающий механические укрытия

Результаты замеров

Среднегодовая температура воды (t_{вод} ср.): 20 °C

Фактическая температура воды ($t_{вод}^{\phi}$): 0 °C

Температура воздуха на высоте 2 м над водной поверхностью ($t_{воз}^{\phi}$): 0 °C

Превышение температуры водной поверхности над температурой воздуха:

Фактическое (DT $^{\phi}$): DT $^{\phi}$ = $t_{вод}^{\phi}$ - $t_{воз}^{\phi}$ =0°C

Среднее (DT^{cp}): DT^{cp}= $t_{вод}^{cp}$ - $t_{воз}^{cp}$ =18,5°C

Полная площадь водной поверхности (включая укрытые участки) (S): 16 м²

Площадь укрытия сооружений (So): 16 м²

[301] Азота диоксид (Азот (IV) оксид)

Результаты пасцётов

Взам.

Результаты расчето	OB		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000017	0,0000183, г/с	0,095000
выброс			

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Валовый	0,000031	0,0003302,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,022 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,022 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,022

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (2 [1])

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,011650276	0,000007919
3,5	0,164	1,009802928	0,000009221
4,5	0,14	1,007397995	0,000011828
5,5	0,092	1,005908889	0,000014435
6,5	0,044	1,004900598	0,000017042
7,5	0,0295	1,004174874	0,000019650
8,5	0,015	1,003628798	0,000022258
9,5	0,00875	1,003203772	0,000024866
10,5	0,0025	1,002864046	0,000027474
11,5	0,0015	1,002586607	0,000030083
12,5	0,0005	1,002355987	0,000032691

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000183 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000330 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[303] Аммиак

Взам.

Подп. и дата

Результаты расчётов

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000106	0,0001121, г/с	0,095000
выброс			
Валовый	0,000192	0,0020262,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,135 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,135 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
м/с	
7	0,135

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,011650276	0,000048591
3,5	0,164	1,009802928	0,000056586
4,5	0,14	1,007397995	0,000072581
5,5	0,092	1,005908889	0,000088579
6,5	0,044	1,004900598	0,000104579
7,5	0,0295	1,004174874	0,000120581
8,5	0,015	1,003628798	0,000136584
9,5	0,00875	1,003203772	0,000152588
10,5	0,0025	1,002864046	0,000168593
11,5	0,0015	1,002586607	0,000184598
12,5	0,0005	1,002355987	0,000200604

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0001121 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,002026 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[304] Азот (II) оксид (Азота оксид)

Результаты расчётов

гезультаты расчет	ОВ		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000083	0,0000872, г/с	0,095000
выброс			
Валовый	0,000150	0,0015760,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,105 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{Φ}): 0,105 мг/м³

Скорость ветра, повторяемость	Концентрация вещества	
превышения которой составляет 5%,	мг/куб. м	
M/C		
7	0,105	

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

Взам.

Подп. и дата

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1[1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

						Г
						ı
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,011650276	0,000037793
3,5	0,164	1,009802928	0,000044012
4,5	0,14	1,007397995	0,000056452
5,5	0,092	1,005908889	0,000068895
6,5	0,044	1,004900598	0,000081339
7,5	0,0295	1,004174874	0,000093785
8,5	0,015	1,003628798	0,000106232
9,5	0,00875	1,003203772	0,000118680
10,5	0,0025	1,002864046	0,000131128
11,5	0,0015	1,002586607	0,000143576
12,5	0,0005	1,002355987	0,000156025

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000872 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,001576 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[333] Дигидросульфид (Сероводород)

Результаты расчётов

1 cognibitation pacticit	0.5		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000030	0,0000315, г/с	0,095000
выброс			
Валовый	0,000054	0,0005703,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,038 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,038 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м	
м/с		
7	0,038	

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1{}^{cp}\cdot C_{\varphi}\cdot S^{0.93},\,(1\,\,[1])$

При и>3

Взам. Инв. №

Подп. и дата

M=0.9·10⁻⁵·u·a₁^{cp}·C_{ϕ}·S^{0.93}, (2 [1])

 ${a_1}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

		-	-
Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,011650276	0,000013678
3,5	0,164	1,009802928	0,000015928
4,5	0,14	1,007397995	0,000020430
5,5	0,092	1,005908889	0,000024933
6,5	0,044	1,004900598	0,000029437
7,5	0,0295	1,004174874	0,000033941
8,5	0,015	1,003628798	0,000038446
9,5	0,00875	1,003203772	0,000042951

						_
						l
						1
						ı
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

10,5	0,0025	1,002864046	0,000047456
11,5	0,0015	1,002586607	0,000051961
12,5	0,0005	1,002355987	0,000056466

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000315 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000570 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[410] Метан

Результаты расчётов

r esymbiatible pacticit			
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0001420	0,0014943, г/с	0,095000
выброс			
Валовый	0,002567	0,0270164,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 1,8 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{φ}): 1,8 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м	
м/с		
7	1,8	

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1 [1])$

При и>3

Взам.

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (2 [1])

 $a_1{}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,011650276	0,000647885
3,5	0,164	1,009802928	0,000754486
4,5	0,14	1,007397995	0,000967743
5,5	0,092	1,005908889	0,001181049
6,5	0,044	1,004900598	0,001394386
7,5	0,0295	1,004174874	0,001607745
8,5	0,015	1,003628798	0,001821120
9,5	0,00875	1,003203772	0,002034508
10,5	0,0025	1,002864046	0,002247905
11,5	0,0015	1,002586607	0,002461310
12,5	0,0005	1,002355987	0,002674722

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0014943 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,027016 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

[416] Смесь предельных углеводородов С6Н14-С10Н22

Результаты расчётов

1 csymbrath pacter	<u></u>		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000552	0,0005811, г/с	0,095000
выброс			
Валовый	0,000998	0,0105064,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,7 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{φ}): 0,7 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/C	
7	0,7

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

M=2.7·10⁻⁵· a_1^{cp} · C_{ϕ} · $S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ cp)	rts rs, to ())
3	0,502	1,011650276	0,000251955
3,5	0,164	1,009802928	0,000293411
4,5	0,14	1,007397995	0,000376345
5,5	0,092	1,005908889	0,000459297
6,5	0,044	1,004900598	0,000542261
7,5	0,0295	1,004174874	0,000625234
8,5	0,015	1,003628798	0,000708213
9,5	0,00875	1,003203772	0,000791197
10,5	0,0025	1,002864046	0,000874185
11,5	0,0015	1,002586607	0,000957176
12,5	0,0005	1,002355987	0,001040170

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0005811 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,010506 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1071] Гидроксибензол (Фенол)

Результаты расчётов

Взам.

Подп. и дата

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000029	0,0000307, г/с	0,095000
выброс			
Валовый	0,000053	0,0005553,	0,095000

Изм.	Кол.уч	Лист	№док	Подп.	Дата

_	,
выброс	т/голі
IDDIOUC	1/10/11

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,037 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,037 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%, м/с	мг/куб. м
7	0,037

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ ^{cp})	
3	0,502	1,011650276	0,000013318
3,5	0,164	1,009802928	0,000015509
4,5	0,14	1,007397995	0,000019893
5,5	0,092	1,005908889	0,000024277
6,5	0,044	1,004900598	0,000028662
7,5	0,0295	1,004174874	0,000033048
8,5	0,015	1,003628798	0,000037434
9,5	0,00875	1,003203772	0,000041820
10,5	0,0025	1,002864046	0,000046207
11,5	0,0015	1,002586607	0,000050594
12,5	0,0005	1,002355987	0,000054980

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000307 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000555 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1325] Формальдегид

Результаты расчётов

Взам.

Подп. и дата

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000039	0,0000415, г/с	0,095000
выброс			
Валовый	0,000071	0,0007505,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,05 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,05 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%, м/с	мг/куб. м
7	0,05

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

- 1							
							Γ
							l
	Изм.	Кол.уч	Лист	№док	Подп.	Дата	

595

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{cp})	-
3	0,502	1,011650276	0,000017997
3,5	0,164	1,009802928	0,000020958
4,5	0,14	1,007397995	0,000026882
5,5	0,092	1,005908889	0,000032807
6,5	0,044	1,004900598	0,000038733
7,5	0,0295	1,004174874	0,000044660
8,5	0,015	1,003628798	0,000050587
9,5	0,00875	1,003203772	0,000056514
10,5	0,0025	1,002864046	0,000062442
11,5	0,0015	1,002586607	0,000068370
12,5	0,0005	1,002355987	0,000074298

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000415 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000750 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1728] Этантиол (Этилмеркаптан)

Результаты расчётов

гезультаты расчетов			
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000001	0,0000012, г/с	0,095000
выброс			
Валовый	0,000002	0,0000225,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0015 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0015 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,0015

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

Взам.

Подп. и дата

 $M \!\!=\!\! 2.7 \cdot \! 10^{\text{-}5} \cdot \! a_1{}^{cp} \cdot \! C_{\varphi} \cdot \! S^{0.93} \text{, (1 [1])}$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра Повторяемость градации Безразмерный Доля градации (М), г/с

Изм.	Кол.уч	Лист	№док	Подп.	Дата

(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,011650276	0,000000540
3,5	0,164	1,009802928	0,000000629
4,5	0,14	1,007397995	0,000000806
5,5	0,092	1,005908889	0,000000984
6,5	0,044	1,004900598	0,000001162
7,5	0,0295	1,004174874	0,000001340
8,5	0,015	1,003628798	0,000001518
9,5	0,00875	1,003203772	0,000001695
10,5	0,0025	1,002864046	0,000001873
11,5	0,0015	1,002586607	0,000002051
12,5	0,0005	1,002355987	0,000002229

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000012 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000023 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

Программа основана на следующих методических документах:

- 1. «Методические рекомендации по расчету выбросов загрязняющих веществ в атмосферный воздух от неорганизованных источников станций аэрации сточных вод», НИИ Атмосфера, Санкт-Петербург, 2015 год
- 2. Информационное письмо №5. Исх. 07-2-748/16-0 от 06.10.2016. НИИ Атмосфера
- 3. Методическое письмо. Исх. 1-1160/17-0-1 от 09.06.2017. НИИ Атмосфера

Расчет произведен программой «Станции аэрации», версия 1.3.10 от 14.09.2021 Copyright© 2012-2021 Фирма «Интеграл»

Название источника выбросов: №6021 Резервуар избыточного активного ила

Результаты расчетов по источнику выбросов

resymbiatible pacteror	no hero maky belopocob		
Код	Код Название вещества		Валовой
		выброс, г/с	выброс, т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000134	0,000244
0303	Аммиак	0,0000822	0,001498
0304	Азот (II) оксид (Азота оксид)	0,0000639	0,001165
0333	Дигидросульфид (Сероводород)	0,0000231	0,000422
0410	Метан	0,0010955	0,019973
0416	Смесь предельных углеводородов	0,0004260	0,007767
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0000225	0,000411
1325	Формальдегид	0,0000304	0,000555
1728	Этантиол (Этилмеркаптан)	0,0000009	0,000017

Источники выделений

Взам. Инв.

Подп. и дата

Код	Название вещества	Максимальный	Среднегодовой
		выброс, г/с	выброс, т/год
Автономный	[1] Источни	ік №1	
источник			
0301	Азота диоксид (Азот (IV) оксид)	0,0000134	0,000244
0303	Аммиак	0,0000822	0,001498
0304	Азот (II) оксид (Азота оксид)	0,0000639	0,001165
0333	Дигидросульфид (Сероводород)	0,0000231	0,000422
0410	Метан	0,0010955	0,019973
0416	Смесь предельных углеводородов	0,0004260	0,007767
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0000225	0,000411
1325	Формальдегид	0,0000304	0,000555
1728	Этантиол (Этилмеркаптан)	0,0000009	0,000017

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Результаты расчетов по источнику выделения

Код	Название вещества	Максимальный выброс,	Среднегодовой выброс,
		г/с	т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000134	0,000244
0303	Аммиак	0,0000822	0,001498
0304	Азот (II) оксид (Азота оксид)	0,0000639	0,001165
0333	Дигидросульфид (Сероводород)	0,0000231	0,000422
0410	Метан	0,0010955	0,019973
0416	Смесь предельных углеводородов С6Н14-	0,0004260	0,007767
	C10H22		
1071	Гидроксибензол (Фенол)	0,0000225	0,000411
1325	Формальдегид	0,0000304	0,000555
1728	Этантиол (Этилмеркаптан)	0,0000009	0,000017

Расчетные формулы

Расчет производился по осредненным концентрациям веществ

Максимальный выброс (M^{max}), г/с

При и<=3

$$M^{max}=2.7\cdot10^{-5}\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (1 [1])

При и>3

$$M^{max}=0.9\cdot10^{-5}\cdot u\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (2 [1])

- u скорость ветра, зафиксированная в период времени года, когда была измерена концентрация C_{max} , м/с
- a_1^{ϕ} безразмерный коэффициент, учитывающий влияние превышения температуры водной поверхности над температурой воздуха на высоте 2 м вблизи сооружения

 C_{max} - осредненная концентрация ${\bf \widehat{3B}}$ над поверхностью испарения, мг/м³

S - полная площадь водной поверхности (включая укрытые участки)

Валовый выброс (G), т/год

 $G=31.5 \cdot SP_i \cdot M_i (13 [1])$

- $P_{\rm i}$ безразмерная повторяемость градации скорости ветра
- M_i мощность выброса i-ого вещества для средней концентрации вблизи водной поверхности при скорости ветра, отнесенной к середине градации

Учет механических укрытий

$$M^{max}=M^{max}\cdot a_3$$
, (π . 5.6 [1])

G=G·a₃, (п. 5.6 [1])

аз - безразмерный коэффициент, учитывающий механические укрытия

Результаты замеров

Среднегодовая температура воды (t_{вод} ср): 20 °C

Фактическая температура воды ($t_{вод}^{\phi}$): 0 °C

Температура воздуха на высоте 2 м над водной поверхностью ($t_{воз}^{\phi}$): 0 °C

Превышение температуры водной поверхности над температурой воздуха:

Фактическое (DT $^{\phi}$): DT $^{\phi}$ = $t_{вод}^{\phi}$ - $t_{воз}^{\phi}$ =0°C

Среднее (DT^{cp}): DT^{cp}= t_{BO3}^{cp} - t_{BO3}^{cp} =18,5°C

Полная площадь водной поверхности (включая укрытые участки) (S): 144 м²

Площадь укрытия сооружений (So): 144 м²

[301] Азота диоксид (Азот (IV) оксид)

Результаты расчётов

Взам.

Подп. и дата

Результаты расчет	ОВ		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000134	0,0001409, г/с	0,095000
выброс			

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Валовый	0,000244	0,0025697,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,022 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,022 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/C	
7	0,022

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M \!\!=\!\! 0.9 \!\!\cdot\! 10^{\text{-5}} \!\!\cdot\! u \!\!\cdot\! a_1^{\, cp} \!\!\cdot\! C_\varphi \!\!\cdot\! S^{0.93} \!, \, (2 \, [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,023276765	0,000061810
3,5	0,164	1,019585840	0,000071851
4,5	0,14	1,014780884	0,000091945
5,5	0,092	1,011805713	0,000112047
6,5	0,044	1,009791190	0,000132156
7,5	0,0295	1,008341224	0,000152269
8,5	0,015	1,007250187	0,000172385
9,5	0,00875	1,006401002	0,000192503
10,5	0,0025	1,005722244	0,000212623
11,5	0,0015	1,005167933	0,000232744
12,5	0,0005	1,004707163	0,000252867

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0001409 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,002570 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[303] Аммиак

Взам.

Подп. и дата

Результаты расчётов

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000822	0,0008649, г/с	0,095000
выброс			
Валовый	0,001498	0,0157684,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,135 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,135 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м	
м/с		
7	0,135	

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,023276765	0,000379287
3,5	0,164	1,019585840	0,000440905
4,5	0,14	1,014780884	0,000564207
5,5	0,092	1,011805713	0,000687564
6,5	0,044	1,009791190	0,000810958
7,5	0,0295	1,008341224	0,000934377
8,5	0,015	1,007250187	0,001057815
9,5	0,00875	1,006401002	0,001181267
10,5	0,0025	1,005722244	0,001304730
11,5	0,0015	1,005167933	0,001428203
12,5	0,0005	1,004707163	0,001551683

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0008649 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,015768 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[304] Азот (II) оксид (Азота оксид)

Результаты расчётов

езультаты расчетов				
	Выброс	Выброс	Безразмерный	
	вещества	вещества, без	коэффициент,	
		учёта внешних	учитывающий	
		факторов	механические	
			укрытия (а3)	
Максимальный	0,0000639	0,0006727, г/с	0,095000	
выброс				
Валовый	0,001165	0,0122643,	0,095000	
выброс		т/год		

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,105 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{Φ}): 0,105 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	-
7	0,105

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

Взам.

Подп. и дата

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1[1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

						l
						ı
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,023276765	0,000295001
3,5	0,164	1,019585840	0,000342926
4,5	0,14	1,014780884	0,000438827
5,5	0,092	1,011805713	0,000534772
6,5	0,044	1,009791190	0,000630745
7,5	0,0295	1,008341224	0,000726738
8,5	0,015	1,007250187	0,000822745
9,5	0,00875	1,006401002	0,000918763
10,5	0,0025	1,005722244	0,001014790
11,5	0,0015	1,005167933	0,001110824
12,5	0,0005	1,004707163	0,001206864

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0006727 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,012264 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[333] Дигидросульфид (Сероводород)

Результаты расчётов

esymbiatisi pae ie ios					
	Выброс	Выброс	Безразмерный		
	вещества	вещества, без	коэффициент,		
		учёта внешних	учитывающий		
		факторов	механические		
			укрытия (а3)		
Максимальный	0,0000231	0,0002434, г/с	0,095000		
выброс					
Валовый	0,000422	0,0044385,	0,095000		
выброс		т/год			

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,038 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,038 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м	
M/C		
7	0,038	

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1{}^{cp}\cdot C_{\varphi}\cdot S^{0.93},\,(1\,\,[1])$

При и>3

Взам. Инв. №

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 ${a_1}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

		-	
Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,023276765	0,000106762
3,5	0,164	1,019585840	0,000124107
4,5	0,14	1,014780884	0,000158814
5,5	0,092	1,011805713	0,000193537
6,5	0,044	1,009791190	0,000228270
7,5	0,0295	1,008341224	0,000263010
8,5	0,015	1,007250187	0,000297755
9,5	0,00875	1,006401002	0,000332505

		L	_	_
Кол.уч	Лист	№док	Подп.	Дата
	Кол.уч	Кол.уч Лист	Кол.уч Лист №док	Кол.уч Лист №док Подп.

10,5	0,0025	1,005722244	0,000367257
11,5	0,0015	1,005167933	0,000402013
12,5	0,0005	1,004707163	0,000436770

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0002434 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,004439 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0,095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[410] Метан

Результаты расчётов

T esjublatbi pae iei			
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0010955	0,0115316, г/с	0,095000
выброс			
Валовый	0,019973	0,2102456,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 1,8 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{φ}): 1,8 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	1,8

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1 [1])$

При и>3

Взам.

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (2 [1])

 $a_1{}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,023276765	0,005057158
3,5	0,164	1,019585840	0,005878736
4,5	0,14	1,014780884	0,007522755
5,5	0,092	1,011805713	0,009167522
6,5	0,044	1,009791190	0,010812773
7,5	0,0295	1,008341224	0,012458361
8,5	0,015	1,007250187	0,014104199
9,5	0,00875	1,006401002	0,015750226
10,5	0,0025	1,005722244	0,017396404
11,5	0,0015	1,005167933	0,019042703
12,5	0,0005	1,004707163	0,020689102

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0115316 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,210246 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

						Г
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

[416] Смесь предельных углеводородов С6Н14-С10Н22

Результаты расчётов

r esymbiatible pacticit	<u>-</u>		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0004260	0,0044845, г/с	0,095000
выброс			
Валовый	0,007767	0,0817622,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,7 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{φ}): 0,7 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/C	
7	0,7

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

M=2.7·10⁻⁵· a_1^{cp} · C_{ϕ} · $S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ cp)	1
3	0,502	1,023276765	0,001966672
3,5	0,164	1,019585840	0,002286175
4,5	0,14	1,014780884	0,002925516
5,5	0,092	1,011805713	0,003565147
6,5	0,044	1,009791190	0,004204967
7,5	0,0295	1,008341224	0,004844918
8,5	0,015	1,007250187	0,005484966
9,5	0,00875	1,006401002	0,006125088
10,5	0,0025	1,005722244	0,006765268
11,5	0,0015	1,005167933	0,007405496
12,5	0,0005	1,004707163	0,008045762

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0044845 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,081762 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1071] Гидроксибензол (Фенол)

Результаты расчётов

Взам.

Подп. и дата

1 cognibilation pactici			
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000225	0,0002370, г/с	0,095000
выброс			
Валовый	0,000411	0,0043217,	0,095000

Изм.	Кол.уч	Лист	№док	Подп.	Дата

_	,
выброс	т/голі
IDDIOUC	1/10/11

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,037 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,037 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%, м/с	мг/куб. м
7	0,037

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,023276765	0,000103953
3,5	0,164	1,019585840	0,000120841
4,5	0,14	1,014780884	0,000154634
5,5	0,092	1,011805713	0,000188444
6,5	0,044	1,009791190	0,000222263
7,5	0,0295	1,008341224	0,000256089
8,5	0,015	1,007250187	0,000289920
9,5	0,00875	1,006401002	0,000323755
10,5	0,0025	1,005722244	0,000357593
11,5	0,0015	1,005167933	0,000391433
12,5	0,0005	1,004707163	0,000425276

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0002370 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,004322 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1325] Формальдегид

Результаты расчётов

Взам.

Подп. и дата

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000304	0,0003203, г/с	0,095000
выброс			
Валовый	0,000555	0,0058402,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,05 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,05 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,05

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,023276765	0,000140477
3,5	0,164	1,019585840	0,000163298
4,5	0,14	1,014780884	0,000208965
5,5	0,092	1,011805713	0,000254653
6,5	0,044	1,009791190	0,000300355
7,5	0,0295	1,008341224	0,000346066
8,5	0,015	1,007250187	0,000391783
9,5	0,00875	1,006401002	0,000437506
10,5	0,0025	1,005722244	0,000483233
11,5	0,0015	1,005167933	0,000528964
12,5	0,0005	1,004707163	0,000574697

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0003203~r/c

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,005840 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1728] Этантиол (Этилмеркаптан)

Результаты расчётов

гезультаты расчетов					
	Выброс	Выброс	Безразмерный		
	вещества	вещества, без	коэффициент,		
		учёта внешних	учитывающий		
		факторов	механические		
			укрытия (а3)		
Максимальный	0,0000009	0,0000096, г/с	0,095000		
выброс					
Валовый	0,000017	0,0001752,	0,095000		
выброс		т/год			

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0015 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0015 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	-
7	0,0015

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

Взам.

Подп. и дата

M=2.7·10⁻⁵· a_1^{cp} · C_{ϕ} · $S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра Повторяемость градации Безразмерный Доля градации (М), г/с

<u> </u>	_				
Изм.	Кол.уч	Лист	№док	Подп.	Дата

(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,023276765	0,000004214
3,5	0,164	1,019585840	0,000004899
4,5	0,14	1,014780884	0,000006269
5,5	0,092	1,011805713	0,000007640
6,5	0,044	1,009791190	0,000009011
7,5	0,0295	1,008341224	0,000010382
8,5	0,015	1,007250187	0,000011753
9,5	0,00875	1,006401002	0,000013125
10,5	0,0025	1,005722244	0,000014497
11,5	0,0015	1,005167933	0,000015869
12,5	0,0005	1,004707163	0,000017241

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000096 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000175 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

Программа основана на следующих методических документах:

- 1. «Методические рекомендации по расчету выбросов загрязняющих веществ в атмосферный воздух от неорганизованных источников станций аэрации сточных вод», НИИ Атмосфера, Санкт-Петербург, 2015 год
- 2. Информационное письмо №5. Исх. 07-2-748/16-0 от 06.10.2016. НИИ Атмосфера
- 3. Методическое письмо. Исх. 1-1160/17-0-1 от 09.06.2017. НИИ Атмосфера

Расчет произведен программой «Станции аэрации», версия 1.3.10 от 14.09.2021 Copyright© 2012-2021 Фирма «Интеграл»

Название источника выбросов: №6022 Резервуар избыточного активного ила

Результаты расчетов по источнику выбросов

Код	Название вещества	Максимальный	Валовой
		выброс, г/с	выброс, т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000134	0,000244
0303	Аммиак	0,0000822	0,001498
0304	Азот (II) оксид (Азота оксид)	0,0000639	0,001165
0333	Дигидросульфид (Сероводород)	0,0000231	0,000422
0410	Метан	0,0010955	0,019973
0416	Смесь предельных углеводородов	0,0004260	0,007767
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0000225	0,000411
1325	Формальдегид	0,0000304	0,000555
1728	Этантиол (Этилмеркаптан)	0,0000009	0,000017

Источники выделений

Взам. Инв.

Подп. и дата

Код	Название вещества	Максимальный	Среднегодовой
		выброс, г/с	выброс, т/год
Автономный	[1] Источн	ик №1	
источник			
0301	Азота диоксид (Азот (IV) оксид)	0,0000134	0,000244
0303	Аммиак	0,0000822	0,001498
0304	Азот (II) оксид (Азота оксид)	0,0000639	0,001165
0333	Дигидросульфид (Сероводород)	0,0000231	0,000422
0410	Метан	0,0010955	0,019973
0416	Смесь предельных углеводородов	0,0004260	0,007767
	C6H14-C10H22		
1071	Гидроксибензол (Фенол)	0,0000225	0,000411
1325	Формальдегид	0,0000304	0,000555
1728	Этантиол (Этилмеркаптан)	0,0000009	0,000017

							Г
							ı
ı							ı
ı							ı
	Изм.	Кол.уч	Лист	№док	Подп.	Дата	l

Результаты расчетов по источнику выделения

Код	Название вещества	Максимальный выброс,	Среднегодовой выброс,
		г/с	т/год
0301	Азота диоксид (Азот (IV) оксид)	0,0000134	0,000244
0303	Аммиак	0,0000822	0,001498
0304	Азот (II) оксид (Азота оксид)	0,0000639	0,001165
0333	Дигидросульфид (Сероводород)	0,0000231	0,000422
0410	Метан	0,0010955	0,019973
0416	Смесь предельных углеводородов С6Н14-	0,0004260	0,007767
	C10H22		
1071	Гидроксибензол (Фенол)	0,0000225	0,000411
1325	Формальдегид	0,0000304	0,000555
1728	Этантиол (Этилмеркаптан)	0,0000009	0,000017

Расчетные формулы

Расчет производился по осредненным концентрациям веществ

Максимальный выброс (M^{max}), г/с

При и<=3

$$M^{max}=2.7\cdot10^{-5}\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (1 [1])

При и>3

$$M^{max}=0.9\cdot10^{-5}\cdot u\cdot a_1^{\phi}\cdot C_{max}\cdot S^{0.93}$$
 (2 [1])

- u скорость ветра, зафиксированная в период времени года, когда была измерена концентрация C_{max} , м/с
- a_1^{ϕ} безразмерный коэффициент, учитывающий влияние превышения температуры водной поверхности над температурой воздуха на высоте 2 м вблизи сооружения

 C_{max} - осредненная концентрация ${\bf \widehat{3B}}$ над поверхностью испарения, мг/м³

S - полная площадь водной поверхности (включая укрытые участки)

Валовый выброс (G), т/год

 $G=31.5 \cdot SP_i \cdot M_i (13 [1])$

- $P_{\rm i}$ безразмерная повторяемость градации скорости ветра
- M_i мощность выброса i-ого вещества для средней концентрации вблизи водной поверхности при скорости ветра, отнесенной к середине градации

Учет механических укрытий

$$M^{max}=M^{max}\cdot a_3$$
, (π . 5.6 [1])

G=G·a₃, (п. 5.6 [1])

аз - безразмерный коэффициент, учитывающий механические укрытия

Результаты замеров

Среднегодовая температура воды (t_{вод} ср): 20 °C

Фактическая температура воды ($t_{вод}^{\phi}$): 0 °C

Температура воздуха на высоте 2 м над водной поверхностью ($t_{воз}^{\phi}$): 0 °C

Превышение температуры водной поверхности над температурой воздуха:

Фактическое (DT $^{\phi}$): DT $^{\phi}$ = $t_{вод}^{\phi}$ - $t_{воз}^{\phi}$ =0°C

Среднее (DT^{cp}): DT^{cp}= t_{BO3}^{cp} - t_{BO3}^{cp} =18,5°C

Полная площадь водной поверхности (включая укрытые участки) (S): 144 м²

Площадь укрытия сооружений (So): 144 м²

[301] Азота диоксид (Азот (IV) оксид)

Результаты расчётов

Взам.

Подп. и дата

Результаты расчет	ОВ		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000134	0,0001409, г/с	0,095000
выброс			

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Валовый	0,000244	0,0025697,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,022 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,022 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/C	_
7	0,022

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M \!\!=\!\! 0.9 \!\!\cdot\! 10^{\text{-5}} \!\!\cdot\! u \!\!\cdot\! a_1^{\, cp} \!\!\cdot\! C_\varphi \!\!\cdot\! S^{0.93} \!, \, (2 \, [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,023276765	0,000061810
3,5	0,164	1,019585840	0,000071851
4,5	0,14	1,014780884	0,000091945
5,5	0,092	1,011805713	0,000112047
6,5	0,044	1,009791190	0,000132156
7,5	0,0295	1,008341224	0,000152269
8,5	0,015	1,007250187	0,000172385
9,5	0,00875	1,006401002	0,000192503
10,5	0,0025	1,005722244	0,000212623
11,5	0,0015	1,005167933	0,000232744
12,5	0,0005	1,004707163	0,000252867

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0001409 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,002570 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[303] Аммиак

Взам.

Подп. и дата

Результаты расчётов

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000822	0,0008649, г/с	0,095000
выброс			
Валовый	0,001498	0,0157684,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,135 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,135 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
m/c	MIT/RYO. M
7	0.135

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,023276765	0,000379287
3,5	0,164	1,019585840	0,000440905
4,5	0,14	1,014780884	0,000564207
5,5	0,092	1,011805713	0,000687564
6,5	0,044	1,009791190	0,000810958
7,5	0,0295	1,008341224	0,000934377
8,5	0,015	1,007250187	0,001057815
9,5	0,00875	1,006401002	0,001181267
10,5	0,0025	1,005722244	0,001304730
11,5	0,0015	1,005167933	0,001428203
12,5	0,0005	1,004707163	0,001551683

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0008649 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,015768 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[304] Азот (II) оксид (Азота оксид)

Результаты расчётов

гезультаты расчет	езультаты расчетов				
	Выброс	Выброс	Безразмерный		
	вещества	вещества, без	коэффициент,		
		учёта внешних	учитывающий		
		факторов	механические		
			укрытия (а3)		
Максимальный	0,0000639	0,0006727, г/с	0,095000		
выброс					
Валовый	0,001165	0,0122643,	0,095000		
выброс		т/год			

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,105 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{Φ}): 0,105 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	-
7	0,105

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

Взам.

Подп. и дата

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1[1])$

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

						l
						ı
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a_1^{cp})	
3	0,502	1,023276765	0,000295001
3,5	0,164	1,019585840	0,000342926
4,5	0,14	1,014780884	0,000438827
5,5	0,092	1,011805713	0,000534772
6,5	0,044	1,009791190	0,000630745
7,5	0,0295	1,008341224	0,000726738
8,5	0,015	1,007250187	0,000822745
9,5	0,00875	1,006401002	0,000918763
10,5	0,0025	1,005722244	0,001014790
11,5	0,0015	1,005167933	0,001110824
12,5	0,0005	1,004707163	0,001206864

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0006727 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,012264 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[333] Дигидросульфид (Сероводород)

Результаты расчётов

i coynbraibi pac ici	OB		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000231	0,0002434, г/с	0,095000
выброс			
Валовый	0,000422	0,0044385,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,038 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,038 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м	
M/C		
7	0,038	

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1{}^{cp}\cdot C_{\varphi}\cdot S^{0.93},\,(1\,\,[1])$

При и>3

Взам. Инв. №

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$

 ${a_1}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

		-	
Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,023276765	0,000106762
3,5	0,164	1,019585840	0,000124107
4,5	0,14	1,014780884	0,000158814
5,5	0,092	1,011805713	0,000193537
6,5	0,044	1,009791190	0,000228270
7,5	0,0295	1,008341224	0,000263010
8,5	0,015	1,007250187	0,000297755
9,5	0,00875	1,006401002	0,000332505

		L	_	_
Кол.уч	Лист	№док	Подп.	Дата
	Кол.уч	Кол.уч Лист	Кол.уч Лист №док	Кол.уч Лист №док Подп.

10,5	0,0025	1,005722244	0,000367257
11,5	0,0015	1,005167933	0,000402013
12,5	0,0005	1,004707163	0,000436770

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0002434 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,004439 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0,095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[410] Метан

Результаты расчётов

T esjublatbi pae iei			
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0010955	0,0115316, г/с	0,095000
выброс			
Валовый	0,019973	0,2102456,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 1,8 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{φ}): 1,8 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	1,8

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (а), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (М)

При u<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (1 [1])$

При и>3

Взам.

Подп. и дата

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (2 [1])

 $a_1{}^{cp}\!\!=\!\!1\!+\!0.0009\!\cdot\!u^{\text{--}1.12}\!\cdot\!S^{0.315}\!\!*\!DT^{cp}\;(3\;[1])$

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,023276765	0,005057158
3,5	0,164	1,019585840	0,005878736
4,5	0,14	1,014780884	0,007522755
5,5	0,092	1,011805713	0,009167522
6,5	0,044	1,009791190	0,010812773
7,5	0,0295	1,008341224	0,012458361
8,5	0,015	1,007250187	0,014104199
9,5	0,00875	1,006401002	0,015750226
10,5	0,0025	1,005722244	0,017396404
11,5	0,0015	1,005167933	0,019042703
12,5	0,0005	1,004707163	0,020689102

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0115316 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,210246 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

						Г
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

[416] Смесь предельных углеводородов С6Н14-С10Н22

Результаты расчётов

r esymbiatible pacticit	<u>-</u>		
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0004260	0,0044845, г/с	0,095000
выброс			
Валовый	0,007767	0,0817622,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,7 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{φ}): 0,7 мг/м³

Скорость ветра, повторяемость превышения которой составляет 5%,	Концентрация вещества, мг/куб. м
M/C	
7	0,7

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi} = 1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При u<=3

M=2.7·10⁻⁵· a_1^{cp} · C_{ϕ} · $S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2 [1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), M/C	(Р), доли единиц	коэффициент (a ₁ cp)	1
3	0,502	1,023276765	0,001966672
3,5	0,164	1,019585840	0,002286175
4,5	0,14	1,014780884	0,002925516
5,5	0,092	1,011805713	0,003565147
6,5	0,044	1,009791190	0,004204967
7,5	0,0295	1,008341224	0,004844918
8,5	0,015	1,007250187	0,005484966
9,5	0,00875	1,006401002	0,006125088
10,5	0,0025	1,005722244	0,006765268
11,5	0,0015	1,005167933	0,007405496
12,5	0,0005	1,004707163	0,008045762

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0044845 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,081762 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1071] Гидроксибензол (Фенол)

Результаты расчётов

Взам.

Подп. и дата

1 cognibilation pactici			
	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000225	0,0002370, г/с	0,095000
выброс			
Валовый	0,000411	0,0043217,	0,095000

Изм.	Кол.уч	Лист	№док	Подп.	Дата

_	,
выброс	т/голі
IDDIOUC	1/10/11

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,037 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,037 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%, м/с	мг/куб. м
7	0,037

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\varphi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ cp)	
3	0,502	1,023276765	0,000103953
3,5	0,164	1,019585840	0,000120841
4,5	0,14	1,014780884	0,000154634
5,5	0,092	1,011805713	0,000188444
6,5	0,044	1,009791190	0,000222263
7,5	0,0295	1,008341224	0,000256089
8,5	0,015	1,007250187	0,000289920
9,5	0,00875	1,006401002	0,000323755
10,5	0,0025	1,005722244	0,000357593
11,5	0,0015	1,005167933	0,000391433
12,5	0,0005	1,004707163	0,000425276

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0002370 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,004322 т/год

Учет механических укрытий

 $a_3=(1-0.705\cdot n^2-0.2\cdot n)=0.095000(9[1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1325] Формальдегид

Результаты расчётов

Взам.

Подп. и дата

	Выброс	Выброс	Безразмерный
	вещества	вещества, без	коэффициент,
		учёта внешних	учитывающий
		факторов	механические
			укрытия (а3)
Максимальный	0,0000304	0,0003203, г/с	0,095000
выброс			
Валовый	0,000555	0,0058402,	0,095000
выброс		т/год	

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,05 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,05 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	
7	0,05

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

 $M=2.7\cdot10^{-5}\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp}$ (3 [1])

Градации скорости ветра	Повторяемость градации	Безразмерный	Доля градации (М), г/с
(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{cp})	
3	0,502	1,023276765	0,000140477
3,5	0,164	1,019585840	0,000163298
4,5	0,14	1,014780884	0,000208965
5,5	0,092	1,011805713	0,000254653
6,5	0,044	1,009791190	0,000300355
7,5	0,0295	1,008341224	0,000346066
8,5	0,015	1,007250187	0,000391783
9,5	0,00875	1,006401002	0,000437506
10,5	0,0025	1,005722244	0,000483233
11,5	0,0015	1,005167933	0,000528964
12,5	0,0005	1,004707163	0,000574697

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0003203~r/c

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,005840 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

[1728] Этантиол (Этилмеркаптан)

Результаты расчётов

гезультаты расчетов				
	Выброс	Выброс	Безразмерный	
	вещества	вещества, без	коэффициент,	
		учёта внешних	учитывающий	
		факторов	механические	
			укрытия (а3)	
Максимальный	0,0000009	0,0000096, г/с	0,095000	
выброс				
Валовый	0,000017	0,0001752,	0,095000	
выброс		т/год		

Максимальная концентрация вещества, измеренная вблизи водной поверхности (C_{max}): 0,0015 мг/м³ при скорости ветра 7 м/с Средняя концентрация вещества в воздухе (C_{ϕ}): 0,0015 мг/м³

Скорость ветра, повторяемость	Концентрация вещества,
превышения которой составляет 5%,	мг/куб. м
M/C	-
7	0,0015

Разница температур водной поверхности и над сооружением меньше 5 градусов. $a_1^{\phi}=1$

Для расчета валового выброса определяем безразмерный коэффициент (a), который рассчитывается для каждой градации скорости ветра. Для каждой градации вычисляем ее долю (M)

При и<=3

Взам.

Подп. и дата

M=2.7·10⁻⁵· a_1^{cp} · C_{ϕ} · $S^{0.93}$, (1 [1])

При и>3

 $M=0.9\cdot10^{-5}\cdot u\cdot a_1^{cp}\cdot C_{\phi}\cdot S^{0.93}, (2[1])$

 $a_1^{cp}=1+0.0009 \cdot u^{-1.12} \cdot S^{0.315}*DT^{cp} (3 [1])$

Градации скорости ветра Повторяемость градации Безразмерный Доля градации (М), г/с

<u> </u>	_				
Изм.	Кол.уч	Лист	№док	Подп.	Дата

(u), м/c	(Р), доли единиц	коэффициент (a ₁ ^{ср})	
3	0,502	1,023276765	0,000004214
3,5	0,164	1,019585840	0,000004899
4,5	0,14	1,014780884	0,000006269
5,5	0,092	1,011805713	0,000007640
6,5	0,044	1,009791190	0,000009011
7,5	0,0295	1,008341224	0,000010382
8,5	0,015	1,007250187	0,000011753
9,5	0,00875	1,006401002	0,000013125
10,5	0,0025	1,005722244	0,000014497
11,5	0,0015	1,005167933	0,000015869
12,5	0,0005	1,004707163	0,000017241

Максимальный выброс без учета укрытий и аэрации воздухом (M^{max}): 0,0000096 г/с

Валовый выброс без учета укрытий и аэрации воздухом (G): 0,000175 т/год

Учет механических укрытий

 $a_3 = (1-0.705 \cdot n^2 - 0.2 \cdot n) = 0.095000 (9 [1])$

Степень укрытости сооружений n=So/S=1,0000 (7 [1])

Программа основана на следующих методических документах:

- 1. «Методические рекомендации по расчету выбросов загрязняющих веществ в атмосферный воздух от неорганизованных источников станций аэрации сточных вод», НИИ Атмосфера, Санкт-Петербург, 2015 год
- 2. Информационное письмо №5. Исх. 07-2-748/16-0 от 06.10.2016. НИИ Атмосфера
- 3. Методическое письмо. Исх. 1-1160/17-0-1 от 09.06.2017. НИИ Атмосфера

ŀ							04/2022-151-00000-OBOC-TU	Лист
ŀ	Изм.	Кол.уч	Лист	№док	Подп.	Дата	04/2022 101 00000-0500-1 1	595
		Изм.	Изм. Кол.уч	_ `	Изм. Кол.уч Лист №док	_ '		

ИЗА №5501. Труба ПДЭС

В процессе эксплуатации стационарных дизельных установок в атмосферу с отработавшими газами выделяются вредные (загрязняющие) вещества.

В качестве исходных данных для расчета максимальных разовых выбросов используются сведения из технической документации дизельной установки об эксплуатационной мощности (если сведения об эксплуатационной мощности не приводятся, - то номинальной мощности), а для расчета валовых выбросов в атмосферу, - результаты учетных сведений о годовом расходе топлива дизельного двигателя.

Расчет выделений загрязняющих веществ выполнен в соответствии с «Методикой расчета выделений загрязняющих веществ в атмосферу от стационарных дизельных установок. СПб, 2001».

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год	
код	наименование	выброс, г/с	т одовой выорос, 1/1 од	
301	Азота диоксид (Азот (IV) оксид)	0,0853333	0,01792	
304	Азот (II) оксид (Азота оксид)	0,0138667	0,002912	
328	Углерод (Сажа)	0,0039722	0,0007994	
330	Сера диоксид (Ангидрид сернистый)	0,0333333	0,007	
337	Углерод оксид	0,0861111	0,0182	
703	Бенз/а/пирен (3,4-Бензпирен)	0,0000001	2,24e ⁻⁸	
1325	Формальдегид	0,0009444	0,0002002	
2732	Керосин	0,0230278	0,0048006	

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Данные	Мощн ость, кВт	Расход топлив а, т/год	Удельн ый расход, г/кВт·ч	Одн овре мен ност ь
ПДЭС-100. Группа Б. Изготовитель ЕС, США, Япония. Средней мощности, средней быстроходности и быстроходные (Ne = 73,6-736 кВт; n = 500-1500 об/мин). До ремонта.	100	1,4	250	+

Максимальный выброс i-го вещества стационарной дизельной установкой определяется по формуле (1.1.1):

$$\mathbf{M}_{i} = (1/3600) \cdot \mathbf{e}_{Mi} \cdot \mathbf{P}_{3}, z/c \tag{1.1.1}$$

где e_{Mi} - выброс i-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, $\varepsilon/\kappa Bm \cdot u$;

 P_{2} - эксплуатационная мощность стационарной дизельной установки, κBm ;

Изм.	Кол.уч	Лист	№док	Подп.	Дата

NHB. №

Взам.

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

(1 / 3600) – коэффициент пересчета из часов в секунды.

Валовый выброс i-го вещества за год стационарной дизельной установкой определяется по формуле (1.1.2):

$$\mathbf{W}_{\exists i} = (1 / 1000) \cdot \mathbf{q}_{\exists i} \cdot \mathbf{G}_{T}, m/200$$

$$(1.1.2)$$

где $q_{\ni i}$ - выброс i-го вредного вещества, приходящегося на 1 кг топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, $\varepsilon/\kappa\varepsilon$; G_T - расход топлива стационарной дизельной установкой за год, m; (1/1000) – коэффициент пересчета килограмм в тонны.

Расход отработавших газов от стационарной дизельной установки определяется по формуле (1.1.3):

$$\mathbf{G}_{OF} = 8,72 \cdot 10^{-6} \cdot \mathbf{b}_{3} \cdot \mathbf{P}_{3}, \kappa z/c \tag{1.1.3}$$

где b_{3} - удельный расход топлива на эксплуатационном (или номинальном) режиме работы двигателя, $2/\kappa Bm \cdot y$.

Объемный расход отработавших газов определяется по формуле (1.1.4):

$$\mathbf{Q}_{O\Gamma} = \mathbf{G}_{O\Gamma} / \gamma_{O\Gamma}, \, \mathbf{M}^3 / c \tag{1.1.4}$$

где $\gamma_{O\Gamma}$ - удельный вес отработавших газов, рассчитываемый по формуле (1.1.5):

$$\gamma_{O\Gamma} = \gamma_{O\Gamma(npu\ t=0^{\circ}C)} / (1 + T_{O\Gamma} / 273), \kappa z/M^{3}$$

$$\tag{1.1.5}$$

где $\gamma_{O\Gamma(npu\;t=0^{\circ}C)}$ - удельный вес отработавших газов при температуре 0°C, $\gamma_{O\Gamma(npu\;t=0^{\circ}C)}=1,31~\kappa z/m^3;$ $T_{O\Gamma}$ - температура отработавших газов, K.

При организованном выбросе отработавших газов в атмосферу, на удалении от стационарной дизельной установки (высоте) до 5 м, значение их температуры можно принимать равным $450\,^{\circ}$ C, на удалении от 5 до $10\,^{\circ}$ M - $400\,^{\circ}$ C.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

ПДЭС-100

ZHB.

Взам.

Подп. и дата

Инв. № подл.

Азота диоксид (Азот (IV) оксид) $M = (1/3600) \cdot 3,072 \cdot 100 = 0,0853333 \ z/c;$

 $W_3 = (1/1000) \cdot 12.8 \cdot 1.4 = 0.01792 \text{ m/zod.}$

Азот (II) оксид (Азота оксид)

 $M = (1/3600) \cdot 0,4992 \cdot 100 = 0,0138667 \ \epsilon/c;$

 $W_2 = (1/1000) \cdot 2.08 \cdot 1.4 = 0.002912 \text{ m/sod}.$

Углерод (Сажа)

 $M = (1/3600) \cdot 0.143 \cdot 100 = 0.0039722 \, \epsilon/c;$

 $W_2 = (1/1000) \cdot 0.571 \cdot 1.4 = 0.0007994 \, m/200.$

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

```
№ подл. Подп. и дата Взам. Инв. №
```

```
Сера диоксид (Ангидрид сернистый) \mathbf{M} = (1/3600) \cdot 1, 2 \cdot 100 = 0,03333333 \ \text{г/c}; \mathbf{W}_3 = (1/1000) \cdot 5 \cdot 1, 4 = 0,007 \ \text{m/год}. \mathbf{V}глерод оксид \mathbf{M} = (1/3600) \cdot 3, 1 \cdot 100 = 0,0861111 \ \text{г/c}; \mathbf{W}_3 = (1/1000) \cdot 13 \cdot 1, 4 = 0,0182 \ \text{m/год}.
```

Бенз/а/пирен (3,4-Бензпирен)
$$\mathbf{M} = (1/3600) \cdot 0,0000034 \cdot 100 = 0,0000001 \ z/c;$$

$$\mathbf{W}_{3} = (1/1000) \cdot 0,000016 \cdot 1,4 = 2,24 \cdot 10^{-8} \ m/zoð.$$

Формальдегид

$$M = (1/3600) \cdot 0.034 \cdot 100 = 0.0009444 \, z/c;$$

 $W_3 = (1/1000) \cdot 0.143 \cdot 1.4 = 0.0002002 \, m/zoo.$

Керосин

$$M = (1/3600) \cdot 0.829 \cdot 100 = 0.0230278 \ e/c;$$

 $W_3 = (1/1000) \cdot 3.429 \cdot 1.4 = 0.0048006 \ m/eod.$

Расчет объемного расхода отработавших газов приведен ниже.

$$G_{O\Gamma} = 8,72 \cdot 10^{-6} \cdot 250 \cdot 100 = 0,218 \ \kappa z/c.$$
 $-$ на удалении (высоте) до 5 м, $T_{O\Gamma} = 723 \ K$ (450 °C): $\gamma_{O\Gamma} = 1,31 \ / \ (1+723 \ / \ 273) = 0,359066 \ \kappa z/m^3;$
 $Q_{O\Gamma} = 0,218 \ / \ 0,359066 = 0,6071 \ m^3/c;$
 $-$ на удалении (высоте) 5 - $10 \ м, $T_{O\Gamma} = 673 \ K \ (400 \ ^{\circ}C)$: $\gamma_{O\Gamma} = 1,31 \ / \ (1+673 \ / \ 273) = 0,3780444 \ \kappa z/m^3;$
 $Q_{O\Gamma} = 0,218 \ / \ 0,3780444 = 0,5767 \ m^3/c.$$

ИЗА №6501. Дорожная техника

Источниками выделений загрязняющих веществ являются двигатели дорожно-строительных машин в период движения по территории и во время работы в нагрузочном режиме и режиме холостого хода.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами:

- Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, СПб., НИИ Атмосфера, 2012.
- Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом). М, 1998.
- Дополнения к методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом). М, 1999.

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу от дорожно-строительных машин, приведены в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

Взам. Инв. №	
Подп. и дата	
Инв. № подл.	

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год	
код	наименование	выброс, г/с	1 одовой выорос, 1/1 од	
301	Азота диоксид (Азот (IV) оксид)	0,0859258	3,733669	
304	Азот (II) оксид (Азота оксид)	0,0139611	0,606624	
328	Углерод (Сажа)	0,0160782	0,697906	
330	Сера диоксид (Ангидрид сернистый)	0,0097979	0,42293	
337	Углерод оксид	0,0769173	3,325509	
2732	Керосин	0,0219909	0,945049	

Расчет выполнен для площадки работы дорожно-строительных машин (ДМ).

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

			Время работы одной машины							Кол-	Од
		Кол	в течение суток, ч					за 30 мин, мин			нов
Наименов ание ДМ	Тип ДМ	ичес тво	все	без нагру зки	под нагру зкой	холос той ход	без нагр узки	под нагр узко й	холо стой ход	во рабо чих дней	рем енн ост ь
Асфальто укладчик	ДМ гусеничная, мощностью 36-60 кВт (49-82 л.с.)	1 (1)	8	3,5	3,2	1,3	12	13	5	396	+
Краны на гусенично м ходу	ДМ гусеничная, мощностью 161-260 кВт (219-354 л.с.)	2(1)	8	3,5	3,2	1,3	12	13	5	396	-
Экскавато ры одноковш овые на гусенично м ходу	ДМ гусеничная, мощностью 36-60 кВт (49-82 л.с.)	2(1)	8	3,5	3,2	1,3	12	13	5	396	+
Бульдозер ы	ДМ гусеничная, мощностью 61-100 кВт (83-136 л.с.)	1 (1)	8	3,5	3,2	1,3	12	13	5	396	-
Автогрейд еры среднего типа	ДМ колесная, мощностью 61-100 кВт (83-136 л.с.)	1 (1)	8	3,5	3,2	1,3	12	13	5	396	-
Катки дорожные самоходн ые	ДМ колесная, мощностью 61-100 кВт (83-136 л.с.)	1 (1)	8	3,5	3,2	1,3	12	13	5	396	-

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Расчет максимально разовых выбросов i-го вещества осуществляется по формуле (1.1.1):

$$G_{i} = \sum_{k=1}^{k} (m_{AB ik} \cdot t_{AB} + 1.3 \cdot m_{AB ik} \cdot t_{HAIP.} + m_{XX ik} \cdot t_{XX}) \cdot N_{k} / 1800, z/c$$
(1.1.1)

где $m_{\mathcal{A}Bik}$ – удельный выброс i-го вещества при движении машины k-й группы без нагрузки, ϵ /мин;

Изм.	Кол.уч	Лист	№док	Подп.	Дата

 $1,3 \cdot m_{\mathit{ДB}\,ik}$ — удельный выброс i-го вещества при движении машины k-й группы под нагрузкой, $\mathit{г/мин}$; $m_{\mathit{ДB}\,ik}$ — удельный выброс i-го вещества при работе двигателя машины k-й группы на холостом ходу, $\mathit{г/мин}$;

 t_{AB} - время движения машины за 30-ти минутный интервал без нагрузки, *мин*;

 t_{HAIP} - время движения машины за 30-ти минутный интервал под нагрузкой, *мин*;

 t_{XX} - время работы двигателя машины за 30-ти минутный интервал на холостом ходу, *мин*;

 N_k — наибольшее количество машин **k**-й группы одновременно работающих за 30-ти минутный интервал.

Из полученных значений G_i выбирается максимальное с учетом одновременности движения ДМ разных групп.

Расчет валовых выбросов i-го вещества осуществляется по формуле (1.1.2):

$$M_{i} = \sum_{k=1}^{k} (m_{\mathcal{A}B \, ik} \cdot t'_{\mathcal{A}B} + 1, 3 \cdot m_{\mathcal{A}B \, ik} \cdot t'_{\mathcal{H}A\Gamma P} + m_{XX \, ik} \cdot t'_{XX}) \cdot 10^{-6}, \, m/200$$
(1.1.2)

Загрязняющее вещество

04/2022-151-00000-OBOC-TY

Холостой

Лист

Движение

где t'_{AB} — суммарное время движения без нагрузки всех машин k-й группы, mun;

 t'_{HAIP} — суммарное время движения под нагрузкой всех машин k-й группы, mun;

 t'_{XX} — суммарное время работы двигателей всех машин k-й группы на холостом ходу, *мин*.

Удельные выбросы загрязняющих веществ при работе дорожно-строительных машин приведены в таблице 1.1.3.

Таблица 1.1.3 - Удельные выбросы загрязняющих веществ, г/мин

Тип дорожно-строительной машины

Взам. Инв. №

Подп. и дата

Инв. № подл.

Лист №док

Кол.уч

Подп.

Дата

			ход
ДМ гусеничная, мощностью 36-60 кВт (49-82	Азота диоксид (Азот (IV)	1,192	0,232
л.с.)	оксид)		
	Азот (II) оксид (Азота оксид)	0,1937	0,0377
	Углерод (Сажа)	0,225	0,04
	Сера диоксид (Ангидрид	0,135	0,058
	сернистый)		
	Углерод оксид	0,846	1,44
	Керосин	0,279	0,18
ДМ гусеничная, мощностью 161-260 кВт (219-	Азота диоксид (Азот (IV)	5,176	1,016
354 л.с.)	оксид)		
	Азот (II) оксид (Азота оксид)	0,841	0,165
	Углерод (Сажа)	0,972	0,17
	Сера диоксид (Ангидрид	0,567	0,25
	сернистый)		
	Углерод оксид	3,699	6,31
	Керосин	1,233	0,79
ДМ гусеничная, мощностью 61-100 кВт (83-136	Азота диоксид (Азот (IV)	1,976	0,384
л.с.)	оксид)		
	Азот (II) оксид (Азота оксид)	0,321	0,0624
	Углерод (Сажа)	0,369	0,06
	Сера диоксид (Ангидрид	0,207	0,097
	сернистый)		
	Углерод оксид	1,413	2,4
	Керосин	0,459	0,3

Тип дорожно-строительной машины	Загрязняющее вещество	Движение	Холостой ход
ДМ колесная, мощностью 61-100 кВт (83-136	Азота диоксид (Азот (IV)	1,976	0,384
л.с.)	оксид)		
	Азот (II) оксид (Азота оксид)	0,321	0,0624
	Углерод (Сажа)	0,369	0,06
	Сера диоксид (Ангидрид	0,207	0,097
	сернистый)		
	Углерод оксид	1,413	2,4
	Керосин	0,459	0,3

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Асфальтоукладчик

```
G_{301} = (1,192 \cdot 12+1,3\cdot 1,192\cdot 13+0,232\cdot 5)\cdot 1/1800 = 0,0197827 \ z/c;
```

 $M_{301} = (1,192 \cdot 1 \cdot 396 \cdot 3,5 \cdot 60 + 1,3 \cdot 1,192 \cdot 1 \cdot 396 \cdot 3,2 \cdot 60 + 0,232 \cdot 1 \cdot 396 \cdot 1,3 \cdot 60) \cdot 10^{-6} = 0,224112 \text{ m/zod};$

 $G_{304} = (0.1937 \cdot 12 + 1.3 \cdot 0.1937 \cdot 13 + 0.0377 \cdot 5) \cdot 1/1800 = 0.0032147 \ z/c;$

 $M_{304} = (0.1937 \cdot 1 \cdot 396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.1937 \cdot 1 \cdot 396 \cdot 3.2 \cdot 60 + 0.0377 \cdot 1 \cdot 396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.0364182 \text{ m/zod};$

 $G_{328} = (0.225 \cdot 12 + 1.3 \cdot 0.225 \cdot 13 + 0.04 \cdot 5) \cdot 1/1800 = 0.0037236 \ \epsilon/c;$

 $M_{328} = (0.225 \cdot 1.396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.225 \cdot 1.396 \cdot 3.2 \cdot 60 + 0.04 \cdot 1.396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.0421859 \text{ m/zod};$

 $G_{330} = (0.135 \cdot 12 + 1.3 \cdot 0.135 \cdot 13 + 0.058 \cdot 5) \cdot 1/1800 = 0.0023286 \ z/c;$

 $M_{330} = (0.135 \cdot 1.396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.135 \cdot 1.396 \cdot 3.2 \cdot 60 + 0.058 \cdot 1.396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.0263617 \text{ m/zod};$

 $G_{337} = (0.846 \cdot 12 + 1.3 \cdot 0.846 \cdot 13 + 1.44 \cdot 5) \cdot 1/1800 = 0.017583 \ z/c;$

 $M_{337} = (0.846 \cdot 1.396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.846 \cdot 1.396 \cdot 3.2 \cdot 60 + 1.44 \cdot 1.396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.198452 \text{ m/zod};$

 $G_{2732} = (0.279 \cdot 12 + 1.3 \cdot 0.279 \cdot 13 + 0.18 \cdot 5) \cdot 1/1800 = 0.0049795 \ z/c;$

 $M_{2732} = (0.279 \cdot 1.396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.279 \cdot 1.396 \cdot 3.2 \cdot 60 + 0.18 \cdot 1.396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.0563383 \ m/cod$

Краны на гусеничном ходу

 $G_{301} = (5,176 \cdot 12 + 1,3 \cdot 5,176 \cdot 13 + 1,016 \cdot 5) \cdot 1/1800 = 0,0859258 \ z/c;$

 $M_{30l} = (5,176\cdot2\cdot396\cdot3,5\cdot60+1,3\cdot5,176\cdot2\cdot396\cdot3,2\cdot60+1,016\cdot2\cdot396\cdot1,3\cdot60)\cdot10^{-6} = 1,946845 \text{ m/zod};$

 $G_{304} = (0.841 \cdot 12 + 1.3 \cdot 0.841 \cdot 13 + 0.165 \cdot 5) \cdot 1/1800 = 0.0139611 \ z/c;$

 $M_{304} = (0.841 \cdot 2 \cdot 396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.841 \cdot 2 \cdot 396 \cdot 3.2 \cdot 60 + 0.165 \cdot 2 \cdot 396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.31632 \text{ m/zod};$

 $G_{328} = (0.972 \cdot 12 + 1.3 \cdot 0.972 \cdot 13 + 0.17 \cdot 5) \cdot 1/1800 = 0.0160782 \ z/c;$

 $M_{328} = (0.972 \cdot 2.396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.972 \cdot 2.396 \cdot 3.2 \cdot 60 + 0.17 \cdot 2.396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.364313 \text{ m/zod};$

 $G_{330} = (0.567 \cdot 12 + 1.3 \cdot 0.567 \cdot 13 + 0.25 \cdot 5) \cdot 1/1800 = 0.0097979 \ z/c;$

 $M_{330} = (0.567 \cdot 2 \cdot 396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.567 \cdot 2 \cdot 396 \cdot 3.2 \cdot 60 + 0.25 \cdot 2 \cdot 396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.221834 \, \text{m/zod};$

 $G_{337} = (3.699 \cdot 12 + 1.3 \cdot 3.699 \cdot 13 + 6.31 \cdot 5) \cdot 1/1800 = 0.0769173 \ z/c;$

 $M_{337} = (3,699 \cdot 2 \cdot 396 \cdot 3,5 \cdot 60 + 1,3 \cdot 3,699 \cdot 2 \cdot 396 \cdot 3,2 \cdot 60 + 6,31 \cdot 2 \cdot 396 \cdot 1,3 \cdot 60) \cdot 10^{-6} = 1,736254$ m/200;

 $G_{2732} = (1,233\cdot12+1,3\cdot1,233\cdot13+0,79\cdot5)\cdot1/1800 = 0,0219909 \ z/c;$

 $M_{2732} = (1,233\cdot2\cdot396\cdot3,5\cdot60+1,3\cdot1,233\cdot2\cdot396\cdot3,2\cdot60+0,79\cdot2\cdot396\cdot1,3\cdot60)\cdot10^{-6} = 0,497619 \text{ m/zod}.$

Экскаваторы одноковшовые на гусеничном ходу

 $G_{301} = (1.192 \cdot 12 + 1.3 \cdot 1.192 \cdot 13 + 0.232 \cdot 5) \cdot 1/1800 = 0.0197827 \ z/c;$

 $M_{301} = (1,192 \cdot 2 \cdot 396 \cdot 3,5 \cdot 60 + 1,3 \cdot 1,192 \cdot 2 \cdot 396 \cdot 3,2 \cdot 60 + 0,232 \cdot 2 \cdot 396 \cdot 1,3 \cdot 60) \cdot 10^{-6} = 0,448224 \text{ m/zod};$

 $G_{304} = (0.1937 \cdot 12 + 1.3 \cdot 0.1937 \cdot 13 + 0.0377 \cdot 5) \cdot 1/1800 = 0.0032147 \ \epsilon/c;$

 $M_{304} = (0.1937 \cdot 2 \cdot 396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.1937 \cdot 2 \cdot 396 \cdot 3.2 \cdot 60 + 0.0377 \cdot 2 \cdot 396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.0728364 \, \text{m/zod};$

 $G_{328} = (0.225 \cdot 12 + 1.3 \cdot 0.225 \cdot 13 + 0.04 \cdot 5) \cdot 1/1800 = 0.0037236 \ \epsilon/c;$

 $M_{328} = (0.225 \cdot 2 \cdot 396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.225 \cdot 2 \cdot 396 \cdot 3.2 \cdot 60 + 0.04 \cdot 2 \cdot 396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.0843718 \ m/cod;$

 $G_{330} = (0.135 \cdot 12 + 1.3 \cdot 0.135 \cdot 13 + 0.058 \cdot 5) \cdot 1/1800 = 0.0023286 \ \epsilon/c;$

						Γ
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Инв.

Взам.

Подп. и дата

```
M_{330} = (0.135 \cdot 2 \cdot 396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.135 \cdot 2 \cdot 396 \cdot 3.2 \cdot 60 + 0.058 \cdot 2 \cdot 396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.0527234 \, \text{m/zod};
G_{337} = (0.846 \cdot 12 + 1.3 \cdot 0.846 \cdot 13 + 1.44 \cdot 5) \cdot 1/1800 = 0.017583 \ c/c;
M_{337} = (0.846 \cdot 2.396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.846 \cdot 2.396 \cdot 3.2 \cdot 60 + 1.44 \cdot 2.396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.396904 \, \text{m/zod};
G_{2732} = (0.279 \cdot 12 + 1.3 \cdot 0.279 \cdot 13 + 0.18 \cdot 5) \cdot 1/1800 = 0.0049795 \ z/c;
M_{2732} = (0.279 \cdot 2.396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.279 \cdot 2.396 \cdot 3.2 \cdot 60 + 0.18 \cdot 2.396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.1126766 \text{ m/zod}.
Бульдозеры
G_{301} = (1,976 \cdot 12 + 1,3 \cdot 1,976 \cdot 13 + 0,384 \cdot 5) \cdot 1/1800 = 0,0327924 \ z/c;
M_{301} = (1.976 \cdot 1.396 \cdot 3.5 \cdot 60 + 1.3 \cdot 1.976 \cdot 1.396 \cdot 3.2 \cdot 60 + 0.384 \cdot 1.396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.371496  m/zod;
G_{304} = (0.321 \cdot 12 + 1.3 \cdot 0.321 \cdot 13 + 0.0624 \cdot 5) \cdot 1/1800 = 0.0053272 \ \epsilon/c;
M_{304} = (0.321 \cdot 1.396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.321 \cdot 1.396 \cdot 3.2 \cdot 60 + 0.0624 \cdot 1.396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.0603499 \ \text{m/zod};
G_{328} = (0.369 \cdot 12 + 1.3 \cdot 0.369 \cdot 13 + 0.06 \cdot 5) \cdot 1/1800 = 0.0060912 \ z/c
M_{328} = (0.369 \cdot 1.396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.369 \cdot 1.396 \cdot 3.2 \cdot 60 + 0.06 \cdot 1.396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.0690119 \ \text{m/zod};
G_{330} = (0.207 \cdot 12 + 1.3 \cdot 0.207 \cdot 13 + 0.097 \cdot 5) \cdot 1/1800 = 0.0035929 \ z/c;
M_{330} = (0.207 \cdot 1.396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.207 \cdot 1.396 \cdot 3.2 \cdot 60 + 0.097 \cdot 1.396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.0406705 \text{ m/zod};
G_{337} = (1.413 \cdot 12 + 1.3 \cdot 1.413 \cdot 13 + 2.4 \cdot 5) \cdot 1/1800 = 0.0293532 \ z/c;
M_{337} = (1,413\cdot1\cdot396\cdot3,5\cdot60+1,3\cdot1,413\cdot1\cdot396\cdot3,2\cdot60+2,4\cdot1\cdot396\cdot1,3\cdot60)\cdot10^{-6} = 0,3312995 \text{ m/zod};
G_{2732} = (0.459 \cdot 12 + 1.3 \cdot 0.459 \cdot 13 + 0.3 \cdot 5) \cdot 1/1800 = 0.0082028 \ z/c;
M_{2732} = (0.459 \cdot 1 \cdot 396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.459 \cdot 1 \cdot 396 \cdot 3.2 \cdot 60 + 0.3 \cdot 1 \cdot 396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.0928051  m/200.
Автогрейдеры среднего типа
G_{301} = (1.976 \cdot 12 + 1.3 \cdot 1.976 \cdot 13 + 0.384 \cdot 5) \cdot 1/1800 = 0.0327924 \ z/c;
M_{301} = (1,976 \cdot 1.396 \cdot 3,5 \cdot 60 + 1,3 \cdot 1,976 \cdot 1.396 \cdot 3,2 \cdot 60 + 0,384 \cdot 1.396 \cdot 1,3 \cdot 60) \cdot 10^{-6} = 0,371496 \, \text{m/zod};
G_{304} = (0.321 \cdot 12 + 1.3 \cdot 0.321 \cdot 13 + 0.0624 \cdot 5) \cdot 1/1800 = 0.0053272 \ \epsilon/c;
M_{304} = (0.321 \cdot 1.396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.321 \cdot 1.396 \cdot 3.2 \cdot 60 + 0.0624 \cdot 1.396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.0603499 \text{ m/zod};
G_{328} = (0.369 \cdot 12 + 1.3 \cdot 0.369 \cdot 13 + 0.06 \cdot 5) \cdot 1/1800 = 0.0060912 \ \epsilon/c;
M_{328} = (0.369 \cdot 1.396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.369 \cdot 1.396 \cdot 3.2 \cdot 60 + 0.06 \cdot 1.396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.0690119 \ \text{m/zod};
G_{330} = (0.207 \cdot 12 + 1.3 \cdot 0.207 \cdot 13 + 0.097 \cdot 5) \cdot 1/1800 = 0.0035929 \ z/c
M_{330} = (0.207 \cdot 1.396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.207 \cdot 1.396 \cdot 3.2 \cdot 60 + 0.097 \cdot 1.396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.0406705 \ \text{m/zod};
G_{337} = (1,413\cdot12+1,3\cdot1,413\cdot13+2,4\cdot5)\cdot1/1800 = 0,0293532 \ z/c;
M_{337} = (1,413\cdot1\cdot396\cdot3,5\cdot60+1,3\cdot1,413\cdot1\cdot396\cdot3,2\cdot60+2,4\cdot1\cdot396\cdot1,3\cdot60)\cdot10^{-6} = 0,3312995 \text{ m/zod};
G_{2732} = (0.459 \cdot 12 + 1.3 \cdot 0.459 \cdot 13 + 0.3 \cdot 5) \cdot 1/1800 = 0.0082028 \ z/c;
M_{2732} = (0.459 \cdot 1 \cdot 396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.459 \cdot 1 \cdot 396 \cdot 3.2 \cdot 60 + 0.3 \cdot 1 \cdot 396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.0928051  m/200.
Катки дорожные самоходные
G_{301} = (1,976 \cdot 12 + 1,3 \cdot 1,976 \cdot 13 + 0,384 \cdot 5) \cdot 1/1800 = 0,0327924 \ z/c;
M_{301} = (1,976 \cdot 1.396 \cdot 3,5 \cdot 60 + 1,3 \cdot 1,976 \cdot 1.396 \cdot 3,2 \cdot 60 + 0,384 \cdot 1.396 \cdot 1,3 \cdot 60) \cdot 10^{-6} = 0,371496 \, \text{m/zod};
G_{304} = (0.321 \cdot 12 + 1.3 \cdot 0.321 \cdot 13 + 0.0624 \cdot 5) \cdot 1/1800 = 0.0053272 \ z/c
M_{304} = (0.321 \cdot 1.396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.321 \cdot 1.396 \cdot 3.2 \cdot 60 + 0.0624 \cdot 1.396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.0603499 \ m/cod
G_{328} = (0.369 \cdot 12 + 1.3 \cdot 0.369 \cdot 13 + 0.06 \cdot 5) \cdot 1/1800 = 0.0060912 \ z/c;
M_{328} = (0.369 \cdot 1.396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.369 \cdot 1.396 \cdot 3.2 \cdot 60 + 0.06 \cdot 1.396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.0690119 \text{ m/zod};
G_{330} = (0.207 \cdot 12 + 1.3 \cdot 0.207 \cdot 13 + 0.097 \cdot 5) \cdot 1/1800 = 0.0035929 \ z/c;
M_{330} = (0.207 \cdot 1.396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.207 \cdot 1.396 \cdot 3.2 \cdot 60 + 0.097 \cdot 1.396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.0406705 \ \text{m/zod};
G_{337} = (1,413\cdot12+1,3\cdot1,413\cdot13+2,4\cdot5)\cdot1/1800 = 0,0293532 \ z/c;
M_{337} = (1,413\cdot1\cdot396\cdot3,5\cdot60+1,3\cdot1,413\cdot1\cdot396\cdot3,2\cdot60+2,4\cdot1\cdot396\cdot1,3\cdot60)\cdot10^{-6} = 0,3312995 \text{ m/zod};
G_{2732} = (0.459 \cdot 12 + 1.3 \cdot 0.459 \cdot 13 + 0.3 \cdot 5) \cdot 1/1800 = 0.0082028 \ \epsilon/c;
M_{2732} = (0.459 \cdot 1.396 \cdot 3.5 \cdot 60 + 1.3 \cdot 0.459 \cdot 1.396 \cdot 3.2 \cdot 60 + 0.3 \cdot 1.396 \cdot 1.3 \cdot 60) \cdot 10^{-6} = 0.0928051 \text{ m/zod}.
             ИЗА №6502. Строительная техника
```

Инв.

Взам.

Подп. и дата

읟

Изм. Кол.уч Лист №док

Подп.

Дата

Источниками выделений загрязняющих веществ являются двигатели автомобилей в период прогрева, движения по территории предприятия и во время работы в режиме холостого хода.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами:

- Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, СПб., НИИ Атмосфера, 2012.
- Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М, 1998.
- Дополнения и изменения к Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М, 1999.

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу от автотранспортных средств, приведены в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код наименование		выброс, г/с	т одовой выорос, тлод
301	Азота диоксид (Азот (IV) оксид)	0,0075689	0,0294532
304	Азот (II) оксид (Азота оксид)	0,0012299	0,0047869
328	Углерод (Сажа)	0,0004	0,0017427
330	Сера диоксид (Ангидрид сернистый)	0,0014694	0,006606
337	Углерод оксид	0,0204444	0,0793642
2732	Керосин	0,0073389	0,0319113

Расчет выполнен для автостоянки открытого типа, не оборудованной средствами подогрева. Пробег автотранспорта при въезде составляет 0,2 км, при выезде -0,2 км. Время работы двигателя на холостом ходу при выезде с территории стоянки -3 мин, при возврате на неё -3 мин. Количество дней для расчётного периода: теплого -220, переходного -88, холодного с температурой от -5° С до -10° С -49, холодного с температурой от -10° С до -15° С -39.

Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

		Макси	мальное количест	во автом	обилей		Одн
Наименование	Тип автотранспортного средства	всего	выезд/въезд в течение суток	выезд за 1 час	въезд за 1 час	Эко конт роль	овре мен ност ь
Автосамосвал	Грузовой, г/п свыше 16 т, дизель	2	2	1	1	_	-
Автомобиль	Грузовой, г/п от 5 до 8 т, дизель	2	2	1	1	-	+
бортовой							
Автобетоносмес	Грузовой, г/п свыше 16 т, дизель	1	1	1	1	-	-
итель							
Тягач,	Грузовой, г/п от 8 до 16 т, дизель	1	1	1	1	-	-
полуприцеп-							
тяжеловоз							
Автокран на	Грузовой, г/п свыше 16 т, дизель	2	2	1	1	-	-
колесном ходу							
Автобус	Автобус, средний, дизель	1	1	1	1	-	+
вахтовый							

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв.

Подп. и дата

Инв. № подл.

		Макси	мальное количест	во автом	обилей	Эко	Одн
Наименование	Тип автотранспортного средства	всего	выезд/въезд в течение суток	выезд за 1 час	въезд за 1 час	конт	овре мен ност
Машины	Грузовой, г/п от 5 до 8 т, дизель	1	1	1	1	-	-
поливомоечные							
Автобетононасо	Грузовой, г/п до 2 т, дизель	1	1	1	1	-	-
c							

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Выбросы i-го вещества одним автомобилем k-й группы в день при выезде с территории или помещения стоянки M_{lik} и возврате M_{2ik} рассчитываются по формулам (1.1.1 и 1.1.2):

$$\mathbf{M}_{lik} = \mathbf{m}_{\Pi P ik} \cdot \mathbf{t}_{\Pi P} + \mathbf{m}_{Lik} \cdot \mathbf{L}_{l} + \mathbf{m}_{XXik} \cdot \mathbf{t}_{XXI}, z \tag{1.1.1}$$

$$\mathbf{M}_{2ik} = \mathbf{m}_{Lik} \cdot \mathbf{L}_2 + \mathbf{m}_{XXik} \cdot \mathbf{t}_{XX2}, z \tag{1.1.2}$$

где $m_{\Pi P ik}$ – удельный выброс i-го вещества при прогреве двигателя автомобиля k-й группы, ϵ / muh ; $m_{L ik}$ - пробеговый выброс i-го вещества, автомобилем k-й группы при движении со скоростью 10-20 км/час, $\epsilon / \kappa m$;

 m_{XXik} - удельный выброс *i*-го вещества при работе двигателя автомобиля k-й группы на холостом ходу, 2/мин;

 $t_{\Pi P}$ - время прогрева двигателя, мин;

 L_1, L_2 - пробег автомобиля по территории стоянки, κM ;

 $t_{XX\ l},\ t_{XX\ 2}$ - время работы двигателя на холостом ходу при выезде с территории стоянки и возврате на неё, *мин*.

При проведении экологического контроля удельные выбросы загрязняющих веществ автомобилями снижаются, поэтому должны пересчитываться по формулам (1.1.3 и 1.1.4):

$$\mathbf{m'}_{\Pi P ik} = \mathbf{m}_{\Pi P ik} \cdot \mathbf{K}_{i}, 2/\mathbf{M}\mathbf{u}\mathbf{H}$$
 (1.1.3)

$$\mathbf{m''}_{XXik} = \mathbf{m}_{XXik} \cdot \mathbf{K}_{i}, 2/\mathbf{M}\mathbf{U}\mathbf{H} \tag{1.1.4}$$

где K_i – коэффициент, учитывающий снижение выброса i-го загрязняющего вещества при проведении экологического контроля.

Валовый выброс i-го вещества автомобилями рассчитывается раздельно для каждого периода года по формуле (1.1.5):

$$M_{j}^{i} = \sum_{k=1}^{k} \alpha_{e} (M_{1ik} + M_{2ik}) N_{k} \cdot D_{p} \cdot 10^{-6}, m/200$$
 (1.1.5)

где α_{6} - коэффициент выпуска (выезда);

 N_k — количество автомобилей k-й группы на территории или в помещении стоянки за расчетный период;

 D_P - - количество дней работы в расчетном периоде (холодном, теплом, переходном);

j — период года (T - теплый, П - переходный, X - холодный); для холодного периода расчет M_i выполняется с учётом температуры для каждого месяца.

						Γ
						l
14.	16.	_		-	_	l
Изм.	Кол.уч	ЛИСТ	№док	Подп.	дата	L

Взам.

Подп. и дата

Влияние холодного и переходного периодов года на выбросы загрязняющих веществ учитывается только для выезжающих автомобилей, хранящихся на открытых и закрытых не отапливаемых стоянках.

Для определения общего валового выброса M_i валовые выбросы одноименных веществ по периодам года суммируются (1.1.6):

$$\mathbf{M}_{i} = \mathbf{M}^{\mathrm{T}}_{i} + \mathbf{M}^{\mathrm{T}}_{i} + \mathbf{M}^{\mathrm{X}}_{i}, \, m/200$$
 (1.1.6)

Пробег, г/км

Холо

Эко-

Максимально разовый выброс i-го вещества G_i рассчитывается по формуле (1.1.7):

$$G_{i} = \sum_{k=1}^{k} (M_{lik} \cdot N'_{k} + M_{2ik} \cdot N''_{k}) / 3600, 2/ce\kappa$$
(1.1.7)

где N'_k , N''_k – количество автомобилей k-й группы, выезжающих со стоянки и въезжающих на стоянку за 1 час, характеризующийся максимальной интенсивностью выезда(въезда) автомобилей.

Из полученных значений G_i выбирается максимальное с учетом одновременности движения автомобилей разных групп.

Удельные выбросы загрязняющих веществ при прогреве двигателей, пробеговые, на холостом ходу, коэффициент снижения выбросов при проведении экологического контроля K_i , а так же коэффициент изменения выбросов при движении по пандусу приведены в таблице 1.1.3.

Прогрев, г/мин

Таблица 1.1.3 - Удельные выбросы загрязняющих веществ

Тип	Загрязняющее вещество	Т	П	X	Т	П	X	ход, г/ми н	конт роль, Кі
Грузс	овой, г/п свыше 16 т, дизель							•	
	Азота диоксид (Азот (IV) оксид)	0,496	0,744	0,744	3,12	3,12	3,12	0,448	1
	Азот (II) оксид (Азота оксид)	0,080	0,121	0,121	0,507	0,507	0,507	0,072	1
		6						8	
	Углерод (Сажа)	0,023	0,041	0,046	0,3	0,405	0,45	0,023	0,8
			4						
	Сера диоксид (Ангидрид сернистый)	0,112	0,120	0,134	0,69	0,774	0,86	0,112	0,95
			6						
	Углерод оксид	1,65	2,25	2,5	6	6,48	7,2	1,03	0,9
	Керосин	0,8	0,864	0,96	0,8	0,9	1	0,57	0,9
Грузс	овой, г/п от 5 до 8 т, дизель	•	•						•
	Азота диоксид (Азот (IV) оксид)	0,256	0,384	0,384	2,4	2,4	2,4	0,232	1
	Азот (II) оксид (Азота оксид)	0,041	0,062	0,062	0,39	0,39	0,39	0,037	1
		6	4	4				7	
	Углерод (Сажа)	0,012	0,021	0,024	0,15	0,207	0,23	0,012	0,8
			6						
	Сера диоксид (Ангидрид сернистый)	0,081	0,087	0,097	0,4	0,45	0,5	0,081	0,95
			3						
	Углерод оксид	0,86	1,161	1,29	4,1	4,41	4,9	0,54	0,9
	Керосин	0,38	0,414	0,46	0,6	0,63	0,7	0,27	0,9
Грузс	овой, г/п от 8 до 16 т, дизель		•	•	•	•		•	•
	Азота диоксид (Азот (IV) оксид)	0,408	0,616	0,616	2,72	2,72	2,72	0,368	1

Инв. № подл. Подп. и дата

Лист №док

Подп.

Дата

Изм. Кол.уч

Взам. Инв. №

04/2022-151-00000-OBOC-TY

Тип	2appagayagayyaa payyaampa	Про	Прогрев, г/мин			Пробег, г/км			Эко-
ТИП	Загрязняющее вещество	T	П	X	Т	П	X	стой	конт
	Азот (II) оксид (Азота оксид)	0,066	0,1	0,1	0,442	0,442	0,442	0,059	1
		3						8	
	Углерод (Сажа)	0,019	0,034	0,038	0,2	0,27	0,3	0,019	0,8
			2						
	Сера диоксид (Ангидрид сернистый)	0,1	0,108	0,12	0,475	0,531	0,59	0,1	0,95
	Углерод оксид	1,34	1,8	2	4,9	5,31	5,9	0,84	0,9
	Керосин	0,59	0,639	0,71	0,7	0,72	0,8	0,42	0,9
Авто	бус, средний, дизель	•					•	•	
	Азота диоксид (Азот (IV) оксид)	0,456	0,688	0,688	2,4	2,4	2,4	0,416	1
	Азот (II) оксид (Азота оксид)	0,074	0,111	0,111	0,39	0,39	0,39	0,067	1
		1	8	8				6	
	Углерод (Сажа)	0,016	0,028	0,032	0,15	0,207	0,23	0,016	0,8
			8						
	Сера диоксид (Ангидрид сернистый)	0,084	0,09	0,1	0,4	0,45	0,5	0,084	0,95
	Углерод оксид	1,22	1,638	1,82	4,1	4,41	4,9	0,76	0,9
	Керосин	0,53	0,576	0,64	0,6	0,63	0,7	0,38	0,9
Грузо	овой, г/п до 2 т, дизель						-		
	Азота диоксид (Азот (IV) оксид)	0,104	0,16	0,16	1,52	1,52	1,52	0,096	1
	Азот (II) оксид (Азота оксид)	0,016	0,026	0,026	0,247	0,247	0,247	0,015	1
		9						6	
	Углерод (Сажа)	0,005	0,009	0,01	0,1	0,135	0,15	0,005	0,8
	Сера диоксид (Ангидрид сернистый)	0,048	0,052	0,058	0,25	0,281	0,313	0,048	0,95
			2			7			
	Углерод оксид	0,35	0,477	0,53	1,8	1,98	2,2	0,22	0,9
	Керосин	0,14	0,153	0,17	0,4	0,45	0,5	0,11	0,9

Время прогрева двигателей в зависимости от температуры воздуха и условий хранения приведено в таблице 1.1.4.

Таблица 1.1.4 - Время прогрева двигателей, мин

	Врем	ія прогр	ева при	и темпеј	ратуре і	воздуха	, мин
	выш		-5	-10	-15	-20	жин
Тип автотранспортного средства	e	+5	_	_	-	-	e
	+5°	-5°C	10°	15°	20°	25°	25°
	C		С	C	C	C	C C
Грузовой, г/п свыше 16 т, дизель	4	6	12	20	25	30	30
Грузовой, г/п от 5 до 8 т, дизель	4	6	12	20	25	30	30
Грузовой, г/п от 8 до 16 т, дизель	4	6	12	20	25	30	30
Автобус, средний, дизель	4	6	12	20	25	30	30
Грузовой, г/п до 2 т, дизель	4	6	12	20	25	30	30

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

<u>Автосамосвал</u>

Взам. Инв. №

Подп. и дата

$$M^{T}_{I} = 0,496 \cdot 4 + 3,12 \cdot 0,2 + 0,448 \cdot 3 = 3,952 \ \varepsilon;$$

 $M^{T}_{2} = 3,12 \cdot 0,2 + 0,448 \cdot 3 = 1,968 \ \varepsilon;$
 $M^{T}_{30I} = (3,952 + 1,968) \cdot 220 \cdot 2 \cdot 10^{-6} = 0,0026048 \ m/cod;$

Изм.	Кол.уч	Лист	№док	Подп.	Дата

```
\mathbf{G}^{\mathrm{T}}_{301} = (3.952 \cdot 1 + 1.968 \cdot 1) / 3600 = 0.0016444 \, c/c;
M^{\Pi_I} = 0.744 \cdot 6 + 3.12 \cdot 0.2 + 0.448 \cdot 3 = 6.432 \ \varepsilon;
M^{\Pi}_{2} = 3.12 \cdot 0.2 + 0.448 \cdot 3 = 1.968 \ \varepsilon
M^{\Pi}_{30I} = (6.432 + 1.968) \cdot 88 \cdot 2 \cdot 10^{-6} = 0.0014784 \text{ m/zod};
G^{\Pi}_{301} = (6.432 \cdot 1 + 1.968 \cdot 1) / 3600 = 0.0023333 \ z/c;
M^{X}_{I} = 0.744 \cdot 12 + 3.12 \cdot 0.2 + 0.448 \cdot 3 = 10.896 \ \varepsilon;
M^{X}_{2} = 3.12 \cdot 0.2 + 0.448 \cdot 3 = 1.968 \ \epsilon;
M^{X}_{301} = (10.896 + 1.968) \cdot 49 \cdot 2 \cdot 10^{-6} = 0.0012607 \text{ m/zod};
G_{301}^{X} = (10.896 \cdot 1 + 1.968 \cdot 1) / 3600 = 0.0035733 \ z/c;
\mathbf{M}^{\text{X}-10..-15^{\circ}\text{C}}_{l} = 0.744 \cdot 20 + 3.12 \cdot 0.2 + 0.448 \cdot 3 = 16.848 \, \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 3.12 \cdot 0.2 + 0.448 \cdot 3 = 1.968 \text{ z};
M^{\text{X-10..-15}^{\circ}\text{C}}_{30I} = (16.848 + 1.968) \cdot 39 \cdot 2 \cdot 10^{-6} = 0.0014676 \,\text{m/zod};
G^{X-10..-15^{\circ}C}_{301} = (16.848 \cdot 1 + 1.968 \cdot 1) / 3600 = 0.0052267 \ z/c;
M = 0.0026048 + 0.0014784 + 0.0012607 + 0.0014676 = 0.0068115 \text{ m/zod}
G = \max\{0.0016444; 0.0023333; 0.0035733; 0.0052267\} = 0.0052267 \ c/c.
M^{T}_{I} = 0.0806 \cdot 4 + 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 0.6422 \ \epsilon;
M^{\mathrm{T}}_{2} = 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 0.3198 \, \varepsilon;
M_{304}^{T} = (0.6422 + 0.3198) \cdot 220 \cdot 2 \cdot 10^{-6} = 0.0004233 \text{ m/zod};
G^{T}_{304} = (0.6422 \cdot 1 + 0.3198 \cdot 1) / 3600 = 0.0002672 \ z/c;
M^{\Pi}_{I} = 0.121 \cdot 6 + 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 1.0458 \ \varepsilon;
M^{\Pi}_{2} = 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 0.3198 \ \epsilon;
M^{\Pi}_{304} = (1,0458 + 0.3198) \cdot 88 \cdot 2 \cdot 10^{-6} = 0.0002403 \text{ m/zod};
\mathbf{G}^{\Pi}_{304} = (1,0458 \cdot 1 + 0.3198 \cdot 1) / 3600 = 0.0003793 \ z/c;
M_{I}^{X} = 0.121 \cdot 12 + 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 1.7718 \ \epsilon;
M^{X}_{2} = 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 0.3198 \ \varepsilon;
M^{X}_{304} = (1,7718 + 0.3198) \cdot 49 \cdot 2 \cdot 10^{-6} = 0.000205 \text{ m/zod};
G^{X}_{304} = (1,7718 \cdot 1 + 0,3198 \cdot 1) / 3600 = 0,000581 \ z/c;
M^{X-10..-15^{\circ}C}_{I} = 0.121 \cdot 20 + 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 2.7398 \, \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 0.3198 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (2,7398 + 0,3198) \cdot 39 \cdot 2 \cdot 10^{-6} = 0,0002386 \text{ m/zod};
G^{X-10.-15^{\circ}C}_{304} = (2,7398 \cdot 1 + 0.3198 \cdot 1) / 3600 = 0.0008499 \ z/c;
M = 0.0004233 + 0.0002403 + 0.000205 + 0.0002386 = 0.0011073 \text{ m/zod}
G = \max\{0.0002672; 0.0003793; 0.000581; 0.0008499\} = 0.0008499 c/c.
M^{T}_{I} = 0.023 \cdot 4 + 0.3 \cdot 0.2 + 0.023 \cdot 3 = 0.221 \ \epsilon
M^{\mathrm{T}}_{2} = 0.3 \cdot 0.2 + 0.023 \cdot 3 = 0.129 \, \epsilon;
M^{T}_{328} = (0.221 + 0.129) \cdot 220 \cdot 2 \cdot 10^{-6} = 0.000154 \text{ m/zod};
G^{T}_{328} = (0.221 \cdot 1 + 0.129 \cdot 1) / 3600 = 0.0000972 \ z/c;
M^{\Pi}_{I} = 0.0414 \cdot 6 + 0.405 \cdot 0.2 + 0.023 \cdot 3 = 0.3984 \ \varepsilon;
M^{\Pi}_{2} = 0.3 \cdot 0.2 + 0.023 \cdot 3 = 0.129 \ \epsilon;
M^{\Pi}_{328} = (0.3984 + 0.129) \cdot 88 \cdot 2 \cdot 10^{-6} = 0.0000928 \text{ m/zod};
```

Инв.

Взам.

Подп. и дата

읟

Изм. Кол.уч Лист №док

Подп.

Дата

```
\mathbf{G}^{\Pi}_{328} = (0.3984 \cdot 1 + 0.129 \cdot 1) / 3600 = 0.0001465 \, \epsilon/c;
M^{X}_{I} = 0.046 \cdot 12 + 0.45 \cdot 0.2 + 0.023 \cdot 3 = 0.711 \ \epsilon
M^{X}_{2} = 0.3 \cdot 0.2 + 0.023 \cdot 3 = 0.129 z
M^{X}_{328} = (0.711 + 0.129) \cdot 49 \cdot 2 \cdot 10^{-6} = 0.0000823 \text{ m/zod};
G^{X}_{328} = (0.711 \cdot 1 + 0.129 \cdot 1) / 3600 = 0.0002333 \ z/c;
M^{X-10..-15^{\circ}C}_{I} = 0.046 \cdot 20 + 0.45 \cdot 0.2 + 0.023 \cdot 3 = 1.079 \ \varepsilon
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 0.3 \cdot 0.2 + 0.023 \cdot 3 = 0.129 \ \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{328} = (1,079 + 0,129) \cdot 39 \cdot 2 \cdot 10^{-6} = 0,0000942 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{328} = (1,079 \cdot 1 + 0,129 \cdot 1) / 3600 = 0,0003356  z/c;
M = 0.000154 + 0.0000928 + 0.0000823 + 0.0000942 = 0.0004234 \text{ m/zod};
G = \max\{0,0000972; 0,0001465; 0,0002333; 0,0003356\} = 0,0003356 \ \epsilon/c.
M^{T}_{I} = 0.112 \cdot 4 + 0.69 \cdot 0.2 + 0.112 \cdot 3 = 0.922 \ \varepsilon;
M^{\mathrm{T}}_{2} = 0.69 \cdot 0.2 + 0.112 \cdot 3 = 0.474 \, \varepsilon;
M^{T}_{330} = (0.922 + 0.474) \cdot 220 \cdot 2 \cdot 10^{-6} = 0.0006142 \text{ m/zod};
G^{T}_{330} = (0.922 \cdot 1 + 0.474 \cdot 1) / 3600 = 0.0003878 \ z/c;
M^{\Pi_I} = 0.1206 \cdot 6 + 0.774 \cdot 0.2 + 0.112 \cdot 3 = 1.2144 \ \varepsilon;
M^{\Pi}_{2} = 0.69 \cdot 0.2 + 0.112 \cdot 3 = 0.474 \ \epsilon;
M^{\Pi}_{330} = (1,2144 + 0,474) \cdot 88 \cdot 2 \cdot 10^{-6} = 0,0002972 \text{ m/zod};
G^{\Pi}_{330} = (1,2144 \cdot 1 + 0,474 \cdot 1) / 3600 = 0,000469 \ z/c;
\mathbf{M}^{X}_{I} = 0.134 \cdot 12 + 0.86 \cdot 0.2 + 0.112 \cdot 3 = 2.116 \ \varepsilon;
M^{X}_{2} = 0.69 \cdot 0.2 + 0.112 \cdot 3 = 0.474 \ \epsilon;
M^{X}_{330} = (2.116 + 0.474) \cdot 49 \cdot 2 \cdot 10^{-6} = 0.0002538 \text{ m/zod};
G^{X}_{330} = (2,116 \cdot 1 + 0,474 \cdot 1) / 3600 = 0,0007194 \, z/c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{I} = 0.134 \cdot 20 + 0.86 \cdot 0.2 + 0.112 \cdot 3 = 3.188 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 0.69 \cdot 0.2 + 0.112 \cdot 3 = 0.474 \text{ z};
M^{\text{X-10..-15}^{\circ}\text{C}}_{330} = (3.188 + 0.474) \cdot 39 \cdot 2 \cdot 10^{-6} = 0.0002856 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{330} = (3,188 \cdot 1 + 0,474 \cdot 1) / 3600 = 0,0010172 \ z/c;
M = 0.0006142 + 0.0002972 + 0.0002538 + 0.0002856 = 0.0014509 \text{ m/zod};
G = \max\{0.0003878; 0.000469; 0.0007194; 0.0010172\} = 0.0010172 \ c/c.
M^{T}_{I} = 1.65 \cdot 4 + 6 \cdot 0.2 + 1.03 \cdot 3 = 10.89 \ \varepsilon;
M^{T}_{2} = 6 \cdot 0.2 + 1.03 \cdot 3 = 4.29 \ \epsilon
M^{T}_{337} = (10.89 + 4.29) \cdot 220 \cdot 2 \cdot 10^{-6} = 0.0066792 \text{ m/zod};
G^{T}_{337} = (10.89 \cdot 1 + 4.29 \cdot 1) / 3600 = 0.0042167 \ z/c;
M^{\Pi}_{I} = 2.25 \cdot 6 + 6.48 \cdot 0.2 + 1.03 \cdot 3 = 17.886 \ \epsilon
M^{\Pi}_{2} = 6 \cdot 0.2 + 1.03 \cdot 3 = 4.29 \ \varepsilon;
M^{\Pi}_{337} = (17,886 + 4,29) \cdot 88 \cdot 2 \cdot 10^{-6} = 0,003903 \text{ m/zod};
G^{\Pi}_{337} = (17.886 \cdot 1 + 4.29 \cdot 1) / 3600 = 0.00616 \, e/c;
M_{I}^{X} = 2.5 \cdot 12 + 7.2 \cdot 0.2 + 1.03 \cdot 3 = 34.53 \ \epsilon;
M^{X}_{2} = 6 \cdot 0.2 + 1.03 \cdot 3 = 4.29 \ \epsilon;
M^{X}_{337} = (34.53 + 4.29) \cdot 49 \cdot 2 \cdot 10^{-6} = 0.0038044 \text{ m/zod};
```

Взам.

Подп. и дата

읟

Изм. Кол.уч Лист №док

Подп.

Дата

```
G^{X}_{337} = (34,53 \cdot 1 + 4,29 \cdot 1) / 3600 = 0,0107833 \ z/c;
M^{\text{X-}10..-15^{\circ}\text{C}}_{l} = 2.5 \cdot 20 + 7.2 \cdot 0.2 + 1.03 \cdot 3 = 54.53 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 6 \cdot 0.2 + 1.03 \cdot 3 = 4.29 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (54,53+4,29) \cdot 39 \cdot 2 \cdot 10^{-6} = 0,004588 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{337} = (54.53 \cdot 1 + 4.29 \cdot 1) / 3600 = 0.0163389 \ z/c;
M = 0.0066792 + 0.003903 + 0.0038044 + 0.004588 = 0.0189745 \text{ m/200};
G = \max\{0.0042167; 0.00616; 0.0107833; 0.0163389\} = 0.0163389 \ \epsilon/c.
M^{T}_{I} = 0.8 \cdot 4 + 0.8 \cdot 0.2 + 0.57 \cdot 3 = 5.07 \ \varepsilon;
M^{\mathrm{T}}_{2} = 0.8 \cdot 0.2 + 0.57 \cdot 3 = 1.87 \, \varepsilon;
M^{T}_{2732} = (5.07 + 1.87) \cdot 220 \cdot 2 \cdot 10^{-6} = 0.0030536 \text{ m/zod};
G^{T}_{2732} = (5.07 \cdot 1 + 1.87 \cdot 1) / 3600 = 0.0019278 \ z/c;
M^{\Pi}_{I} = 0.864 \cdot 6 + 0.9 \cdot 0.2 + 0.57 \cdot 3 = 7.074 \, \varepsilon;
M^{\Pi}_{2} = 0.8 \cdot 0.2 + 0.57 \cdot 3 = 1.87 \ \varepsilon;
M^{\Pi}_{2732} = (7,074 + 1,87) \cdot 88 \cdot 2 \cdot 10^{-6} = 0,0015741 \text{ m/zod};
G^{\Pi}_{2732} = (7,074 \cdot 1 + 1,87 \cdot 1) / 3600 = 0,0024844 \, \epsilon/c;
M^{X}_{l} = 0.96 \cdot 12 + 1 \cdot 0.2 + 0.57 \cdot 3 = 13.43 \ \varepsilon;
M^{X}_{2} = 0.8 \cdot 0.2 + 0.57 \cdot 3 = 1.87 \ z;
M^{X}_{2732} = (13.43 + 1.87) \cdot 49 \cdot 2 \cdot 10^{-6} = 0.0014994 \text{ m/zod};
G^{X}_{2732} = (13.43 \cdot 1 + 1.87 \cdot 1) / 3600 = 0.00425 \ \epsilon/c;
M^{X-10..-15^{\circ}C}_{l} = 0.96 \cdot 20 + 1 \cdot 0.2 + 0.57 \cdot 3 = 21.11 \ \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{2} = 0.8 \cdot 0.2 + 0.57 \cdot 3 = 1.87 \text{ z};
M^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = (21,11+1,87) \cdot 39 \cdot 2 \cdot 10^{-6} = 0,0017924 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2732} = (21,11\cdot 1 + 1,87\cdot 1)/3600 = 0,0063833 \, c/c;
M = 0.0030536 + 0.0015741 + 0.0014994 + 0.0017924 = 0.0079196 \text{ m/zod};
G = \max\{0.0019278; 0.0024844; 0.00425; 0.0063833\} = 0.0063833 \ \epsilon/c.
Автомобиль бортовой
M^{T}_{I} = 0.256 \cdot 4 + 2.4 \cdot 0.2 + 0.232 \cdot 3 = 2.2 \ \epsilon
M^{\mathrm{T}}_{2} = 2.4 \cdot 0.2 + 0.232 \cdot 3 = 1.176 \,\varepsilon;
M^{T}_{301} = (2.2 + 1.176) \cdot 220 \cdot 2 \cdot 10^{-6} = 0.0014854 \text{ m/zod};
G^{T}_{301} = (2, 2 \cdot 1 + 1, 176 \cdot 1) / 3600 = 0,0009378 \, \epsilon/c;
M^{\Pi}_{I} = 0.384 \cdot 6 + 2.4 \cdot 0.2 + 0.232 \cdot 3 = 3.48 \ \varepsilon;
M^{\Pi}_{2} = 2.4 \cdot 0.2 + 0.232 \cdot 3 = 1.176 \ \epsilon;
M^{\Pi}_{301} = (3.48 + 1.176) \cdot 88 \cdot 2 \cdot 10^{-6} = 0.0008195 \text{ m/zod};
G^{\Pi}_{301} = (3.48 \cdot 1 + 1.176 \cdot 1) / 3600 = 0.0012933 \ \epsilon/c;
M^{X}_{I} = 0.384 \cdot 12 + 2.4 \cdot 0.2 + 0.232 \cdot 3 = 5.784 \ \epsilon;
M^{X}_{2} = 2.4 \cdot 0.2 + 0.232 \cdot 3 = 1.176 \ \varepsilon;
M^{X}_{301} = (5,784 + 1,176) \cdot 49 \cdot 2 \cdot 10^{-6} = 0,0006821 \text{ m/zod};
G^{X}_{301} = (5,784 \cdot 1 + 1,176 \cdot 1) / 3600 = 0,0019333 \ z/c;
\mathbf{M}^{\text{X-10..-15}^{\circ}\text{C}}_{l} = 0.384 \cdot 20 + 2.4 \cdot 0.2 + 0.232 \cdot 3 = 8.856 \, \varepsilon;
```

Взам.

Подп. и дата

읟

Изм. Кол.уч Лист №док

Подп.

04/2022-151-00000-OBOC-TY

```
M^{X-10..-15^{\circ}C}_{2} = 2.4 \cdot 0.2 + 0.232 \cdot 3 = 1.176 \ \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{301} = (8,856 + 1,176) \cdot 39 \cdot 2 \cdot 10^{-6} = 0,0007825 \text{ m/zod};
\mathbf{G}^{\text{X-10..-15}^{\circ}\text{C}}_{301} = (8.856 \cdot 1 + 1.176 \cdot 1) / 3600 = 0.0027867 \ z/c;
M = 0.0014854 + 0.0008195 + 0.0006821 + 0.0007825 = 0.0037695 \text{ m/zod};
G = \max\{0,0009378; 0,0012933; 0,0019333; 0,0027867\} = 0,0027867 \ \epsilon/c.
M^{T}_{I} = 0.0416 \cdot 4 + 0.39 \cdot 0.2 + 0.0377 \cdot 3 = 0.3575 \ \epsilon;
M^{\mathrm{T}}_{2} = 0.39 \cdot 0.2 + 0.0377 \cdot 3 = 0.1911 \, \varepsilon;
M_{304}^{T} = (0.3575 + 0.1911) \cdot 220 \cdot 2 \cdot 10^{-6} = 0.0002414 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{304} = (0.3575 \cdot 1 + 0.1911 \cdot 1) / 3600 = 0.0001524 \, \epsilon/c;
\mathbf{M}^{\Pi}_{I} = 0.0624 \cdot 6 + 0.39 \cdot 0.2 + 0.0377 \cdot 3 = 0.5655 \, \varepsilon;
M^{\Pi_2} = 0.39 \cdot 0.2 + 0.0377 \cdot 3 = 0.1911 \ \varepsilon
M^{\Pi}_{304} = (0.5655 + 0.1911) \cdot 88 \cdot 2 \cdot 10^{-6} = 0.0001332 \, \text{m/cod};
G^{\Pi}_{304} = (0.5655 \cdot 1 + 0.1911 \cdot 1) / 3600 = 0.0002102 \ z/c;
\mathbf{M}^{X}_{I} = 0.0624 \cdot 12 + 0.39 \cdot 0.2 + 0.0377 \cdot 3 = 0.9399 \ \varepsilon;
M^{X}_{2} = 0.39 \cdot 0.2 + 0.0377 \cdot 3 = 0.1911 \ \epsilon;
M^{X}_{304} = (0.9399 + 0.1911) \cdot 49 \cdot 2 \cdot 10^{-6} = 0.0001108 \text{ m/zod};
G_{304}^{X} = (0.9399 \cdot 1 + 0.1911 \cdot 1) / 3600 = 0.0003142 \ z/c;
\mathbf{M}^{\text{X-10..-15}^{\circ}\text{C}}_{I} = 0.0624 \cdot 20 + 0.39 \cdot 0.2 + 0.0377 \cdot 3 = 1.4391 \text{ z};
M^{X-10..-15^{\circ}C}_{2} = 0.39 \cdot 0.2 + 0.0377 \cdot 3 = 0.1911 \ \epsilon;
\mathbf{M}^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (1,4391 + 0,1911) \cdot 39 \cdot 2 \cdot 10^{-6} = 0,0001272 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{304} = (1,4391 \cdot 1 + 0,1911 \cdot 1) / 3600 = 0,0004528 \ z/c;
M = 0.0002414 + 0.0001332 + 0.0001108 + 0.0001272 = 0.0006125 \text{ m/zod};
G = \max\{0,0001524; 0,0002102; 0,0003142; 0,0004528\} = 0,0004528 \ \epsilon/c.
M^{\Gamma}_{I} = 0.012 \cdot 4 + 0.15 \cdot 0.2 + 0.012 \cdot 3 = 0.114 \, \epsilon;
M^{\mathrm{T}}_{2} = 0.15 \cdot 0.2 + 0.012 \cdot 3 = 0.066 \, \varepsilon;
M_{328}^{T} = (0.114 + 0.066) \cdot 220 \cdot 2 \cdot 10^{-6} = 0.0000792 \text{ m/zod};
G^{T}_{328} = (0.114 \cdot 1 + 0.066 \cdot 1) / 3600 = 0.00005 \ z/c;
M^{\Pi}_{I} = 0.0216 \cdot 6 + 0.207 \cdot 0.2 + 0.012 \cdot 3 = 0.207 \ \varepsilon;
M^{\Pi}_{2} = 0.15 \cdot 0.2 + 0.012 \cdot 3 = 0.066 \ \epsilon;
M^{\Pi}_{328} = (0.207 + 0.066) \cdot 88 \cdot 2 \cdot 10^{-6} = 0.000048 \text{ m/zod};
G^{\Pi}_{328} = (0.207 \cdot 1 + 0.066 \cdot 1) / 3600 = 0.0000758 \, z/c;
M^{X}_{I} = 0.024 \cdot 12 + 0.23 \cdot 0.2 + 0.012 \cdot 3 = 0.37 \ \varepsilon;
M^{X}_{2} = 0.15 \cdot 0.2 + 0.012 \cdot 3 = 0.066 \ \epsilon;
M^{X}_{328} = (0.37 + 0.066) \cdot 49 \cdot 2 \cdot 10^{-6} = 0.0000427 \text{ m/zod};
G^{X}_{328} = (0.37 \cdot 1 + 0.066 \cdot 1) / 3600 = 0.0001211 \ z/c;
\mathbf{M}^{\text{X-10..-15}^{\circ}\text{C}}_{l} = 0.024 \cdot 20 + 0.23 \cdot 0.2 + 0.012 \cdot 3 = 0.562 \, \varepsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{2} = 0.15 \cdot 0.2 + 0.012 \cdot 3 = 0.066 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{328} = (0.562 + 0.066) \cdot 39 \cdot 2 \cdot 10^{-6} = 0.000049 \,\text{m/zod};
G^{X-10..-15^{\circ}C}_{328} = (0.562 \cdot 1 + 0.066 \cdot 1) / 3600 = 0.0001744 \ z/c;
M = 0.0000792 + 0.000048 + 0.0000427 + 0.000049 = 0.000219 \text{ m/zod};
```

Взам.

Подп. и дата

읟

Изм. Кол.уч Лист №док

Подп.

```
G = \max\{0.00005; 0.0000758; 0.0001211; 0.0001744\} = 0.0001744 \ z/c.
M^{T_I} = 0.081 \cdot 4 + 0.4 \cdot 0.2 + 0.081 \cdot 3 = 0.647 \ \varepsilon;
M^{T}_{2} = 0.4 \cdot 0.2 + 0.081 \cdot 3 = 0.323 \ z
M^{T}_{330} = (0.647 + 0.323) \cdot 220 \cdot 2 \cdot 10^{-6} = 0.0004268 \text{ m/zod};
G^{T}_{330} = (0.647 \cdot 1 + 0.323 \cdot 1) / 3600 = 0.0002694 \, z/c;
M^{\Pi_I} = 0.0873 \cdot 6 + 0.45 \cdot 0.2 + 0.081 \cdot 3 = 0.8568 \ \varepsilon;
\mathbf{M}^{\Pi}_{2} = 0.4 \cdot 0.2 + 0.081 \cdot 3 = 0.323 \ \varepsilon;
M^{\Pi}_{330} = (0.8568 + 0.323) \cdot 88 \cdot 2 \cdot 10^{-6} = 0.0002076 \text{ m/zod};
G^{\Pi}_{330} = (0.8568 \cdot 1 + 0.323 \cdot 1) / 3600 = 0.0003277 \ z/c;
M^{X}_{I} = 0.097 \cdot 12 + 0.5 \cdot 0.2 + 0.081 \cdot 3 = 1.507 \ \varepsilon;
M^{X}_{2} = 0.4 \cdot 0.2 + 0.081 \cdot 3 = 0.323 \ z
M_{330}^{X} = (1,507 + 0,323) \cdot 49 \cdot 2 \cdot 10^{-6} = 0,0001793 \text{ m/zod};
G^{X}_{330} = (1,507 \cdot 1 + 0,323 \cdot 1) / 3600 = 0,0005083 \ z/c;
\mathbf{M}^{\text{X}-10..-15^{\circ}\text{C}}_{l} = 0.097 \cdot 20 + 0.5 \cdot 0.2 + 0.081 \cdot 3 = 2.283 \ \varepsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{2} = 0.4 \cdot 0.2 + 0.081 \cdot 3 = 0.323 \ \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{330} = (2,283 + 0,323) \cdot 39 \cdot 2 \cdot 10^{-6} = 0,0002033 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{330} = (2,283 \cdot 1 + 0,323 \cdot 1) / 3600 = 0,0007239 \ z/c;
M = 0.0004268 + 0.0002076 + 0.0001793 + 0.0002033 = 0.0010171 \text{ m/zod};
G = \max\{0.0002694; 0.0003277; 0.0005083; 0.0007239\} = 0.0007239 \ \epsilon/c.
M^{T}_{I} = 0.86 \cdot 4 + 4.1 \cdot 0.2 + 0.54 \cdot 3 = 5.88 \ \epsilon;
M^{\mathrm{T}}_{2} = 4.1 \cdot 0.2 + 0.54 \cdot 3 = 2.44 \, \varepsilon;
M^{T}_{337} = (5.88 + 2.44) \cdot 220 \cdot 2 \cdot 10^{-6} = 0.0036608 \text{ m/zod};
G^{T}_{337} = (5.88 \cdot 1 + 2.44 \cdot 1) / 3600 = 0.0023111 \ z/c;
M^{\Pi}_{I} = 1.161 \cdot 6 + 4.41 \cdot 0.2 + 0.54 \cdot 3 = 9.468 \ \varepsilon;
M^{\Pi}_{2} = 4.1 \cdot 0.2 + 0.54 \cdot 3 = 2.44 \ \varepsilon;
M^{\Pi}_{337} = (9,468 + 2,44) \cdot 88 \cdot 2 \cdot 10^{-6} = 0,0020958 \text{ m/zod};
G^{\Pi}_{337} = (9,468 \cdot 1 + 2,44 \cdot 1) / 3600 = 0,0033078 \, \epsilon/c;
M^{X_I} = 1.29 \cdot 12 + 4.9 \cdot 0.2 + 0.54 \cdot 3 = 18.08 \ \varepsilon;
M^{X}_{2} = 4.1 \cdot 0.2 + 0.54 \cdot 3 = 2.44 \ \epsilon;
M^{X}_{337} = (18,08 + 2,44) \cdot 49 \cdot 2 \cdot 10^{-6} = 0,002011 \text{ m/zod};
G^{X}_{337} = (18.08 \cdot 1 + 2.44 \cdot 1) / 3600 = 0.0057 \, e/c;
M^{X-10..-15^{\circ}C}_{I} = 1,29 \cdot 20 + 4,9 \cdot 0,2 + 0,54 \cdot 3 = 28,4 \ \epsilon;
M^{X-10..-15^{\circ}C}_{2} = 4.1 \cdot 0.2 + 0.54 \cdot 3 = 2.44 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (28.4 + 2.44) \cdot 39 \cdot 2 \cdot 10^{-6} = 0.0024055 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{337} = (28.4 \cdot 1 + 2.44 \cdot 1) / 3600 = 0.0085667 \ z/c;
M = 0.0036608 + 0.0020958 + 0.002011 + 0.0024055 = 0.0101731 \text{ m/zod}:
G = \max\{0.0023111; 0.0033078; 0.0057; 0.0085667\} = 0.0085667 \ c/c.
M^{T}_{I} = 0.38 \cdot 4 + 0.6 \cdot 0.2 + 0.27 \cdot 3 = 2.45 \ \epsilon;
\mathbf{M}^{\mathrm{T}}_{2} = 0.6 \cdot 0.2 + 0.27 \cdot 3 = 0.93 \ \varepsilon;
M^{T}_{2732} = (2.45 + 0.93) \cdot 220 \cdot 2 \cdot 10^{-6} = 0.0014872 \text{ m/sod};
```

Взам.

Подп. и дата

읟

Изм. Кол.уч Лист №док

Подп.

Дата

```
G^{T}_{2732} = (2.45 \cdot 1 + 0.93 \cdot 1) / 3600 = 0.0009389 \ z/c;
M^{\Pi}_{I} = 0.414 \cdot 6 + 0.63 \cdot 0.2 + 0.27 \cdot 3 = 3.42 \ \varepsilon;
M^{\Pi}_{2} = 0.6 \cdot 0.2 + 0.27 \cdot 3 = 0.93 \ z
M^{\Pi}_{2732} = (3.42 + 0.93) \cdot 88 \cdot 2 \cdot 10^{-6} = 0.0007656 \text{ m/zod};
G^{\Pi}_{2732} = (3.42 \cdot 1 + 0.93 \cdot 1) / 3600 = 0.0012083 \ z/c;
M^{X_I} = 0.46 \cdot 12 + 0.7 \cdot 0.2 + 0.27 \cdot 3 = 6.47 \ \varepsilon;
M^{X}_{2} = 0.6 \cdot 0.2 + 0.27 \cdot 3 = 0.93 \ \varepsilon;
M^{X}_{2732} = (6,47+0,93) \cdot 49 \cdot 2 \cdot 10^{-6} = 0.0007252 \text{ m/zod}:
G^{X}_{2732} = (6.47 \cdot 1 + 0.93 \cdot 1) / 3600 = 0.0020556 \, c/c;
M^{X-10..-15^{\circ}C}_{l} = 0.46 \cdot 20 + 0.7 \cdot 0.2 + 0.27 \cdot 3 = 10.15 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 0.6 \cdot 0.2 + 0.27 \cdot 3 = 0.93 \text{ z};
M^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = (10.15 + 0.93) \cdot 39 \cdot 2 \cdot 10^{-6} = 0.0008642 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2732} = (10.15 \cdot 1 + 0.93 \cdot 1) / 3600 = 0.0030778 \ z/c;
M = 0.0014872 + 0.0007656 + 0.0007252 + 0.0008642 = 0.0038422 \text{ m/zod}
G = \max\{0.0009389; 0.0012083; 0.0020556; 0.0030778\} = 0.0030778 \ z/c.
Автобетоносмеситель
M^{T}_{I} = 0.496 \cdot 4 + 3.12 \cdot 0.2 + 0.448 \cdot 3 = 3.952 \ \varepsilon
M^{\mathrm{T}}_{2} = 3.12 \cdot 0.2 + 0.448 \cdot 3 = 1.968 \, \varepsilon;
M^{T}_{301} = (3.952 + 1.968) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0013024 \, \text{m/zod};
\mathbf{G}^{\mathrm{T}}_{301} = (3.952 \cdot 1 + 1.968 \cdot 1) / 3600 = 0.0016444 \, \epsilon/c;
M^{\Pi}_{I} = 0.744 \cdot 6 + 3.12 \cdot 0.2 + 0.448 \cdot 3 = 6.432 \ \varepsilon;
M^{\Pi}_{2} = 3.12 \cdot 0.2 + 0.448 \cdot 3 = 1.968 \ \varepsilon;
M^{\Pi}_{301} = (6,432 + 1,968) \cdot 88 \cdot 1 \cdot 10^{-6} = 0,0007392 \text{ m/zod};
G^{\Pi}_{301} = (6,432 \cdot 1 + 1,968 \cdot 1) / 3600 = 0,0023333 \ z/c;
M^{X_I} = 0.744 \cdot 12 + 3.12 \cdot 0.2 + 0.448 \cdot 3 = 10.896 \ \varepsilon
M^{X}_{2} = 3.12 \cdot 0.2 + 0.448 \cdot 3 = 1.968 \ \epsilon;
M^{X}_{301} = (10.896 + 1.968) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0006303 \text{ m/zod};
G^{X}_{301} = (10.896 \cdot 1 + 1.968 \cdot 1) / 3600 = 0.0035733 \ z/c;
M^{\text{X-10..-15°C}}_{l} = 0.744 \cdot 20 + 3.12 \cdot 0.2 + 0.448 \cdot 3 = 16.848 \, \epsilon;
M^{X-10..-15^{\circ}C}_{2} = 3.12 \cdot 0.2 + 0.448 \cdot 3 = 1.968 \ \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{301} = (16.848 + 1.968) \cdot 39 \cdot 1 \cdot 10^{-6} = 0.0007338 \, \text{m/zod};
\mathbf{G}^{X-10..-15^{\circ}C}_{301} = (16.848 \cdot 1 + 1.968 \cdot 1) / 3600 = 0.0052267 \, \epsilon/c;
M = 0.0013024 + 0.0007392 + 0.0006303 + 0.0007338 = 0.0034058 \text{ m/zod};
G = \max\{0.0016444; 0.0023333; 0.0035733; 0.0052267\} = 0.0052267 \ c/c.
M^{\Gamma_I} = 0.0806 \cdot 4 + 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 0.6422 \ \varepsilon
M^{T}_{2} = 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 0.3198 \ \epsilon;
M^{\mathrm{T}}_{304} = (0.6422 + 0.3198) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0002116 \, \text{m/zod};
```

Инв. № подл. Подп. и дата Взам. Инв.

Изм. Кол.уч Лист №док Подп. Дата

 $G^{T}_{304} = (0.6422 \cdot 1 + 0.3198 \cdot 1) / 3600 = 0.0002672 \ z/c;$

 $M^{\Pi}_{I} = 0.121 \cdot 6 + 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 1.0458 \ \varepsilon;$

04/2022-151-00000-OBOC-TY

```
M^{\Pi}_{2} = 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 0.3198 \ \varepsilon;
M^{\Pi}_{304} = (1,0458 + 0,3198) \cdot 88 \cdot 1 \cdot 10^{-6} = 0,0001202 \text{ m/zod};
\mathbf{G}^{\Pi}_{304} = (1,0458 \cdot 1 + 0.3198 \cdot 1) / 3600 = 0.0003793 \ \epsilon/c;
\mathbf{M}^{X}_{I} = 0.121 \cdot 12 + 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 1.7718 \ \varepsilon;
M^{X}_{2} = 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 0.3198 \ \varepsilon;
M^{X}_{304} = (1,7718 + 0.3198) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0001025 \text{ m/zod};
G^{X}_{304} = (1,7718 \cdot 1 + 0,3198 \cdot 1) / 3600 = 0,000581 \ z/c;
M^{X-10..-15^{\circ}C}_{I} = 0.121 \cdot 20 + 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 2.7398 \, \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 0.3198 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (2,7398 + 0,3198) \cdot 39 \cdot 1 \cdot 10^{-6} = 0,0001193 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{304} = (2,7398 \cdot 1 + 0.3198 \cdot 1) / 3600 = 0.0008499 \ z/c;
M = 0.0002116 + 0.0001202 + 0.0001025 + 0.0001193 = 0.0005536 \text{ m/zod}
G = \max\{0.0002672; 0.0003793; 0.000581; 0.0008499\} = 0.0008499 \ z/c.
M^{T}_{I} = 0.023 \cdot 4 + 0.3 \cdot 0.2 + 0.023 \cdot 3 = 0.221 z:
\mathbf{M}^{\mathrm{T}}_{2} = 0.3 \cdot 0.2 + 0.023 \cdot 3 = 0.129 \ \varepsilon;
M_{328}^{T} = (0.221 + 0.129) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.000077 \text{ m/zod};
G^{T}_{328} = (0.221 \cdot 1 + 0.129 \cdot 1) / 3600 = 0.0000972 \ z/c;
M^{\Pi}_{I} = 0.0414 \cdot 6 + 0.405 \cdot 0.2 + 0.023 \cdot 3 = 0.3984 \ \epsilon;
M^{\Pi}_{2} = 0.3 \cdot 0.2 + 0.023 \cdot 3 = 0.129 \ \varepsilon;
M^{\Pi}_{328} = (0.3984 + 0.129) \cdot 88 \cdot 1 \cdot 10^{-6} = 0.0000464 \,\text{m/zod};
G^{\Pi}_{328} = (0.3984 \cdot 1 + 0.129 \cdot 1) / 3600 = 0.0001465 \, c/c;
M^{X}_{I} = 0.046 \cdot 12 + 0.45 \cdot 0.2 + 0.023 \cdot 3 = 0.711 \ \epsilon
M^{X}_{2} = 0.3 \cdot 0.2 + 0.023 \cdot 3 = 0.129 \ \epsilon;
M_{328}^{X} = (0.711 + 0.129) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0000412 \text{ m/zod};
G^{X}_{328} = (0.711 \cdot 1 + 0.129 \cdot 1) / 3600 = 0.0002333 \ z/c;
M^{X-10..-15^{\circ}C}_{I} = 0.046 \cdot 20 + 0.45 \cdot 0.2 + 0.023 \cdot 3 = 1.079 \ \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 0.3 \cdot 0.2 + 0.023 \cdot 3 = 0.129 \ \epsilon
M^{\text{X-10..-15}^{\circ}\text{C}}_{328} = (1,079 + 0,129) \cdot 39 \cdot 1 \cdot 10^{-6} = 0,0000471 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{328} = (1.079 \cdot 1 + 0.129 \cdot 1) / 3600 = 0.0003356  z/c;
M = 0.000077 + 0.0000464 + 0.0000412 + 0.0000471 = 0.0002117 \text{ m/zod};
G = \max\{0,0000972; 0,0001465; 0,0002333; 0,0003356\} = 0,0003356 \ c/c.
M^{T}_{I} = 0.112 \cdot 4 + 0.69 \cdot 0.2 + 0.112 \cdot 3 = 0.922 \ \varepsilon;
\mathbf{M}^{\mathrm{T}}_{2} = 0.69 \cdot 0.2 + 0.112 \cdot 3 = 0.474 \, \varepsilon;
M_{330}^{T} = (0.922 + 0.474) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0003071 \text{ m/zod};
G^{T}_{330} = (0.922 \cdot 1 + 0.474 \cdot 1) / 3600 = 0.0003878 \ z/c;
M^{\Pi_I} = 0.1206 \cdot 6 + 0.774 \cdot 0.2 + 0.112 \cdot 3 = 1.2144 \,\varepsilon;
M^{\Pi}_{2} = 0.69 \cdot 0.2 + 0.112 \cdot 3 = 0.474 \ \varepsilon;
M^{\Pi}_{330} = (1,2144 + 0,474) \cdot 88 \cdot 1 \cdot 10^{-6} = 0,0001486 \text{ m/zod};
G^{\Pi}_{330} = (1,2144 \cdot 1 + 0,474 \cdot 1) / 3600 = 0,000469 \ z/c;
M^{X}_{I} = 0.134 \cdot 12 + 0.86 \cdot 0.2 + 0.112 \cdot 3 = 2.116 \ \epsilon;
```

Взам.

Подп. и дата

읟

Изм. Кол.уч Лист №док

Подп.

Дата

```
M^{X}_{2} = 0.69 \cdot 0.2 + 0.112 \cdot 3 = 0.474 \ \varepsilon;
M^{X}_{330} = (2,116 + 0,474) \cdot 49 \cdot 1 \cdot 10^{-6} = 0,0001269 \text{ m/zod};
G^{X}_{330} = (2,116 \cdot 1 + 0,474 \cdot 1) / 3600 = 0,0007194 \ z/c;
\mathbf{M}^{\text{X}-10..-15^{\circ}\text{C}}_{l} = 0.134 \cdot 20 + 0.86 \cdot 0.2 + 0.112 \cdot 3 = 3.188 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 0.69 \cdot 0.2 + 0.112 \cdot 3 = 0.474 \text{ z};
M^{\text{X-10..-15}^{\circ}\text{C}}_{330} = (3,188 + 0,474) \cdot 39 \cdot 1 \cdot 10^{-6} = 0,0001428 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{330} = (3,188 \cdot 1 + 0,474 \cdot 1) / 3600 = 0,0010172 \ z/c;
M = 0.0003071 + 0.0001486 + 0.0001269 + 0.0001428 = 0.0007254 \text{ m/zod}:
G = \max\{0,0003878; 0,000469; 0,0007194; 0,0010172\} = 0,0010172 \ \epsilon/c.
M^{T}_{I} = 1,65 \cdot 4 + 6 \cdot 0,2 + 1,03 \cdot 3 = 10,89 \ z;
M^{T}_{2} = 6 \cdot 0.2 + 1.03 \cdot 3 = 4.29 \ \epsilon
M^{T}_{337} = (10.89 + 4.29) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0033396 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{337} = (10.89 \cdot 1 + 4.29 \cdot 1) / 3600 = 0.0042167 \ \epsilon/c;
M^{\Pi}_{I} = 2.25 \cdot 6 + 6.48 \cdot 0.2 + 1.03 \cdot 3 = 17.886 \ \epsilon
M^{\Pi}_{2} = 6 \cdot 0.2 + 1.03 \cdot 3 = 4.29 \ \varepsilon;
M^{\Pi}_{337} = (17,886 + 4,29) \cdot 88 \cdot 1 \cdot 10^{-6} = 0,0019515 \text{ m/zod};
G^{\Pi}_{337} = (17.886 \cdot 1 + 4.29 \cdot 1) / 3600 = 0.00616 \, c/c;
M_{I}^{X} = 2.5 \cdot 12 + 7.2 \cdot 0.2 + 1.03 \cdot 3 = 34.53 \ \epsilon;
M^{X}_{2} = 6 \cdot 0.2 + 1.03 \cdot 3 = 4.29 \ \epsilon;
M^{X}_{337} = (34,53 + 4,29) \cdot 49 \cdot 1 \cdot 10^{-6} = 0,0019022 \text{ m/zod};
G^{X}_{337} = (34,53 \cdot 1 + 4,29 \cdot 1) / 3600 = 0,0107833 \ z/c;
M^{X-10..-15^{\circ}C}_{l} = 2.5 \cdot 20 + 7.2 \cdot 0.2 + 1.03 \cdot 3 = 54.53 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 6 \cdot 0.2 + 1.03 \cdot 3 = 4.29 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (54.53 + 4.29) \cdot 39 \cdot 1 \cdot 10^{-6} = 0.002294 \, \text{m/zod};
G^{X-10..-15^{\circ}C}_{337} = (54.53 \cdot 1 + 4.29 \cdot 1) / 3600 = 0.0163389 \ z/c;
M = 0.0033396 + 0.0019515 + 0.0019022 + 0.002294 = 0.0094872 \text{ m/zod};
G = \max\{0.0042167; 0.00616; 0.0107833; 0.0163389\} = 0.0163389 \ \epsilon/c.
M^{T}_{I} = 0.8 \cdot 4 + 0.8 \cdot 0.2 + 0.57 \cdot 3 = 5.07 \ \varepsilon;
\mathbf{M}^{\mathrm{T}}_{2} = 0.8 \cdot 0.2 + 0.57 \cdot 3 = 1.87 \, \varepsilon;
M^{\mathrm{T}}_{2732} = (5.07 + 1.87) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0015268 \, \text{m/zod};
G^{T}_{2732} = (5.07 \cdot 1 + 1.87 \cdot 1) / 3600 = 0.0019278 \ z/c;
M^{\Pi}_{I} = 0.864 \cdot 6 + 0.9 \cdot 0.2 + 0.57 \cdot 3 = 7.074 \ \varepsilon;
M^{\Pi}_{2} = 0.8 \cdot 0.2 + 0.57 \cdot 3 = 1.87 \ \varepsilon;
M^{\Pi}_{2732} = (7,074 + 1,87) \cdot 88 \cdot 1 \cdot 10^{-6} = 0,0007871 \text{ m/zod};
G^{\Pi}_{2732} = (7,074 \cdot 1 + 1,87 \cdot 1) / 3600 = 0,0024844 \, z/c;
M_{I}^{X} = 0.96 \cdot 12 + 1 \cdot 0.2 + 0.57 \cdot 3 = 13.43 \ \epsilon:
M^{X}_{2} = 0.8 \cdot 0.2 + 0.57 \cdot 3 = 1.87 \ z;
M^{X}_{2732} = (13,43 + 1,87) \cdot 49 \cdot 1 \cdot 10^{-6} = 0,0007497 \text{ m/zod};
G^{X}_{2732} = (13.43 \cdot 1 + 1.87 \cdot 1) / 3600 = 0.00425 \ \epsilon/c;
M^{\text{X-}10..-15^{\circ}\text{C}}_{I} = 0.96 \cdot 20 + 1 \cdot 0.2 + 0.57 \cdot 3 = 21.11 \text{ z};
```

Взам.

Подп. и дата

읟

Изм. Кол.уч Лист №док

Подп.

Дата

```
M^{\text{X-10..-15}^{\circ}\text{C}}_{2} = 0.8 \cdot 0.2 + 0.57 \cdot 3 = 1.87 \text{ z};
M^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = (21,11+1,87) \cdot 39 \cdot 1 \cdot 10^{-6} = 0,0008962 \text{ m/zod};
\mathbf{G}^{\text{X-10..-15}^{\circ}\text{C}}_{2732} = (21,11 \cdot 1 + 1,87 \cdot 1) / 3600 = 0,0063833 \ \epsilon/c;
M = 0.0015268 + 0.0007871 + 0.0007497 + 0.0008962 = 0.0039598 \text{ m/zod};
G = \max\{0.0019278; 0.0024844; 0.00425; 0.0063833\} = 0.0063833 \ \epsilon/c.
Тягач, полуприцеп-тяжеловоз
M^{T}_{I} = 0.408 \cdot 4 + 2.72 \cdot 0.2 + 0.368 \cdot 3 = 3.28 \ \epsilon;
M^{\mathrm{T}}_{2} = 2,72 \cdot 0,2 + 0,368 \cdot 3 = 1,648 \, \varepsilon;
M_{301}^{T} = (3,28 + 1,648) \cdot 220 \cdot 1 \cdot 10^{-6} = 0,0010842 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{301} = (3.28 \cdot 1 + 1.648 \cdot 1) / 3600 = 0.0013689 \, \epsilon/c;
M^{\Pi}_{I} = 0.616 \cdot 6 + 2.72 \cdot 0.2 + 0.368 \cdot 3 = 5.344 \, \varepsilon;
M^{\Pi}_{2} = 2,72 \cdot 0,2 + 0,368 \cdot 3 = 1,648 \ \epsilon;
M^{\Pi}_{301} = (5,344 + 1,648) \cdot 88 \cdot 1 \cdot 10^{-6} = 0,0006153 \text{ m/zod};
\mathbf{G}^{\Pi}_{301} = (5,344 \cdot 1 + 1,648 \cdot 1) / 3600 = 0,0019422 \, \epsilon/c;
M^{X}_{I} = 0.616 \cdot 12 + 2.72 \cdot 0.2 + 0.368 \cdot 3 = 9.04 \ \varepsilon;
M^{X_2} = 2.72 \cdot 0.2 + 0.368 \cdot 3 = 1.648 \ \varepsilon;
M^{X}_{301} = (9.04 + 1.648) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0005237 \text{ m/zod};
G^{X}_{301} = (9.04 \cdot 1 + 1.648 \cdot 1) / 3600 = 0.0029689 \ z/c;
M^{X-10..-15^{\circ}C}_{I} = 0.616 \cdot 20 + 2.72 \cdot 0.2 + 0.368 \cdot 3 = 13.968 \, \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{2} = 2.72 \cdot 0.2 + 0.368 \cdot 3 = 1.648 \ \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{301} = (13,968 + 1,648) \cdot 39 \cdot 1 \cdot 10^{-6} = 0,000609 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{301} = (13.968 \cdot 1 + 1.648 \cdot 1) / 3600 = 0.0043378 \, z/c;
M = 0.0010842 + 0.0006153 + 0.0005237 + 0.000609 = 0.0028322 \text{ m/zod}
G = \max\{0.0013689; 0.0019422; 0.0029689; 0.0043378\} = 0.0043378 \ z/c.
M^{T}_{I} = 0.0663 \cdot 4 + 0.442 \cdot 0.2 + 0.0598 \cdot 3 = 0.533 \ \varepsilon;
M^{T}_{2} = 0.442 \cdot 0.2 + 0.0598 \cdot 3 = 0.2678 \ \epsilon;
M^{\mathrm{T}}_{304} = (0.533 + 0.2678) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0001762 \, \text{m/zod};
G^{T}_{304} = (0.533 \cdot 1 + 0.2678 \cdot 1) / 3600 = 0.0002224 \ z/c;
M^{\Pi}_{I} = 0.1 \cdot 6 + 0.442 \cdot 0.2 + 0.0598 \cdot 3 = 0.8678 \ \varepsilon;
\mathbf{M}^{\Pi}_{2} = 0.442 \cdot 0.2 + 0.0598 \cdot 3 = 0.2678 \ \varepsilon;
M^{\Pi}_{304} = (0.8678 + 0.2678) \cdot 88 \cdot 1 \cdot 10^{-6} = 0.0000999 \text{ m/zod};
\mathbf{G}^{\Pi}_{304} = (0.8678 \cdot 1 + 0.2678 \cdot 1) / 3600 = 0.0003154 \, z/c;
M_I^{X} = 0.1 \cdot 12 + 0.442 \cdot 0.2 + 0.0598 \cdot 3 = 1.4678 \ \varepsilon;
M^{X}_{2} = 0.442 \cdot 0.2 + 0.0598 \cdot 3 = 0.2678 \ \varepsilon;
M^{X}_{304} = (1,4678 + 0,2678) \cdot 49 \cdot 1 \cdot 10^{-6} = 0,000085 \text{ m/zod};
G_{304}^{X} = (1.4678 \cdot 1 + 0.2678 \cdot 1) / 3600 = 0.0004821 \ z/c;
M^{X-10..-15^{\circ}C}_{l} = 0.1 \cdot 20 + 0.442 \cdot 0.2 + 0.0598 \cdot 3 = 2.2678 \, \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{2} = 0.442 \cdot 0.2 + 0.0598 \cdot 3 = 0.2678 \text{ z};
M^{\text{X-10..-15}^{\circ}\text{C}}_{304} = (2,2678 + 0,2678) \cdot 39 \cdot 1 \cdot 10^{-6} = 0,0000989 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{304} = (2,2678 \cdot 1 + 0,2678 \cdot 1) / 3600 = 0,0007043 \ z/c;
```

Взам.

Подп. и дата

읟

Изм. Кол.уч Лист №док

Подп.

```
M = 0.0001762 + 0.0000999 + 0.000085 + 0.0000989 = 0.00046 \, \text{m/zod};
G = \max\{0,0002224; 0,0003154; 0,0004821; 0,0007043\} = 0,0007043 \ c/c.
M^{T}_{I} = 0.019 \cdot 4 + 0.2 \cdot 0.2 + 0.019 \cdot 3 = 0.173 2:
\mathbf{M}^{\mathrm{T}}_{2} = 0.2 \cdot 0.2 + 0.019 \cdot 3 = 0.097 \ \varepsilon;
M_{328}^{T} = (0.173 + 0.097) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0000594 \text{ m/zod};
G^{T}_{328} = (0.173 \cdot 1 + 0.097 \cdot 1) / 3600 = 0.000075 \ z/c;
M^{\Pi}_{I} = 0.0342 \cdot 6 + 0.27 \cdot 0.2 + 0.019 \cdot 3 = 0.3162 \ \varepsilon;
M^{\Pi}_{2} = 0.2 \cdot 0.2 + 0.019 \cdot 3 = 0.097 \ \varepsilon;
M^{\Pi}_{328} = (0.3162 + 0.097) \cdot 88 \cdot 1 \cdot 10^{-6} = 0.0000364 \, \text{m/zod};
G^{\Pi}_{328} = (0.3162 \cdot 1 + 0.097 \cdot 1) / 3600 = 0.0001148 \, e/c;
M_I^{X} = 0.038 \cdot 12 + 0.3 \cdot 0.2 + 0.019 \cdot 3 = 0.573 \ \varepsilon
M^{X}_{2} = 0.2 \cdot 0.2 + 0.019 \cdot 3 = 0.097 \ \epsilon;
M^{X}_{328} = (0.573 + 0.097) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0000328 \text{ m/zod};
G^{X}_{328} = (0.573 \cdot 1 + 0.097 \cdot 1) / 3600 = 0.0001861 \ z/c;
M^{X-10..-15^{\circ}C}_{I} = 0.038 \cdot 20 + 0.3 \cdot 0.2 + 0.019 \cdot 3 = 0.877 \ \varepsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{2} = 0.2 \cdot 0.2 + 0.019 \cdot 3 = 0.097 \ \epsilon;
M^{X-10..-15^{\circ}C}_{328} = (0.877 + 0.097) \cdot 39 \cdot 1 \cdot 10^{-6} = 0.000038 \, \text{m/200};
G^{X-10..-15^{\circ}C}_{328} = (0.877 \cdot 1 + 0.097 \cdot 1) / 3600 = 0.0002706 \, z/c;
M = 0.0000594 + 0.0000364 + 0.0000328 + 0.000038 = 0.0001666 \text{ m/zod};
G = \max\{0.000075; 0.0001148; 0.0001861; 0.0002706\} = 0.0002706 \ c/c.
M^{T}_{I} = 0.1 \cdot 4 + 0.475 \cdot 0.2 + 0.1 \cdot 3 = 0.795 \ \varepsilon;
M^{T}_{2} = 0.475 \cdot 0.2 + 0.1 \cdot 3 = 0.395 \ \varepsilon;
M^{\mathrm{T}}_{330} = (0.795 + 0.395) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0002618 \, \text{m/zod};
G^{T}_{330} = (0.795 \cdot 1 + 0.395 \cdot 1) / 3600 = 0.0003306 \ z/c;
M^{\Pi_I} = 0.108 \cdot 6 + 0.531 \cdot 0.2 + 0.1 \cdot 3 = 1.0542 \ \varepsilon;
M^{\Pi}_{2} = 0.475 \cdot 0.2 + 0.1 \cdot 3 = 0.395 \ \epsilon;
M^{\Pi}_{330} = (1,0542 + 0,395) \cdot 88 \cdot 1 \cdot 10^{-6} = 0,0001275 \text{ m/zod};
G^{\Pi}_{330} = (1,0542 \cdot 1 + 0,395 \cdot 1) / 3600 = 0,0004026 \, \epsilon/c;
M_I^{X} = 0.12 \cdot 12 + 0.59 \cdot 0.2 + 0.1 \cdot 3 = 1.858 \ \epsilon;
M^{X}_{2} = 0.475 \cdot 0.2 + 0.1 \cdot 3 = 0.395 \ \epsilon;
M^{X}_{330} = (1.858 + 0.395) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0001104 \text{ m/zod};
G_{330}^{X} = (1.858 \cdot 1 + 0.395 \cdot 1) / 3600 = 0.0006258 \ z/c;
M^{X-10..-15^{\circ}C}_{I} = 0.12 \cdot 20 + 0.59 \cdot 0.2 + 0.1 \cdot 3 = 2.818 \ \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{2} = 0.475 \cdot 0.2 + 0.1 \cdot 3 = 0.395 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{330} = (2.818 + 0.395) \cdot 39 \cdot 1 \cdot 10^{-6} = 0.0001253 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{330} = (2.818 \cdot 1 + 0.395 \cdot 1) / 3600 = 0.0008925 \ z/c;
M = 0.0002618 + 0.0001275 + 0.0001104 + 0.0001253 = 0.000625 \text{ m/zod};
G = \max\{0,0003306; 0,0004026; 0,0006258; 0,0008925\} = 0,0008925 \ \epsilon/c.
M^{T}_{I} = 1.34 \cdot 4 + 4.9 \cdot 0.2 + 0.84 \cdot 3 = 8.86 \ \epsilon;
M^{T}_{2} = 4.9 \cdot 0.2 + 0.84 \cdot 3 = 3.5 \ \epsilon;
```

Взам.

Подп.

읟

Изм. Кол.уч Лист №док

Подп.

Дата

```
M^{\mathrm{T}}_{337} = (8.86 + 3.5) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0027192 \, \text{m/zod};
G^{T}_{337} = (8.86 \cdot 1 + 3.5 \cdot 1) / 3600 = 0.0034333 \ z/c;
M^{\Pi}_{I} = 1.8 \cdot 6 + 5.31 \cdot 0.2 + 0.84 \cdot 3 = 14.382 \ \varepsilon
\mathbf{M}^{\Pi}_{2} = 4.9 \cdot 0.2 + 0.84 \cdot 3 = 3.5 \ \varepsilon;
M^{\Pi}_{337} = (14,382 + 3,5) \cdot 88 \cdot 1 \cdot 10^{-6} = 0,0015736 \text{ m/zod};
G^{\Pi}_{337} = (14,382 \cdot 1 + 3,5 \cdot 1) / 3600 = 0,0049672 \, c/c;
\mathbf{M}^{X}_{l} = 2 \cdot 12 + 5.9 \cdot 0.2 + 0.84 \cdot 3 = 27.7 \, \epsilon;
M^{X}_{2} = 4.9 \cdot 0.2 + 0.84 \cdot 3 = 3.5 \ \epsilon;
M^{X}_{337} = (27.7 + 3.5) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0015288 \text{ m/zod};
G^{X}_{337} = (27.7 \cdot 1 + 3.5 \cdot 1) / 3600 = 0.0086667 \, c/c;
M^{X-10..-15^{\circ}C}_{I} = 2 \cdot 20 + 5.9 \cdot 0.2 + 0.84 \cdot 3 = 43.7 \ \varepsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{2} = 4.9 \cdot 0.2 + 0.84 \cdot 3 = 3.5 \text{ z};
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (43.7 + 3.5) \cdot 39 \cdot 1 \cdot 10^{-6} = 0.0018408 \text{ m/zod};
\mathbf{G}^{X-10..-15^{\circ}C}_{337} = (43.7 \cdot 1 + 3.5 \cdot 1) / 3600 = 0.0131111 \ z/c;
M = 0.0027192 + 0.0015736 + 0.0015288 + 0.0018408 = 0.0076624 \text{ m/zod};
G = \max\{0.0034333; 0.0049672; 0.0086667; 0.0131111\} = 0.0131111 \ z/c.
M^{T}_{I} = 0.59 \cdot 4 + 0.7 \cdot 0.2 + 0.42 \cdot 3 = 3.76 \ \epsilon;
M^{\mathrm{T}}_{2} = 0.7 \cdot 0.2 + 0.42 \cdot 3 = 1.4 \, \varepsilon;
M^{T}_{2732} = (3.76 + 1.4) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0011352 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{2732} = (3.76 \cdot 1 + 1.4 \cdot 1) / 3600 = 0.0014333 \ z/c;
M^{\Pi}_{I} = 0.639 \cdot 6 + 0.72 \cdot 0.2 + 0.42 \cdot 3 = 5.238 \ \varepsilon;
M^{\Pi}_{2} = 0.7 \cdot 0.2 + 0.42 \cdot 3 = 1.4 \ \varepsilon;
M^{\Pi}_{2732} = (5,238 + 1,4) \cdot 88 \cdot 1 \cdot 10^{-6} = 0,0005841 \text{ m/zod};
G^{\Pi}_{2732} = (5,238 \cdot 1 + 1,4 \cdot 1) / 3600 = 0,0018439 \ \epsilon/c;
M^{X}_{I} = 0.71 \cdot 12 + 0.8 \cdot 0.2 + 0.42 \cdot 3 = 9.94 \ \varepsilon;
M^{X}_{2} = 0.7 \cdot 0.2 + 0.42 \cdot 3 = 1.4 z;
M^{X}_{2732} = (9.94 + 1.4) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0005557 \text{ m/zod};
G^{X}_{2732} = (9.94 \cdot 1 + 1.4 \cdot 1) / 3600 = 0.00315 \, e/c;
M^{X-10..-15^{\circ}C}_{I} = 0.71 \cdot 20 + 0.8 \cdot 0.2 + 0.42 \cdot 3 = 15.62 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 0.7 \cdot 0.2 + 0.42 \cdot 3 = 1.4 \text{ z};
M^{\text{X-10..-15}^{\circ}\text{C}}_{2732} = (15,62+1,4) \cdot 39 \cdot 1 \cdot 10^{-6} = 0,0006638 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2732} = (15,62 \cdot 1 + 1,4 \cdot 1) / 3600 = 0,0047278 \ z/c;
M = 0.0011352 + 0.0005841 + 0.0005557 + 0.0006638 = 0.0029388 \text{ m/zod};
G = \max\{0.0014333; 0.0018439; 0.00315; 0.0047278\} = 0.0047278 \ \epsilon/c.
Автокран на колесном ходу
M^{T}_{I} = 0.496 \cdot 4 + 3.12 \cdot 0.2 + 0.448 \cdot 3 = 3.952 \ \varepsilon;
M^{\mathrm{T}}_{2} = 3.12 \cdot 0.2 + 0.448 \cdot 3 = 1.968 \, \varepsilon;
M^{T}_{301} = (3.952 + 1.968) \cdot 220 \cdot 2 \cdot 10^{-6} = 0.0026048 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{301} = (3.952 \cdot 1 + 1.968 \cdot 1) / 3600 = 0.0016444 \, \epsilon/c;
```

Взам.

Подп.

읟

Изм. Кол.уч Лист №док

Подп.

Дата

```
M^{\Pi}_{I} = 0.744 \cdot 6 + 3.12 \cdot 0.2 + 0.448 \cdot 3 = 6.432 \ \varepsilon;
M^{\Pi}_{2} = 3,12 \cdot 0,2 + 0,448 \cdot 3 = 1,968 \ \epsilon;
M^{\Pi_{301}} = (6.432 + 1.968) \cdot 88 \cdot 2 \cdot 10^{-6} = 0.0014784 \text{ m/zod}
\mathbf{G}^{\Pi}_{301} = (6.432 \cdot 1 + 1.968 \cdot 1) / 3600 = 0.0023333 \, \text{z/c};
M^{X_I} = 0.744 \cdot 12 + 3.12 \cdot 0.2 + 0.448 \cdot 3 = 10.896 \ \varepsilon;
M^{X}_{2} = 3.12 \cdot 0.2 + 0.448 \cdot 3 = 1.968 \ \epsilon;
M_{301}^{X} = (10,896 + 1,968) \cdot 49 \cdot 2 \cdot 10^{-6} = 0,0012607 \text{ m/200};
G^{X}_{301} = (10.896 \cdot 1 + 1.968 \cdot 1) / 3600 = 0.0035733 \ z/c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{l} = 0.744 \cdot 20 + 3.12 \cdot 0.2 + 0.448 \cdot 3 = 16.848 \ \varepsilon;
M^{X-10..-15^{\circ}C}_{2} = 3,12 \cdot 0,2 + 0,448 \cdot 3 = 1,968 \ \epsilon;
\mathbf{M}^{\text{X-10..-15°C}}_{301} = (16,848 + 1,968) \cdot 39 \cdot 2 \cdot 10^{-6} = 0,0014676 \,\text{m/zod};
G^{X-10..-15^{\circ}C}_{30l} = (16.848 \cdot 1 + 1.968 \cdot 1) / 3600 = 0.0052267 \ z/c;
M = 0.0026048 + 0.0014784 + 0.0012607 + 0.0014676 = 0.0068115 \text{ m/zod};
G = \max\{0.0016444; 0.0023333; 0.0035733; 0.0052267\} = 0.0052267 \ \epsilon/c.
M_{I}^{T} = 0.0806 \cdot 4 + 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 0.6422 z;
M^{T}_{2} = 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 0.3198 \ \epsilon;
M_{304}^{T} = (0.6422 + 0.3198) \cdot 220 \cdot 2 \cdot 10^{-6} = 0.0004233 \text{ m/zod};
G^{T}_{304} = (0.6422 \cdot 1 + 0.3198 \cdot 1) / 3600 = 0.0002672 \ z/c;
M^{\Pi_I} = 0.121 \cdot 6 + 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 1.0458 \ \varepsilon;
M^{\Pi_2} = 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 0.3198 \ \varepsilon
M^{\Pi}_{304} = (1,0458 + 0.3198) \cdot 88 \cdot 2 \cdot 10^{-6} = 0.0002403 \text{ m/zod};
G^{\Pi}_{304} = (1.0458 \cdot 1 + 0.3198 \cdot 1) / 3600 = 0.0003793 \ z/c;
M_{I}^{X} = 0.121 \cdot 12 + 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 1.7718 \ \epsilon
\mathbf{M}^{X}_{2} = 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 0.3198 \ z;
M^{X}_{304} = (1,7718 + 0.3198) \cdot 49 \cdot 2 \cdot 10^{-6} = 0.000205 \text{ m/zod};
G_{304}^{X} = (1,7718 \cdot 1 + 0.3198 \cdot 1) / 3600 = 0.000581 \ z/c;
\mathbf{M}^{\text{X}-10..-15^{\circ}\text{C}}_{1} = 0.121 \cdot 20 + 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 2.7398 \,\varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 0.507 \cdot 0.2 + 0.0728 \cdot 3 = 0.3198 \text{ z};
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (2,7398 + 0,3198) \cdot 39 \cdot 2 \cdot 10^{-6} = 0,0002386 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{304} = (2,7398 \cdot 1 + 0,3198 \cdot 1) / 3600 = 0,0008499 \ z/c;
M = 0.0004233 + 0.0002403 + 0.000205 + 0.0002386 = 0.0011073 \text{ m/zod};
G = \max\{0.0002672; 0.0003793; 0.000581; 0.0008499\} = 0.0008499 \ c/c.
M^{T}_{I} = 0.023 \cdot 4 + 0.3 \cdot 0.2 + 0.023 \cdot 3 = 0.221 \ \epsilon
M^{\mathrm{T}}_{2} = 0.3 \cdot 0.2 + 0.023 \cdot 3 = 0.129 \, \epsilon
M^{T}_{328} = (0.221 + 0.129) \cdot 220 \cdot 2 \cdot 10^{-6} = 0.000154 \text{ m/zod};
G^{T}_{328} = (0.221 \cdot 1 + 0.129 \cdot 1) / 3600 = 0.0000972 \ z/c;
M^{\Pi_I} = 0.0414 \cdot 6 + 0.405 \cdot 0.2 + 0.023 \cdot 3 = 0.3984 \, \varepsilon;
M^{\Pi}_{2} = 0.3 \cdot 0.2 + 0.023 \cdot 3 = 0.129 \ \epsilon;
M^{\Pi}_{328} = (0.3984 + 0.129) \cdot 88 \cdot 2 \cdot 10^{-6} = 0.0000928 \text{ m/zod};
G^{\Pi}_{328} = (0.3984 \cdot 1 + 0.129 \cdot 1) / 3600 = 0.0001465 \, c/c;
```

Взам.

Подп.

읟

Изм. Кол.уч Лист №док

Подп.

Лист

04/2022-151-00000-OBOC-TY

```
M^{X}_{I} = 0.046 \cdot 12 + 0.45 \cdot 0.2 + 0.023 \cdot 3 = 0.711 \ \epsilon;
M^{X}_{2} = 0.3 \cdot 0.2 + 0.023 \cdot 3 = 0.129 \ \epsilon;
M_{328}^{X} = (0.711 + 0.129) \cdot 49 \cdot 2 \cdot 10^{-6} = 0.0000823 \text{ m/zod};
G^{X}_{328} = (0.711 \cdot 1 + 0.129 \cdot 1) / 3600 = 0.0002333 \ z/c;
M^{X-10..-15^{\circ}C}_{l} = 0.046 \cdot 20 + 0.45 \cdot 0.2 + 0.023 \cdot 3 = 1.079 \ \epsilon
M^{X-10..-15^{\circ}C}_{2} = 0.3 \cdot 0.2 + 0.023 \cdot 3 = 0.129 \ \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{328} = (1,079 + 0,129) \cdot 39 \cdot 2 \cdot 10^{-6} = 0,0000942 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{328} = (1.079 \cdot 1 + 0.129 \cdot 1) / 3600 = 0.0003356  z/c;
M = 0.000154 + 0.0000928 + 0.0000823 + 0.0000942 = 0.0004234 \text{ m/zod};
G = \max\{0,0000972; 0,0001465; 0,0002333; 0,0003356\} = 0,0003356 \ \epsilon/c.
M^{T}_{I} = 0.112 \cdot 4 + 0.69 \cdot 0.2 + 0.112 \cdot 3 = 0.922 \ \varepsilon
\mathbf{M}^{\mathrm{T}}_{2} = 0.69 \cdot 0.2 + 0.112 \cdot 3 = 0.474 \, \varepsilon;
M^{T}_{330} = (0.922 + 0.474) \cdot 220 \cdot 2 \cdot 10^{-6} = 0.0006142 \text{ m/zod};
G^{T}_{330} = (0.922 \cdot 1 + 0.474 \cdot 1) / 3600 = 0.0003878 \, \epsilon/c;
M^{\Pi}_{I} = 0.1206 \cdot 6 + 0.774 \cdot 0.2 + 0.112 \cdot 3 = 1.2144 \ \varepsilon;
M^{\Pi}_{2} = 0.69 \cdot 0.2 + 0.112 \cdot 3 = 0.474 \ \varepsilon;
M^{\Pi}_{330} = (1,2144 + 0,474) \cdot 88 \cdot 2 \cdot 10^{-6} = 0,0002972 \text{ m/zod};
G^{\Pi}_{330} = (1,2144 \cdot 1 + 0,474 \cdot 1) / 3600 = 0,000469 \ z/c;
M^{X}_{I} = 0.134 \cdot 12 + 0.86 \cdot 0.2 + 0.112 \cdot 3 = 2.116 \ \epsilon;
M^{X}_{2} = 0.69 \cdot 0.2 + 0.112 \cdot 3 = 0.474 \ \epsilon;
M^{X}_{330} = (2,116 + 0,474) \cdot 49 \cdot 2 \cdot 10^{-6} = 0,0002538 \text{ m/zod};
G^{X}_{330} = (2.116 \cdot 1 + 0.474 \cdot 1) / 3600 = 0.0007194 \, z/c;
\mathbf{M}^{\text{X}-10..-15^{\circ}\text{C}}_{l} = 0.134 \cdot 20 + 0.86 \cdot 0.2 + 0.112 \cdot 3 = 3.188 \,\varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 0.69 \cdot 0.2 + 0.112 \cdot 3 = 0.474 \text{ z};
M^{\text{X-10..-15}^{\circ}\text{C}}_{330} = (3.188 + 0.474) \cdot 39 \cdot 2 \cdot 10^{-6} = 0.0002856 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{330} = (3.188 \cdot 1 + 0.474 \cdot 1) / 3600 = 0.0010172 \ z/c;
M = 0.0006142 + 0.0002972 + 0.0002538 + 0.0002856 = 0.0014509 \text{ m/zod};
G = \max\{0.0003878; 0.000469; 0.0007194; 0.0010172\} = 0.0010172 \ \epsilon/c.
M^{T}_{I} = 1,65 \cdot 4 + 6 \cdot 0,2 + 1,03 \cdot 3 = 10,89 \ \varepsilon;
\mathbf{M}^{\mathrm{T}}_{2} = 6 \cdot 0.2 + 1.03 \cdot 3 = 4.29 \, \varepsilon;
M^{T}_{337} = (10.89 + 4.29) \cdot 220 \cdot 2 \cdot 10^{-6} = 0.0066792 \text{ m/zod};
G^{T}_{337} = (10.89 \cdot 1 + 4.29 \cdot 1) / 3600 = 0.0042167 \ \epsilon/c;
M^{\Pi}_{I} = 2.25 \cdot 6 + 6.48 \cdot 0.2 + 1.03 \cdot 3 = 17.886 \ \epsilon
M^{\Pi}_{2} = 6 \cdot 0.2 + 1.03 \cdot 3 = 4.29 \ \varepsilon;
M^{\Pi}_{337} = (17,886 + 4,29) \cdot 88 \cdot 2 \cdot 10^{-6} = 0,003903 \text{ m/zod};
G^{\Pi}_{337} = (17,886 \cdot 1 + 4,29 \cdot 1) / 3600 = 0,00616 \, c/c;
M_{I}^{X} = 2.5 \cdot 12 + 7.2 \cdot 0.2 + 1.03 \cdot 3 = 34.53 \ \varepsilon;
M^{X}_{2} = 6 \cdot 0.2 + 1.03 \cdot 3 = 4.29 z;
M^{X}_{337} = (34.53 + 4.29) \cdot 49 \cdot 2 \cdot 10^{-6} = 0.0038044 \text{ m/zod};
G^{X}_{337} = (34,53 \cdot 1 + 4,29 \cdot 1) / 3600 = 0,0107833 \ z/c;
```

Взам.

Подп. и дата

읟

Изм. Кол.уч Лист №док

Подп.

Дата

```
M^{X-10..-15^{\circ}C}_{I} = 2.5 \cdot 20 + 7.2 \cdot 0.2 + 1.03 \cdot 3 = 54.53 \ \epsilon;
M^{X-10..-15^{\circ}C}_{2} = 6 \cdot 0.2 + 1.03 \cdot 3 = 4.29 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (54.53 + 4.29) \cdot 39 \cdot 2 \cdot 10^{-6} = 0.004588 \, \text{m/zod};
G^{X-10..-15^{\circ}C}_{337} = (54.53 \cdot 1 + 4.29 \cdot 1) / 3600 = 0.0163389 \ z/c;
M = 0.0066792 + 0.003903 + 0.0038044 + 0.004588 = 0.0189745 \text{ m/200};
G = \max\{0.0042167; 0.00616; 0.0107833; 0.0163389\} = 0.0163389 \ \epsilon/c.
\mathbf{M}^{\mathrm{T}}_{l} = 0.8 \cdot 4 + 0.8 \cdot 0.2 + 0.57 \cdot 3 = 5.07 \ \varepsilon;
M^{T}_{2} = 0.8 \cdot 0.2 + 0.57 \cdot 3 = 1.87 \ \varepsilon;
M^{T}_{2732} = (5.07 + 1.87) \cdot 220 \cdot 2 \cdot 10^{-6} = 0.0030536 \text{ m/zod};
G^{T}_{2732} = (5.07 \cdot 1 + 1.87 \cdot 1) / 3600 = 0.0019278 \ z/c;
M^{\Pi_I} = 0.864 \cdot 6 + 0.9 \cdot 0.2 + 0.57 \cdot 3 = 7.074 \ \varepsilon
M^{\Pi}_{2} = 0.8 \cdot 0.2 + 0.57 \cdot 3 = 1.87 \ \varepsilon;
M^{\Pi}_{2732} = (7,074 + 1,87) \cdot 88 \cdot 2 \cdot 10^{-6} = 0,0015741 \text{ m/zod};
G^{\Pi}_{2732} = (7.074 \cdot 1 + 1.87 \cdot 1) / 3600 = 0.0024844 \, z/c;
M_{I}^{X} = 0.96 \cdot 12 + 1 \cdot 0.2 + 0.57 \cdot 3 = 13.43 \ \epsilon;
M^{X}_{2} = 0.8 \cdot 0.2 + 0.57 \cdot 3 = 1.87 \ \varepsilon;
M^{X}_{2732} = (13,43 + 1,87) \cdot 49 \cdot 2 \cdot 10^{-6} = 0,0014994 \text{ m/zod};
G^{X}_{2732} = (13,43 \cdot 1 + 1,87 \cdot 1) / 3600 = 0,00425 \ z/c;
M^{X-10..-15^{\circ}C}_{I} = 0.96 \cdot 20 + 1 \cdot 0.2 + 0.57 \cdot 3 = 21.11 \ \epsilon;
M^{X-10..-15^{\circ}C}_{2} = 0.8 \cdot 0.2 + 0.57 \cdot 3 = 1.87 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = (21,11+1,87) \cdot 39 \cdot 2 \cdot 10^{-6} = 0,0017924 \text{ m/sod};
G^{X-10..-15^{\circ}C}_{2732} = (21,11\cdot 1 + 1,87\cdot 1)/3600 = 0,0063833 \, z/c;
M = 0.0030536 + 0.0015741 + 0.0014994 + 0.0017924 = 0.0079196 \text{ m/zod};
G = \max\{0.0019278; 0.0024844; 0.00425; 0.0063833\} = 0.0063833 \ \epsilon/c.
Автобус вахтовый
M^{T}_{I} = 0.456 \cdot 4 + 2.4 \cdot 0.2 + 0.416 \cdot 3 = 3.552 \ \varepsilon;
\mathbf{M}^{\mathrm{T}}_{2} = 2.4 \cdot 0.2 + 0.416 \cdot 3 = 1.728 \, \varepsilon;
M^{T}_{301} = (3,552 + 1,728) \cdot 220 \cdot 1 \cdot 10^{-6} = 0,0011616 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{301} = (3.552 \cdot 1 + 1.728 \cdot 1) / 3600 = 0.0014667 \, \epsilon/c;
M^{\Pi}_{I} = 0.688 \cdot 6 + 2.4 \cdot 0.2 + 0.416 \cdot 3 = 5.856 c;
M^{\Pi}_{2} = 2.4 \cdot 0.2 + 0.416 \cdot 3 = 1.728 \ z;
M^{\Pi}_{301} = (5.856 + 1.728) \cdot 88 \cdot 1 \cdot 10^{-6} = 0.0006674 \text{ m/zod};
G^{\Pi}_{301} = (5,856 \cdot 1 + 1,728 \cdot 1) / 3600 = 0,0021067 \ z/c;
M^{X_I} = 0.688 \cdot 12 + 2.4 \cdot 0.2 + 0.416 \cdot 3 = 9.984 \ \varepsilon;
M^{X}_{2} = 2.4 \cdot 0.2 + 0.416 \cdot 3 = 1.728 \ \epsilon;
M^{X}_{301} = (9.984 + 1.728) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0005739 \text{ m/zod};
G^{X}_{301} = (9.984 \cdot 1 + 1.728 \cdot 1) / 3600 = 0.0032533 \ z/c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{I} = 0.688 \cdot 20 + 2.4 \cdot 0.2 + 0.416 \cdot 3 = 15.488 \ \epsilon;
```

Изм. Кол.уч Лист №док Подп. Дата

 $M^{X-10..-15^{\circ}C}_{2} = 2.4 \cdot 0.2 + 0.416 \cdot 3 = 1.728 \ \epsilon;$

 $M^{\text{X}-10..-15^{\circ}\text{C}}_{301} = (15,488 + 1,728) \cdot 39 \cdot 1 \cdot 10^{-6} = 0,0006714 \text{ m/zod};$

Инв.

Взам.

Подп. и дата

읟

04/2022-151-00000-OBOC-TY

```
G^{X-10..-15^{\circ}C}_{30I} = (15,488 \cdot 1 + 1,728 \cdot 1) / 3600 = 0,0047822 \ z/c;
M = 0.0011616 + 0.0006674 + 0.0005739 + 0.0006714 = 0.0030743 \text{ m/zod};
G = \max\{0.0014667; 0.0021067; 0.0032533; 0.0047822\} = 0.0047822 \ \epsilon/c.
M^{T}_{I} = 0.0741 \cdot 4 + 0.39 \cdot 0.2 + 0.0676 \cdot 3 = 0.5772 \ \varepsilon;
M^{T}_{2} = 0.39 \cdot 0.2 + 0.0676 \cdot 3 = 0.2808 \ \varepsilon;
M_{304}^{T} = (0.5772 + 0.2808) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0001888 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{304} = (0.5772 \cdot 1 + 0.2808 \cdot 1) / 3600 = 0.0002383 \ \epsilon/c;
M^{\Pi_I} = 0.1118 \cdot 6 + 0.39 \cdot 0.2 + 0.0676 \cdot 3 = 0.9516 \ \epsilon;
M^{\Pi}_{2} = 0.39 \cdot 0.2 + 0.0676 \cdot 3 = 0.2808 \ \epsilon;
M^{\Pi}_{304} = (0.9516 + 0.2808) \cdot 88 \cdot 1 \cdot 10^{-6} = 0.0001085 \, \text{m/zod};
\mathbf{G}^{\Pi}_{304} = (0.9516 \cdot 1 + 0.2808 \cdot 1) / 3600 = 0.0003423 \ z/c;
M_{I}^{X} = 0.1118 \cdot 12 + 0.39 \cdot 0.2 + 0.0676 \cdot 3 = 1.6224 \ \epsilon
M^{X}_{2} = 0.39 \cdot 0.2 + 0.0676 \cdot 3 = 0.2808 \ \epsilon;
M^{X}_{304} = (1,6224 + 0,2808) \cdot 49 \cdot 1 \cdot 10^{-6} = 0,0000933 \text{ m/zod};
G^{X}_{304} = (1,6224 \cdot 1 + 0,2808 \cdot 1) / 3600 = 0,0005287 \ z/c;
M^{X-10..-15^{\circ}C}_{I} = 0.1118 \cdot 20 + 0.39 \cdot 0.2 + 0.0676 \cdot 3 = 2.5168 \, \epsilon;
M^{X-10..-15^{\circ}C}_{2} = 0.39 \cdot 0.2 + 0.0676 \cdot 3 = 0.2808 \ \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{304} = (2,5168 + 0,2808) \cdot 39 \cdot 1 \cdot 10^{-6} = 0,0001091 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{304} = (2.5168 \cdot 1 + 0.2808 \cdot 1) / 3600 = 0.0007771 \ z/c;
M = 0.0001888 + 0.0001085 + 0.0000933 + 0.0001091 = 0.0004996 \text{ m/zod};
G = \max\{0,0002383; 0,0003423; 0,0005287; 0,0007771\} = 0,0007771  \epsilon/c.
M^{T}_{I} = 0.016 \cdot 4 + 0.15 \cdot 0.2 + 0.016 \cdot 3 = 0.142 \ \epsilon
M^{T}_{2} = 0.15 \cdot 0.2 + 0.016 \cdot 3 = 0.078 \ \varepsilon;
M^{T}_{328} = (0.142 + 0.078) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0000484 \text{ m/zod};
G^{T}_{328} = (0.142 \cdot 1 + 0.078 \cdot 1) / 3600 = 0.0000611 \ z/c;
M^{\Pi}_{I} = 0.0288 \cdot 6 + 0.207 \cdot 0.2 + 0.016 \cdot 3 = 0.2622 \ \varepsilon;
M^{\Pi}_{2} = 0.15 \cdot 0.2 + 0.016 \cdot 3 = 0.078 \ \varepsilon;
M^{\Pi}_{328} = (0.2622 + 0.078) \cdot 88 \cdot 1 \cdot 10^{-6} = 0.0000299 \text{ m/zod};
G^{\Pi}_{328} = (0.2622 \cdot 1 + 0.078 \cdot 1) / 3600 = 0.0000945 \, \epsilon/c;
M_I^{X} = 0.032 \cdot 12 + 0.23 \cdot 0.2 + 0.016 \cdot 3 = 0.478 \ \epsilon
M^{X_2} = 0.15 \cdot 0.2 + 0.016 \cdot 3 = 0.078 \ \epsilon;
M^{X}_{328} = (0.478 + 0.078) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0000272 \text{ m/zod};
G_{328}^{X} = (0.478 \cdot 1 + 0.078 \cdot 1) / 3600 = 0.0001544 \, \epsilon/c;
M^{X-10..-15^{\circ}C}_{l} = 0.032 \cdot 20 + 0.23 \cdot 0.2 + 0.016 \cdot 3 = 0.734 \, \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 0.15 \cdot 0.2 + 0.016 \cdot 3 = 0.078 \ \epsilon;
M^{X-10..-15^{\circ}C}_{328} = (0.734 + 0.078) \cdot 39 \cdot 1 \cdot 10^{-6} = 0.0000317 \, \text{m/200};
G^{X-10.-15^{\circ}C}_{328} = (0.734 \cdot 1 + 0.078 \cdot 1) / 3600 = 0.0002256 \ z/c;
M = 0.0000484 + 0.0000299 + 0.0000272 + 0.0000317 = 0.0001372 \text{ m/zod};
G = \max\{0.0000611; 0.0000945; 0.0001544; 0.0002256\} = 0.0002256 \ c/c.
```

Взам.

Подп.

읟

Изм. Кол.уч Лист №док

Подп.

Дата

```
M^{T}_{I} = 0.084 \cdot 4 + 0.4 \cdot 0.2 + 0.084 \cdot 3 = 0.668 \ \epsilon;
M^{T}_{2} = 0.4 \cdot 0.2 + 0.084 \cdot 3 = 0.332 \ \varepsilon;
M^{T}_{330} = (0.668 + 0.332) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.00022 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{330} = (0.668 \cdot 1 + 0.332 \cdot 1) / 3600 = 0.0002778 \, \epsilon/c;
M^{\Pi}_{I} = 0.09 \cdot 6 + 0.45 \cdot 0.2 + 0.084 \cdot 3 = 0.882 \ \epsilon
M^{\Pi}_{2} = 0.4 \cdot 0.2 + 0.084 \cdot 3 = 0.332 \ \epsilon;
M^{\Pi}_{330} = (0.882 + 0.332) \cdot 88 \cdot 1 \cdot 10^{-6} = 0.0001068 \text{ m/zod};
G^{\Pi}_{330} = (0.882 \cdot 1 + 0.332 \cdot 1) / 3600 = 0.0003372 \, z/c;
M_I^{X} = 0.1 \cdot 12 + 0.5 \cdot 0.2 + 0.084 \cdot 3 = 1.552 \ \epsilon;
M^{X}_{2} = 0.4 \cdot 0.2 + 0.084 \cdot 3 = 0.332 \ \epsilon;
M^{X}_{330} = (1.552 + 0.332) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0000923 \text{ m/zod};
G^{X}_{330} = (1,552 \cdot 1 + 0,332 \cdot 1) / 3600 = 0,0005233 \ z/c;
M^{X-10..-15^{\circ}C}_{l} = 0.1 \cdot 20 + 0.5 \cdot 0.2 + 0.084 \cdot 3 = 2.352 \ \epsilon
M^{X-10.-15^{\circ}C}_{2} = 0.4 \cdot 0.2 + 0.084 \cdot 3 = 0.332 \ \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{330} = (2,352 + 0,332) \cdot 39 \cdot 1 \cdot 10^{-6} = 0,0001047 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{330} = (2,352 \cdot 1 + 0,332 \cdot 1) / 3600 = 0,0007456  z/c;
M = 0.00022 + 0.0001068 + 0.0000923 + 0.0001047 = 0.0005238 \text{ m/zod}
G = \max\{0,0002778; 0,0003372; 0,0005233; \underline{0,0007456}\} = 0,0007456 \, \epsilon/c.
M^{T}_{I} = 1.22 \cdot 4 + 4.1 \cdot 0.2 + 0.76 \cdot 3 = 7.98 \ \varepsilon
M^{T}_{2} = 4.1 \cdot 0.2 + 0.76 \cdot 3 = 3.1 \ \epsilon
M^{T}_{337} = (7.98 + 3.1) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0024376 \text{ m/zod};
G^{T}_{337} = (7.98 \cdot 1 + 3.1 \cdot 1) / 3600 = 0.0030778 \ z/c;
M^{\Pi}_{I} = 1,638 \cdot 6 + 4,41 \cdot 0,2 + 0,76 \cdot 3 = 12,99 \ \varepsilon;
M^{\Pi}_{2} = 4.1 \cdot 0.2 + 0.76 \cdot 3 = 3.1 \ \epsilon;
M^{\Pi}_{337} = (12.99 + 3.1) \cdot 88 \cdot 1 \cdot 10^{-6} = 0.0014159 \text{ m/zod};
G^{\Pi}_{337} = (12.99 \cdot 1 + 3.1 \cdot 1) / 3600 = 0.0044694 \, \epsilon/c;
M_I^{X} = 1.82 \cdot 12 + 4.9 \cdot 0.2 + 0.76 \cdot 3 = 25.1 \ \epsilon;
M^{X}_{2} = 4.1 \cdot 0.2 + 0.76 \cdot 3 = 3.1 \ z;
M^{X}_{337} = (25.1 + 3.1) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0013818 \text{ m/zod};
G^{X}_{337} = (25,1 \cdot 1 + 3,1 \cdot 1) / 3600 = 0,0078333 \ \epsilon/c;
\mathbf{M}^{\text{X-}10..-15^{\circ}\text{C}}_{l} = 1.82 \cdot 20 + 4.9 \cdot 0.2 + 0.76 \cdot 3 = 39.66 \, \varepsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{2} = 4.1 \cdot 0.2 + 0.76 \cdot 3 = 3.1 \text{ z};
M^{X-10..-15^{\circ}C}_{337} = (39,66+3,1) \cdot 39 \cdot 1 \cdot 10^{-6} = 0,0016676 \text{ m/200};
G^{X-10.-15^{\circ}C}_{337} = (39,66 \cdot 1 + 3,1 \cdot 1) / 3600 = 0,0118778 \ z/c;
M = 0.0024376 + 0.0014159 + 0.0013818 + 0.0016676 = 0.006903 \text{ m/zod};
G = \max\{0.0030778; 0.0044694; 0.0078333; 0.0118778\} = 0.0118778 \ c/c.
M^{T}_{I} = 0.53 \cdot 4 + 0.6 \cdot 0.2 + 0.38 \cdot 3 = 3.38 \ \varepsilon;
M^{\mathrm{T}}_{2} = 0.6 \cdot 0.2 + 0.38 \cdot 3 = 1.26 \, \varepsilon;
M^{T}_{2732} = (3.38 + 1.26) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0010208 \text{ m/zod};
G^{T}_{2732} = (3.38 \cdot 1 + 1.26 \cdot 1) / 3600 = 0.0012889 \ z/c;
```

Взам.

Подп. и дата

읟

Изм. Кол.уч Лист №док

Подп.

Дата

```
M^{\Pi}_{I} = 0.576 \cdot 6 + 0.63 \cdot 0.2 + 0.38 \cdot 3 = 4.722 \ \varepsilon;
M^{\Pi}_{2} = 0.6 \cdot 0.2 + 0.38 \cdot 3 = 1.26 \ \epsilon;
M^{\Pi}_{2732} = (4,722 + 1,26) \cdot 88 \cdot 1 \cdot 10^{-6} = 0,0005264 \text{ m/zod};
G^{\Pi}_{2732} = (4,722 \cdot 1 + 1,26 \cdot 1) / 3600 = 0,0016617 \ z/c;
M^{X}_{l} = 0.64 \cdot 12 + 0.7 \cdot 0.2 + 0.38 \cdot 3 = 8.96 \ \epsilon
M^{X}_{2} = 0.6 \cdot 0.2 + 0.38 \cdot 3 = 1.26 \ \epsilon;
M^{X}_{2732} = (8.96 + 1.26) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0005008 \text{ m/zod};
G^{X}_{2732} = (8.96 \cdot 1 + 1.26 \cdot 1) / 3600 = 0.0028389 \ z/c;
M^{\text{X-10..-15}^{\circ}\text{C}}_{I} = 0.64 \cdot 20 + 0.7 \cdot 0.2 + 0.38 \cdot 3 = 14.08 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 0.6 \cdot 0.2 + 0.38 \cdot 3 = 1.26 \text{ z};
M^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = (14.08 + 1.26) \cdot 39 \cdot 1 \cdot 10^{-6} = 0.0005983 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2732} = (14,08 \cdot 1 + 1,26 \cdot 1) / 3600 = 0,0042611 \ z/c;
M = 0.0010208 + 0.0005264 + 0.0005008 + 0.0005983 = 0.0026463 \text{ m/zod};
G = \max\{0.0012889; 0.0016617; 0.0028389; 0.0042611\} = 0.0042611 \ c/c.
Машины поливомоечные
M^{T}_{I} = 0.256 \cdot 4 + 2.4 \cdot 0.2 + 0.232 \cdot 3 = 2.2 \ \epsilon
M^{\mathrm{T}}_{2} = 2.4 \cdot 0.2 + 0.232 \cdot 3 = 1.176 \, \varepsilon;
M_{301}^{T} = (2,2+1,176) \cdot 220 \cdot 1 \cdot 10^{-6} = 0,0007427 \text{ m/zod};
G^{T}_{301} = (2.2 \cdot 1 + 1.176 \cdot 1) / 3600 = 0.0009378 \, \epsilon/c;
M^{\Pi}_{I} = 0.384 \cdot 6 + 2.4 \cdot 0.2 + 0.232 \cdot 3 = 3.48 \ \varepsilon;
M^{\Pi}_{2} = 2.4 \cdot 0.2 + 0.232 \cdot 3 = 1.176 \, \varepsilon;
M^{\Pi}_{301} = (3,48 + 1,176) \cdot 88 \cdot 1 \cdot 10^{-6} = 0,0004097 \text{ m/zod};
\mathbf{G}^{\Pi}_{301} = (3,48 \cdot 1 + 1,176 \cdot 1) / 3600 = 0,0012933 \ \epsilon/c;
M_I^{X} = 0.384 \cdot 12 + 2.4 \cdot 0.2 + 0.232 \cdot 3 = 5.784 \ \varepsilon;
M^{X}_{2} = 2.4 \cdot 0.2 + 0.232 \cdot 3 = 1.176 \ \varepsilon;
M^{X}_{301} = (5.784 + 1.176) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.000341 \text{ m/zod};
G^{X}_{301} = (5,784 \cdot 1 + 1,176 \cdot 1) / 3600 = 0,0019333 \ z/c;
\mathbf{M}^{\text{X-10..-15}^{\circ}\text{C}}_{l} = 0.384 \cdot 20 + 2.4 \cdot 0.2 + 0.232 \cdot 3 = 8.856 \,\varepsilon;
M^{X-10..-15^{\circ}C}_{2} = 2.4 \cdot 0.2 + 0.232 \cdot 3 = 1.176 \ \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{301} = (8,856 + 1,176) \cdot 39 \cdot 1 \cdot 10^{-6} = 0,0003912 \text{ m/zod};
\mathbf{G}^{\text{X-10..-15}^{\circ}\text{C}}_{301} = (8,856 \cdot 1 + 1,176 \cdot 1) / 3600 = 0,0027867 \, \epsilon/c;
M = 0.0007427 + 0.0004097 + 0.000341 + 0.0003912 = 0.0018847 \text{ m/zod}
G = \max\{0,0009378; 0,0012933; 0,0019333; 0,0027867\} = 0,0027867 \ c/c.
M^{T}_{I} = 0.0416 \cdot 4 + 0.39 \cdot 0.2 + 0.0377 \cdot 3 = 0.3575 \ \epsilon;
M^{T}_{2} = 0.39 \cdot 0.2 + 0.0377 \cdot 3 = 0.1911 z;
M_{304}^{T} = (0.3575 + 0.1911) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0001207 \text{ m/zod};
G^{T}_{304} = (0.3575 \cdot 1 + 0.1911 \cdot 1) / 3600 = 0.0001524 \ z/c;
M^{\Pi}_{I} = 0.0624 \cdot 6 + 0.39 \cdot 0.2 + 0.0377 \cdot 3 = 0.5655 \ \epsilon;
```

Изм. Кол.уч Лист №док Подп. Дата

 $M^{\Pi}_{2} = 0.39 \cdot 0.2 + 0.0377 \cdot 3 = 0.1911 \ \varepsilon;$

 $M^{\Pi}_{304} = (0.5655 + 0.1911) \cdot 88 \cdot 1 \cdot 10^{-6} = 0.0000666 \, \text{m/zod};$

Инв.

Взам.

Подп. и дата

읟

04/2022-151-00000-OBOC-TY

```
\mathbf{G}^{\Pi}_{304} = (0.5655 \cdot 1 + 0.1911 \cdot 1) / 3600 = 0.0002102 \, c/c;
M^{X}_{I} = 0.0624 \cdot 12 + 0.39 \cdot 0.2 + 0.0377 \cdot 3 = 0.9399 \ \varepsilon;
M^{X_2} = 0.39 \cdot 0.2 + 0.0377 \cdot 3 = 0.1911 \ z
M^{X}_{304} = (0.9399 + 0.1911) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0000554 \, \text{m/zod};
G^{X}_{304} = (0.9399 \cdot 1 + 0.1911 \cdot 1) / 3600 = 0.0003142 \ z/c;
M^{\text{X-10.-15}^{\circ}\text{C}}_{I} = 0.0624 \cdot 20 + 0.39 \cdot 0.2 + 0.0377 \cdot 3 = 1.4391 \text{ z};
M^{X-10..-15^{\circ}C}_{2} = 0.39 \cdot 0.2 + 0.0377 \cdot 3 = 0.1911 \ \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{304} = (1,4391 + 0,1911) \cdot 39 \cdot 1 \cdot 10^{-6} = 0,0000636 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{304} = (1,4391 \cdot 1 + 0,1911 \cdot 1) / 3600 = 0,0004528 \ z/c;
M = 0.0001207 + 0.0000666 + 0.0000554 + 0.0000636 = 0.0003063 \, \text{m/zod};
G = \max\{0.0001524; 0.0002102; 0.0003142; 0.0004528\} = 0.0004528 \ \epsilon/c.
M^{T}_{I} = 0.012 \cdot 4 + 0.15 \cdot 0.2 + 0.012 \cdot 3 = 0.114 \, \varepsilon;
M^{\mathrm{T}}_{2} = 0.15 \cdot 0.2 + 0.012 \cdot 3 = 0.066 \, \varepsilon;
M^{T}_{328} = (0.114 + 0.066) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0000396 \text{ m/zod};
G^{T}_{328} = (0.114 \cdot 1 + 0.066 \cdot 1) / 3600 = 0.00005 \ z/c;
M^{\Pi}_{I} = 0.0216 \cdot 6 + 0.207 \cdot 0.2 + 0.012 \cdot 3 = 0.207 \ \varepsilon;
M^{\Pi}_{2} = 0.15 \cdot 0.2 + 0.012 \cdot 3 = 0.066 \ \epsilon;
M^{\Pi}_{328} = (0.207 + 0.066) \cdot 88 \cdot 1 \cdot 10^{-6} = 0.000024 \text{ m/zod};
\mathbf{G}^{\Pi}_{328} = (0.207 \cdot 1 + 0.066 \cdot 1) / 3600 = 0.0000758 \, \epsilon/c;
M_{I}^{X} = 0.024 \cdot 12 + 0.23 \cdot 0.2 + 0.012 \cdot 3 = 0.37 \ \varepsilon
M^{X}_{2} = 0.15 \cdot 0.2 + 0.012 \cdot 3 = 0.066 \ \epsilon;
M^{X}_{328} = (0.37 + 0.066) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0000214 \text{ m/zod};
G^{X}_{328} = (0.37 \cdot 1 + 0.066 \cdot 1) / 3600 = 0.0001211 \ z/c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{I} = 0.024 \cdot 20 + 0.23 \cdot 0.2 + 0.012 \cdot 3 = 0.562 \text{ z};
M^{X-10..-15^{\circ}C}_{2} = 0.15 \cdot 0.2 + 0.012 \cdot 3 = 0.066 \ \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{328} = (0.562 + 0.066) \cdot 39 \cdot 1 \cdot 10^{-6} = 0.0000245 \,\text{m/zod};
G^{X-10..-15^{\circ}C}_{328} = (0.562 \cdot 1 + 0.066 \cdot 1) / 3600 = 0.0001744 \, c/c;
M = 0.0000396 + 0.000024 + 0.0000214 + 0.0000245 = 0.0001095 \text{ m/zod};
G = \max\{0.00005; 0.0000758; 0.0001211; 0.0001744\} = 0.0001744 \ c/c.
M^{T}_{I} = 0.081 \cdot 4 + 0.4 \cdot 0.2 + 0.081 \cdot 3 = 0.647 \ \varepsilon;
M^{\mathrm{T}}_{2} = 0.4 \cdot 0.2 + 0.081 \cdot 3 = 0.323 \ \varepsilon;
M_{330}^{T} = (0.647 + 0.323) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0002134 \text{ m/zod};
G^{T}_{330} = (0.647 \cdot 1 + 0.323 \cdot 1) / 3600 = 0.0002694 \, z/c;
M^{\Pi_I} = 0.0873 \cdot 6 + 0.45 \cdot 0.2 + 0.081 \cdot 3 = 0.8568 \ \varepsilon;
M^{\Pi}_{2} = 0.4 \cdot 0.2 + 0.081 \cdot 3 = 0.323 \ \varepsilon;
M^{\Pi_{330}} = (0.8568 + 0.323) \cdot 88 \cdot 1 \cdot 10^{-6} = 0.0001038 \, \text{m/zod}
G^{\Pi}_{330} = (0.8568 \cdot 1 + 0.323 \cdot 1) / 3600 = 0.0003277 \ z/c;
M_{I}^{X} = 0.097 \cdot 12 + 0.5 \cdot 0.2 + 0.081 \cdot 3 = 1.507 \ \varepsilon;
M^{X}_{2} = 0.4 \cdot 0.2 + 0.081 \cdot 3 = 0.323 \ \epsilon;
M^{X}_{330} = (1,507 + 0,323) \cdot 49 \cdot 1 \cdot 10^{-6} = 0,0000897 \text{ m/zod};
```

Взам.

Подп. и дата

읟

Изм. Кол.уч Лист №док

Подп.

```
G^{X}_{330} = (1,507 \cdot 1 + 0,323 \cdot 1) / 3600 = 0,0005083 \ z/c;
M^{\text{X-}10..-15^{\circ}\text{C}}_{l} = 0.097 \cdot 20 + 0.5 \cdot 0.2 + 0.081 \cdot 3 = 2.283 \ \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{2} = 0.4 \cdot 0.2 + 0.081 \cdot 3 = 0.323 \text{ z};
M^{\text{X-10..-15}^{\circ}\text{C}}_{330} = (2,283 + 0,323) \cdot 39 \cdot 1 \cdot 10^{-6} = 0,0001016 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{330} = (2,283 \cdot 1 + 0,323 \cdot 1) / 3600 = 0,0007239 \ z/c;
M = 0.0002134 + 0.0001038 + 0.0000897 + 0.0001016 = 0.0005085 \text{ m/zod};
G = \max\{0,0002694; 0,0003277; 0,0005083; 0,0007239\} = 0,0007239 \ \epsilon/c.
M^{T}_{I} = 0.86 \cdot 4 + 4.1 \cdot 0.2 + 0.54 \cdot 3 = 5.88 \ \epsilon;
M^{\mathrm{T}}_{2} = 4.1 \cdot 0.2 + 0.54 \cdot 3 = 2.44 \, \varepsilon;
M_{337}^{T} = (5.88 + 2.44) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0018304 \text{ m/zod};
G^{T}_{337} = (5.88 \cdot 1 + 2.44 \cdot 1) / 3600 = 0.0023111 \, c/c;
M^{\Pi}_{I} = 1,161 \cdot 6 + 4,41 \cdot 0,2 + 0,54 \cdot 3 = 9,468 \ \varepsilon;
M^{\Pi}_{2} = 4.1 \cdot 0.2 + 0.54 \cdot 3 = 2.44 \ \varepsilon;
M^{\Pi}_{337} = (9,468 + 2,44) \cdot 88 \cdot 1 \cdot 10^{-6} = 0,0010479 \text{ m/zod};
G^{\Pi}_{337} = (9,468 \cdot 1 + 2,44 \cdot 1) / 3600 = 0,0033078 \ z/c;
M^{X}_{I} = 1.29 \cdot 12 + 4.9 \cdot 0.2 + 0.54 \cdot 3 = 18.08 \ \epsilon
M^{X}_{2} = 4.1 \cdot 0.2 + 0.54 \cdot 3 = 2.44 \ z;
M^{X}_{337} = (18,08 + 2,44) \cdot 49 \cdot 1 \cdot 10^{-6} = 0,0010055 \text{ m/zod};
G^{X}_{337} = (18.08 \cdot 1 + 2.44 \cdot 1) / 3600 = 0.0057 \ e/c;
\mathbf{M}^{\text{X-}10..-15^{\circ}\text{C}}_{I} = 1,29 \cdot 20 + 4,9 \cdot 0,2 + 0,54 \cdot 3 = 28,4 \ \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{2} = 4.1 \cdot 0.2 + 0.54 \cdot 3 = 2.44 \ \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{337} = (28.4 + 2.44) \cdot 39 \cdot 1 \cdot 10^{-6} = 0.0012028 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{337} = (28.4 \cdot 1 + 2.44 \cdot 1) / 3600 = 0.0085667 \, c/c;
M = 0.0018304 + 0.0010479 + 0.0010055 + 0.0012028 = 0.0050865 \text{ m/zod};
G = \max\{0.0023111; 0.0033078; 0.0057; 0.0085667\} = 0.0085667 \ c/c.
M^{T}_{I} = 0.38 \cdot 4 + 0.6 \cdot 0.2 + 0.27 \cdot 3 = 2.45 \ \epsilon;
M^{T}_{2} = 0.6 \cdot 0.2 + 0.27 \cdot 3 = 0.93 \ \varepsilon;
M^{T}_{2732} = (2.45 + 0.93) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0007436 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{2732} = (2.45 \cdot 1 + 0.93 \cdot 1) / 3600 = 0.0009389 \, \epsilon/c;
M^{\Pi}_{I} = 0.414 \cdot 6 + 0.63 \cdot 0.2 + 0.27 \cdot 3 = 3.42 \ \varepsilon;
M^{\Pi}_{2} = 0.6 \cdot 0.2 + 0.27 \cdot 3 = 0.93 \ \varepsilon
M^{\Pi}_{2732} = (3.42 + 0.93) \cdot 88 \cdot 1 \cdot 10^{-6} = 0.0003828 \text{ m/zod};
G^{\Pi}_{2732} = (3,42 \cdot 1 + 0.93 \cdot 1) / 3600 = 0.0012083 \ z/c;
M^{X}_{I} = 0.46 \cdot 12 + 0.7 \cdot 0.2 + 0.27 \cdot 3 = 6.47 \ \varepsilon;
M^{X}_{2} = 0.6 \cdot 0.2 + 0.27 \cdot 3 = 0.93 \ z;
M^{X}_{2732} = (6.47 + 0.93) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0003626 \text{ m/zod};
G^{X}_{2732} = (6.47 \cdot 1 + 0.93 \cdot 1) / 3600 = 0.0020556 \, e/c;
M^{X-10..-15^{\circ}C}_{I} = 0.46 \cdot 20 + 0.7 \cdot 0.2 + 0.27 \cdot 3 = 10.15 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 0.6 \cdot 0.2 + 0.27 \cdot 3 = 0.93 \text{ z};
M^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = (10.15 + 0.93) \cdot 39 \cdot 1 \cdot 10^{-6} = 0.0004321 \text{ m/zod};
```

Взам.

Подп. и дата

읟

Изм. Кол.уч Лист №док

Подп.

```
G^{X-10..-15^{\circ}C}_{2732} = (10,15 \cdot 1 + 0.93 \cdot 1) / 3600 = 0.0030778 \, c/c;
M = 0.0007436 + 0.0003828 + 0.0003626 + 0.0004321 = 0.0019211 \text{ m/zod};
G = \max\{0,0009389; 0,0012083; 0,0020556; 0,0030778\} = 0,0030778 \ c/c.
<u>Автобетононасос</u>
M^{T}_{I} = 0.104 \cdot 4 + 1.52 \cdot 0.2 + 0.096 \cdot 3 = 1.008 \ \varepsilon;
M^{T}_{2} = 1.52 \cdot 0.2 + 0.096 \cdot 3 = 0.592 \ \epsilon
M^{\mathrm{T}}_{301} = (1,008 + 0,592) \cdot 220 \cdot 1 \cdot 10^{-6} = 0,000352 \, \text{m/zod};
G^{T}_{301} = (1,008 \cdot 1 + 0.592 \cdot 1) / 3600 = 0.0004444 \, z/c;
M^{\Pi}_{I} = 0.16 \cdot 6 + 1.52 \cdot 0.2 + 0.096 \cdot 3 = 1.552 \, \varepsilon;
M^{\Pi}_{2} = 1.52 \cdot 0.2 + 0.096 \cdot 3 = 0.592 \ \varepsilon;
M^{\Pi}_{301} = (1,552 + 0,592) \cdot 88 \cdot 1 \cdot 10^{-6} = 0,0001887 \text{ m/zod};
G^{\Pi}_{30I} = (1,552 \cdot 1 + 0,592 \cdot 1) / 3600 = 0,0005956 \, c/c;
M^{X}_{I} = 0.16 \cdot 12 + 1.52 \cdot 0.2 + 0.096 \cdot 3 = 2.512 \ \epsilon
M^{X}_{2} = 1.52 \cdot 0.2 + 0.096 \cdot 3 = 0.592 \ z
M^{X}_{301} = (2.512 + 0.592) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0001521 \text{ m/zod};
G_{301}^{X} = (2.512 \cdot 1 + 0.592 \cdot 1) / 3600 = 0.0008622 \ z/c;
M^{X-10..-15^{\circ}C}_{I} = 0.16 \cdot 20 + 1.52 \cdot 0.2 + 0.096 \cdot 3 = 3.792 \ \varepsilon
M^{X-10..-15^{\circ}C}_{2} = 1,52 \cdot 0,2 + 0,096 \cdot 3 = 0,592 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{301} = (3,792 + 0,592) \cdot 39 \cdot 1 \cdot 10^{-6} = 0,000171 \text{ m/zod};
\mathbf{G}^{X-10..-15^{\circ}C}_{301} = (3.792 \cdot 1 + 0.592 \cdot 1) / 3600 = 0.0012178 \, z/c;
M = 0.000352 + 0.0001887 + 0.0001521 + 0.000171 = 0.0008637 \text{ m/200};
G = \max\{0.0004444; 0.0005956; 0.0008622; 0.0012178\} = 0.0012178 \ c/c.
M^{T}_{I} = 0.0169 \cdot 4 + 0.247 \cdot 0.2 + 0.0156 \cdot 3 = 0.1638 z;
M^{\mathrm{T}}_{2} = 0.247 \cdot 0.2 + 0.0156 \cdot 3 = 0.0962 \, \varepsilon;
M_{304}^{T} = (0.1638 + 0.0962) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0000572 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{304} = (0.1638 \cdot 1 + 0.0962 \cdot 1) / 3600 = 0.0000722 \, \epsilon/c;
M^{\Pi}_{I} = 0.026 \cdot 6 + 0.247 \cdot 0.2 + 0.0156 \cdot 3 = 0.2522 \ \epsilon;
M^{\Pi}_{2} = 0.247 \cdot 0.2 + 0.0156 \cdot 3 = 0.0962 \ \varepsilon;
M^{\Pi}_{304} = (0.2522 + 0.0962) \cdot 88 \cdot 1 \cdot 10^{-6} = 0.0000307 \text{ m/zod};
\mathbf{G}^{\Pi}_{304} = (0.2522 \cdot 1 + 0.0962 \cdot 1) / 3600 = 0.0000968 \, \epsilon/c;
M_{I}^{X} = 0.026 \cdot 12 + 0.247 \cdot 0.2 + 0.0156 \cdot 3 = 0.4082 \ \varepsilon
M^{X}_{2} = 0.247 \cdot 0.2 + 0.0156 \cdot 3 = 0.0962 \ z;
M^{X}_{304} = (0.4082 + 0.0962) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0000247 \text{ m/zod};
G^{X}_{304} = (0.4082 \cdot 1 + 0.0962 \cdot 1) / 3600 = 0.0001401 \ z/c;
\mathbf{M}^{\text{X-10..-15}^{\circ}\text{C}}_{l} = 0.026 \cdot 20 + 0.247 \cdot 0.2 + 0.0156 \cdot 3 = 0.6162 \, \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{2} = 0.247 \cdot 0.2 + 0.0156 \cdot 3 = 0.0962 \text{ z};
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (0.6162 + 0.0962) \cdot 39 \cdot 1 \cdot 10^{-6} = 0.0000278 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{304} = (0.6162 \cdot 1 + 0.0962 \cdot 1) / 3600 = 0.0001979 \ z/c;
M = 0.0000572 + 0.0000307 + 0.0000247 + 0.0000278 = 0.0001404 \text{ m/zod};
```

Взам.

Подп. и дата

읟

Изм. Кол.уч Лист №док

Подп.

```
G = \max\{0,0000722; 0,0000968; 0,0001401; 0,0001979\} = 0,0001979 \ \epsilon/c.
M^{T}_{I} = 0.005 \cdot 4 + 0.1 \cdot 0.2 + 0.005 \cdot 3 = 0.055 \ \varepsilon;
M^{T}_{2} = 0.1 \cdot 0.2 + 0.005 \cdot 3 = 0.035 \ z
M^{T}_{328} = (0.055 + 0.035) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0000198 \text{ m/zod};
G^{T}_{328} = (0.055 \cdot 1 + 0.035 \cdot 1) / 3600 = 0.000025 \ \epsilon/c;
M^{\Pi_I} = 0.009 \cdot 6 + 0.135 \cdot 0.2 + 0.005 \cdot 3 = 0.096 \ \varepsilon;
\mathbf{M}^{\Pi}_{2} = 0.1 \cdot 0.2 + 0.005 \cdot 3 = 0.035 \ \varepsilon;
M^{\Pi}_{328} = (0.096 + 0.035) \cdot 88 \cdot 1 \cdot 10^{-6} = 0.0000115 \text{ m/zod};
G^{\Pi}_{328} = (0.096 \cdot 1 + 0.035 \cdot 1) / 3600 = 0.0000364 \, c/c;
M_I^{X} = 0.01 \cdot 12 + 0.15 \cdot 0.2 + 0.005 \cdot 3 = 0.165 \ \epsilon;
M^{X}_{2} = 0.1 \cdot 0.2 + 0.005 \cdot 3 = 0.035 \ \epsilon
M_{328}^{X} = (0.165 + 0.035) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0000098 \text{ m/zod};
G_{328}^{X} = (0.165 \cdot 1 + 0.035 \cdot 1) / 3600 = 0.0000556 \, c/c;
M^{X-10..-15^{\circ}C}_{I} = 0.01 \cdot 20 + 0.15 \cdot 0.2 + 0.005 \cdot 3 = 0.245 \ \epsilon
M^{X-10..-15^{\circ}C}_{2} = 0.1 \cdot 0.2 + 0.005 \cdot 3 = 0.035 \ \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{328} = (0.245 + 0.035) \cdot 39 \cdot 1 \cdot 10^{-6} = 0.0000109 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{328} = (0.245 \cdot 1 + 0.035 \cdot 1) / 3600 = 0.0000778 \, z/c;
M = 0.0000198 + 0.0000115 + 0.0000098 + 0.0000109 = 0.000052 \text{ m/zod};
G = \max\{0.000025; 0.0000364; 0.0000556; 0.0000778\} = 0.0000778 \ c/c.
M^{T}_{I} = 0.048 \cdot 4 + 0.25 \cdot 0.2 + 0.048 \cdot 3 = 0.386 \ \epsilon
M^{T}_{2} = 0.25 \cdot 0.2 + 0.048 \cdot 3 = 0.194 z;
M_{330}^{T} = (0.386 + 0.194) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0001276 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{330} = (0.386 \cdot 1 + 0.194 \cdot 1) / 3600 = 0.0001611 \, z/c;
M^{\Pi_I} = 0.0522 \cdot 6 + 0.2817 \cdot 0.2 + 0.048 \cdot 3 = 0.51354 \, \varepsilon;
M^{\Pi}_{2} = 0.25 \cdot 0.2 + 0.048 \cdot 3 = 0.194 z;
M^{\Pi}_{330} = (0.51354 + 0.194) \cdot 88 \cdot 1 \cdot 10^{-6} = 0.0000623 \text{ m/zod};
G^{\Pi}_{330} = (0.51354 \cdot 1 + 0.194 \cdot 1) / 3600 = 0.0001965 \ z/c;
M^{X_I} = 0.058 \cdot 12 + 0.313 \cdot 0.2 + 0.048 \cdot 3 = 0.9026 \ \epsilon;
M^{X}_{2} = 0.25 \cdot 0.2 + 0.048 \cdot 3 = 0.194 z;
M^{X}_{330} = (0.9026 + 0.194) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0000537 \text{ m/zod};
G^{X}_{330} = (0.9026 \cdot 1 + 0.194 \cdot 1) / 3600 = 0.0003046 \, \epsilon/c;
M^{X-10..-15^{\circ}C}_{l} = 0.058 \cdot 20 + 0.313 \cdot 0.2 + 0.048 \cdot 3 = 1.3666 \, \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{2} = 0.25 \cdot 0.2 + 0.048 \cdot 3 = 0.194 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{330} = (1,3666 + 0,194) \cdot 39 \cdot 1 \cdot 10^{-6} = 0,0000609 \text{ m/zod};
\mathbf{G}^{X-10..-15^{\circ}C}_{330} = (1,3666 \cdot 1 + 0,194 \cdot 1) / 3600 = 0,0004335 \, \epsilon/c;
M = 0.0001276 + 0.0000623 + 0.0000537 + 0.0000609 = 0.0003045 \text{ m/zod}:
G = \max\{0.0001611; 0.0001965; 0.0003046; 0.0004335\} = 0.0004335 \ c/c.
M^{T}_{I} = 0.35 \cdot 4 + 1.8 \cdot 0.2 + 0.22 \cdot 3 = 2.42 \ \varepsilon;
\mathbf{M}^{\mathrm{T}}_{2} = 1.8 \cdot 0.2 + 0.22 \cdot 3 = 1.02 \, \varepsilon;
M^{T}_{337} = (2.42 + 1.02) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0007568 \text{ m/zod};
```

Взам.

Подп. и дата

읟

Изм. Кол.уч Лист №док

Подп.

```
ата Взам. Инв. №
```

```
G^{T}_{337} = (2.42 \cdot 1 + 1.02 \cdot 1) / 3600 = 0.0009556       z/c;
M^{\Pi}_{I} = 0.477 \cdot 6 + 1.98 \cdot 0.2 + 0.22 \cdot 3 = 3.918 \ \epsilon;
M^{\Pi}_{2} = 1.8 \cdot 0.2 + 0.22 \cdot 3 = 1.02 \ z
M^{\Pi}_{337} = (3.918 + 1.02) \cdot 88 \cdot 1 \cdot 10^{-6} = 0.0004345 \text{ m/200};
G^{\Pi}_{337} = (3.918 \cdot 1 + 1.02 \cdot 1) / 3600 = 0.0013717 \ z/c;
M^{X}_{I} = 0.53 \cdot 12 + 2.2 \cdot 0.2 + 0.22 \cdot 3 = 7.46 \ \varepsilon;
M^{X_2} = 1.8 \cdot 0.2 + 0.22 \cdot 3 = 1.02 \ \varepsilon;
M^{X}_{337} = (7.46 + 1.02) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0004155 \text{ m/zod};
G^{X}_{337} = (7.46 \cdot 1 + 1.02 \cdot 1) / 3600 = 0.0023556 \, \epsilon/c;
M^{X-10..-15^{\circ}C}_{l} = 0.53 \cdot 20 + 2.2 \cdot 0.2 + 0.22 \cdot 3 = 11.7 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 1.8 \cdot 0.2 + 0.22 \cdot 3 = 1.02 \text{ z};
M^{\text{X-10..-15}^{\circ}\text{C}}_{337} = (11.7 + 1.02) \cdot 39 \cdot 1 \cdot 10^{-6} = 0.0004961 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{337} = (11.7 \cdot 1 + 1.02 \cdot 1) / 3600 = 0.0035333 \ z/c;
M = 0.0007568 + 0.0004345 + 0.0004155 + 0.0004961 = 0.0021029 \text{ m/zod}
G = \max\{0,0009556; 0,0013717; 0,0023556; 0,0035333\} = 0,0035333 \ \epsilon/c.
M^{T}_{I} = 0.14 \cdot 4 + 0.4 \cdot 0.2 + 0.11 \cdot 3 = 0.97 \ \varepsilon
\mathbf{M}^{\mathrm{T}}_{2} = 0.4 \cdot 0.2 + 0.11 \cdot 3 = 0.41 \ \varepsilon;
M^{\mathrm{T}}_{2732} = (0.97 + 0.41) \cdot 220 \cdot 1 \cdot 10^{-6} = 0.0003036 \, \text{m/zod};
G^{T}_{2732} = (0.97 \cdot 1 + 0.41 \cdot 1) / 3600 = 0.0003833 \ z/c;
\mathbf{M}^{\Pi}_{I} = 0.153 \cdot 6 + 0.45 \cdot 0.2 + 0.11 \cdot 3 = 1.338 \, \varepsilon;
M^{\Pi}_{2} = 0.4 \cdot 0.2 + 0.11 \cdot 3 = 0.41 \text{ z};
M^{\Pi}_{2732} = (1,338 + 0.41) \cdot 88 \cdot 1 \cdot 10^{-6} = 0.0001538 \text{ m/zod};
G^{\Pi}_{2732} = (1,338 \cdot 1 + 0.41 \cdot 1) / 3600 = 0.0004856 \, c/c;
M^{X_I} = 0.17 \cdot 12 + 0.5 \cdot 0.2 + 0.11 \cdot 3 = 2.47 \ \varepsilon;
M^{X}_{2} = 0.4 \cdot 0.2 + 0.11 \cdot 3 = 0.41 \ \varepsilon;
M^{X}_{2732} = (2.47 + 0.41) \cdot 49 \cdot 1 \cdot 10^{-6} = 0.0001411 \text{ m/zod};
G^{X}_{2732} = (2,47 \cdot 1 + 0,41 \cdot 1) / 3600 = 0,0008 \, c/c;
M^{\text{X-10..-15}^{\circ}\text{C}}_{l} = 0.17 \cdot 20 + 0.5 \cdot 0.2 + 0.11 \cdot 3 = 3.83 \ \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{2} = 0.4 \cdot 0.2 + 0.11 \cdot 3 = 0.41 \ \epsilon;
M^{X-10..-15^{\circ}C}_{2732} = (3.83 + 0.41) \cdot 39 \cdot 1 \cdot 10^{-6} = 0.0001654 \text{ m/200};
G^{X-10..-15^{\circ}C}_{2732} = (3.83 \cdot 1 + 0.41 \cdot 1) / 3600 = 0.0011778 \, z/c;
```

 $M = 0,0003036 + 0,0001538 + 0,0001411 + 0,0001654 = 0,0007639 \ m/zo\partial;$ $G = \max\{0,0003833; 0,0004856; 0,0008; 0,0011778\} = 0,0011778 \ z/c.$

Из результатов расчётов максимально разового выброса для каждого типа автотранспортных средств в итоговые результаты по источнику занесены наибольшие значения, полученные с учетом неодновременности и нестационарности во времени движения автотранспортных средств.

ИЗА №6503. Компрессор

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами:

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

- Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М, 1998.
- Дополнения и изменения к Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М, 1999.

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	т одовой выорос, тод
301	Азота диоксид (Азот (IV) оксид)	0,0010089	0,0115062
304	Азот (II) оксид (Азота оксид)	0,0001639	0,0018698
328	Углерод (Сажа)	0,0000783	0,0008924
330	Сера диоксид (Ангидрид сернистый)	0,0003625	0,004134
337	Углерод оксид	0,0015238	0,0173781
2732	Керосин	0,0004275	0,0048756

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

			Рабо	Кол-			Вре	емя работ	гы				Од
Наиме	Тип	Кол	чая	BO		в течени	и суток,	Ч	за 3	80 мин, в	МИН	Эко	нов
нован	автомобиля	ичес	скор	рабо		без	под	холос	без	под	холо	кон	рем
ие	аналогичного	ТВО	ость	чих	всег	нагр	нагру	той	нагр	нагр	стой	тро	енн
	базе		,	дней	0	узки	зкой	ход	узки	узко	ход	ЛЬ	ост
			км/ч			•			,	й			Ь
Компр	Легковой,	1(1)	5	396	8	0	5,6	2,4	0	21	9	-	+
eccop	объем до												
перед	1,2л, дизель												
вижно													
й													

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Расчет максимально разовых выбросов i-го вещества осуществляется по формуле (1.1.1):

$$G_{i} = \sum_{k=1}^{k} (m_{AB ik} \cdot t_{AB} + 1, 3 \cdot m_{AB ik} \cdot t_{HAFP} + m_{XX ik} \cdot t_{XX}) \cdot N_{k} / 1800, z/c$$
(1.1.1)

где $m_{\mathit{ДB}\,ik}$ – удельный выброс i-го вещества при движении погрузчика k-й группы без нагрузки, $\mathit{г/мин}$; $1,3 \cdot m_{\mathit{ДB}\,ik}$ – удельный выброс i-го вещества при движении погрузчика k-й группы под нагрузкой, $\mathit{г/мин}$; $m_{\mathit{XX}\,ik}$ – удельный выброс i-го вещества при работе двигателя погрузчика k-й группы на холостом ходу, $\mathit{г/мин}$;

 $\emph{t}_{\textit{ДВ}}$ - время движения погрузчика за 30-ти минутный интервал без нагрузки, *мин*;

 t_{HAIP} - время движения погрузчика за 30-ти минутный интервал под нагрузкой, *мин*;

 t_{XX} - время движения погрузчика за 30-ти минутный интервал на холостом ходу, мин;

							Γ
	Изм.	Кол.уч	Лист	№док	Подп.	Дата	
_							_

Взам. Инв.

Подп. и дата

Инв. № подл.

 N_k - наибольшее количество погрузчиков k-й группы, одновременно работающих за 30-ти минутный интервал.

При этом для перевода величины удельного выброса загрязняющего вещества при пробеге автомобилей $m_{L\ ik}$ ($z/\kappa m$) в величину $m_{\mathcal{A}\mathcal{B}}$ ($z/\kappa m$) использовалась рабочая скорость автопогрузчика ($\kappa m/4$).

Из полученных значений G_i выбирается максимальное с учетом одновременности движения погрузчиков разных групп.

При проведении экологического контроля удельные выбросы загрязняющих веществ автомобилями на холостом ходу снижаются, поэтому и должны пересчитываться по формуле (1.1.2):

$$\mathbf{m'}_{XXik} = \mathbf{m}_{XXik} \cdot \mathbf{K}_{i}, \mathcal{Z}/\mathcal{M}\mathcal{U}\mathcal{H}$$
 (1.1.2)

где K_i – коэффициент, учитывающий снижение выброса i-го загрязняющего вещества при проведении экологического контроля.

Расчет валовых выбросов k-го вещества осуществляется по формуле (1.1.3):

$$M_{i} = \sum_{k=1}^{K} (m_{\mathcal{A}B \, ik} \cdot t'_{\mathcal{A}B} + 1, 3 \cdot m_{\mathcal{A}B \, ik} \cdot t'_{\mathcal{H}A\Gamma P.} + m_{XX \, ik} \cdot t'_{XX}) \cdot 10^{-6}, \, m/200$$
(1.1.3)

где $t'_{\mathit{ДB}}$ — суммарное время движения без нагрузки всех погрузчиков k-й группы, $\mathit{мин}$; t'_{HAPP} — суммарное время движения под нагрузкой всех погрузчиков k-й группы, $\mathit{мин}$; $t'_{\mathit{ДB}}$ — суммарное время работы двигателей всех погрузчиков k-й группы на холостом ходу, $\mathit{мин}$.

Удельные выбросы загрязняющих веществ при работе автомобилей, аналогичных базе автопогрузчиков, приведены в таблице 1.1.3.

Таблица 1.1.3 - Удельные выбросы загрязняющих веществ

Тип автомобиля	Загрязняющее вещество	Движение, г/км	Холостой ход, г/мин	Экок онтр оль, Кі
Легковой, объем до 1,2л, дизель	Азота диоксид (Азот (IV)	0,64	0,04	1
	оксид)			
	Азот (II) оксид (Азота оксид)	0,104	0,0065	1
	Углерод (Сажа)	0,054	0,002	0,8
	Сера диоксид (Ангидрид сернистый)	0,1602	0,032	0,95
	Углерод оксид	0,81	0,1	0,9
	Керосин	0,18	0,04	0,9

Расчет максимально разового и годового выделения загрязняющих веществ в атмосферу приведен ниже.

Компрессор передвижной

Взам.

Подп. и дата

Инв. № подл.

 $G_{301} = (0.64 \cdot 5 \cdot 0 / 60 + 1.3 \cdot 0.64 \cdot 5 \cdot 21 / 60 + 0.04 \cdot 9) \cdot 1 / 1800 = 0.0010089 \ \epsilon/c;$

 $M_{301} = (0.64 \cdot 5 \cdot 396 \cdot 0 \cdot 1 + 1.3 \cdot 0.64 \cdot 5 \cdot 396 \cdot 5.6 \cdot 1 + 0.04 \cdot 396 \cdot 2.4 \cdot 60 \cdot 1) \cdot 10^{-6} = 0.0115062 \, \text{m/zod};$

 $G_{304} = (0.104 \cdot 5 \cdot 0 / 60 + 1.3 \cdot 0.104 \cdot 5 \cdot 21 / 60 + 0.0065 \cdot 9) \cdot 1 / 1800 = 0.0001639 \ z/c;$

 $M_{304} = (0,104 \cdot 5 \cdot 396 \cdot 0 \cdot 1 + 1,3 \cdot 0,104 \cdot 5 \cdot 396 \cdot 5,6 \cdot 1 + 0,0065 \cdot 396 \cdot 2,4 \cdot 60 \cdot 1) \cdot 10^{-6} = 0,0018698$ m/200;

 $G_{328} = (0.054 \cdot 5 \cdot 0 / 60 + 1.3 \cdot 0.054 \cdot 5 \cdot 21 / 60 + 0.002 \cdot 9) \cdot 1 / 1800 = 0.0000783 \ z/c;$

ш							
Г							Γ
Γ							l
	Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

```
M_{328} = (0.054 \cdot 5 \cdot 396 \cdot 0 \cdot 1 + 1.3 \cdot 0.054 \cdot 5 \cdot 396 \cdot 5.6 \cdot 1 + 0.002 \cdot 396 \cdot 2.4 \cdot 60 \cdot 1) \cdot 10^{-6} = 0.0008924 m/200;
```

 $G_{330} = (0.1602 \cdot 5 \cdot 0 / 60 + 1.3 \cdot 0.1602 \cdot 5 \cdot 21 / 60 + 0.032 \cdot 9) \cdot 1 / 1800 = 0.0003625 \, c/c;$

 $M_{330} = (0.1602 \cdot 5 \cdot 396 \cdot 0 \cdot 1 + 1.3 \cdot 0.1602 \cdot 5 \cdot 396 \cdot 5.6 \cdot 1 + 0.032 \cdot 396 \cdot 2.4 \cdot 60 \cdot 1) \cdot 10^{-6} = 0.004134$ m/200;

 $G_{337} = (0.81 \cdot 5 \cdot 0 / 60 + 1.3 \cdot 0.81 \cdot 5 \cdot 21 / 60 + 0.1 \cdot 9) \cdot 1 / 1800 = 0.0015238 \ z/c;$

 $M_{337} = (0.81 \cdot 5 \cdot 396 \cdot 0 \cdot 1 + 1.3 \cdot 0.81 \cdot 5 \cdot 396 \cdot 5.6 \cdot 1 + 0.1 \cdot 396 \cdot 2.4 \cdot 60 \cdot 1) \cdot 10^{-6} = 0.0173781 \text{ m/zod};$

 $G_{2732} = (0.18 \cdot 5 \cdot 0 / 60 + 1.3 \cdot 0.18 \cdot 5 \cdot 21 / 60 + 0.04 \cdot 9) \cdot 1 / 1800 = 0.0004275 \ z/c;$

 $M_{2732} = (0.18 \cdot 5 \cdot 396 \cdot 0 \cdot 1 + 1.3 \cdot 0.18 \cdot 5 \cdot 396 \cdot 5.6 \cdot 1 + 0.04 \cdot 396 \cdot 2.4 \cdot 60 \cdot 1) \cdot 10^{-6} = 0.0048756$ m/zod.

ИЗА №6504. Виброплита

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами:

- Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, СПб., НИИ Атмосфера, 2012.
- Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М, 1998.
- Дополнения и изменения к Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М, 1999.

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу, приведены в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год	
код	наименование	выброс, г/с	т одовой выорос, тлод	
301	Азота диоксид (Азот (IV) оксид)	0,0010089	0,0115062	
304	Азот (II) оксид (Азота оксид)	0,0001639	0,0018698	
328	Углерод (Сажа)	0,0000783	0,0008924	
330	Сера диоксид (Ангидрид сернистый)	0,0003625	0,004134	
337	Углерод оксид	0,0015238	0,0173781	
2732	Керосин	0,0004275	0,0048756	

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

			Рабо	Кол-			Вре	мя работ	гы				Од
Наиме	Тип	Кол	чая	BO		в течени	и суток,	Ч	3a 3	80 мин, м	МИН	Эко	нов
нован	автомобиля	ичес	скор	рабо		без	под	холос	без	под	холо	кон	рем
ие	аналогичного базе	тво	ость	чих	всег	нагр	нагру	той	нагр	нагр	стой	тро	енн
	Vase		, км/ч	дней	0	узки	зкой	ход	узки	узко й	ход	ЛЬ	ост ь
Вибро	Легковой,	1(1)	5	396	8	0	5,6	2,4	0	21	9	-	+
плита	объем до												
	1,2л, дизель												

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Расчет максимально разовых выбросов i-го вещества осуществляется по формуле (1.1.1):

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам.

Подп. и дата

$$G_i = \sum_{k=1}^{k} (\boldsymbol{m}_{\mathcal{A}B ik} \cdot \boldsymbol{t}_{\mathcal{A}B} + 1, 3 \cdot \boldsymbol{m}_{\mathcal{A}B ik} \cdot \boldsymbol{t}_{\mathcal{A}APP} + \boldsymbol{m}_{XX ik} \cdot \boldsymbol{t}_{XX}) \cdot \boldsymbol{N}_k / 1800, \, \varepsilon/c$$

$$(1.1.1)$$

где $m_{\mathit{ДB}\,ik}$ — удельный выброс i-го вещества при движении погрузчика k-й группы без нагрузки, $\mathit{г/мин}$; $1,3 \cdot m_{\mathit{ДB}\,ik}$ — удельный выброс i-го вещества при движении погрузчика k-й группы под нагрузкой, $\mathit{г/мин}$; $m_{\mathit{XX}\,ik}$ — удельный выброс i-го вещества при работе двигателя погрузчика k-й группы на холостом ходу, $\mathit{г/мин}$;

 $t_{\it ЛB}$ - время движения погрузчика за 30-ти минутный интервал без нагрузки, *мин*;

 t_{HAIP} - время движения погрузчика за 30-ти минутный интервал под нагрузкой, *мин*;

 t_{XX} - время движения погрузчика за 30-ти минутный интервал на холостом ходу, *мин*;

 N_k - наибольшее количество погрузчиков k-й группы, одновременно работающих за 30-ти минутный интервал.

При этом для перевода величины удельного выброса загрязняющего вещества при пробеге автомобилей $m_{L\ ik}$ ($z/\kappa m$) в величину $m_{\mathcal{A}\mathcal{B}}$ ($z/\kappa m$) использовалась рабочая скорость автопогрузчика ($\kappa m/4$).

Из полученных значений G_i выбирается максимальное с учетом одновременности движения погрузчиков разных групп.

При проведении экологического контроля удельные выбросы загрязняющих веществ автомобилями на холостом ходу снижаются, поэтому и должны пересчитываться по формуле (1.1.2):

$$\mathbf{m'}_{XXik} = \mathbf{m}_{XXik} \cdot \mathbf{K}_i, \mathcal{E}/\mathbf{M}\mathbf{U}\mathbf{H}$$
 (1.1.2)

где K_i – коэффициент, учитывающий снижение выброса i-го загрязняющего вещества при проведении экологического контроля.

Расчет валовых выбросов k-го вещества осуществляется по формуле (1.1.3):

$$\mathbf{M}_{i} = \sum_{k=1}^{k} (\mathbf{m}_{\mathcal{A}B ik} \cdot \mathbf{t'}_{\mathcal{A}B} + 1, 3 \cdot \mathbf{m}_{\mathcal{A}B ik} \cdot \mathbf{t'}_{\mathcal{H}A\Gamma P} + \mathbf{m}_{XX ik} \cdot \mathbf{t'}_{XX}) \cdot 10^{-6}, \, m/200$$

$$(1.1.3)$$

где t'_{AB} — суммарное время движения без нагрузки всех погрузчиков k-й группы, muh; t'_{HAIP} — суммарное время движения под нагрузкой всех погрузчиков k-й группы, muh;

 $t'_{\it ЛB}$ — суммарное время работы двигателей всех погрузчиков k-й группы на холостом ходу, $\it Muh.$

Удельные выбросы загрязняющих веществ при работе автомобилей, аналогичных базе автопогрузчиков, приведены в таблице 1.1.3.

Таблица 1.1.3 - Удельные выбросы загрязняющих веществ

Тип автомобиля	Загрязняющее вещество	Движение, г/км	Холостой ход, г/мин	Экок онтр оль, Кі
Легковой, объем до 1,2л, дизель	Азота диоксид (Азот (IV) оксид)	0,64	0,04	1
	Азот (II) оксид (Азота оксид)	0,104	0,0065	1
	Углерод (Сажа)	0,054	0,002	0,8
	Сера диоксид (Ангидрид сернистый)	0,1602	0,032	0,95
	Углерод оксид	0,81	0,1	0,9
	Керосин	0,18	0,04	0,9

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

Подп. и дата

Инв. № подл.

Виброплита

 $G_{301} = (0.64 \cdot 5 \cdot 0 / 60 + 1.3 \cdot 0.64 \cdot 5 \cdot 21 / 60 + 0.04 \cdot 9) \cdot 1 / 1800 = 0.0010089 \ e/c;$

 $M_{301} = (0.64 \cdot 5 \cdot 396 \cdot 0 \cdot 1 + 1.3 \cdot 0.64 \cdot 5 \cdot 396 \cdot 5.6 \cdot 1 + 0.04 \cdot 396 \cdot 2.4 \cdot 60 \cdot 1) \cdot 10^{-6} = 0.0115062 \,\text{m/zod};$

 $G_{304} = (0.104 \cdot 5 \cdot 0 / 60 + 1.3 \cdot 0.104 \cdot 5 \cdot 21 / 60 + 0.0065 \cdot 9) \cdot 1 / 1800 = 0.0001639 \ z/c;$

 $M_{304} = (0,104 \cdot 5 \cdot 396 \cdot 0 \cdot 1 + 1,3 \cdot 0,104 \cdot 5 \cdot 396 \cdot 5,6 \cdot 1 + 0,0065 \cdot 396 \cdot 2,4 \cdot 60 \cdot 1) \cdot 10^{-6} = 0,0018698$ m/200;

 $G_{328} = (0.054 \cdot 5 \cdot 0 / 60 + 1.3 \cdot 0.054 \cdot 5 \cdot 21 / 60 + 0.002 \cdot 9) \cdot 1 / 1800 = 0.0000783 \ z/c;$

 $M_{328} = (0.054 \cdot 5 \cdot 396 \cdot 0 \cdot 1 + 1.3 \cdot 0.054 \cdot 5 \cdot 396 \cdot 5.6 \cdot 1 + 0.002 \cdot 396 \cdot 2.4 \cdot 60 \cdot 1) \cdot 10^{-6} = 0.0008924$ m/200;

 $G_{330} = (0.1602 \cdot 5 \cdot 0 / 60 + 1.3 \cdot 0.1602 \cdot 5 \cdot 21 / 60 + 0.032 \cdot 9) \cdot 1 / 1800 = 0.0003625 \, c/c;$

 $M_{330} = (0.1602 \cdot 5 \cdot 396 \cdot 0 \cdot 1 + 1.3 \cdot 0.1602 \cdot 5 \cdot 396 \cdot 5.6 \cdot 1 + 0.032 \cdot 396 \cdot 2.4 \cdot 60 \cdot 1) \cdot 10^{-6} = 0.004134$ m/200;

 $G_{337} = (0.81 \cdot 5 \cdot 0 / 60 + 1.3 \cdot 0.81 \cdot 5 \cdot 21 / 60 + 0.1 \cdot 9) \cdot 1 / 1800 = 0.0015238 \, c/c;$

 $M_{337} = (0.81 \cdot 5 \cdot 396 \cdot 0 \cdot 1 + 1.3 \cdot 0.81 \cdot 5 \cdot 396 \cdot 5.6 \cdot 1 + 0.1 \cdot 396 \cdot 2.4 \cdot 60 \cdot 1) \cdot 10^{-6} = 0.0173781 \text{ m/zod};$

 $G_{2732} = (0.18 \cdot 5 \cdot 0 / 60 + 1.3 \cdot 0.18 \cdot 5 \cdot 21 / 60 + 0.04 \cdot 9) \cdot 1 / 1800 = 0.0004275 \ z/c;$

 $M_{2732} = (0.18 \cdot 5 \cdot 396 \cdot 0 \cdot 1 + 1.3 \cdot 0.18 \cdot 5 \cdot 396 \cdot 5.6 \cdot 1 + 0.04 \cdot 396 \cdot 2.4 \cdot 60 \cdot 1) \cdot 10^{-6} = 0.0048756 \,\text{m/zod}.$

ИЗА №6505. Укладка асфальта

Расчет выбросов вредных веществ при укладке асфальтобетона производится по «Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для асфальтобетонных заводов (расчетным методом)», согласованной Государственным комитетом РФ по охране окружающей среды и гидрометеорологии 26.08.1998г. №05-12/16-389.

В соответствии с данными методической документации удельный выброс загрязняющего вещества (углеводородов) принимается в среднем 1кг на 1т готового битума. Согласно данным ГОСТ 9128-97 среднее содержание битума в асфальте – 6%.

Количество битума – 8,1 т.

Исходя из этого, валовый выброс ЗВ определяется по формуле:

$$M_{\text{УГ}} = N \cdot 1/1000$$
, т/весь период

где: N- количество битума, содержащегося в асфальте, т.

Расчет максимальных выбросов загрязняющих веществ производится по формуле:

$$Q = \frac{M_{\rm VT} \cdot 10^6}{T \cdot 3600}, \Gamma/c$$

где: Муг – валовый выброс загрязняющих веществ, т/год;

Т – время работ, ч.

ZHB.

Взам.

Подп. и дата

Инв. № подл.

Результаты расчета

Концентрация веществ в парах битума:								
- углеводороды	C_{12} - C_{19}	%	99,52					
- сероводород	H_2S	%	0,48					
Валовый выброс загрязняющих веществ всего:	G	Т	0,008100					
в том числе:		,	•					
- углеводороды	G _{углевод}	Т	0,008061					

_						
	Изм.	Кол.уч	Лист	№док	Подп.	Дата

- сероводород	G _{серовод}	Т	0,000039
Максимально-разовый выброс:			
- углеводородов	М _{углевод}	г/с	0,027990
- сероводорода	М _{серовод}	г/с	0,000135

ИЗА №6506. Сварка полиэтиленовых труб

Итого по ИЗА:

Код ЗВ	Наименование ЗВ	г/сек	т/период
0337	Углерода оксид (Углерод окись;	0,000153	0,000003
	углерод моноокись; угарный газ)		
1537	Метановая кислота	0,000306	0,000006

Стыковка при укладке труб из полиэтилена производится способом сварки швов стыковым методом.

Расчет выбросов при сварке труб ПЭ стыковым методом производился по Методике расчетов «Удельных показателей образования вредных веществ выделяемых в атмосферу от основных видов технологического оборудования для предприятий радиоэлектронного комплекса», Спб, 2006 г.

Максимально-разовый выброс вещества от единицы оборудования:

$$M_i = \frac{Q_{y\pi} \cdot B}{3600}, \quad \Gamma/ceK$$

где $M_{\rm i}$ - количество i-того вредного вещества, выделяющегося от единицы оборудования, г/сек,

 $Q_{y_{\text{M}}}$ - удельный показатель выделения вещества от кг перерабатываемого материала, г/кг,

В - расход перерабатываемого материала на оборудовании, кг/час.

Расчетными веществами от сварки труб ПВХ будут являться метановая кислота и оксид углерода.

Валовые выбросы вредных веществ (т/пер):

$$M_{zoo} = M_i \cdot T \cdot 3600 \cdot 10^{-6}$$
, т/год

где M_{rog} - годовой выброс вещества в атмосферу, т/год

 $M_{\rm i}$ - количество i-того вредного вещества, выделяющегося от единицы оборудования, г/сек.

Т - годовой фонд рабочего времени для данного оборудования, час/год.

0337 Углерода оксид (Углерод окись; углерод моноокись; угарный газ)

 $M_i = 0.25*2.2/3600=0.000153 \text{ r/cek},$

при B — расходе материала = 2.2 кг/час.

Время сварки и остывания -2 минуты за одну операцию, всего 307,3 минут =5,12 час/период.

 $M_{0337} = 0,000153*5,12*3600/1000000 = 0,000003, т/пер.$

1537 Метановая кислота

 $M_i = 0.5*2.2/3600=0.000306 \text{ r/cek}$

при B – расходе материала = 2,2 кг/час.

Время сварки и остывания -2 минуты за одну операцию, всего 307,3 минут =5,12 час/период.

ı							_
ı							ı
							ı
ı							ı
ı							ı
ı	Изм.	Кол.уч	Лист	№док	Подп.	Дата	

ИЗА №6507. Пескоструйная установка

Расчет выбросов проведен согласно п. 17, с. 60 «Методического пособия по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», СПб., $2012~\Gamma$.

Валовый выброс (по каждому веществу) рассчитывается по формуле:

Mr. = q * Sr * K_2 * K_4 * K_5 * K_7 * 10^{-3} , $T/\Gamma O J$

Максимальный разовый выброс (по каждому веществу) рассчитывается по формуле:

 $M_{M,p} = q * S_{4} * K_{2} * K_{4} * K_{5} * K_{7} / 3,6$, Γ/c

где: q - удельное выделение пыли, $\kappa \Gamma/m^2$, равное:

 $2,668 \text{ кг/м}^2$ - пыль неорганическая с содержанием $SiO_2 20-70\%$ (код 2908),

 $4,002 \text{ кг/м}^2$ - взвешенные вещества (код 2902);

Sг - площадь обрабатываемой поверхности за год, м²;

Sч - площадь обрабатываемой поверхности за час, M^2/Ψ ;

К₂ - доля пыли, образующая устойчивую аэрозоль;

К₄ - коэффициент, учитывающий местные условия;

К₅ - коэффициент, учитывающий влажность материала;

К₇ - коэффициент, учитывающий крупность материала.

2908 Пыль неорганическая с содержанием SiO₂ 20-70%:

Mr. = 2,668*320*0,03*1*1*0,8/1000 = 0,020490 т/год

 $M_{\text{M.p.}} = 2,668*1,2*0,03*1*1*0,8/3,6 = 0,021344 \, \text{r/c}$

2902 Взвешенные вещества:

 $M_{\Gamma} = 4,002*320*0,03*1*1*0,8/1000 = 0,030735 \text{ T/год}$

MM.p. = $4,002*1,2*0,03*1*1*0,8/3,6 = 0,032016 \Gamma/c$

ИЗА №6508. Металлообработка

При определении выбросов от оборудования механической обработки металлов используются расчетные методы с применением удельных показателей выделения загрязняющих веществ.

Расчет выделений загрязняющих веществ выполнен в соответствии с «Методикой расчета выделений (выбросов) загрязняющих веществ в атмосферу при механической обработке металлов (на основе удельных показателей). СПб, 1997» (с учетом дополнений НИИ Атмосфера 2012 г.).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
123	диЖелезо триоксид (Железа оксид)	0,0036	0,015552
2930	Пыль абразивная	0,0024	0,010368

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

L							
I							ſ
ŀ							l
L							ı
I	Изм.	Кол.уч	Лист	№док	Подп.	Дата	l

Взам.

Подп. и дата

04/2022-151-00000-OBOC-TY

Характеристика технологического процесса и оборудования УШМ Обработка металлов Лиаметр шлифовального круга 150 -		ит. одно врем енно	Врем я работ ы, ч/год	Од нов рем енн ост ь
УШМ. Обработка металлов. Диаметр шлифовального круга 150 - 200 мм. Гравитационное осаждение при отсутствии местных	3	1	400	+
отсосов.				

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Количество загрязняющих веществ, выделяющихся при механической обработке металлов без применения смазочно-охлаждающей жидкости (СОЖ) при отсутствии газоочистки от одного станка, определяется по формуле (1.1.1):

$$\mathbf{M}^{1}_{6bid} = 3.6 \cdot \mathbf{K} \cdot \mathbf{T} \cdot 10^{-3}, \, m/200$$

где K - удельные выделения пыли технологическим оборудованием, z/c; T - фактический годовой фонд времени работы оборудования, u.

Применение СОЖ снижает выделение пыли до минимальных значений, однако в процессах шлифования изделий количество выделяющейся совместно с аэрозолями СОЖ металлоабразивной пыли остается значительным.

Когда технологические установки оборудованы местными отсосами, количество загрязняющих веществ, поступающих через них в атмосферу, будет равно количеству выделяющихся вредных веществ, умноженному на значение эффективности местных отсосов (η) , выраженное в долях единицы.

В случае если на предприятии эксплуатируется несколько единиц однотипного оборудования, значение выброса принимается пропорционально количеству оборудования с учетом одновременности его функционирования.

В расчетах приземных концентраций загрязняющих веществ с применением нормативной методики расчета ОНД-86 должны использоваться мощности выбросов ЗВ в атмосферу, отнесенные к 20-минутному интервалу времени. В соответствии с примечанием 1 к п. 2.3 ОНД-86 это требование относится к выбросам загрязняющих веществ, продолжительность, которых меньше 20-ти минут. Коэффициент приведения (K_n) принимается равным единицы в случае если продолжительность производственного цикла (τ) превышает 20 минут. В случае если τ составляет менее 20-ти минут, то значение K_n определяется по формуле (1.1.2):

$$K_n = \tau / 1200 \tag{1.1.2}$$

где τ - продолжительность производственного цикла, c.

Расчет годового выброса загрязняющих веществ, выделяющихся при механической обработке металлов, в атмосферу выполняется по формуле (1.1.3):

$$\mathbf{M} = \mathbf{M}^{1}_{\text{Giol}} \cdot \mathbf{j} \cdot \mathbf{\eta} \cdot \mathbf{b}, \, m/200$$
 (1.1.3)

Изм.	Кол.уч	Лист	№док	Подп.	Дата

NHB. №

Взам.

Подп. и дата

где j - коэффициент выброса пыли в случае применения СОЖ, в долях единицы;

 η - эффективность местных отсосов, в долях единицы;

b - количество единиц однотипного оборудования.

Расчет максимального разового выброса загрязняющих веществ, выделяющихся при механической обработке металлов, в атмосферу выполняется по формуле (1.1.4):

$$G = K \cdot j \cdot \eta \cdot b' \cdot K_n, z/c \tag{1.1.4}$$

где b' - количество одновременно работающих единиц однотипного оборудования.

Количество загрязняющих веществ, выделяющихся при механической обработке металлов в случае применения СОЖ от одного станка, определяется по формуле (1.1.5):

$$\mathbf{M}^{1x}_{\text{\tiny Bbl6.}} = 3.6 \cdot \mathbf{K}^{x} \cdot \mathbf{N} \cdot \mathbf{T} \cdot 10^{-3}, \, m/200$$
 (1.1.5)

где K^x - удельные выделения масла и эмульсола, $z/(c \cdot \kappa Bm)$;

N - мощность установленного оборудования, κBm ;

T - фактический годовой фонд времени работы оборудования, u.

Расчет годового выброса загрязняющих веществ, выделяющихся при механической обработке металлов, в атмосферу в случае применения СОЖ выполняется по формуле (1.1.6):

$$\mathbf{M}^{\mathbf{x}} = \mathbf{M}^{1\mathbf{x}}_{\mathbf{Gbio}} \cdot \mathbf{b}, \, m/200 \tag{1.1.6}$$

где b - количество единиц однотипного оборудования.

Расчет максимального разового выброса загрязняющих веществ, выделяющихся при механической обработке металлов, в атмосферу в случае применения СОЖ выполняется по формуле (1.1.7):

$$\mathbf{G}^{\mathbf{x}} = \mathbf{K}^{\mathbf{x}} \cdot \mathbf{N} \cdot \mathbf{b'} \cdot \mathbf{K}_{n}, \, \varepsilon/c \tag{1.1.7}$$

где b' - количество одновременно работающих единиц однотипного оборудования; K_n - коэффициент приведения к 20-ти минутному интервалу.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

УШМ.

ZHB.

Взам. І

Расчет выделения пыли

123. диЖелезо триоксид (Железа оксид)

 $M^{1}_{6bid.} = 3.6 \cdot 0.018 \cdot 400 \cdot 10^{-3} = 0.02592 \text{ m/zod};$

 $M = 0.02592 \cdot 0.2 \cdot 3 = 0.015552 \text{ m/zod};$

 $G = 0.018 \cdot 0.2 \cdot 1 = 0.0036 \ e/c.$

2930. Пыль абразивная

 $M_{6bid}^{1} = 3.6 \cdot 0.012 \cdot 400 \cdot 10^{-3} = 0.01728 \text{ m/zod};$

 $M = 0.01728 \cdot 0.2 \cdot 3 = 0.010368 \text{ m/zod};$

 $G = 0.012 \cdot 0.2 \cdot 1 = 0.0024 \ z/c.$

№ подл.						
₽						
Инв.						
Ž	Изм.	Кол.уч	Лист	№док	Подп.	Дата
		•				

04/2022	151	00000	$\triangle B \triangle C$	· TU
04/2022-	151	-いいいいい	-UBUU	,-14

ИЗА №6509. Сварочные работы

При определении выделений (выбросов) в сварочных процессах используются расчетные методы с применением удельных показателей выделения загрязняющих веществ (на единицу массы расходуемых сварочных материалов; на длину реза; на единицу оборудования; на единицу массы расходуемых наплавочных материалов).

При выполнении сварочных работ атмосферный воздух загрязняется сварочным аэрозолем, в составе которого в зависимости от вида сварки, марок электродов и флюса находятся вредные для здоровья оксиды металлов, а также газообразные соединения.

Расчет выделений загрязняющих веществ выполнен в соответствии с «Методикой расчета выделений (выбросов) загрязняющих веществ в атмосферу при сварочных работах (на основе удельных показателей). СПб, 1997» (с учетом дополнений НИИ Атмосфера 2012 г.).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
123	диЖелезо триоксид (Железа оксид)	0,0032819	0,0035445
143	Марганец и его соединения	0,0002574	0,000278
301	Азота диоксид (Азот (IV) оксид)	0,00051	0,0005508
304	Азот (II) оксид (Азота оксид)	0,0000829	0,0000895
337	Углерод оксид	0,0031403	0,0033915
342	Фтористые газообразные соединения	0,0002196	0,0002372
344	Фториды неорганические плохо	0,0002361	0,000255
	растворимые		
2908	Пыль неорганическая, содержащая 70-	0,0002361	0,000255
	20% SiO2		

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Расчетный параметр

Таблица 1.1.2 - Исходные данные для расчета

Подп.

Дата

Паим	т асчетный параметр								
енова	ние характеристика, обозначение		значени						
ние			e						
Э 50А.]	Э50А. Ручная дуговая сварка сталей штучными электродами. УОНИ-13/55								
	Удельный показатель выделения загрязняющего вещества "х" на								
	единицу массы расходуемых сырья и материалов, K_m :								
	123. диЖелезо триоксид (Железа оксид)								
	143. Марганец и его соединения								
	301. Азота диоксид (Азот (IV) оксид)								
	304. Азот (II) оксид (Азота оксид)	$\Gamma/\mathrm{K}\Gamma$	0,351						
	337. Углерод оксид	$\Gamma/\mathrm{K}\Gamma$	13,3						
	342. Фтористые газообразные соединения	$\Gamma/\mathrm{K}\Gamma$	0,93						
	344. Фториды неорганические плохо растворимые								
	2908. Пыль неорганическая, содержащая 70-20% SiO2	$\Gamma/\mathrm{K}\Gamma$	1						
	Норматив образования огарков от расхода электродов, n_o	%	15						

Подп. и дата	
Инв. № подл.	

Изм. Кол.уч Лист №док

Взам. Инв.

Наим	Расчетный параметр						
енова	характеристика, обозначение		значени				
ние	характеристика, обозначение	ца	e				
	Расход сварочных материалов всего за год, B''						
	Расход сварочных материалов за период интенсивной работы, В'	ΚГ	1				
	Время интенсивной работы, $ au$	Ч	1				
	Одновременность работы	-	нет				

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Количество загрязняющих веществ, выделяемых в воздушный бассейн при расходе сварочных материалов, определяется по формуле (1.1.1):

$$\mathbf{M}_{bi} = \mathbf{B} \cdot \mathbf{K}_{m}^{x} \cdot (1 - \mathbf{n}_{o} / 100) \cdot 10^{-3}, \, \kappa z / 4 \tag{1.1.1}$$

где B - расход применяемых сырья и материалов (исходя из количества израсходованных материалов и нормативного образования отходов при работе технологического оборудования), $\kappa z/v$;

 K_m^x - удельный показатель выделения загрязняющего вещества "x" на единицу массы расходуемых сырья и материалов, $z/\kappa z$;

 n_o - норматив образования огарков от расхода электродов, %.

Когда технологические установки оборудованы местными отсосами, количество загрязняющих веществ, поступающих через них в атмосферу, будет равно количеству выделяющихся вредных веществ, умноженному на значение эффективности местных отсосов в долях единицы.

Валовое количество загрязняющих веществ, выделяющихся при расходе сварочных материалов, определяется по формуле (1.1.2):

$$\mathbf{M} = \mathbf{B''} \cdot \mathbf{K}^{\mathbf{x}}_{m} \cdot (1 - \mathbf{n}_{o} / 100) \cdot \mathbf{\eta} \cdot 10^{-6}, \, m/200$$

$$(1.1.2)$$

где B'' - расход применяемых сырья и материалов, $\kappa 2/200$; η - эффективность местных отсосов, в долях единицы.

Максимально разовый выброс загрязняющих веществ, выделяющихся при сварочных процессах, определяется по формуле (1.1.3):

$$G = 10^3 \cdot M_{bi} \cdot \eta / 3600, z/c \tag{1.1.3}$$

В случае, когда рассчитывается выделение в помещение вредных веществ, поступающих от оборудования, оснащенного местными отсосами, вместо коэффициента учета эффективности местных отсосов (η), в расчетных формулах используются коэффициенты V_n (учитывающий долю пыли, поступающей в производственное помещение) и K_n (поправочный коэффициент, учитывающий гравитационное осаждение).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Э50А. Ручная дуговая сварка сталей штучными электродами. УОНИ-13/55 $B = 1 / 1 = 1 \ \kappa z/v$.

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам.

Подп. и дата

```
123. диЖелезо триоксид (Железа оксид)
M_{bi} = 1 \cdot 13.9 \cdot (1 - 15 / 100) \cdot 10^{-3} = 0.011815 \, \kappa z/u;
M = 300 \cdot 13.9 \cdot (1 - 15 / 100) \cdot 1 \cdot 10^{-6} = 0.0035445 \text{ m/zod};
G = 10^3 \cdot 0.011815 \cdot 1 / 3600 = 0.0032819 \ \epsilon/c.
          143. Марганец и его соединения
M_{bi} = 1 \cdot 1,09 \cdot (1 - 15 / 100) \cdot 10^{-3} = 0,0009265 \, \kappa z/u;
M = 300 \cdot 1,09 \cdot (1 - 15 / 100) \cdot 1 \cdot 10^{-6} = 0,000278 \text{ m/zod};
G = 10^3 \cdot 0.0009265 \cdot 1 / 3600 = 0.0002574 \, e/c.
         301. Азота диоксид (Азот (IV) оксид)
M_{bi} = 1 \cdot 2.16 \cdot (1 - 15 / 100) \cdot 10^{-3} = 0.001836 \, \kappa z/u
M = 300 \cdot 2,16 \cdot (1 - 15 / 100) \cdot 1 \cdot 10^{-6} = 0,0005508 \, \text{m/zod};
G = 10^3 \cdot 0.001836 \cdot 1 / 3600 = 0.00051    z/c.
         304. Азот (II) оксид (Азота оксид)
M_{bi} = 1 \cdot 0.351 \cdot (1 - 15 / 100) \cdot 10^{-3} = 0.0002984 \, \text{kg/y};
M = 300 \cdot 0.351 \cdot (1 - 15 / 100) \cdot 1 \cdot 10^{-6} = 0.0000895 \, \text{m/zod};
G = 10^3 \cdot 0.0002984 \cdot 1 / 3600 = 0.0000829 \ z/c.
         337. Углерод оксид
M_{bi} = 1 \cdot 13.3 \cdot (1 - 15 / 100) \cdot 10^{-3} = 0.011305 \, \kappa z/u;
M = 300 \cdot 13.3 \cdot (1 - 15 / 100) \cdot 1 \cdot 10^{-6} = 0.0033915 \text{ m/zod};
G = 10^3 \cdot 0.011305 \cdot 1 / 3600 = 0.0031403 \ e/c.
         342. Фтористые газообразные соединения
M_{bi} = 1 \cdot 0.93 \cdot (1 - 15 / 100) \cdot 10^{-3} = 0.0007905 \, \kappa 2/y;
M = 300 \cdot 0.93 \cdot (1 - 15 / 100) \cdot 1 \cdot 10^{-6} = 0.0002372 \text{ m/zod};
G = 10^3 \cdot 0.0007905 \cdot 1 / 3600 = 0.0002196 \ \epsilon/c.
         344. Фториды неорганические плохо растворимые
M_{bi} = 1 \cdot 1 \cdot (1 - 15 / 100) \cdot 10^{-3} = 0,00085 \, \kappa 2/u;
M = 300 \cdot 1 \cdot (1 - 15 / 100) \cdot 1 \cdot 10^{-6} = 0,000255 \text{ m/zod};
G = 10^3 \cdot 0.00085 \cdot 1 / 3600 = 0.0002361 \ z/c.
         2908. Пыль неорганическая, содержащая 70-20% SiO2
M_{bi} = 1 \cdot 1 \cdot (1 - 15 / 100) \cdot 10^{-3} = 0,00085 \, \kappa z/u;
M = 300 \cdot 1 \cdot (1 - 15 / 100) \cdot 1 \cdot 10^{-6} = 0.000255 \, \text{m/zod};
G = 10^3 \cdot 0.00085 \cdot 1 / 3600 = 0.0002361 \ e/c.
         ИЗА №6510. Покрасочные работы
```

Процесс формирования покрытия на поверхности изделия заключается в нанесении лакокрасочного материала (ЛКМ) и его сушке.

Выброс загрязняющих веществ зависит от ряда факторов: способа окраски, производительности применяемого оборудования, состава лакокрасочного материала и др.

В качестве исходных данных для расчета выбросов загрязняющих веществ при различных способах нанесения ЛКМ принимают: фактический или плановый расход окрасочного материала, долю содержания в нем растворителя, долю компонентов лакокрасочного материала, выделяющихся из него в процессах окраски и сушки.

Изм.	Кол.уч	Лист	№док	Подп.	Дата

NHB. №

Взам.

Подп. и дата

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
616	Диметилбензол (Ксилол)	0,0036124	0,061875
2752	Уайт-спирит	0,0018365	0,019125
2902	Взвешенные вещества	0,0021548	0,014025

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

	Месяц наиболее					
	Pacx	ИН	тенсивн	ой рабо	ТЫ	Од
	од		числ	число		нов
Данные		pacxo	0	рабочих		рем
данные	за	Д	Д	часов в день		енн
	год,	ЛКМ		При	При	ост
		, кг	Ы	окрас	сушк	Ь
			Di	ке	e	
Грунтовка ГФ-021. Окраска ручная. Окраска и	95	95	226	8	16	+
сушка						
Эмаль ПФ-115. Окраска методом	85	85	226	8	16	-
пневматического распыления. Окраска и сушка						

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Количество аэрозоля краски, выделяющегося при нанесении ЛКМ на поверхность изделия (детали), определяется по формуле (1.1.1):

$$\mathbf{\Pi}^{a}_{ok} = 10^{-3} \cdot \mathbf{m}_{k} \cdot (\delta_{a} / 100) \cdot (1 - f_{p} / 100) \cdot \mathbf{K}_{oc}, m/200$$
 (1.1.1)

где m_k - масса краски, используемой для покрытия, κz ;

 δ_a - доля краски, потерянной в виде аэрозоля, %;

 f_p - доля летучей части (растворителя) в ЛКМ, %;

 ${\it K}_{oc}$ - коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта.

Количество летучей части каждого компонента определяется по формуле (1.1.2):

$$\boldsymbol{\Pi}^{\text{nap}}{}_{ok} = 10^{-3} \cdot \boldsymbol{m}_{k} \cdot \boldsymbol{f}_{p} \cdot \boldsymbol{\delta}_{p} / 10^{4}, \, m/200$$
(1.1.2)

где m_k - масса краски, используемой для покрытия, κz ;

 f_p - доля летучей части (растворителя) в ЛКМ, %;

 δ_{p} - доля растворителя в ЛКМ, выделившегося при нанесении покрытия, %.

Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв. №

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

$$\boldsymbol{\Pi}^{\text{nap}}{}_{c} = 10^{-3} \cdot \boldsymbol{m}_{k} \cdot \boldsymbol{f}_{p} \cdot \boldsymbol{\delta}^{\text{"}}{}_{p} / 10^{4}, \, m/200$$

$$\tag{1.1.3}$$

где m_k - масса краски, используемой для покрытия, κz ;

 f_p - доля летучей части (растворителя) в ЛКМ, %;

 $\boldsymbol{\delta}^{"}_{p}$ - доля растворителя в ЛКМ, выделившегося при сушке покрытия, %.

Расчет максимального выброса производится для операций окраски и сушки отдельно по каждому компоненту по формуле (1.1.4):

$$G_{ok(c)} = \frac{\Pi_{ok(c)} \cdot 10^6}{\mathbf{n} \cdot \mathbf{t} \cdot 3600}, \, \varepsilon/ce\kappa$$
(1.1.4)

где $\mathbf{\Pi}_{ok(c)}$ - выброс аэрозоля краски либо отдельных компонентов растворителей за месяц напряженной работы при окраске (сушке);

n - число дней работы участка за месяц напряженной работы при окраске (сушке);

t - число рабочих часов в день при окраске (сушке).

При расчете выделения конкретного загрязняющего вещества учитывается в виде дополнительного множителя в формулах (1.1.1-1.1.3) массовая доля данного вещества в составе аэрозоля либо отдельных компонентов растворителей.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Грунтовка ГФ-021

Расчет выброса летучих компонентов ЛКМ

```
\Pi_{c\kappa} = 10^{-3} \cdot 95 \cdot (45 \cdot 10 / 10^{4}) = 0,004275 \, \text{m/zod};

\Pi_{c} = 10^{-3} \cdot 95 \cdot (45 \cdot 90 / 10^{4}) = 0,038475 \, \text{m/zod};
```

$$\Pi = 0.004275 + 0.038475 = 0.04275 \, \text{m/zoo};$$

$$\Pi_{o\kappa} = 10^{-3} \cdot 95 \cdot (45 \cdot 10 / 10^4) = 0,004275$$
 m/меся ψ ;

$$\Pi_c = 10^{-3} \cdot 95 \cdot (45 \cdot 90 / 10^4) = 0,038475$$
 m/месяц;

$$G_{o\kappa} = 0.004275 \cdot 10^6 / (226 \cdot 8 \cdot 3600) = 0.0006568 \ c/c;$$

$$G_c = 0.038475 \cdot 10^6 / (226 \cdot 16 \cdot 3600) = 0.0029556 \, e/c;$$

$$G = 0.0006568 + 0.0029556 = 0.0036124$$
 c/c.

616. Диметилбензол (Ксилол)

$$\Pi = 0.04275 \cdot 1 = 0.04275 \text{ m/sod};$$

$$G = 0.0036124 \cdot 1 = 0.0036124 \ \epsilon/c$$
.

Эмаль ПФ-115

ZHB.

Взам.

Подп. и дата

Инв. № подл.

Расчет выброса окрасочного аэрозоля

$$\overline{\mathbf{n}}_{ok} = 10^{-3} \cdot 85 \cdot (30 / 100) \cdot (1 - 45 / 100) \cdot 1 = 0.014025 \, \text{m/zod};$$

$$\Pi_{o\kappa} = 10^{-3} \cdot 85 \cdot (30 / 100) \cdot (1 - 45 / 100) \cdot 1 = 0,014025$$
 m/месяц;

$$G_{o\kappa} = 0.014025 \cdot 10^6 / (226 \cdot 8 \cdot 3600) = 0.0021548 \, e/c.$$

2902. Взвешенные вещества

$$\Pi_{o\kappa} = 0.014025 \cdot 1 = 0.014025 \ m/co\partial;$$

Изм.	Кол.уч	Лист	№док	Подп.	Дата

```
G_{o\kappa} = 0.0021548 \cdot 1 = 0.0021548 \ ext{c}.
```

Расчет выброса летучих компонентов ЛКМ

```
\Pi_{OK} = 10^{-3} \cdot 85 \cdot (45 \cdot 25 / 10^4) = 0,0095625 \text{ m/zod};

\Pi_c = 10^{-3} \cdot 85 \cdot (45 \cdot 75 / 10^4) = 0,0286875 \text{ m/zod};

\Pi = 0,0095625 + 0,0286875 = 0,03825 \text{ m/zod};

\Pi_{OK} = 10^{-3} \cdot 85 \cdot (45 \cdot 25 / 10^4) = 0,0095625 \text{ m/mecsu};

\Pi_{C} = 10^{-3} \cdot 85 \cdot (45 \cdot 25 / 10^4) = 0,0286875 \text{ m/mecsu};

\Pi_{C} = 0,0095625 \cdot 10^6 / (226 \cdot 8 \cdot 3600) = 0,0014692 \text{ z/c};

G_{C} = 0,0286875 \cdot 10^6 / (226 \cdot 16 \cdot 3600) = 0,0022037 \text{ z/c};

G = 0,0014692 + 0,0022037 = 0,0036729 \text{ z/c}.
```

616. Диметилбензол (Ксилол)
$$\Pi = 0.03825 \cdot 0.5 = 0.019125 \text{ m/год};$$
 $G = 0.0036729 \cdot 0.5 = 0.0018365 \text{ c/c}.$

2752.
$$Yaŭm$$
-cnupum $\Pi = 0.03825 \cdot 0.5 = 0.019125 \text{ m/sod};$ $G = 0.0036729 \cdot 0.5 = 0.0018365 \text{ s/c}.$

ИЗА №6511. Пересыпка материалов

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с «Методическим пособием по расчету выбросов от неорганизованных источников в промышленности строительных материалов», Новороссийск, 2001; «Методическим пособием по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», СПб., 2012.

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия — склады, хранилища, открытые с 3-х сторон (K_4 = 0,5). Высота падения материала при пересыпке составляет 0,5 м (B = 0,4). Залповый сброс при разгрузке автосамосвала осуществляется при сбросе материала весом до 10 т (K_9 = 0,2). Расчетные скорости ветра, м/с: 1 (K_3 = 1); 3 (K_3 = 1,2); 5 (K_3 = 1,4); 9 (K_3 = 1,7). Средняя годовая скорость ветра 3,3 м/с (K_3 = 1,2).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее веп	цество		Максимально разовый	Годовой выброс, т/год
код	наимено	вание		выброс, г/с	т одовой выорос, тод
2908	Пыль неорганическая,	содержащая	70-20%	0,0029127	0,0153923
	двуокиси кремния				

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Взам.

Подп. и дата

Материал	Параметры	Однов ременн ость
Грунт	Количество перерабатываемого материала: $G_4 = 77,1$ т/час; $G_{1} = 139770,6$ т/год. Весовая доля пылевой фракции в материале: $K_1 = 0,05$. Доля пыли, переходящая в аэрозоль: $K_2 = 0,05$	+

							Лист
						04/2022-151-00000-OBOC-TY	
Изм.	Кол.уч	Лист	№док	Подп.	Дата		595

		Однов
Материал	Параметры	ременн
		ость
	$0,02$. Влажность свыше 10 до 20% ($K_5 = 0,01$). Размер куска	
	$500-100 \text{ MM } (K_7 = 0.2).$	
Щебень	Количество перерабатываемого материала: Gч = 4,1 т/час;	-
	Gгод = 1285,35 т/год. Весовая доля пылевой фракции в	
	материале: $K_1 = 0.04$. Доля пыли, переходящая в аэрозоль: $K_2 =$	
	$0,02$. Влажность до 10% ($K_5 = 0,1$). Размер куска $100-50$ мм (K_7	
	= 0.4).	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$\mathbf{M}_{TP} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_4 \cdot 10^6 / 3600, z/c$$

$$(1.1.1)$$

где K_I - весовая доля пылевой фракции (0 до 200 мкм) в материале;

 K_2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

 K_3 - коэффициент, учитывающий местные метеоусловия;

 K_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К₅ - коэффициент, учитывающий влажность материала;

 K_7 - коэффициент, учитывающий крупность материала;

 ${\it K}_8$ - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств ${\it K}_8=1$;

 K_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

 G_{v} - суммарное количество перерабатываемого материала в час, m/vac.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

$$\Pi_{\Gamma P} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \mathbf{K}_4 \cdot \mathbf{K}_5 \cdot \mathbf{K}_7 \cdot \mathbf{K}_8 \cdot \mathbf{K}_9 \cdot \mathbf{B} \cdot \mathbf{G}_{200}, \, m/200$$
(1.1.2)

где G_{200} - суммарное количество перерабатываемого материала в течение года, m/200.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Грунт

Взам.

Подп. и дата

$$M_{2908}^{1 \text{ m/c}} = 0.05 \cdot 0.02 \cdot 1 \cdot 0.5 \cdot 0.01 \cdot 0.2 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 77.1 \cdot 10^{6} / 3600 = 0.0017133 \text{ s/c};$$
 $M_{2908}^{3 \text{ m/c}} = 0.05 \cdot 0.02 \cdot 1.2 \cdot 0.5 \cdot 0.01 \cdot 0.2 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 77.1 \cdot 10^{6} / 3600 = 0.002056 \text{ s/c};$
 $M_{2908}^{5 \text{ m/c}} = 0.05 \cdot 0.02 \cdot 1.2 \cdot 0.5 \cdot 0.01 \cdot 0.2 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 77.1 \cdot 10^{6} / 3600 = 0.002056 \text{ s/c};$

$$M_{2908}^{7 \text{ m/c}} = 0.05 \cdot 0.02 \cdot 1.4 \cdot 0.5 \cdot 0.01 \cdot 0.2 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 77.1 \cdot 10^{6} / 3600 = 0.0023987 \ e/c;$$

 $M_{2908}^{9 \text{ M/c}} = 0.05 \cdot 0.02 \cdot 1.7 \cdot 0.5 \cdot 0.01 \cdot 0.2 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 77.1 \cdot 10^6 / 3600 = 0.0029127 \ \epsilon/c;$

 $\mathbf{\Pi}_{2908} = 0.05 \cdot 0.02 \cdot 1.2 \cdot 0.5 \cdot 0.01 \cdot 0.2 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 139770.6 = 0.013418 \, \text{m/zod}.$

						Г
						ı
						ı
						ı
Изм.	Кол.уч	Лист	№док	Подп.	Дата	l

Шебень $M_{2908}^{1 \text{ м/c}} = 0.04 \cdot 0.02 \cdot 1 \cdot 0.5 \cdot 0.1 \cdot 0.4 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 4.1 \cdot 10^6 / 3600 = 0.0014578 \ \text{z/c};$ $M_{2908}^{3 \text{ м/c}} = 0.04 \cdot 0.02 \cdot 1.2 \cdot 0.5 \cdot 0.1 \cdot 0.4 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 4.1 \cdot 10^6 / 3600 = 0.0017493 \ \text{z/c};$ $M_{2908}^{5 \text{ m/c}} = 0.04 \cdot 0.02 \cdot 1.2 \cdot 0.5 \cdot 0.1 \cdot 0.4 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 4.1 \cdot 10^6 / 3600 = 0.0017493 \ \text{z/c};$ $M_{2908}^{7 \text{ m/c}} = 0.04 \cdot 0.02 \cdot 1.4 \cdot 0.5 \cdot 0.1 \cdot 0.4 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 4.1 \cdot 10^6 / 3600 = 0.0020409 \ \text{z/c};$ $M_{2908}^{9 \text{ m/c}} = 0.04 \cdot 0.02 \cdot 1.7 \cdot 0.5 \cdot 0.1 \cdot 0.4 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 4.1 \cdot 10^6 / 3600 = 0.00204782 \ \text{z/c};$ $M_{2908} = 0.04 \cdot 0.02 \cdot 1.2 \cdot 0.5 \cdot 0.1 \cdot 0.4 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 4.1 \cdot 10^6 / 3600 = 0.0024782 \ \text{z/c};$ $M_{2908} = 0.04 \cdot 0.02 \cdot 1.2 \cdot 0.5 \cdot 0.1 \cdot 0.4 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 1285.35 = 0.0019743 \ \text{m/zoo}.$

Взам. Инв. №								
Подп. и дата								
годл.				ı		ı		-
Инв. №							04/2022-151-00000-OBOC-TY	Лист
Ξ	Изм.	Кол.уч	Лист	№док	Подп.	Дата		595
		•						

Приложение Б (обязательное) Расчет рассеивания загрязняющих веществ

Эксплуатация

УПРЗА «ЭКОЛОГ» 4.70 Copyright © 1990-2022 ФИРМА «ИНТЕГРАЛ»

Предприятие: 194, Реконструкция БОС

Город: 32, Башкортостан Район: 9, Нефтекамск Адрес предприятия: Разработчик:

ИНН: ОКПО: Отрасль:

Величина санзоны: 400 м ВИД: 1, Эксплуатация ВР: 1, Эксплуатация

Расчетные константы: S=999999,99

Расчет: «Расчет рассеивания по MPP-2017» (лето)

Метеорологические параметры

Расчетная температура наиболее холодного месяца, °C:	-20,7
Расчетная температура наиболее теплого месяца, °C:	26,2
Коэффициент А, зависящий от температурной стратификации атмосферы:	160
U* — скорость ветра, наблюдаемая на данной местности, повторяемость превышения которой находится в пределах 5%, м/с:	8
Плотность атмосферного воздуха, кг/м3:	1,29
Скорость звука, м/с:	331

Структура предприятия (площадки, цеха)

1 - Площадка эксплуатации		

Взам. И								
Подп. и дата								
№ подл.								
S.							04/2022-151-00000-OBOC-TY	Лист
Инв.	Изм.	Кол.уч	Лист	№док	Подп.	Дата	5 1/2 5/2 1 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	595
		•						

Параметры источников выбросов

Учет:
"%" - источник учитывается с исключением из фона;
"+" - источник учитывается без исключения из фона;
"-" - источник не учитывается и его вклад исключается из фона.

* - источник имеет дополнительные параметры

Типы источников:

- 1 Точечный;
- 2 Линейный;
- 3 Неорганизованный;

- 3 Пеоргализовальных источников;
 4 Совокупность точечных источников;
 5 С зависимостью массы выброса от скорости ветра;
 6 Точечный, с зонтом или выбросом горизонтально;
 7 Совокупность точечных (зонт или выброс вбок);
- 8 Автомагистраль (неорганизованный линейный);9 Точечный, с выбросом вбок;

- 10 Свеча; 11- Неорганизованный (полигон); 12 Передвижной.

Nº	ист.	o.	_		Высота ист. (м)	Диаметр усть (м)	Объем ГВС (куб.м/с)	Ckopoctь ГВС (м/с)	Tewn. FBC (°C)	рел.	Коорді	инаты	Ширина ист. (м)
ист.	Учет ист	Вар.	ī	Наименование источника	(M)	метр (м)	бъем ГВ (куб.м/с)	Kopoc TBC (M/c)	(°C)	Коэф.	Х1, (м)	Х2, (м)	рина
	×				4	Диаг	8 =	O	ř	Š	Y1, (M)	Y2, (м)	Ē
					Nº	пл.: 1, 1	№ цеха	a: 0					
0001	%	1	1	Дымовая труба	14,69	0,33	0.24	2.80	110,00	1	505,40	0,00	0,00
		-11		дышовал труба	11,00	0,00	0,2	2,00	101.00		230,30	0,00	0,00
Код			На	аименование вещества		брос	F -		Лето	44.0	120.02411	Зима	
в-ва					r/c	т/г		Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0301	Азо			ц (Двуокись азота; пероксид азота)	0,0027974	0,033941	1	0,01	61,53	0,74	0,00	0,00	0,00
0304			Азот ((II) оксид (Азот монооксид)	0,0004546	0,005515	1	0,00	61,53	0,74	0,00	0,00	0,00
0330				Сера диоксид	0,0000056	0,000068	1	0,00	61,53	0,74	0,00	0,00	0,00
0337	Угле	рода	оксид	(Углерод окись; углерод моноокись; угарный газ)	0,0094944	0,115170	1	0,00	61,53	0,74	0,00	0,00	0,00
0703				Бенз/а/пирен	1,8130000 E-10	1,282100E- 09	1	0,00	61,53	0,74	0,00	0,00	0,00
0000	0/	4	4	Determen			0.04	4.00	20.00		503,90	0,00	0.00
0002	%	1	1	Дефлектор	5,9	0,10	0,01	1,00	20,00	1 -	227,90	0,00	0,00
Код			111	None and the second	Выб	брос	F -		Лето			Зима	-
в-ва			Hà	аименование вещества	г/с	т/г	F	Cm/ПДК	Xm	Um	Cm/ПДК	Xm	Um
0410				Метан	0,0067398	0,212547	1	0,00	15,47	0,50	0,00	0,00	0,00
1716				Одорант СПМ	1,0000000 E-08	0,000003	1	0,00	15,47	0,50	0,00	0,00	0,00
0003	%	1	1	Продувочная свеча	6.8	0.03	0.00	4.50	20.00	1	501,10	0,00	0.00
0000	70		1.0	продувочная овеча	0,0	0,00	0,00	4,00	20,00		226,30	0,00	0,00
Код			На	вименование вещества	Выб	брос	F -		Лето			Зима	- 2
в-ва				TIMO I DOMO DOMO DO TOM	г/с	т/г		Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0410				Метан	0,0000466	5,950000E- 08	1	0,00	18,00	0,50	0,00	0,00	0,00
1716				Одорант СПМ	1,1660000 E-10	1,399000E- 13	1	0,00	18,00	0,50	0,00	0,00	0,00
0004	%	1	1	D. Assissin	5,9	0,05	0,00	2,40	20,00	4	512,40	0,00	0,00
0004	70	1	1	Дефлектор	5,9	0,05	0,00	2,40	20,00	1 -	221,80	0,00	0,00
Код			Ц	аименование вещества	Выб	брос	F -		Лето			Зима	
в-ва			110	именование вещества	г/с	т/г		Ст/ПДК	Xm	Um	Cm/ПДК	Xm	Um
0101	диА	люми	ний тр	риоксид (в пересчете на алюминий)	0,0041667	0,000600	1	0,00	15,64	0,50	0,00	0,00	0,00
0123	диЖ	елезс	трио	ксид (железа оксид) (в пересчете на железо)	0,0273611	0,016458	1	0,00	15,64	0,50	0,00	0,00	0,00
0143	1	Марга		его соединения (в пересчете на марганец (IV) оксид)	0,0004167	0,000248	1	0,40	15,64	0,50	0,00	0,00	0,00
0301	Азо	ота ди		д (Двуокись азота; пероксид азота)	0,0194036	0,017648	1	0,92	15,64	0,50	0,00	0,00	0,00
0304			Азот ((II) оксид (Азот монооксид)	0,0031530	0,002868	1	0,07	15,64	0,50	0,00	0,00	0,00
0328			Угл	перод (Пигмент черный)	0,0007409	0,000974	1	0,05	15,64	0,50	0,00	0,00	0,00
0330				Сера диоксид	0,0010179	0,001338	1	0,02	15,64	0,50	0,00	0,00	0,00
	Угле	рода	оксид	(Углерод окись ; углерод моноокись ; угарный газ)	0,0458018	0,047190	1	0,09	15,64	0,50	0,00	0,00	0,00
0337													

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

Подп. и дата

Инв. № подл.

Код			На	именование вещества	Вы	брос	F -		Лето		2 - 3 - 2 v 3 e	Зима	- 300-
в-ва					г/с	T/r		Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0410				Метан	0,0000466	5,950000E- 08	1	0,00	19,73	0,50	0,00	0,00	0,00
1716				Одорант СПМ	1,1660000 E-10	1,399000E- 13	1	0,00	19,73	0,50	0,00	0,00	0,00
0011	%	1	1	Дефлектор	3	0,10	0,01	1,00	20,00	1	415,50	0,00	0,
0011	70	5		Дефлектор	.,	0,10	0,01	1,00	1000		242,90	0,00	.0,
Код в-ва			На	именование вещества		брос	F -	Ст/ПДК	Лето Хт	Um	Ст/ПДК	Зима Хт	Um
0410				Метан	r/c 0,0067398	т/г 0,212547	1	0,01	8,28	0,50	0,00	0,00	0,00
					1,0000000								
1716				Одорант СПМ	E-08	0,000003	1	0,00	8,28	0,50	0,00	0,00	0,00
0012	%	1	1	Дефлектор	4	0,05	0,01	4,50	20,00	1 -	415,60 242,70	0,00	0
Von		-	Н		Bu	брос			Лето		242,10	Зима	
Код в-ва			Ha	именование вещества	г/с	т/г	F -	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0410				Метан	0,0024820		1	0,00	11,81	0,50	0,00	0,00	0,00
1716				Одорант СПМ		7,449000E-	1	0,00	11,81	0,50	0,00	0,00	0,00
				-A-F	E-09	12			1		415,50	0,00	
0013	%	1	1	Дефлектор	4	0,03	0,00	4,50	20,00	1 -	242,60	0,00	- 0
Код			щ	Construction and a	Вы	брос			Лето	-	144	Зима	
в-ва			Ha	именование вещества	r/c	т/г	F -	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0410				Метан	0,0000466	5,950000E- 08	1	0,00	11,05	0,50	0,00	0,00	0,00
171C				Ozenouz CEIM	1,1700000		1	0.00	11.05	0.50	0.00	0.00	0.00
1716		-		Одорант СПМ	E-10	13	7	0,00	11,05	0,50	0,00	0,00	0,00
0014	%	1	1	Дымовая труба	9	0,22	0,10	2,50	110,00	1 -	303,00 137,30	0,00	0
l/on			Щ		P.	брос		-	Лето		137,30	Зима	
Код в-ва			Ha	именование вещества	г/с	т/г	F -	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0301	Аз	ота д	иоксид	(Двуокись азота; пероксид азота)	0,0016413		1	0,02	33,12	0,64	0,00	0,00	0,00
0304			Азот (II) оксид (Азот монооксид)	0,0002667	0,002873	1	0,00	33,12	0,64	0,00	0,00	0,00
0330				Сера диоксид	0,0000033	0,000036	1	0,00	33,12	0,64	0,00	0,00	0,00
0337	Угле	рода	оксид	(Углерод окись ; углерод моноокись	0,0057040	0.061427	1	0,00	33,12	0,64	0,00	0,00	0,00
0700				угарный газ)	2,3540000	2,517000E-		0.00	22.40	0.04	0.00	0.00	0.00
0703				Бенз/а/пирен	E-11	10	1	0,00	33,12	0,64	0,00	0,00	0,00
0015	%	1	1	Дефлектор	7	0,10	0,01	1,00	20,00	1 -	303,60	0,00	0
16				- N. O. C. W.	D.		_		Лето		137,60	0,00 Зима	
Код в-ва			На	именование вещества	г/с	брос т/г	F -	Ст/ПДК	Xm	Um	Ст/ПДК	Хm	Um
0410				Метан	0,0067398		1	0,00	18,20	0,50	0,00	0,00	0,00
1716				Одорант СПМ	1,0000000		1	0,00	18,20	0,50	0,00	0,00	0,00
1710				одорант от ни	E-08	0,000000		0,00	10,20	1 1	303,10	0,00	0,00
0016	%	1	1	Продувочная свеча	8	0,03	0,00	4,50	20,00	1 -	137,80	0,00	- 0
Код					Bu	брос			Лето		137,00	Зима	
в-ва			Ha	именование вещества	r/c	т/г	F -	Cm/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0410				Метан	0,0000466	5,950000E-	1	0,00	20,97	0,50	0,00	0,00	0,00
						08 1,400000E-							
1716				Одорант СПМ	E-10	13	1	0,00	20,97	0,50	0,00	0,00	0,00
0017	+	1	1	Дефлектор	7	0,50	0,55	2,80	20,00	1 -	308,40 140,50	0,00	0
Код					Ru	брос	-		Лето		140,50	Зима	
в-ва			На	именование вещества	г/с	т/г	F -	Cm/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0172			Алюм	иний, растворимые соли	0,0000513		1	0,01	39,90	0,50	0,00	0,00	0,00
2754		1	\ лканы	С12-19 (в пересчете на С)	0,0004500	0,216000	1	0,00	39,90	0,50	0,00	0,00	0,00

Взам. Инв. №

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

0018	%	1	1	Дефлектор	7	0,60	0,34	1,20	20,00	1	313,80 109,20	0,00	0,0
ir.					D.				Лето		109,20	Зима	
Код в-ва			Ha	именование вещества	г/с	брос т/г	F -	Ст/ПДК	Xm	Um	Ст/ПДК	Хm	Um
2754			пиань	с C12-19 (в пересчете на C)	0,0004500		1	0.00	23,39	0.50	0,00	0,00	0.00
2134		-	IKanb	готи-та (в пересчете на ој	0,0004300	0,300000	-	0,00	23,33	1 1	468,30	0,00	0,00
0019	%	1	1	Вытяжная труба	2	0,17	0,07	3,30	20,00	1 -	225,00	0,00	0,
Von			H			брос			Лето		220,00	Зима	-1
Код в-ва			Ha	именование вещества	г/с	т/г	F -	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0302		Δο	тиза	кислота (по молекуле HNO3)	1,9750000		1	0,00	11,40	0,50	0,00	0,00	0,00
		7.0			E-10	13				100	2.74	- A-	
0303	-			ммиак (Азота гидрид)	0,0000007	0,000014	1	0,00	11,40	0,50	0,00	0,00	0,00
0316	Гид			о молекуле НС1) (Водород хлорид)		0,000008	1	0,00	11,40	0,50	0,00	0,00	0,00
0403		le	ксан (н-Гексан; дипропил; Hexane) 	0,0002687	0,000005	1	0,00	11,40	0,50	0,00	0,00	0,00
0898				Трихлорметан	0,0009556	0,000009	1	0,27	11,40	0,50	0,00	0,00	0,00
0906				Тетрахлорметан	0,0012204	0,000008	1	0,01	11,40	0,50	0,00	0,00	0,00
1061		Этан		иловый спирт; метилкарбинол)	0,0000730	0,000005	1	0,00	11,40	0,50	0,00	0,00	0,00
1513			F	скорбиновая кислота	0,0000000	0,000000	1	0,00	11,40	0,50	0,00	0,00	0,00
1555	Э	танов	ая кис	лота (Метанкарбоновая кислота)	0,0000196	6,771900E- 09	1	0,00	11,40	0,50	0,00	0,00	0,00
1580				Лимонная кислота	0,0000000	0,000000	1	0,00	11,40	0,50	0,00	0,00	0,00
3337				проксибензойная кислота		8,007000E-	1	0.00	11,40	0,50	0,00	0,00	0,00
		(0	рто-Г	идроксибензойная кислота)	E-12	15		1	1	1 1			-,,,,
0020	%	1	1	Вентиляционная труба	7	0,25	0,17	3,40	20,00	1 -	459,40	0,00	- 0,
	_3					-			Лето		210,80	0,00	
Код в-ва			На	именование вещества	г/с	брос т/г	F -	Ст/ПДК	Xm	Um	Ст/ПДК	Хт	Um
0150			Натп	ий гидроксид (Натр едкий)	0,0000038	0,000006	1	0,00	24,48	0,50	0.00	0,00	0,00
	лиНа	трий		и гидроксид (патр едкии) нат (Натрий углекисл.; натриев.сол									
0155	Himi			уголь ной к-ты)	0,0000112	0,000020	1	0,00	24,48	0,50	0,00	0,00	0,00
0203		Xpc	м (в п	ересчете на хрома (VI) оксид)	0,0000056	0,000010	1	0,00	24,48	0,50	0,00	0,00	0,00
0302		Аз	тная	кислота (по молекуле HNO3)	0,0000334	0,000058	1	0,00	24,48	0,50	0,00	0,00	0,00
0303			A	ммиак (Азота гидрид)	0,0008880	0,001560	1	0,02	24,48	0,50	0,00	0,00	0,00
0316	Гид	оохло	рид (п	о молекуле НС1) (Водород хлорид)	0,0000722	0,000126	1	0,00	24,48	0,50	0,00	0,00	0,00
0322		Ce	рная к	ислота (по молекуле H2SO4)	0,0000028	0,000004	1	0,00	24,48	0,50	0,00	0,00	0,00
0898				Трихлорметан	0,0033340	0,004800	1	0,12	24,48	0,50	0,00	0,00	0,00
0906				Тетрахлорметан	0,0010280	0,001806	1	0,00	24,48	0,50	0,00	0,00	0,00
1061		Этан	тЄ) по	иловый спирт; метилкарбинол)	0,0003520	0,000618	1	0,00	24,48	0,50	0,00	0,00	0,00
1555	Э	танов	ая кис	лота (Метанкарбоновая кислота)	0,0001756	0,000308	1	0,00	24,48	0,50	0,00	0,00	0,00
0021	%	1	1	Вентиляционная труба	7	0,25	0,17	3,40	20,00	1	458,70	0,00	0.
							3455	1 2465			210,40	0,00	- 1
Код			На	именование вещества		брос	F -	0 1001	Лето	Tr.	O IDDI	Зима	11
в-ва				Lorent e Alestina di	г/с	т/г		Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0150	nuU-	TDIA		ий гидроксид (Натр едкий)	0,0000057	0,000009	1	0,00	24,48	0,50	0,00	0,00	0,00
0155	дина	прии	vah00	нат (Натрий углекисл.; натриев.сол уголь ной к-ты)	0,0000168	0,000030	1	0,00	24,48	0,50	0,00	0,00	0,00
0203		Хро	м (в п	ересчете на хрома (VI) оксид)	0,0000084	0,000015	1	0,00	24,48	0,50	0,00	0,00	0,00
0302		Аз	отная	кислота (по молекуле HNO3)	0,0000501	0,000087	-1	0,00	24,48	0,50	0,00	0,00	0,00
0303			A	ммиак (Азота гидрид)	0,0013320	0,002340	1	0,02	24,48	0,50	0,00	0,00	0,00
0316	Гид	оохло	рид (п	о молекуле НС1) (Водород хлорид)	0,0001083	0,000189	1	0,00	24,48	0,50	0,00	0,00	0,00
0322		Ce	рная к	ислота (по молекуле H2SO4)	0,0000042	0,000006	1	0,00	24,48	0,50	0,00	0,00	0,00
0898	Трихлорметан				0,0050010	0,007200	1	0,18	24,48	0,50	0,00	0,00	0,00
0906	грихлорметан Тетрахлорметан		0,0015420	0,002709	1	0,00	24,48	0,50	0,00	0,00	0,00		
		Этан	тЄ) по	иловый спирт; метилкарбинол)	0,0005280	0,000927	1	0,00	24,48	0,50	0,00	0,00	0,00
1061	3	танов	ая кис	лота (Метанкарбоновая кислота)	0,0002634	0,000462	1	0,00	24,48	0,50	0,00	0,00	0,00
1061 1555	J		-					1			458,20	0,00	7
	%		1	Вентиляционная труба	7	0,25	0,17	3,40	20,00	1 -	400,20	0,00	- 0,

Взам. Инв. №

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

Код			Н	аименование вещества	Выб	брос	F -		Лето	F-55.79	20.200	Зима	0.0.
в-ва					г/с	т/г		Cm/ПДК	Xm	Um	Cm/ПДК	Xm	Um
0150			500	ий гидроксид (Натр едкий)	0,0000057	0,000009	1	0,00	24,48	0,50	0,00	0,00	0,00
0155	диНа	трий	карбо	нат (Натрий углекисл.; натриев.соль уголь ной к-ты)	0,0000168	0,000030	1	0,00	24,48	0,50	0,00	0,00	0,00
0203		Хро	ом (в г	вересчете на хрома (VI) оксид)	0,0000084	0,000015	1	0,00	24,48	0,50	0,00	0,00	0,00
302		Аз	отная	кислота (по молекуле HNO3)	0,0000501	0,000087	1	0,00	24,48	0,50	0,00	0,00	0,00
303			P	Аммиак (Азота гидрид)	0,0013320	0,002340	1	0,02	24,48	0,50	0,00	0,00	0,00
316	Гидр	оохло	рид (г	по молекуле НС1) (Водород хлорид)	0,0001083	0,000189	1	0,00	24,48	0,50	0,00	0,00	0,00
322		Ce	рная і	кислота (по молекуле H2SO4)	0,0000042	0,000006	1	0,00	24,48	0,50	0,00	0,00	0,00
898				Трихлорметан	0,0050010	0,007200	1	0,18	24,48	0,50	0,00	0,00	0,00
906				Тетрахлорметан	0,0015420	0,002709	1	0,00	24,48	0,50	0,00	0,00	0,00
1061		Этан	юл (Э	гиловый спирт; метилкарбинол)	0,0005280	0,000927	1	0,00	24,48	0,50	0,00	0,00	0,00
1555	Э	танов	вая ки	слота (Метанкарбоновая кислота)	0,0002634	0,000462	1	0,00	24,48	0,50	0,00	0,00	0,00
กาว		1	1	Вент.труба (блок механической	2	0.60	6.47	22.00	20.00	4	530,80	0,00	0
023	+	1	1	очистки) проект.	2	0,60	6,47	22,88	20,00	1	183,30	0,00	0
Код			Щ	аименование вещества	Выб	брос	F -		Лето			Зима	
з-ва			116	аименование вещества	г/с	т/г		Cm/ПДК	Xm	Um	Ст/ПДК	Xm	Um
301	Азо	ота д	иоксид	д (Двуокись азота; пероксид азота)	0,0000244	0,000447	1	0,00	95,58	19,63	0,00	0,00	0,00
303			P	Аммиак (Азота гидрид)	0,0003119	0,005716	1	0,00	95,58	19,63	0,00	0,00	0,00
304				(II) оксид (Азот монооксид)	0,0000990	0,001814	1	0,00	95,58	19,63	0,00	0,00	0,00
333				суль фид (Водород сернистый, росуль фид, гидросуль фид)	0,0000448	0,000820	1	0,00	95,58	19,63	0,00	0,00	0,00
410			Ниги Д	росуль фид, гидросуль фид) Метан	0,0040005	0,073318	1	0,00	95,58	19,63	0,00	0,00	0,00
416	Сме	сь п	редел	ь ных углеводородов С6Н14-С10Н22		0,036535	1	0,00	95,58	19,63	0,00	0,00	0,00
071		200		идроксибензол (фенол)	0,0000231	0,000423	1	0,00	95,58	19,63	0,00	0,00	0,00
325	Фор	маль		(Муравь иный аль дегид, оксометан		0,000721	1	0,00	95,58	19,63	0,00	0,00	0,00
				метиленоксид)				7.0			200		
1728				Этантиол	0,0000019	0,000035	1	0,03	95,58	19,63	0,00	0,00	0,00
024	+	1	1	Вент.труба (блок обезвоживания осадка) проект.	2	0,50	3,81	19,38	20,00	1 —	588,70 123,40	0,00	0,
/or				223427) (62440)			_		Лето		123,40	Зима	
Код					L, ii	nnac							
			Ha	аименование вещества		брос т/г	F -	Cm/ПДК	Xm	Um	Ст/ПДК	Xm	Um
з-ва	Азо	ота д		аименование вещества д (Двуокись азота; пероксид азота)	г/с 0,0000035	орос т/г 0,000063	F -	Cm/ПДК 0,00		Um 13,86	Cm/ПДК 0,00		
з-ва)301	Азо	ота д	иоксиј		г/с	τ/r			Xm			Xm	0,00
з-ва 3301 3303	Азо	ота д	иокси <i>,</i>	д (Двуокись азота, пероксид азота)	r/c 0,0000035	т/г 0,000063	1	0,00	Xm 80,31	13,86	0,00	Xm 0,00	0,00
з-ва 0301 0303 0304	Азо	Ди	иоксид А Азот гидрос	д (Двуокись азота; пероксид азота) ммиак (Азота гидрид) (II) оксид (Азот монооксид) суль фид (Водород сернистый,	r/c 0,0000035 0,0000214 0,0000060	т/г 0,000063 0,000387 0,000108	1 1 1	0,00 0,00 0,00	Xm 80,31 80,31 80,31	13,86 13,86 13,86	0,00 0,00 0,00	Xm 0,00 0,00 0,00	0,00 0,00 0,00
3-Ba 0301 0303 0304 0333	Азо	Ди	иоксид А Азот гидрос	д (Двуокись азота; пероксид азота) Аммиак (Азота гидрид) (II) оксид (Азот монооксид) суль фид (Водород сернистый, росуль фид, гидросуль фид)	r/c 0,0000035 0,0000214 0,0000060 0,0000419	T/r 0,000063 0,000387 0,000108 0,000758	1 1 1	0,00 0,00 0,00 0,00	Xm 80,31 80,31 80,31 80,31	13,86 13,86 13,86 13,86	0,00 0,00 0,00 0,00	Xm 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00
3-Ba 0301 0303 0304 0333 0410		Диі	иокси, , , Азот гидрос дигид	д (Двуокись азота; пероксид азота) ммиак (Азота гидрид) (II) оксид (Азот монооксид) суль фид (Водород сернистый, росуль фид, гидросуль фид) Метан	r/c 0,0000035 0,0000214 0,0000060 0,0000419 0,0030094	T/r 0,000063 0,000387 0,000108 0,000758 0,054420	1 1 1 1	0,00 0,00 0,00 0,01 0,00	Xm 80,31 80,31 80,31 80,31 80,31	13,86 13,86 13,86 13,86 13,86	0,00 0,00 0,00 0,00 0,00	Xm 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00
в-ва 0301 0303 0304 0333 0410 0416		Диі	иоксид Азот гидрос дигид редел	д (Двуокись азота; пероксид азота) Аммиак (Азота гидрид) (II) оксид (Азот монооксид) суль фид (Водород сернистый, росуль фид, гидросуль фид) Метан ь ных углеводородов С6Н14-С10Н22	r/c 0,0000035 0,0000214 0,0000060 0,0000419 0,0030094 0,0001342	T/r 0,000063 0,000387 0,000108 0,000758 0,054420 0,002427	1 1 1 1 1	0,00 0,00 0,00 0,01 0,00 0,00	Xm 80,31 80,31 80,31 80,31 80,31	13,86 13,86 13,86 13,86 13,86 13,86	0,00 0,00 0,00 0,00 0,00 0,00	Xm 0,00 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00
в-ва 0301 0303 0304 0333 0410 0416	Сме	Диі есь п	иоксид Азот гидрос дигид редел	д (Двуокись азота; пероксид азота) Аммиак (Азота гидрид) (II) оксид (Азот монооксид) суль фид (Водород сернистый, росуль фид, гидросуль фид) Метан ь ных углеводородов С6Н14-С10Н22 идроксибензол (фенол)	r/c 0,0000035 0,0000214 0,0000060 0,0000419 0,0030094 0,0001342 0,0000022	T/r 0,000063 0,000387 0,000108 0,000758 0,054420 0,002427 0,000040	1 1 1 1 1 1	0,00 0,00 0,00 0,01 0,00 0,00 0,00	Xm 80,31 80,31 80,31 80,31 80,31	13,86 13,86 13,86 13,86 13,86 13,86 13,86	0,00 0,00 0,00 0,00 0,00 0,00 0,00	Xm 0,00 0,00 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00
3-ва 0301 0303 0304 0333 0410 0416 071	Сме	Диі есь п	иоксид Азот гидрос дигид редел	д (Двуокись азота; пероксид азота) Аммиак (Азота гидрид) (II) оксид (Азот монооксид) суль фид (Водород сернистый, росуль фид, гидросуль фид) Метан ь ных углеводородов С6Н14-С10Н22	r/c 0,0000035 0,0000214 0,0000060 0,0000419 0,0030094 0,0001342 0,0000022	T/r 0,000063 0,000387 0,000108 0,000758 0,054420 0,002427	1 1 1 1 1	0,00 0,00 0,00 0,01 0,00 0,00	Xm 80,31 80,31 80,31 80,31 80,31	13,86 13,86 13,86 13,86 13,86 13,86	0,00 0,00 0,00 0,00 0,00 0,00	Xm 0,00 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00
в-ва 0301 0303 0304 0333 0410 0416	Сме	Диі есь п	иоксид Азот гидрос дигид редел	д (Двуокись азота; пероксид азота) ммиак (Азота гидрид) суль фид (Водород сернистый, росуль фид, гидросуль фид) Метан ь ных углеводородов С6Н14-С10Н22 идроксибензол (фенол)	r/c 0,0000035 0,0000214 0,0000060 0,0000419 0,0030094 0,0001342 0,0000022	T/r 0,000063 0,000387 0,000108 0,000758 0,054420 0,002427 0,000040	1 1 1 1 1 1	0,00 0,00 0,00 0,01 0,00 0,00 0,00	Xm 80,31 80,31 80,31 80,31 80,31 80,31 80,31	13,86 13,86 13,86 13,86 13,86 13,86 13,86	0,00 0,00 0,00 0,00 0,00 0,00 0,00	Xm 0,00 0,00 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00
33-ва 3301 3303 3304 3333 4410 4416 071 325	Сме	Диг есь пр	иокси, Азот гидрос дигид редел Гы	д (Двуокись азота; пероксид азота) ммиак (Азота гидрид) суль фид (Водород сернистый, росуль фид, гидросуль фид) Метан ь ных углеводородов С6Н14-С10Н22 идроксибензол (фенол) ((Муравь иный аль дегид, оксометан метиленоксид)	r/c 0,0000035 0,0000214 0,0000060 0,0000419 0,0030094 0,0001342 0,0000022	7/r 0,000063 0,000387 0,000108 0,000758 0,054420 0,002427 0,000040 0,000056	1 1 1 1 1 1	0,00 0,00 0,00 0,01 0,00 0,00 0,00	Xm 80,31 80,31 80,31 80,31 80,31 80,31 80,31	13,86 13,86 13,86 13,86 13,86 13,86 13,86	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	Xm 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	0,00 0,00 0,00 0,00 0,00 0,00 0,00
33-Ba 3301 3303 3304 3333 3410 4416 071 325 728	Сме	Дии есь пр маль	иокси, Азот гидрос дигид редел Гы	д (Двуокись азота; пероксид азота) ммиак (Азота гидрид) (II) оксид (Азот монооксид) суль фид (Водород сернистый, росуль фид, гидросуль фид) Метан в ных углеводородов С6Н14-С10Н22 идроксибензол (фенол) ((Муравь иный аль дегид, оксометан метиленоксид) Этантиол	r/c 0,0000035 0,0000214 0,0000060 0,0000419 0,0030094 0,0001342 0,0000022 0,0000031 0,0000002 0,0000171	7/r 0,000063 0,000387 0,000108 0,000758 0,054420 0,002427 0,000040 0,000056 0,000003 0,000540	1 1 1 1 1 1 1 1 1 1 3	0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00	Xm 80,31 80,31 80,31 80,31 80,31 80,31 80,31 80,31 40,15	13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	Xm 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	Um 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,
33-ва 301 303 304 333 410 416 071 325 728 984	Сме	Диг есь пр	иокси, Азот гидрос дигид редел Гы	д (Двуокись азота; пероксид азота) ммиак (Азота гидрид) суль фид (Водород сернистый, росуль фид, гидросуль фид) Метан ь ных углеводородов С6Н14-С10Н22 идроксибензол (фенол) ((Муравь иный аль дегид, оксометан метиленоксид) Этантиол	r/c 0,0000035 0,0000214 0,0000060 0,0000419 0,0030094 0,0001342 0,0000022 0,0000031 0,0000002 0,0000171	T/r 0,000063 0,000387 0,000108 0,000758 0,054420 0,002427 0,000040 0,000056 0,000003	1 1 1 1 1 1 1	0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00	Xm 80,31 80,31 80,31 80,31 80,31 80,31 80,31 80,31 80,31 20,00	13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	Xm 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0
3-ва 301 303 304 333 4410 4416 071 325 728 984 025	Сме	Дии есь пр маль	Азот гидросо дигид	д (Двуокись азота; пероксид азота) ммиак (Азота гидрид) (II) оксид (Азот монооксид) суль фид (Водород сернистый, росуль фид, гидросуль фид) Метан в ных углеводородов С6Н14-С10Н22 идроксибензол (фенол) ((Муравь иный аль дегид, оксометан метиленоксид) Этантиол	r/c 0,0000035 0,0000214 0,0000060 0,0000419 0,0030094 0,0001342 0,0000022 0,0000031 0,0000002 0,0000171 2 Bail	7/r 0,000063 0,000387 0,000108 0,000758 0,054420 0,002427 0,000040 0,000056 0,000003 0,000540 0,50	1 1 1 1 1 1 1 1 1 1 3	0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00	Xm 80,31 80,31 80,31 80,31 80,31 80,31 80,31 80,31 40,15 20,00	13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	Xm 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0
3-ва 301 303 304 333 4410 4416 071 325 728 984 025 Сод	Сме Фор	Диг есь пр маль	Азот гидрос дигид редел Дигид 1	д (Двуокись азота; пероксид азота) Аммиак (Азота гидрид) (II) оксид (Азот монооксид) суль фид (Водород сернистый, росуль фид, гидросуль фид) Метан в ных углеводородов С6Н14-С10Н22 идроксибензол (фенол) 1 (Муравь иный аль дегид, оксометан метиленоксид) Этантиол крипамид катионный АК-617 Вент.труба (блок доочистки) проек	r/c 0,0000035 0,0000214 0,000060 0,0000419 0,0030094 0,0001342 0,0000022 0,0000031 0,0000002 0,0000171 2 Bait	T/r 0,000063 0,000387 0,000108 0,000758 0,054420 0,002427 0,000040 0,000056 0,000003 0,000540 0,50	1 1 1 1 1 1 1 1 1 3 4,19 F -	0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00	Хт 80,31 80,31 80,31 80,31 80,31 80,31 80,31 80,31 40,15 20,00 Лето	13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	Xm 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
а-ва 301 303 304 333 410 416 071 325 728 984 025 Код	Сме Фор	Диг есь пр маль	Азот гидрос дигид дигид 1 На на имскси,	д (Двуокись азота; пероксид азота) ммиак (Азота гидрид) (II) оксид (Азот монооксид) суль фид (Водород сернистый, росуль фид, гидросуль фид) Метан в ных углеводородов С6Н14-С10Н22 идроксибензол (фенол) ((Муравь иный аль дегид, оксометан- метиленоксид) Этантиол криламид катионный АК-617 Вент.труба (блок доочистки) проек аименование вещества д (Двуокись азота; пероксид азота)	r/c 0,0000035 0,0000214 0,000060 0,0000419 0,0030094 0,0001342 0,0000022 0,00000171 2 Bait r/c 0,0000140	7/r 0,000063 0,000387 0,000108 0,000758 0,054420 0,002427 0,000040 0,000056 0,000003 0,000540 0,50 5poc 7/r 0,000255	1 1 1 1 1 1 1 1 1 3 4,19 F - 1	0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00	Хт 80,31 80,31 80,31 80,31 80,31 80,31 80,31 80,31 40,15 20,00 Лето Хт 84,27	13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	Xm 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
а-ва 301 303 304 333 410 416 071 325 728 984 025 Код 1-ва 301 303	Сме Фор	Диг есь пр маль	Азот гидрос дигид редел Ги дегид 1	д (Двуокись азота; пероксид азота) ммиак (Азота гидрид) (II) оксид (Азот монооксид) суль фид (Водород сернистый, росуль фид, гидросуль фид) Метан ь ных углеводородов С6Н14-С10Н22 идроксибензол (фенол) (Муравь иный аль дегид, оксометан метиленоксид) Этантиол криламид катионный АК-617 Вент.труба (блок доочистки) проек аименование вещества д (Двуокись азота; пероксид азота) ммиак (Азота гидрид)	r/c 0,0000035 0,0000214 0,0000060 0,0000419 0,0030094 0,0001342 0,0000022 0,0000031 0,0000002 0,0000171	7/r 0,000063 0,000387 0,000108 0,000758 0,054420 0,002427 0,000040 0,000056 0,000003 0,000540 0,50 5poc 7/r 0,000255 0,001725	1 1 1 1 1 1 1 1 3 4,19 F - 1 1 1	0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00	Хm 80,31 80,31 80,31 80,31 80,31 80,31 80,31 80,31 40,15 20,00 Лето Хm 84,27 84,27	13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86 10 Um	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	Xm 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
а-ва 301 303 304 333 410 416 071 325 728 984 025 Код 1-ва 301 303	Сме Фор	Дии маль 1	иокси, Азот гидросо дигид редел дегид 1 На На Азот	д (Двуокись азота; пероксид азота) ммиак (Азота гидрид) (II) оксид (Азот монооксид) суль фид (Водород сернистый, росуль фид, гидросуль фид) Метан ь ных углеводородов С6Н14-С10Н22 идроксибензол (фенол) (Муравь иный аль дегид, оксометан метиленоксид) Этантиол криламид катионный АК-617 Вент.труба (блок доочистки) проек аименование вещества д (Двуокись азота; пероксид азота) ммиак (Азота гидрид) (II) оксид (Азот монооксид)	r/c 0,0000035 0,0000214 0,000060 0,0000419 0,0030094 0,0001342 0,0000022 0,00000171 2 Bait r/c 0,0000140	7/r 0,000063 0,000387 0,000108 0,000758 0,054420 0,002427 0,000040 0,000056 0,000003 0,000540 0,50 5poc 7/r 0,000255	1 1 1 1 1 1 1 1 1 3 4,19 F - 1	0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00	Хт 80,31 80,31 80,31 80,31 80,31 80,31 80,31 80,31 40,15 20,00 Лето Хт 84,27	13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	Xm 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0
33-ва 3301 3303 3304 3333 3410 4416 071 325 728 984 025 Код 33-ва 3303 3304	Сме Фор	Дии маль Т 1 Дии Дии	иокси, Азот гидрос дигид редел Ти дегид На На Азот гидрос Азот гидрос Азот гидрос Азот гидрос Азот гидрос Азот	д (Двуокись азота; пероксид азота) ммиак (Азота гидрид) (II) оксид (Азот монооксид) суль фид (Водород сернистый, росуль фид, гидросуль фид) Метан ь ных углеводородов С6Н14-С10Н22 идроксибензол (фенол) (Муравь иный аль дегид, оксометан- метиленоксид) Этантиол криламид катионный АК-617 Вент.труба (блок доочистки) проек аименование вещества д (Двуокись азота; пероксид азота) ммиак (Азота гидрид) суль фид (Водород сернистый,	r/c 0,0000035 0,0000214 0,0000060 0,0000419 0,0030094 0,0001342 0,0000022 0,0000031 0,0000002 0,0000171	7/r 0,000063 0,000387 0,000108 0,000758 0,054420 0,002427 0,000040 0,000056 0,000003 0,000540 0,50 5poc 7/r 0,000255 0,001725	1 1 1 1 1 1 1 1 3 4,19 F - 1 1 1	0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00	Хm 80,31 80,31 80,31 80,31 80,31 80,31 80,31 80,31 40,15 20,00 Лето Хm 84,27 84,27	13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86 10 Um	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	Xm 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
33-Ba 3301 3303 3304 3333 4410 4416 071 325 728	Сме Фор	Дии маль Т 1 Дии Дии	иокси, Азот гидрос дигид редел Ти дегид На На Азот гидрос Азот гидрос Азот гидрос Азот гидрос Азот гидрос Азот	д (Двуокись азота; пероксид азота) ммиак (Азота гидрид) (II) оксид (Азот монооксид) суль фид (Водород сернистый, росуль фид, гидросуль фид) Метан ь ных углеводородов С6Н14-С10Н22 идроксибензол (фенол) (Муравь иный аль дегид, оксометан метиленоксид) Этантиол криламид катионный АК-617 Вент.труба (блок доочистки) проек аименование вещества д (Двуокись азота; пероксид азота) ммиак (Азота гидрид) (II) оксид (Азот монооксид)	r/c 0,0000035 0,0000214 0,0000060 0,0000419 0,0030094 0,0001342 0,0000022 0,0000031 0,0000002 0,0000171 2 Bail r/c 0,0000140 0,0000946 0,0000451	7/r 0,000063 0,000387 0,000108 0,000758 0,054420 0,002427 0,000040 0,000056 0,000003 0,000540 0,50 5poc 7/r 0,000255 0,001725 0,000823	1 1 1 1 1 1 1 1 3 4,19	0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00	Хm 80,31 80,31 80,31 80,31 80,31 80,31 80,31 80,31 40,15 20,00 Лето Хм 84,27 84,27	13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86 15,26	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	Xm 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
33-ва 3301 3303 3304 3333 4410 4416 0071 325 728 2984 0025 Код 3-ва 3301 3303 3304	Фор	Диі есь пі маль 1 ота д	Азот гидросо дигид	д (Двуокись азота; пероксид азота) Аммиак (Азота гидрид) (II) оксид (Азот монооксид) суль фид (Водород сернистый, росуль фид, гидросуль фид) Метан ь ных углеводородов С6Н14-С10Н22 идроксибензол (фенол) (Муравь иный аль дегид, оксометан- метиленоксид) Этантиол криламид катионный АК-617 Вент.труба (блок доочистки) проек аименование вещества д (Двуокись азота; пероксид азота) ммиак (Азота гидрид) (II) оксид (Азот монооксид) суль фид (Водород сернистый, росуль фид, гидросуль фид)	r/c 0,000035 0,0000214 0,000060 0,0000419 0,0030094 0,0001342 0,0000022 0,0000171 2 Bait r/c 0,0000140 0,0000946 0,0000210 0,0012698	T/r 0,000063 0,000387 0,000108 0,000758 0,054420 0,002427 0,000040 0,000056 0,000003 0,000540 0,50 5poc T/r 0,000255 0,001725 0,000823 0,000382	1 1 1 1 1 1 1 1 3 4,19 F - 1 1 1 1 1 1	0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00	Хт 80,31 80,31 80,31 80,31 80,31 80,31 80,31 80,31 40,15 20,00 Лето Хт 84,27 84,27 84,27	13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86 13,86 15,26 15,26 15,26	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	Xm 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

Взам. Инв. №

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

1325 1728	Фор			метиленоксид)	0,0000235 0,0000008		1	0,00	84,27	15,26 15,26	0,00	0,00	0,00
1/20				Этантиол	0,0000008	0,000015	1	0,02	84,27	13,26	362,40	0,00	0,00
0026	+	1	1	Вент.труба (насосная дренажа) проект.	2	0,40	1,57	12,52	20,00	1 -	146,60	0,00	0,
Код				700	Bы	Іброс	-		Лето		110,00	Зима	-
в-ва			На	именование вещества	r/c	т/г	F -	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0301	Аз	ота д	иоксид	(Двуокись азота; пероксид азота)	0,0000358	0,000655	1	0,00	57,73	7,16	0,00	0,00	0,00
0303			A	ммиак (Азота гидрид)	0,0002185	0,003992	1	0,00	57,73	7,16	0,00	0,00	0,00
0304			Азот (II) оксид (Азот монооксид)	0,0000612	0,001118	1	0,00	57,73	7,16	0,00	0,00	0,00
0333				уль фид (Водород сернистый,	0,0004283	0,007825	1	0,11	57,73	7,16	0,00	0,00	0.00
0410			дигидр	осуль фид, гидросуль фид) Метан	0,0307646	0,562129	1	0,00	57,73	7,16	0,00	0,00	0,00
0416	Сме	есь п	релепн	ных углеводородов С6Н14-С10Н2			1	0,00	57,73	7,16	0,00	0.00	0,00
1071				дроксибензол (фенол)	0,0000227		1	0,00	57,73	7,16	0,00	0,00	0,00
1325	Фор	маль		(Муравь иный аль дегид, оксомета			1	0,00	57,73	7,16	0,00	0,00	0,00
				метиленоксид)									
1728				Этантиол	0,0000016	0,000029	1	0,06	57,73	7,16	0,00	0,00	0,00
6001	%	1	3	Неорганизованный	2	0,00			0,00	1 -	501,80	502,80	1,
		Д,				6			Лето		230,30	230,30 Зима	
Код в-ва			На	именование вещества	г/с	іброс т/г	F -	Ст/ПДК	Хm	Um	Ст/ПДК	Хm	Um
0410				Метан	0,0016910		1	0,00	11,40	0,50	0,00	0,00	0,00
						8,00000E-							
1716				Одорант СПМ	E-09	08	1	0,00	11,40	0,50	0,00	0,00	0,00
6002	%	1	3	Неорганизованный	2	0,00			0,00	1 -	474,00	475,00	1
											212,60	212,60	
Код в-ва			На	именование вещества	г/с	іброс т/г	F -	Ст/ПДК	Лето Хт	Um	Ст/ПДК	Зима Хm	Um
0410				Метан	0,0016910		1	0,00	11,40	0,50	0,00	0.00	0,00
						0 0,053327 0 8,000000E- 08						0.00	
1716				Одорант СПМ	E-09		1	0,00	11,40	0,50	0,00	0,00	0,00
6003	%	1	3	Неорганизованный	2	0,00			0,00	1	414,00	414,30	3
				***************************************							243,70	240,90	
Код в-ва			Ha	именование вещества	г/с	іброс т/г	F -	Ст/ПДК	Лето Хm	Um	Ст/ПДК	Зима Хm	Um
0410				Метан	0,0016910		1	0,00	11,40	0,50	0.00	0,00	0,00
						8,000000E-			2.4.4		33,449		
1716				Одорант СПМ	E-09	08	1	0,00	11,40	0,50	0,00	0,00	0,00
6004	%	1	3	Неорганизованный	2	0,00			0,00	1 -	301,80	302,80	_ 1
	2.										138,40	138,50	
Код в-ва			На	именование вещества		іброс	F -	Ст/ПДК	Лето Хm	Um	Ст/ПДК	Зима Хт	Um
0410				Метан	r/c 0,0016910	τ/r 0,053327	1	0,00	11,40	0,50	0,00	0,00	0,00
						8,000000E-							
1716				Одорант СПМ	E-09	08	1	0,00	11,40	0,50	0,00	0,00	0,00
6011	+	1	3	Иловые площадки	2	0,00			0,00	1	611,20	664,40	15
									n.		69,50	-170,10	
Код в-ва			На	именование вещества	г/с	іброс -/-	F -	Ст/ПДК	Лето Хm	Um	Ст/ПДК	Зима Хm	Um
0301	Аз	ота п	иоксил	(Двуокись азота; пероксид азота)	0,0008043	т/г 0,015124	1	0,11	11,40	0,50	0,00	0,00	0,00
0303	, 10	д		удвускиев азота, перокеид азота) ммиак (Азота гидрид)	0,0517079		1	7,39	11,40	0,50	0,00	0,00	0,00
0304				II) оксид (Азот монооксид)	0,0143633		1	1,03	11,40	0,50	0,00	0,00	0,00
0333		Ди		уль фид (Водород сернистый,	0,0041654		1	14,88	11,40	0,50	0,00	0,00	0,00
			дигидр	осуль фид, гидросуль фид)									
0410				Метан	0,2298129		1	0,13	11,40	0,50	0,00	0,00	0,00
0416	Сме	сь п		ных углеводородов С6Н14-С10Н2			1	0,04	11,40	0,50	0,00	0,00	0,00
1071	Фор	маль		дроксибензол (фенол) (Муравь иный аль дегид, оксомета	0,0053144		1	15,18	11,40	0,50	0,00	0,00	0,00
1325	+υμ	.nail0	HOINH	(муравь иный аль дегид, оксомета метиленоксид)	o,0035908	0,067519	1	2,05	11,40	0,50	0,00	0,00	0,00

Взам. Инв. №

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

1728			_	Этантиол	0,0001867	0,003511	1	106,69	11,40	0,50	0,00	0,00	0,00
6012	+	1	3	Сливная станция проект.	2	0,00			0,00	1	573,90	575,20	3,00
2724									D		199,10	190,10	
Код в-ва			На	аименование вещества		poc	F		Лето	Has	Cm/IIIIV	Зима	1 Ins
					r/c	т/г		Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0301	A	вота д		ц (Двуокись азота; пероксид азота)	0,0000053	0,000095	1	0,00	11,40	0,50	0,00	0,00	0,00
0303				ммиак (Азота гидрид)	0,0000321	0,000581	1	0,00	11,40	0,50	0,00	0,00	0,00
0304		n.		II) оксид (Азот монооксид)	0,0000090	0,000163	1	0,00	11,40	0,50	0,00	0,00	0,00
0333				уль фид (Водород сернистый, росуль фид, гидросуль фид)	0,0000629	0,001138	1	0,22	11,40	0,50	0,00	0,00	0,00
0410				Метан	0,0045162	0,081774	1	0,00	11,40	0,50	0,00	0,00	0,00
0416	См	есь п	редел	ь ных углеводородов С6Н14-С10Н22	0,0002014	0,003647	1	0,00	11,40	0,50	0,00	0,00	0,00
1071			Ги	дроксибензол (фенол)	0,0000033	0,000060	1	0,01	11,40	0,50	0,00	0,00	0,00
1325	Фо	рмаль	дегид	(Муравь иный аль дегид, оксометан,	0,0000046	0,000084	1	0,00	11,40	0,50	0,00	0,00	0,00
1728				метиленоксид)		0,000004		0,11		0,50	0,00	0,00	0,00
1728				Этантиол	0,0000002	0,000004	1	0,11	11,40	0,50		100	0,00
6013	+	1	3	Иловый стабилизатор проект.	2	0,00			0,00	1 -	581,70	599,50	12,0
									Лето	<u> </u>	95,50	97,90 Зима	
Код в-ва			На	аименование вещества		ipoc -/s	F	Ст/ПДК	Xm	Um	Ст/ПДК	Хт	Um
0301	۸	2070 0	HOVOH	д (Двуокись азота; пероксид азота)	r/c 0,0000195	т/г 0,000357	1	0,00	11,40	0,50	0,00	0.00	0,00
0303	Α.	она д		ммиак (Азота гидрид)	0,0001198	0,000337	1	0,02	11,40	0,50	0,00	0,00	0,00
0304				III) оксид (Азота гидрид)	0,0001136	0,002103	1	0,02	11,40	0,50	0,00	0,00	0,00
		Пи		уль фид (Водород сернистый,				20.07		2.00			
0333				осуль фид, гидросуль фид)	0,0000337	0,000616	1	0,12	11,40	0,50	0,00	0,00	0,00
0410				Метан	0,0015973	0,029188	1	0,00	11,40	0,50	0,00	0,00	0,00
0416	См	есь п	редел	ь ных углеводородов С6Н14-С10Н22	0,0006212	0,011351	1	0,00	11,40	0,50	0,00	0,00	0,00
1071			Ги	дроксибензол (фенол)	0,0000328	0,000600	1	0,09	11,40	0,50	0,00	0,00	0,00
1325	Фо	рмаль	дегид	(Муравь иный аль дегид, оксометан, метиленоксид)	0,0000444	0,000811	1	0,03	11,40	0,50	0,00	0,00	0,00
1728				Этантиол	0,0000013	0,000024	1	0,74	11,40	0,50	0,00	0,00	0,00
6014	+	1	3	Блок биологической очистки проект.	2	0,00			0,00	1	441,80	562,30	38,0
		, in		and the second s		0,00					97,40	115,10	00,
Код			На	аименование вещества		брос	F	0 (00)	Лето		0 (0.0)	Зима	44.
в-ва					r/c	т/г		Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0301	A	вота д		ц (Двуокись азота; пероксид азота)	0,0000607	0,001122	-1	0,01	11,40	0,50	0,00	0,00	0,00
0303			P	ммиак (Азота гидрид)	0,0014417	0,026641	1	0,21	11,40	0,50	0,00	0,00	0,00
				II) оксид (Азот монооксид)	0,0010623	0,019630	1	0,08	11,40	0,50	0,00	0,00	0,00
0304				уль фид (Водород сернистый, оосуль фид, гидросуль фид)	0,0004856	0,008974	1	1,73	11,40	0,50	0,00	0,00	0,00
0333			HAILAIH				1	0,02	11,40	0,50	0,00	0,00	0,00
0333 0410				Метан	0,0390006	0,720707					0,00	0,00	0,00
0333 0410 0416	См			Метан ь ных углеводородов C6H14-C10H22	0,0119126	0,220138	1	0,01	11,40	0,50			
0333 0410 0416		есь п	ределі Ги	ь ных углеводородов C6H14-C10H22 дроксибензол (фенол)				0,01 1,09	11,40 11,40	0,50 0,50	0,00	0,00	0,00
0333 0410 0416 1071		есь п	ределі Ги	ь ных углеводородов С6Н14-С10Н22 дроксибензол (фенол) (Муравь иный аль дегид, оксометан,	0,0119126	0,220138	1						0,00
0304 0333 0410 0416 1071 1325 1728		есь п	ределі Ги	ь ных углеводородов C6H14-C10H22 дроксибензол (фенол)	0,0119126 0,0003824	0,220138 0,007067	1	1,09	11,40	0,50	0,00	0,00	
0333 0410 0416 1071 1325 1728	Фо	есь п	ределі Ги дегид	ь ных углеводородов С6Н14-С10Н22 дроксибензол (фенол) (Муравь иный аль дегид, оксометан, метиленоксид) Этантиол	0,0119126 0,0003824 0,0003946 0,0000197	0,220138 0,007067 0,007291 0,000365	1 1 1	1,09 0,23	11,40 11,40 11,40	0,50 0,50 0,50	0,00	0,00 0,00	0,00
0333 0410 0416 1071 1325		есь п	ределі Ги	ь ных углеводородов С6Н14-С10Н22 дроксибензол (фенол) (Муравь иный аль дегид, оксометан, метиленоксид)	0,0119126 0,0003824 0,0003946	0,220138 0,007067 0,007291	1 1 1	1,09 0,23	11,40 11,40	0,50 0,50	0,00 0,00 0,00	0,00 0,00 0,00	0,00
0333 0410 0416 1071 1325 1728 6015	Фо	есь п	ределі Ги дегид	в ных углеводородов С6Н14-С10Н22 дроксибензол (фенол) (Муравь иный аль дегид, оксометан, метиленоксид) Этантиол Вторичный радиаль ный отстойник проект.	0,0119126 0,0003824 0,0003946 0,0000197	0,220138 0,007067 0,007291 0,000365	1 1 1 1	1,09 0,23	11,40 11,40 11,40	0,50 0,50 0,50	0,00 0,00 0,00 376,60	0,00 0,00 0,00 381,50	0,00
0333 0410 0416 1071 1325 1728	Фо	есь п	ределі Ги дегид	ь ных углеводородов С6Н14-С10Н22 дроксибензол (фенол) (Муравь иный аль дегид, оксометан, метиленоксид) Этантиол Вторичный радиаль ный отстойник	0,0119126 0,0003824 0,0003946 0,0000197	0,220138 0,007067 0,007291 0,000365 0,00	1 1 1	1,09 0,23	11,40 11,40 11,40 0,00	0,50 0,50 0,50	0,00 0,00 0,00 376,60	0,00 0,00 0,00 381,50 72,50	0,00
0333 0410 0416 1071 1325 1728 6015 Код в-ва	Фо	рмаль	ределі Ги дегид 3	в ных углеводородов С6Н14-С10Н22 дроксибензол (фенол) (Муравь иный аль дегид, оксометан, метиленоксид) Этантиол Вторичный радиаль ный отстойник проект.	0,0119126 0,0003824 0,0003946 0,0000197 2	0,220138 0,007067 0,007291 0,000365 0,00	1 1 1 1	1,09 0,23 11,26	11,40 11,40 11,40 0,00	0,50 0,50 0,50	0,00 0,00 0,00 376,60 106,10	0,00 0,00 0,00 381,50 72,50 Зима	0,00
0333 0410 0416 1071 1325 1728 6015 Код в-ва	Фо	рмаль	ределі Ги дегид 3 На	ь ных углеводородов С6Н14-С10Н22 дроксибензол (фенол) (Муравь иный аль дегид, оксометан, метиленоксид) Этантиол Вторичный радиаль ный отстойник проект.	0,0119126 0,0003824 0,0003946 0,0000197 2 Bbit	0,220138 0,007067 0,007291 0,000365 0,00	1 1 1 1	1,09 0,23 11,26 Ст/ПДК	11,40 11,40 11,40 0,00 Лето Хм	0,50 0,50 0,50 1	0,00 0,00 0,00 376,60 106,10	0,00 0,00 0,00 381,50 72,50 Зима Хт	0,00 0,00 34,
0333 0410 0416 1071 1325 1728 6015 Код в-ва 0301 0303	Фо	рмаль	Беределі Гу дегид 3 На	ь ных углеводородов С6Н14-С10Н22 дроксибензол (фенол) (Муравь иный аль дегид, оксометан, метиленоксид) Этантиол Вторичный радиаль ный отстойник проект.	0,0119126 0,0003824 0,0003946 0,0000197 2 Выб г/с 0,0000730	0,220138 0,007067 0,007291 0,000365 0,00 ipoc 7/r 0,001348	1 1 1 1	1,09 0,23 11,26 Ст/ПДК 0,01	11,40 11,40 11,40 0,00 Лето Хм 11,40	0,50 0,50 0,50 1 Um 0,50	0,00 0,00 0,00 376,60 106,10 Ст/ПДК 0,00	0,00 0,00 0,00 381,50 72,50 Зима Хт 0,00	0,00 0,00 34, Um 0,00
0333 0410 0416 1071 1325 1728 6015	Фо	есь прималь 1 Ди	Биледелида 3 На Азот и идросситидроссии и и и и и и и и и и и и и и и и и	ь ных углеводородов С6Н14-С10Н22 дроксибензол (фенол) (Муравь иный аль дегид, оксометан, метиленоксид) Этантиол Вторичный радиаль ный отстойник проект. аименование вещества ц (Двуокись азота; пероксид азота) ммиак (Азота гидрид)	0,0119126 0,0003824 0,0003946 0,0000197 2 Bыб г/c 0,0000730 0,0004942	0,220138 0,007067 0,007291 0,000365 0,00 ipoc r/r 0,001348 0,009127	1 1 1 1	1,09 0,23 11,26 ————————————————————————————————————	11,40 11,40 11,40 0,00 Лето Хт 11,40 11,40	0,50 0,50 0,50 1 Um 0,50 0,50	0,00 0,00 0,00 376,60 106,10 Ст/ПДК 0,00 0,00	0,00 0,00 0,00 381,50 72,50 Зима Хт 0,00	0,00 0,00 34, Um 0,00 0,00
0333 0410 0416 1071 1325 1728 6015 Код в-ва 0301 0303 0304	Фо	есь прималь 1 Ди	Биледелида 3 На Азот и идросситидроссии и и и и и и и и и и и и и и и и и	ь ных углеводородов С6Н14-С10Н22 дроксибензол (фенол) (Муравь иный аль дегид, оксометан, метиленоксид) Этантиол Вторичный радиаль ный отстойник проект. вименование вещества ц (Двуокись азота; пероксид азота) имми	0,0119126 0,0003824 0,0003946 0,0000197 2 Выб г/с 0,0000730 0,0004942 0,0002358	0,220138 0,007067 0,007291 0,000365 0,00 spoc 7/r 0,001348 0,009127 0,004355	1 1 1 1	1,09 0,23 11,26 Ст/ПДК 0,01 0,07 0,02	11,40 11,40 11,40 0,00 Лето Хм 11,40 11,40	0,50 0,50 0,50 1 1 Um 0,50 0,50 0,50	0,00 0,00 0,00 376,60 106,10 Ст/ПДК 0,00 0,00 0,00	0,00 0,00 0,00 381,50 72,50 Зима Хт 0,00 0,00	0,00 0,00 34, Um 0,00 0,00 0,00
0333 0410 0416 1071 1325 1728 6015 Код в-ва 0301 0303 0304	Фор +	рмаль 1 Ди	а Веременти в предостивности в предости в п	ь ных углеводородов С6Н14-С10Н22 дроксибензол (фенол) (Муравь иный аль дегид, оксометан, метиленоксид) Этантиол Вторичный радиаль ный отстойник проект. вименование вещества ц (Двуокись азота; пероксид азота) иммиак (Азота гидрид) (II) оксид (Азот монооксид) уль фид (Водород сернистый, росуль фид, гидросуль фид)	0,0119126 0,0003824 0,0003946 0,0000197 2 Bыб r/c 0,0000730 0,0004942 0,0002358 0,0001094	0,220138 0,007067 0,007291 0,000365 0,00 ipoc 7/r 0,001348 0,009127 0,004355 0,002021	1 1 1 1 F 1 1 1 1	1,09 0,23 11,26 Ст/ПДК 0,01 0,07 0,02 0,39	11,40 11,40 11,40 0,00 Лето Хт 11,40 11,40 11,40	0,50 0,50 0,50 1 Um 0,50 0,50 0,50	0,00 0,00 0,00 376,60 106,10 Ст/ПДК 0,00 0,00 0,00 0,00	0,00 0,00 0,00 381,50 72,50 Зима Хт 0,00 0,00 0,00	0,00 0,00 34, Um 0,00 0,00 0,00 0,00

Взам. Инв. №

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

1325	Фор	маль	дегид	(Муравь иный аль дегид, оксометан, метиленоксид)	0,0001227	0,002266	1	0,07	11,40	0,50	0,00	0,00	0,00
1728				Этантиол	0,0000043	0,000080	1	2,46	11,40	0,50	0,00	0,00	0,00
6016	+	1	3	Вторичный радиаль ный отстойник проект.	2	0,00			0,00	1 -	402,70	436,30	34,
16				проскі	Du	6000			Лето		92,30	97,60 Зима	
Код в-ва			Ha	именование вещества	г/с	брос т/г	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0301	A30	ота лі	оксил	(Двуокись азота; пероксид азота)	0,0000730	0,001348	1	0,01	11,40	0,50	0,00	0,00	0,00
0303	0.00			ммиак (Азота гидрид)	0,0004942	0,009127	1	0,07	11,40	0,50	0,00	0.00	0,00
0304				II) оксид (Азот монооксид)	0,0002358	0,004355	1	0,02	11,40	0,50	0,00	0.00	0,00
0333		Диг	идрос	уль фид (Водород сернистый,	0,0001094	0,002021	1	0,39	11,40	0.50	0,00	0,00	0,00
		+	дигидр	осуль фид, гидросуль фид)	*********	2.00		0.00	751.24				
0410 0416	Cur	o. D.		Метан	0,0066330 0,0027195	0,122506 0,050228	1	0,00	11,40 11,40	0,50	0,00	0,00	0,00
1071	CIME	CB III		ных углеводородов C6H14-C10H22 дроксибензол (фенол)	0,0027193	0,001556	1	0,00	11,40	0,50	0,00	0,00	0,00
	Фор	маль		дроксиоензол (фенол) (Муравь иный аль дегид, оксометан,								2/03	
1325	400	Marib	догид	метиленоксид)	0,0001227	0,002266	1	0,07	11,40	0,50	0,00	0,00	0,00
1728				Этантиол	0,0000043	0,000080	1	2,46	11,40	0,50	0,00	0,00	0,00
6017	+	1	3	Биореактор проект.	2	0,00			0,00	1 -	353,30	355,90	12
0011		ă,		Enopoumop npoom.		0,00					83,00	65,10	
Код			На	именование вещества		брос	F		Лето		0 1771	Зима	
в-ва					г/с	т/г		Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0301	Азо	ота ді		(Двуокись азота; пероксид азота)	0,0000035	0,000065	1	0,00	11,40	0,50	0,00	0,00	0,00
0303				ммиак (Азота гидрид)	0,0000843	0,001540	1	0,01	11,40	0,50	0,00	0,00	0,00
0304				II) оксид (Азот монооксид) уль фид (Водород сернистый,	0,0000621	0,001135	1	0,00	11,40	0,50	0,00	0,00	0,00
0333				уль фид (водород сернистыи, осуль фид, гидросуль фид)	0,0000284	0,000519	1	0,10	11,40	0,50	0,00	0,00	0,00
0410				Метан	0,0022805	0,041674	1	0,00	11,40	0,50	0,00	0,00	0,00
0416	Сме	месь предель ных углеводородов С6Н14-С10Н22		0,0006966	0,012729	1	0,00	11,40	0,50	0,00	0,00	0,00	
1071			Ги	дроксибензол (фенол)	0,0000224	0,000409	1	0,06	11,40	0,50	0,00	0,00	0,00
1325	Фор	маль	дегид	(Муравь иный аль дегид, оксометан,	0,0000231	0,000422	1	0,01	11,40	0,50	0,00	0,00	0,00
1728				метиленоксид) Этантиол	0,0000012	0,000021	1	0,69	11,40	0,50	0.00	0.00	0.00
		1,7									345,20	368,00	
6018	+	1	3	Емкость сбора дренажа проект.	2	0,00			0,00	1 -	162,20	165,50	9,
Код			11-	efficiency (automicals)	Вы	брос	F		Лето			Зима	
в-ва			Па	именование вещества	г/с	т/г	r	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0301	Азо	ота ді	оксид	(Двуокись азота; пероксид азота)	0,0000488	0,000894	1	0,01	11,40	0,50	0,00	0,00	0,00
0303			A	ммиак (Азота гидрид)	0,0002977	0,005452	1	0,04	11,40	0,50	0,00	0,00	0,00
0304				II) оксид (Азот монооксид)	0,0000834	0,001527	1	0,01	11,40	0,50	0,00	0,00	0,00
0333				уль фид (Водород сернистый, осуль фид, гидросуль фид)	0,0005836	0,010686	1	2,08	11,40	0,50	0,00	0,00	0,00
0410		,	TAUL AIT THE	Метан	0,0419231	0,767620	1	0,02	11,40	0,50	0,00	0,00	0,00
0416	Сме	сь пр	едель	ных углеводородов С6Н14-С10Н22	0,0018699	0,034238	1	0,00	11,40	0,50	0,00	0,00	0,00
1071				дроксибензол (фенол)	0,0000310	0,000567	1	0,09	11,40	0,50	0,00	0,00	0,00
1325	Фор	маль		(Муравь иный аль дегид, оксометан,	7.3	0,000785	1	0,02	11,40	0,50	0,00	0,00	0,00
				метиленоксид)									
1728		1		Этантиол	0,0000021	0,000039	1	1,20	11,40	0,50	0,00	0,00	0,00
6019	+	1	3	Камера отбора ила проект.	2	0,00			0,00	1 -	356,40 100,00	360,00 98,20	4,
10			_		D ₁₁	блос	_		Лето		100,00	3има	
Код в-ва			На	именование вещества	г/с	брос т/г	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0301	Азо	ота ді	оксил	(Двуокись азота; пероксид азота)	0,0000017	0,000031	1	0,00	11,40	0,50	0,00	0,00	0,00
0303	14.7	Н.		ммиак (Азота гидрид)	0,0000106	0,000192	1	0,00	11,40	0,50	0,00	0,00	0,00
0304				II) оксид (Азот монооксид)	0,0000083	0,000150	1	0,00	11,40	0,50	0,00	0,00	0,00
0333		Диг	идрос	уль фид (Водород сернистый,	0,0000030	0,000054	1	0,01	11,40	0,50	0,00	0,00	0,00
		1	цигидр	осуль фид, гидросуль фид)	17.77								
0410				Метан	0,0001420	0,002567	1	0,00	11,40	0,50	0,00	0,00	0,00
0416	Сме	сь пр	едель	ных углеводородов С6Н14-С10Н22	0,0000552	0,000998	1	0,00	11,40	0,50	0,00	0,00	0,00

Взам. Инв. №

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

1071			Г	идроксибензол (фенол)	0,0000029	0,000053	1	0,01	11,40	0,50	0,00	0,00	0,00
1325	Фор	рмаль	деги,	д (Муравь иный аль дегид, оксометан, метиленоксид)	0,0000039	0,000071	1	0,00	11,40	0,50	0,00	0,00	0,00
1728				Этантиол	0,0000001	0,000002	1	0,06	11,40	0,50	0,00	0,00	0,00
6020	+	1	3	Камера отбора ила проект.	2	0,00			0,00	1 -	437,60 111,80	434,60 109,00	4,00
Код				Salahan Salahan Adalah	Выб	брос	-	1	Лето			Зима	
в-ва			н	аименование вещества	г/с	т/г	F	Cm/ПДК	Xm	Um	Cm/ПДК	Xm	Um
0301	As	зота д	иокси	д (Двуокись азота; пероксид азота)	0,0000017	0,000031	1	0,00	11,40	0,50	0,00	0,00	0,00
0303				Аммиак (Азота гидрид)	0,0000106	0,000192	1	0,00	11,40	0,50	0,00	0,00	0,00
0304			Азот	(II) оксид (Азот монооксид)	0,0000083	0,000150	1	0,00	11,40	0,50	0,00	0,00	0,00
0333		Ди		суль фид (Водород сернистый, росуль фид, гидросуль фид)	0,0000030	0,000054	1	0,01	11,40	0,50	0,00	0,00	0,00
0410				Метан	0,0001420	0,002567	1	0,00	11,40	0,50	0,00	0,00	0,00
0416	См	есь п	редел	ь ных углеводородов С6Н14-С10Н22	0,0000552	0,000998	1	0,00	11,40	0,50	0,00	0,00	0,00
1071			Γ	идроксибензол (фенол)	0,0000029	0,000053	1	0,01	11,40	0,50	0,00	0,00	0,00
1325	Фор	рмаль	деги,	д (Муравь иный аль дегид, оксометан, метиленоксид)	0,0000039	0,000071	1	0,00	11,40	0,50	0,00	0,00	0,00
1728				Этантиол	0,0000001	0,000002	1	0,06	11,40	0,50	0,00	0,00	0,00
6021	+	1	3	Резервуар избыточного активного	2	0,00			0,00	1	353,40	355,10	12,00
0021			3	ила проект.	2	0,00			0,00		143,70	131,70	12,00
Код			Н	аименование вещества	Выб	брос	F		Лето			Зима	
в-ва				аимспование вощества	r/c	т/г		Cm/ПДК	Xm	Um	Cm/ПДК	Xm	Um
0301	As	зота д	иокси	д (Двуокись азота; пероксид азота)	0,0000134	0,000244	1	0,00	11,40	0,50	0,00	0,00	0,00
0303				Аммиак (Азота гидрид)	0,0000822	0,001498	1	0,01	11,40	0,50	0,00	0,00	0,00
0304				(II) оксид (Азот монооксид)	0,0000639	0,001165	1	0,00	11,40	0,50	0,00	0,00	0,00
0333				суль фид (Водород сернистый, росуль фид, гидросуль фид)	0,0000231	0,000422	1	0,08	11,40	0,50	0,00	0,00	0,00
0410				Метан	0,0010955	0,019973	1	0,00	11,40	0,50	0,00	0,00	0,00
0416	См	есь п	редел	ь ных углеводородов C6H14-C10H22	0,0004260	0,007767	1	0,00	11,40	0,50	0,00	0,00	0,00
1071				идроксибензол (фенол)	0,0000225	0,000411	1	0,06	11,40	0,50	0,00	0,00	0,00
1325	Фор	рмаль	деги,	 д (Муравь иный аль дегид, оксометан, метиленоксид) 	0,0000304	0,000555	1	0,02	11,40	0,50	0,00	0,00	0,00
1728				Этантиол	0,0000009	0,000017	1	0,51	11,40	0,50	0,00	0,00	0,00
6022	+	1	3	Резервуар избыточного активного	2	0,00			0,00	1	365,20	367,00	12,00
0022		1	3	ила проект.	2	0,00			0,00		145,40	133,50	12,00
Код		0	Н	аименование вещества	Выб	брос	F		Лето	V V		Зима	- 0,
в-ва				алистование вощества	г/с	т/г		Cm/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0301	As	зота д	циокси	д (Двуокись азота; пероксид азота)	0,0000134	0,000244	1	0,00	11,40	0,50	0,00	0,00	0,00
0303			- 1	Аммиак (Азота гидрид)	0,0000822	0,001498	1	0,01	11,40	0,50	0,00	0,00	0,00
0304			Азот	(II) оксид (Азот монооксид)	0,0000639	0,001165	1	0,00	11,40	0,50	0,00	0,00	0,00
0333	Дигидросуль фид (Водород сернистый, дигидросуль фид, гидросуль фид)				0,0000231	0,000422	1	0,08	11,40	0,50	0,00	0,00	0,00
0410	дигидросуль фид, гидросуль фид) Метан				0,0010955	0,019973	1	0,00	11,40	0,50	0,00	0,00	0,00
0416	См	есь п	редел	ь ных углеводородов C6H14-C10H22	0,0004260	0,007767	1	0,00	11,40	0,50	0,00	0,00	0,00
1071			Г	идроксибензол (фенол)	0,0000225	0,000411	1	0,06	11,40	0,50	0,00	0,00	0,00
1325	Фор	рмаль	деги,	д (Муравь иный аль дегид, оксометан, метиленоксид)	0,0000304	0,000555	1	0,02	11,40	0,50	0,00	0,00	0,00
1728				Этантиол	0,0000009	0,000017	1	0,51	11,40	0,50	0,00	0,00	0,00

Взам. Инв. №	
Подп. и дата	
з. № подл.	

ı						
	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Выбросы источников по веществам

Типы источников:

- 1 Точечный;
- 2 Линейный;

- 3 Неорганизованный;4 Совокупность точечных источников;5 С зависимостью массы выброса от скорости ветра;
- 6 Точечный, с зонтом или выбросом горизонтально;
- 7 Совокупность точечных (зонт или выброс вбок);
- 8 Автомагистраль (неорганизованный линейный); 9 Точечный, с выбросом в бок;
- 10 Свеча;
- 11- Неорганизованный (полигон);
- 12 Передвижной.

Вещество: 0101 диАлюминий триоксид (в пересчете на алюминий)

Nº	Nº	Nº		Выброс	2		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0004	1	0,0041667	1	0,00	15,64	0,50	0,00	0,00	0,00
	Ит	ого:		0,0041667		0,00			0,00		

Вещество: 0123 диЖелезо триоксид, (железа оксид) (в пересчете на железо) (Железо сесквиоксид)

Nº	Nº	Nº	12.00	Выброс	12		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0004	1	0,0273611	1	0,00	15,64	0,50	0,00	0,00	0,00
1	0	0005	1	0,0134130	1	0,00	28,50	0,50	0,00	0,00	0,00
1	0	0006	1	0,0031900	3	0,00	8,89	0,50	0,00	0,00	0,00
1	0	0007	1	0,0072000	3	0,00	5,70	0,50	0,00	0,00	0,00
	Ит	ого:		0,0511641		0,00			0,00		

Вещество: 0143 Марганец и его соединения (в пересчете на марганец (IV) оксид)

Nº	Nº	Nº	201	Выброс			Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Cm/ПДК	Xm	Um
1	0	0004	1	0,0004167	1	0,40	15,64	0,50	0,00	0,00	0,00
1	0	0005	1	0,0015980	1	0,54	28,50	0,50	0,00	0,00	0,00
	Ито	ого:		0,0020147		0,93			0,00		- 41

Вещество: 0150 Натрий гидроксид (Натрия гидроокись, Натр едкий, Сода каустическая)

Nº	Nº	Nº	12.7	Выброс			Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0020	1	0,0000038	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0021	1	0,0000057	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0022	1	0,0000057	1	0,00	24,48	0,50	0,00	0,00	0,00

·	·		·	·		
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв. №

Подп. и дата

Инв. № подл.

		T		
Итого:	0,0000152	0,01	0,00	

Вещество: 0155 диНатрий карбонат (Натрий углекислый; натриевая соль угольной кислоты)

Nº	Nº	Nº		Выброс	121		Лето			Зима	
пл.	цех.	ист.	I LUN I I	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um	
1	0	0020	1	0,0000112	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0021	1	0,0000168	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0022	1	0,0000168	1	0,00	24,48	0,50	0,00	0,00	0,00
	Ит	ого:		0,0000448		0,00			0,00		

Вещество: 0172 Алюминий, растворимые соли (нитрат, сульфат, хлорид, алюминиевые квасцы аммониевые, калиевые) (в пересчете на алюминий)

Nº	Nº	Nº	2.0	Выброс	42.		Лето			Зима	
пл.	іл. цех.	ист.	Тип	(r/c)	•	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0017	1	0,0000513	1	0,01	39,90	0,50	0,00	0,00	0,00
	Итого:			0,0000513		0,01			0,00		

Вещество: 0203 Хром (в пересчете на хрома (VI) оксид)

Nº	Nº	Nº		Выброс			Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Cm/ПДК	Xm	Um
1	0	0020	1	0,0000056	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0021	1	0,0000084	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0022	1	0,0000084	1	0,00	24,48	0,50	0,00	0,00	0,00
	Ит	ого:		0,0000224		0,00			0,00		

Вещество: 0301 Азота диоксид (Двуокись азота; пероксид азота)

Nº	Nº	Nº	140.2	Выброс	F		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	-	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0001	1	0,0027974	1	0,01	61,53	0,74	0,00	0,00	0,00
1	0	0004	1	0,0194036	1	0,92	15,64	0,50	0,00	0,00	0,00
1	0	0005	1	0,0015300	1	0,03	28,50	0,50	0,00	0,00	0,00
1	0	8000	1	0,0036617	1	0,01	77,84	0,94	0,00	0,00	0,00
1	0	0014	1	0,0016413	1	0,02	33,12	0,64	0,00	0,00	0,00
1	0	0023	1	0,0000244	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	0,0000035	1	0,00	80,31	13,86	0,00	0,00	0,00
1	0	0025	1	0,0000140	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0026	1	0,0000358	1	0,00	57,73	7,16	0,00	0,00	0,00
1	0	6011	3	0,0008043	1	0,11	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	0,0000053	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	0,0000195	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	0,0000607	1	0,01	11,40	0,50	0,00	0,00	0,00

Изм.	Кол.уч	Лист	№док	Подп.	Дата
	Изм.	Изм. Кол.уч	Изм. Кол.уч Лист	Изм. Кол.уч Лист №док	Изм. Кол.уч Лист №док Подп.

Взам. Инв.

04/2022-151-00000-OBOC-TY

	Ит	ого:		0,0302300		1,14			0,00		
1	0	6022	3	0,0000134	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	0,0000134	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	0,0000017	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	0,0000017	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	0,0000488	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	0,0000035	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	0,0000730	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	0,0000730	1	0,01	11,40	0,50	0,00	0,00	0,00

Вещество: 0302 Азотная кислота (по молекуле HNO3)

Nº	Nº	Nº	2	Выброс	1		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Cm/ПДК	Xm	Um	Cm/ПДК	Xm	Um
1	0	0019	1	1,9750000E-10	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	0020	1	0,0000334	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0021	1	0,0000501	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0022	1	0,0000501	1	0,00	24,48	0,50	0,00	0,00	0,00
	Ит	ого:		0,0001336		0,00			0,00		

Вещество: 0303 Аммиак (Азота гидрид)

Nº	Nº	N₂	2.7	Выброс	120		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0019	1	0,0000007	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	0020	1	0,0008880	1	0,02	24,48	0,50	0,00	0,00	0,00
1	0	0021	1	0,0013320	1	0,02	24,48	0,50	0,00	0,00	0,00
1	0	0022	1	0,0013320	1	0,02	24,48	0,50	0,00	0,00	0,00
1	0	0023	1	0,0003119	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	0,0000214	1	0,00	80,31	13,86	0,00	0,00	0,00
1	0	0025	1	0,0000946	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0026	1	0,0002185	1	0,00	57,73	7,16	0,00	0,00	0,00
1	0	6011	3	0,0517079	1	7,39	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	0,0000321	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	0,0001198	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	0,0014417	1	0,21	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	0,0004942	1	0,07	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	0,0004942	1	0,07	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	0,0000843	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	0,0002977	1	0,04	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	0,0000106	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	0,0000106	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	0,0000822	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6022	3	0,0000822	1	0,01	11,40	0,50	0,00	0,00	0,00
	Ит	ого:		0,0590566		7,91	8		0,00		

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Вещество: 0304 Азот (II) оксид (Азот монооксид)

Nº	Nº	Nº	125	Выброс			Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0001	1	0,0004546	1	0,00	61,53	0,74	0,00	0,00	0,00
1	0	0004	1	0,0031530	1	0,07	15,64	0,50	0,00	0,00	0,00
1	0	0005	1	0,0002486	1	0,00	28,50	0,50	0,00	0,00	0,00
1	0	0008	1	0,0005950	1	0,00	77,84	0,94	0,00	0,00	0,00
1	0	0014	1	0,0002667	1	0,00	33,12	0,64	0,00	0,00	0,00
1	0	0023	1	0,0000990	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	0,0000060	1	0,00	80,31	13,86	0,00	0,00	0,00
1	0	0025	1	0,0000451	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0026	1	0,0000612	1	0,00	57,73	7,16	0,00	0,00	0,00
1	0	6011	3	0,0143633	1	1,03	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	0,0000090	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	0,0000932	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	0,0010623	1	0,08	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	0,0002358	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	0,0002358	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	0,0000621	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	0,0000834	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	0,0000083	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	0,0000083	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	0,0000639	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6022	3	0,0000639	1	0,00	11,40	0,50	0,00	0,00	0,00
	Ит	ого:		0,0212185		1,24			0,00		

Вещество: 0316 Гидрохлорид (по молекуле HC1) (Водород хлорид)

Nº	Nº	Nº	1000	Выброс	121		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0019	1	0,0000040	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	0020	1	0,0000722	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0021	1	0,0001083	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0022	1	0,0001083	1	0,00	24,48	0,50	0,00	0,00	0,00
	Ит	ого:		0,0002928		0,01			0,00		

Вещество: 0322 Серная кислота (по молекуле H2SO4)

Nº	Nº	Nº	72.4	Выброс	_		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0020	1	0,0000028	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0021	1	0,0000042	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0022	1	0,0000042	1	0,00	24,48	0,50	0,00	0,00	0,00

						ſ
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв. №

Подп. и дата

Инв. № подл.

0.00	.00
	0,00

Вещество: 0328 Углерод (Пигмент черный)

Nº	Nº	Nº	Les i	Выброс	21		Лето			Зима	
	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0004	1	0,0007409	1	0,05	15,64	0,50	0,00	0,00	0,00
	Ит	ого:		0,0007409		0,05			0,00		

Вещество: 0330 Сера диоксид

Nº	Nº	Nº	2.0	Выброс	_		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0001	1	0,0000056	1	0,00	61,53	0,74	0,00	0,00	0,00
1	0	0004	1	0,0010179	1	0,02	15,64	0,50	0,00	0,00	0,00
1	0	8000	1	0,0000072	1	0,00	77,84	0,94	0,00	0,00	0,00
1	0	0014	1	0,0000033	1	0,00	33,12	0,64	0,00	0,00	0,00
	Ит	ого:		0,0010340		0,02			0,00		

Вещество: 0333 Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)

Nº	Nº	Nº	0.00	Выброс	- 2		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0023	1	0,0000448	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	0,0000419	1	0,01	80,31	13,86	0,00	0,00	0,00
1	0	0025	1	0,0000210	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0026	1	0,0004283	1	0,11	57,73	7,16	0,00	0,00	0,00
1	0	6011	3	0,0041654	1	14,88	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	0,0000629	1	0,22	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	0,0000337	1	0,12	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	0,0004856	1	1,73	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	0,0001094	1	0,39	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	0,0001094	1	0,39	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	0,0000284	1	0,10	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	0,0005836	1	2,08	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	0,0000030	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	0,0000030	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	0,0000231	1	0,08	11,40	0,50	0,00	0,00	0,00
1	0	6022	3	0,0000231	1	0,08	11,40	0,50	0,00	0,00	0,00
	Ит	ого:		0,0061666		20,23			0,00	,	

Вещество: 0337 Углерода оксид (Углерод окись; углерод моноокись; угарный газ)

Ľ								
47.								
2								
의							l I	
Инв. № подл.								l
Z		Изм.	Кол.уч	Лист	№док	Подп.	Дата	
	•							-

Взам. Инв. №

04/2022-151-00000-OBOC-TY

Nº	Nº	Nº	120	Выброс	35		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0001	1	0,0094944	1	0,00	61,53	0,74	0,00	0,00	0,00
1	0	0004	1	0,0458018	1	0,09	15,64	0,50	0,00	0,00	0,00
1	0	0005	1	0,0094208	1	0,01	28,50	0,50	0,00	0,00	0,00
1	0	0008	1	0,0122544	1	0,00	77,84	0,94	0,00	0,00	0,00
1	0	0014	1	0,0057040	1	0,00	33,12	0,64	0,00	0,00	0,00
	Ито	ого:		0,0826754		0,10			0,00		

Вещество: 0342

'Фтористые газообразные соединения (в пересчете на фтор): - Гидрофторид (Водород фторид; фтороводород)

Nº	Nº	Nº	2.8	Выброс	_		Лето			Зима	
7	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0005	1	0,0009421	1	0,16	28,50	0,50	0,00	0,00	0,00
	Ит	ого:		0,0009421		0,16			0,00		

Вещество: 0344

Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат)

Nº	Nº	Nº	2011	Выброс	_		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0005	1	0,0005667	1	0,01	28,50	0,50	0,00	0,00	0,00
	Ит	ого:		0,0005667		0,01	-		0,00		

Вещество: 0403 Гексан (н-Гексан; дипропил; Hexane)

Nº	Nº	Nº	_	Выброс	2.7		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0019	1	0,0002687	1	0,00	11,40	0,50	0,00	0,00	0,00
	Ит	ого:		0,0002687		0,00			0,00		

Вещество: 0410 Метан

Nº	1000	Nº		Выброс	F		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	-	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0002	1	0,0067398	1	0,00	15,47	0,50	0,00	0,00	0,00
1	0	0003	1	0,0000466	1	0,00	18,00	0,50	0,00	0,00	0,00
1	0	0009	1	0,0067398	1	0,00	17,21	0,50	0,00	0,00	0,00
1	0	0010	1	0,0000466	1	0,00	19,73	0,50	0,00	0,00	0,00
1	0	0011	1	0,0067398	1	0,01	8,28	0,50	0,00	0,00	0,00
1	0	0012	1	0,0024820	1	0,00	11,81	0,50	0,00	0,00	0,00
1	0	0013	1	0,0000466	1	0,00	11,05	0,50	0,00	0,00	0,00
1	0	0015	1	0,0067398	1	0,00	18,20	0,50	0,00	0,00	0,00
1	0	0016	1	0,0000466	1	0,00	20,97	0,50	0,00	0,00	0,00

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

Подп. и дата

Инв. № подл.

	Ит	ого:		0,4103075		0,21			0,00		
1	0	6022	3	0,0010955	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	0,0010955	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	0,0001420	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	0,0001420	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	0,0419231	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	0,0022805	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	0,0066330	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	0,0066330	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	0,0390006	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	0,0015973	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	0,0045162	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6011	3	0,2298129	1	0,13	11,40	0,50	0,00	0,00	0,00
1	0	6004	3	0,0016910	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6003	3	0,0016910	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6002	3	0,0016910	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6001	3	0,0016910	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	0026	1	0,0307646	1	0,00	57,73	7,16	0,00	0,00	0,00
1	0	0025	1	0,0012698	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0024	1	0,0030094	1	0,00	80,31	13,86	0,00	0,00	0,00
1	0	0023	1	0,0040005	1	0,00	95,58	19,63	0,00	0,00	0,00

Вещество: 0416 Смесь предельных углеводородов C6H14-C10H22

Nº	Nº	Nº	126	Выброс			Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0023	1	0,0019935	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	0,0001342	1	0,00	80,31	13,86	0,00	0,00	0,00
1	0	0025	1	0,0005206	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0026	1	0,0013722	1	0,00	57,73	7,16	0,00	0,00	0,00
1	0	6011	3	0,0718165	1	0,04	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	0,0002014	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	0,0006212	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	0,0119126	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	0,0027195	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	0,0027195	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	0,0006966	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	0,0018699	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	0,0000552	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	0,0000552	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	0,0004260	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6022	3	0,0004260	1	0,00	11,40	0,50	0,00	0,00	0,00
	Ит	ого:		0,0975401		0,05			0,00		

Вещество: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (Метилтолуол)

/o∐						
Инв. № подл.						
흳						
单						
Z	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

04/2022-151-00000-OBOC-TY

Nº	Nº	Nº	2.7	Выброс	12		Лето		Зима			
пл.	цех.	ист.	Тип	(r/c)	•	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um	
1	0	0004	1	0,0284091	1	1,35	15,64	0,50	0,00	0,00	0,00	
	Ито	ого:		0,0284091		1,35			0,00			

Вещество: 0621 Метилбензол (Фенилметан)

Nº	Nº	Nº	_	Выброс (г/с)	F		Лето		Зима		
пл.	цех.	ист.	Тип			Ст/ПДК	Xm	Um	Cm/ПДК	Xm	Um
1	0	0004	1	0,0115741	1	0,18	15,64	0,50	0,00	0,00	0,00
	Ит	ого:	- 1	0,0115741		0,18			0,00		

Вещество: 0703 Бенз/а/пирен

Nº	Nº	Nº		Выброс (г/с)	F		Лето		Зима			
пл.	цех.	ист.	Тип			Cm/ПДК	Xm	Um	Ст/ПДК	Xm	Um	
1	0	0001	1	1,8130000E-10	1	0,00	61,53	0,74	0,00	0,00	0,00	
1	0	0008	1	2,9790000E-10	1	0,00	77,84	0,94	0,00	0,00	0,00	
1	0	0014	1	2,3540000E-11	1	0,00	33,12	0,64	0,00	0,00	0,00	
	Ит	ого:		0,0000000		0,00			0,00			

Вещество: 0898 Трихлорметан

Nº	Nº	Nº	Тип	Выброс	3		Лето		Зима			
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um	
1	0	0019	1	0,0009556	1	0,27	11,40	0,50	0,00	0,00	0,00	
1	0	0020	1	0,0033340	1	0,12	24,48	0,50	0,00	0,00	0,00	
1	0	0021	1	0,0050010	1	0,18	24,48	0,50	0,00	0,00	0,00	
1	0	0022	1	0,0050010	1	0,18	24,48	0,50	0,00	0,00	0,00	
	Ит	ого:		0,0142916		0,76			0,00			

Вещество: 0906 Тетрахлорметан (Углерод тетрахлорид; перхлорметан; тетрахлоруглерод)

Nº	Nº	Nº	200	Выброс			Лето			Зима			
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um		
1	0	0019	1	0,0012204	1	0,01	11,40	0,50	0,00	0,00	0,00		
1	0	0020	1	0,0010280	1	0,00	24,48	0,50	0,00	0,00	0,00		
1	0	0021	1	0,0015420	1	0,00	24,48	0,50	0,00	0,00	0,00		
1	0	0022	1	0,0015420	1	0,00	24,48	0,50	0,00	0,00	0,00		
	Итого: 0,0053324				0,01			0,00					

Взам. Инв. №	
Подп. и дата	
Инв. № подл.	

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Вещество: 1042 Бутан-1-ол (Бутиловый спирт)

Nº	Nº	Nº	28	Выброс	_		Лето		Зима		
пл.	цех.	2000	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0004	1	0,0034722	1	0,33	15,64	0,50	0,00	0,00	0,00
	Ит	ого:		0,0034722		0,33			0,00		

Вещество: 1061 Этанол (Этиловый спирт; метилкарбинол)

Nº	Nº	Nº		Выброс	2		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0004	1	0,0023148	1	0,00	15,64	0,50	0,00	0,00	0,00
1	0	0019	1	0,0000730	1	0,00	11,40	0,50	0,00	0,00	0,00
-1	0	0020	1	0,0003520	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0021	1	0,0005280	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0022	1	0,0005280	1	0,00	24,48	0,50	0,00	0,00	0,00
	Ит	ого:		0,0037958		0,01			0,00		

Вещество: 1071 Гидроксибензол (фенол) (Оксибензол; фенилгидроксид; фениловый спирт; моногидроксибензол)

Nº	No	Nº	0.00	Выброс	- 2.		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0023	1	0,0000231	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	0,0000022	1	0,00	80,31	13,86	0,00	0,00	0,00
1	0	0025	1	0,0000161	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0026	1	0,0000227	1	0,00	57,73	7,16	0,00	0,00	0,00
1	0	6011	3	0,0053144	1	15,18	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	0,0000033	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	0,0000328	1	0,09	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	0,0003824	1	1,09	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	0,0000842	1	0,24	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	0,0000842	1	0,24	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	0,0000224	1	0,06	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	0,0000310	1	0,09	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	0,0000029	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	0,0000029	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	0,0000225	1	0,06	11,40	0,50	0,00	0,00	0,00
1	0	6022	3	0,0000225	1	0,06	11,40	0,50	0,00	0,00	0,00
	Ит	ого:		0,0060696		17,17			0,00		

Вещество: 1119 2-Этоксиэтанол (2-Этоксиэтиловый эфир; моноэтиловый эфир этиленгликоля; этокси-2-этанол)

Под							
Инв. № подл.							
亨							
亞							
Z	Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв. №

04/2022-151-00000-OBOC-TY

Nº		Nº	23	Выброс	32	Лето			Зима			
пл.	цех.	ист.	Тип	(г/c)		Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um	
1	0	0004	1	0,0018519	1	0,03	15,64	0,50	0,00	0,00	0,00	
	Ито	ого:		0,0018519		0,03			0,00			

Вещество: 1210 Бутилацетат (Бутиловый эфир уксусной кислоты)

Nº		Nº		Выброс		Лето		Зима			
пл.	цех.	ист.	Тип	(r/c)	-	Ст/ПДК	Xm	Um	Cm/ПДК	Xm	Um
1	0	0004	1	0,0023148	1	0,22	15,64	0,50	0,00	0,00	0,00
	Ит	ого:		0,0023148		0,22			0,00		

Вещество: 1325 Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)

Nº	Nº	Nº		Выброс	12.		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0023	1	0,0000393	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	0,0000031	1	0,00	80,31	13,86	0,00	0,00	0,00
1	0	0025	1	0,0000235	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0026	1	0,0000315	1	0,00	57,73	7,16	0,00	0,00	0,00
1	0	6011	3	0,0035908	1	2,05	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	0,0000046	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	0,0000444	1	0,03	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	0,0003946	1	0,23	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	0,0001227	1	0,07	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	0,0001227	1	0,07	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	0,0000231	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	0,0000429	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	0,0000039	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	0,0000039	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	0,0000304	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6022	3	0,0000304	1	0,02	11,40	0,50	0,00	0,00	0,00
	Ит	ого:		0,0045118		2,53			0,00		

Вещество: 1401 Пропан-2-он (Диметилкетон; диметилформальдегид)

Nº		Nº	120	Выброс			Лето		Зима		
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0004	1	0,0016204	1	0,04	15,64	0,50	0,00	0,00	0,00
	Ит	ого:		0,0016204		0,04			0,00		- 1

Вещество: 1513 Аскорбиновая кислота

Взам. Инв. №	
Подп. и дата	
Инв. № подл.	

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Nº		Nº	1201	Выброс	2		Лето			Зима		
пл.	1887.3	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um	
1	0	0019	1	0,0000000	1	0,00	11,40	0,50	0,00	0,00	0,00	
	Ито	ого:		0,0000000		0,00			0,00			

Вещество: 1555 Этановая кислота (Метанкарбоновая кислота)

Nº		Nº		Выброс	F	Лето			Зима		
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0019	1	0,0000196	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	0020	1	0,0001756	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0021	1	0,0002634	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0022	1	0,0002634	1	0,00	24,48	0,50	0,00	0,00	0,00
	Ито	ого:		0,0007220		0,02			0,00		

Вещество: 1580 2-Гидроксипропан-1,2,3-трикарбоновая кислота (Гидрокситрикарбоновая кислота, бета-гидрокситрикарбоновая кислота)

Nº	Nº Nº	Nº		Выброс			Лето			Зима		
пл.	цех.	ист.	Тип	(r/c)	+	Ст/ПДК	Xm	Um	Cm/ПДК	Xm	Um	
1	0	0019	1	0,0000000	1	0,00	11,40	0,50	0,00	0,00	0,00	
	Ит	ого:		0,0000000		0,00			0,00			

Вещество: 1716 Одорант смесь природных меркаптанов с массовым содержанием этантиола 26 -41%, изопропантиола 38 - 47%, вторбутантиола 7 - 13%

Nº	Nº	Nº	E7.1	Выброс			Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0002	1	1,0000000E-08	1	0,00	15,47	0,50	0,00	0,00	0,00
1	0	0003	1	1,1660000E-10	1	0,00	18,00	0,50	0,00	0,00	0,00
1	0	0009	1	1,0000000E-08	1	0,00	17,21	0,50	0,00	0,00	0,00
1	0	0010	1	1,1660000E-10	1	0,00	19,73	0,50	0,00	0,00	0,00
1	0	0011	1	1,0000000E-08	1	0,00	8,28	0,50	0,00	0,00	0,00
1	0	0012	1	6,2000000E-09	1	0,00	11,81	0,50	0,00	0,00	0,00
1	0	0013	1	1,1700000E-10	1	0,00	11,05	0,50	0,00	0,00	0,00
1	0	0015	1	1,0000000E-08	1	0,00	18,20	0,50	0,00	0,00	0,00
1	0	0016	1	1,1700000E-10	1	0,00	20,97	0,50	0,00	0,00	0,00
1	0	6001	3	2,6000000E-09	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6002	3	2,6000000E-09	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6003	3	2,6000000E-09	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6004	3	2,6000000E-09	1	0,00	11,40	0,50	0,00	0,00	0,00
	Ито	ого:		0,0000001		0,00			0,00		

Вещество: 1728 Этантиол (Меркаптоэтан; этилсульфгидрат; этилгидросульфид; тиоэтиловый спирт; тиоэтанол)

						ı
						ı
						ı
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв.

Подп. и дата

Nº	No	Nº	20	Выброс	35		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Cm/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0023	1	0,0000019	1	0,03	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	0,0000002	1	0,00	80,31	13,86	0,00	0,00	0,00
1	0	0025	1	0,0000008	1	0,02	84,27	15,26	0,00	0,00	0,00
1	0	0026	1	0,0000016	1	0,06	57,73	7,16	0,00	0,00	0,00
1	0	6011	3	0,0001867	1	106,69	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	0,0000002	1	0,11	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	0,0000013	1	0,74	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	0,0000197	1	11,26	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	0,0000043	1	2,46	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	0,0000043	1	2,46	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	0,0000012	1	0,69	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	0,0000021	1	1,20	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	0,0000001	1	0,06	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	0,0000001	1	0,06	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	0,0000009	1	0,51	11,40	0,50	0,00	0,00	0,00
1	0	6022	3	0,0000009	1	0,51	11,40	0,50	0,00	0,00	0,00
	Ит	ого:		0,0002263		126,86			0,00		

Вещество: 2732 Керосин (Керосин прямой перегонки; керосин дезодорированный)

Nº	2	Nº	1 × ×	Выброс	007		Лето			Зима	
пл.		ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0004	1	0,0030533	1	0,02	15,64	0,50	0,00	0,00	0,00
	Ит	ого:		0,0030533		0,02			0,00		-

Вещество: 2750 Сольвент нафта

Nº	Nº	Nº		Выброс	12		Лето		1	Зима	= = 1
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0004	1	0,0086787	1	0,41	15,64	0,50	0,00	0,00	0,00
	Ит	ого:		0,0086787		0,41			0,00		

Вещество: 2752 Уайт-спирит

Nº	Nº	Nº	123	Выброс			Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0004	1	0,0231481	1	0,22	15,64	0,50	0,00	0,00	0,00
	Ит	ого:		0,0231481		0,22			0,00		

Вещество: 2754 Алканы C12-19 (в пересчете на C)

/o∐						
одл.						
№ подл.						
Инв. Л						
Ż	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

04/2022-151-00000-OBOC-TY

Nº	Nº	Nº	120	Выброс	35		Лето			Зима	
пл.	цех.	ист.	Тип	(г/с)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0017	1	0,0004500	1	0,00	39,90	0,50	0,00	0,00	0,00
1	0	0018	1	0,0004500	1	0,00	23,39	0,50	0,00	0,00	0,00
	Ито	ого:		0,0009000		0,00			0,00		

Вещество: 2908

Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем и другие)

Nº	Nº	Nº		Выброс	_		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)		Ст/ПДК	Xm	Um	Cm/ПДК	Xm	Um
1	0	0004	1	0,0023333	3	0,22	7,82	0,50	0,00	0,00	0,00
1	0	0005	1	0,0005667	1	0,01	28,50	0,50	0,00	0,00	0,00
	Ит	ого:		0,0029000		0,23			0,00		7,

Вещество: 2930 Пыль абразивная

Nº	Nº Nº T		Выброс			Лето			Зима		
пл.	цех.	ист.	Тип	(r/c)	+	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0007	1	0,0048000	3	10,29	5,70	0,50	0,00	0,00	0,00
	Ито	ого:		0,0048000		10,29			0,00		

Вещество: 2984 Полиакриламид катионный АК-617

Nº	Nº	Nº	_	Выброс	135		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0024	1	0,0000171	3	0,00	40,15	13,86	0,00	0,00	0,00
	Ит	ого:		0,0000171		0,00			0,00		

Вещество: 3337 2-Гидроксибензойная кислота (орто-Гидроксибензойная кислота)

Nº	Nº	Nº		Выброс	12		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	۲	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0019	1	6,2760000E-12	1	0,00	11,40	0,50	0,00	0,00	0,00
	Ит	ого:		0,0000000		0,00			0,00		

	Подп. и да						
	Инв. № подл.						
	흳						
	뗲.						
ı	z	Изм.	Кол.уч	Лист	№док	Подп.	Дат

Взам. Инв. №

Выбросы источников по группам суммации

Типы источников:

- 1 Точечный;

- 1 Точечный, 2 Линейный; 3 Неорганизованный; 4 Совокупность точечных источников; 5 С зависимостью массы выброса от скорости ветра;
- 3 Совенский, с выбросом горизонтально;
 7 Совокупность точечных (зонт или выброс вбок);
 8 Автомагистраль (неорганизованный линейный);
 9 Точечный, с выбросом в бок;

- 10 Свеча;
- 11- Неорганизованный (полигон);
- 12 Передвижной.

Группа суммации: 6003 Аммиак, сероводород

Nº	Nº	Nº		Код	Выброс			Лето			Зима	
пл.	цех.	ист.	Тип	в-ва	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0019	1	0303	0,0000007	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	0020	1	0303	0,0008880	1	0,02	24,48	0,50	0,00	0,00	0,00
1	0	0021	1	0303	0,0013320	1	0,02	24,48	0,50	0,00	0,00	0,00
1	0	0022	1	0303	0,0013320	1	0,02	24,48	0,50	0,00	0,00	0,00
1	0	0023	1	0303	0,0003119	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	0303	0,0000214	1	0,00	80,31	13,86	0,00	0,00	0,00
1	0	0025	1	0303	0,0000946	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0026	1	0303	0,0002185	1	0,00	57,73	7,16	0,00	0,00	0,00
1	0	6011	3	0303	0,0517079	1	7,39	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	0303	0,0000321	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	0303	0,0001198	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	0303	0,0014417	1	0,21	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	0303	0,0004942	1	0,07	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	0303	0,0004942	1	0,07	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	0303	0,0000843	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	0303	0,0002977	1	0,04	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	0303	0,0000106	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	0303	0,0000106	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	0303	0,0000822	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6022	3	0303	0,0000822	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	0023	1	0333	0,0000448	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	0333	0,0000419	1	0,01	80,31	13,86	0,00	0,00	0,00
1	0	0025	1	0333	0,0000210	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0026	1	0333	0,0004283	1	0,11	57,73	7,16	0,00	0,00	0,00
1	0	6011	3	0333	0,0041654	1	14,88	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	0333	0,0000629	1	0,22	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	0333	0,0000337	1	0,12	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	0333	0,0004856	1	1,73	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	0333	0,0001094	1	0,39	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	0333	0,0001094	1	0,39	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	0333	0,0000284	1	0,10	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	0333	0,0005836	1	2,08	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	0333	0,0000030	1	0,01	11,40	0,50	0,00	0,00	0,00

Взам. Инв. № Подп. и дата Инв. № подл.

Изм.	Коп.уч	Пист	№лок	Полп.	Лата

595

		Итого	o:		0,0652232		28,14			0,00		
1	0	6022	3	0333	0,0000231	1	0,08	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	0333	0,0000231	1	0,08	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	0333	0,0000030	1	0,01	11,40	0,50	0,00	0,00	0,00

Группа суммации: 6004 Аммиак, сероводород, формальдегид

Nº	Nº	Nº	_	Код	Выброс			Лето			Зима	
пл.	цех.	ист.	Тип	в-ва	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0019	1	0303	0,0000007	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	0020	1	0303	0,0008880	1	0,02	24,48	0,50	0,00	0,00	0,00
1	0	0021	1	0303	0,0013320	1	0,02	24,48	0,50	0,00	0,00	0,00
1	0	0022	1	0303	0,0013320	1	0,02	24,48	0,50	0,00	0,00	0,00
1	0	0023	1	0303	0,0003119	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	0303	0,0000214	1	0,00	80,31	13,86	0,00	0,00	0,00
1	0	0025	1	0303	0,0000946	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0026	1	0303	0,0002185	1	0,00	57,73	7,16	0,00	0,00	0,00
1	0	6011	3	0303	0,0517079	1	7,39	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	0303	0,0000321	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	0303	0,0001198	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	0303	0,0014417	1	0,21	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	0303	0,0004942	1	0,07	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	0303	0,0004942	1	0,07	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	0303	0,0000843	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	0303	0,0002977	1	0,04	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	0303	0,0000106	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	0303	0,0000106	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	0303	0,0000822	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6022	3	0303	0,0000822	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	0023	1	0333	0,0000448	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	0333	0,0000419	1	0,01	80,31	13,86	0,00	0,00	0,00
1	0	0025	1	0333	0,0000210	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0026	1	0333	0,0004283	1	0,11	57,73	7,16	0,00	0,00	0,00
1	0	6011	3	0333	0,0041654	1	14,88	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	0333	0,0000629	1	0,22	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	0333	0,0000337	1	0,12	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	0333	0,0004856	1	1,73	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	0333	0,0001094	1	0,39	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	0333	0,0001094	1	0,39	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	0333	0,0000284	1	0,10	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	0333	0,0005836	1	2,08	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	0333	0,0000030	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	0333	0,0000030	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	0333	0,0000231	1	0,08	11,40	0,50	0,00	0,00	0,00
1	0	6022	3	0333	0,0000231	1	0,08	11,40	0,50	0,00	0,00	0,00
1	0	0023	1	1325	0,0000393	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	1325	0,0000031	1	0,00	80,31	13,86	0,00	0,00	0,00

Взам. Инв. №	
Подп. и дата	
в. № подл.	

Изм.	Кол.уч	Лист	№док	Подп.	Дата

		Итого	o:		0,0697350		30,66			0,00		
1	0	6022	3	1325	0,0000304	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	1325	0,0000304	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	1325	0,0000039	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	1325	0,0000039	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	1325	0,0000429	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	1325	0,0000231	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	1325	0,0001227	1	0,07	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	1325	0,0001227	1	0,07	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	1325	0,0003946	1	0,23	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	1325	0,0000444	1	0,03	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	1325	0,0000046	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6011	3	1325	0,0035908	1	2,05	11,40	0,50	0,00	0,00	0,00
1	0	0026	1	1325	0,0000315	1	0,00	57,73	7,16	0,00	0,00	0,00
1	0	0025	1	1325	0,0000235	1	0,00	84,27	15,26	0,00	0,00	0,00

Группа суммации: 6005 Аммиак, формальдегид

Nº	Nº	Nº		Код	Выброс			Лето		Зима			
пл.	цех.	ист.	Тип	в-ва	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um	
1	0	0019	1	0303	0,0000007	1	0,00	11,40	0,50	0,00	0,00	0,00	
1	0	0020	1	0303	0,0008880	1	0,02	24,48	0,50	0,00	0,00	0,00	
1	0	0021	1	0303	0,0013320	1	0,02	24,48	0,50	0,00	0,00	0,00	
1	0	0022	1	0303	0,0013320	1	0,02	24,48	0,50	0,00	0,00	0,00	
1	0	0023	1	0303	0,0003119	1	0,00	95,58	19,63	0,00	0,00	0,00	
1	0	0024	1	0303	0,0000214	1	0,00	80,31	13,86	0,00	0,00	0,00	
1	0	0025	1	0303	0,0000946	1	0,00	84,27	15,26	0,00	0,00	0,00	
1	0	0026	1	0303	0,0002185	1	0,00	57,73	7,16	0,00	0,00	0,00	
1	0	6011	3	0303	0,0517079	1	7,39	11,40	0,50	0,00	0,00	0,00	
1	0	6012	3	0303	0,0000321	1	0,00	11,40	0,50	0,00	0,00	0,00	
1	0	6013	3	0303	0,0001198	1	0,02	11,40	0,50	0,00	0,00	0,00	
1	0	6014	3	0303	0,0014417	1	0,21	11,40	0,50	0,00	0,00	0,00	
1	0	6015	3	0303	0,0004942	1	0,07	11,40	0,50	0,00	0,00	0,00	
1	0	6016	3	0303	0,0004942	1	0,07	11,40	0,50	0,00	0,00	0,00	
1	0	6017	3	0303	0,0000843	1	0,01	11,40	0,50	0,00	0,00	0,00	
1	0	6018	3	0303	0,0002977	1	0,04	11,40	0,50	0,00	0,00	0,00	
1	0	6019	3	0303	0,0000106	1	0,00	11,40	0,50	0,00	0,00	0,00	
1	0	6020	3	0303	0,0000106	1	0,00	11,40	0,50	0,00	0,00	0,00	
1	0	6021	3	0303	0,0000822	1	0,01	11,40	0,50	0,00	0,00	0,00	
1	0	6022	3	0303	0,0000822	1	0,01	11,40	0,50	0,00	0,00	0,00	
1	0	0023	1	1325	0,0000393	1	0,00	95,58	19,63	0,00	0,00	0,00	
1	0	0024	1	1325	0,0000031	1	0,00	80,31	13,86	0,00	0,00	0,00	
1	0	0025	1	1325	0,0000235	1	0,00	84,27	15,26	0,00	0,00	0,00	
1	0	0026	1	1325	0,0000315	1	0,00	57,73	7,16	0,00	0,00	0,00	
1	0	6011	3	1325	0,0035908	1	2,05	11,40	0,50	0,00	0,00	0,00	
1	0	6012	3	1325	0,0000046	1	0,00	11,40	0,50	0,00	0,00	0,00	
1	0	6013	3	1325	0,0000444	1	0,03	11,40	0,50	0,00	0,00	0,00	

Изм.	Кол.уч	Лист	№док	Подп.	Дата

		Итого	o:		0,0635684		10,43			0,00		
1	0	6022	3	1325	0,0000304	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	1325	0,0000304	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	1325	0,0000039	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	1325	0,0000039	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	1325	0,0000429	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	1325	0,0000231	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	1325	0,0001227	1	0,07	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	1325	0,0001227	1	0,07	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	1325	0,0003946	1	0,23	11,40	0,50	0,00	0,00	0,00

Группа суммации: 6007 Азота диоксид, гексан, углерода оксид, формальдегид

Nº	Nº	Nº	-	Код	Выброс	_		Лето			Зима	
пл.	цех.	ист.	Тип	в-ва	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0001	1	0301	0,0027974	1	0,01	61,53	0,74	0,00	0,00	0,00
1	0	0004	1	0301	0,0194036	1	0,92	15,64	0,50	0,00	0,00	0,00
1	0	0005	1	0301	0,0015300	1	0,03	28,50	0,50	0,00	0,00	0,00
1	0	0008	1	0301	0,0036617	1	0,01	77,84	0,94	0,00	0,00	0,00
1	0	0014	1	0301	0,0016413	1	0,02	33,12	0,64	0,00	0,00	0,00
1	0	0023	1	0301	0,0000244	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	0301	0,0000035	1	0,00	80,31	13,86	0,00	0,00	0,00
1	0	0025	1	0301	0,0000140	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0026	1	0301	0,0000358	1	0,00	57,73	7,16	0,00	0,00	0,00
1	0	6011	3	0301	0,0008043	1	0,11	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	0301	0,0000053	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	0301	0,0000195	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	0301	0,0000607	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	0301	0,0000730	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	0301	0,0000730	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	0301	0,0000035	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	0301	0,0000488	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	0301	0,0000017	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	0301	0,0000017	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	0301	0,0000134	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6022	3	0301	0,0000134	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	0001	1	0337	0,0094944	1	0,00	61,53	0,74	0,00	0,00	0,00
1	0	0004	1	0337	0,0458018	1	0,09	15,64	0,50	0,00	0,00	0,00
1	0	0005	1	0337	0,0094208	1	0,01	28,50	0,50	0,00	0,00	0,00
1	0	0008	1	0337	0,0122544	1	0,00	77,84	0,94	0,00	0,00	0,00
1	0	0014	1	0337	0,0057040	1	0,00	33,12	0,64	0,00	0,00	0,00
1	0	0019	1	0403	0,0002687	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	0023	1	1325	0,0000393	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	1325	0,0000031	1	0,00	80,31	13,86	0,00	0,00	0,00
1	0	0025	1	1325	0,0000235	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0026	1	1325	0,0000315	1	0,00	57,73	7,16	0,00	0,00	0,00
1	0	6011	3	1325	0,0035908	1	2,05	11,40	0,50	0,00	0,00	0,00

Изм.	Кол.уч	Лист	№док	Подп.	Дата

		Итого	o :		0,1176859		3,76			0,00		
1	0	6022	3	1325	0,0000304	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	1325	0,0000304	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	1325	0,0000039	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	1325	0,0000039	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	1325	0,0000429	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	1325	0,0000231	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	1325	0,0001227	1	0,07	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	1325	0,0001227	1	0,07	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	1325	0,0003946	1	0,23	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	1325	0,0000444	1	0,03	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	1325	0,0000046	1	0,00	11,40	0,50	0,00	0,00	0,00

Группа суммации: 6010 Азота диоксид, серы диоксид, углерода оксид, фенол

Nº	Nº	Nº		Код	Выброс			Лето			Зима	
пл.	цех.	ист.	Тип	в-ва	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0001	1	0301	0,0027974	1	0,01	61,53	0,74	0,00	0,00	0,00
1	0	0004	1	0301	0,0194036	1	0,92	15,64	0,50	0,00	0,00	0,00
1	0	0005	1	0301	0,0015300	1	0,03	28,50	0,50	0,00	0,00	0,00
1	0	0008	1	0301	0,0036617	1	0,01	77,84	0,94	0,00	0,00	0,00
1	0	0014	1	0301	0,0016413	1	0,02	33,12	0,64	0,00	0,00	0,00
1	0	0023	1	0301	0,0000244	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	0301	0,0000035	1	0,00	80,31	13,86	0,00	0,00	0,00
1	0	0025	1	0301	0,0000140	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0026	1	0301	0,0000358	1	0,00	57,73	7,16	0,00	0,00	0,00
1	0	6011	3	0301	0,0008043	1	0,11	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	0301	0,0000053	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	0301	0,0000195	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	0301	0,0000607	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	0301	0,0000730	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	0301	0,0000730	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	0301	0,0000035	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	0301	0,0000488	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	0301	0,0000017	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	0301	0,0000017	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	0301	0,0000134	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6022	3	0301	0,0000134	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	0001	1	0330	0,0000056	1	0,00	61,53	0,74	0,00	0,00	0,00
1	0	0004	1	0330	0,0010179	1	0,02	15,64	0,50	0,00	0,00	0,00
1	0	0008	1	0330	0,0000072	1	0,00	77,84	0,94	0,00	0,00	0,00
1	0	0014	1	0330	0,0000033	1	0,00	33,12	0,64	0,00	0,00	0,00
1	0	0001	1	0337	0,0094944	1	0,00	61,53	0,74	0,00	0,00	0,00
1	0	0004	1	0337	0,0458018	1	0,09	15,64	0,50	0,00	0,00	0,00
1	0	0005	1	0337	0,0094208	1	0,01	28,50	0,50	0,00	0,00	0,00
1	0	0008	1	0337	0,0122544	1	0,00	77,84	0,94	0,00	0,00	0,00
1	0	0014	1	0337	0,0057040	1	0,00	33,12	0,64	0,00	0,00	0,00

Изм.	Кол.уч	Лист	№док	Подп.	Дата

		Итого	o:		0,1200090		18,42			0,00		- 1
1	0	6022	3	1071	0,0000225	1	0,06	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	1071	0,0000225	1	0,06	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	1071	0,0000029	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	1071	0,0000029	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	1071	0,0000310	1	0,09	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	1071	0,0000224	1	0,06	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	1071	0,0000842	1	0,24	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	1071	0,0000842	1	0,24	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	1071	0,0003824	1	1,09	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	1071	0,0000328	1	0,09	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	1071	0,0000033	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6011	3	1071	0,0053144	1	15,18	11,40	0,50	0,00	0,00	0,00
1	0	0026	1	1071	0,0000227	1	0,00	57,73	7,16	0,00	0,00	0,00
1	0	0025	1	1071	0,0000161	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0024	1	1071	0,0000022	1	0,00	80,31	13,86	0,00	0,00	0,00
1	0	0023	1	1071	0,0000231	1	0,00	95,58	19,63	0,00	0,00	0,00

Группа суммации: 6013 Ацетон и фенол

Nº	Nº	Nº		Код	Выброс			Лето			Зима	
пл.	цех.	ист.	Тип	в-ва	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0023	1	1071	0,0000231	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	1071	0,0000022	1	0,00	80,31	13,86	0,00	0,00	0,00
1	0	0025	1	1071	0,0000161	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0026	1	1071	0,0000227	1	0,00	57,73	7,16	0,00	0,00	0,00
1	0	6011	3	1071	0,0053144	1	15,18	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	1071	0,0000033	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	1071	0,0000328	1	0,09	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	1071	0,0003824	1	1,09	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	1071	0,0000842	1	0,24	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	1071	0,0000842	1	0,24	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	1071	0,0000224	1	0,06	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	1071	0,0000310	1	0,09	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	1071	0,0000029	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	1071	0,0000029	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	1071	0,0000225	1	0,06	11,40	0,50	0,00	0,00	0,00
1	0	6022	3	1071	0,0000225	1	0,06	11,40	0,50	0,00	0,00	0,00
1	0	0004	1	1401	0,0016204	1	0,04	15,64	0,50	0,00	0,00	0,00
		Итог	o:		0,0076900		17,21			0,00		

Группа суммации: 6035 Сероводород, формальдегид

оП							
Инв. № подл.							
의							
<u>Б</u>							
Z	Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв. №

04/2022-151-00000-OBOC-TY

Nº	No	Nº		Код	Выброс			Лето			Зима	
пл.	цех.	ист.	Тип	в-ва	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0023	1	0333	0,0000448	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	0333	0,0000419	1	0,01	80,31	13,86	0,00	0,00	0,00
1	0	0025	1	0333	0,0000210	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0026	1	0333	0,0004283	1	0,11	57,73	7,16	0,00	0,00	0,00
1	0	6011	3	0333	0,0041654	1	14,88	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	0333	0,0000629	1	0,22	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	0333	0,0000337	1	0,12	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	0333	0,0004856	1	1,73	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	0333	0,0001094	1	0,39	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	0333	0,0001094	1	0,39	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	0333	0,0000284	1	0,10	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	0333	0,0005836	1	2,08	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	0333	0,0000030	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	0333	0,0000030	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	0333	0,0000231	1	0,08	11,40	0,50	0,00	0,00	0,00
1	0	6022	3	0333	0,0000231	1	0,08	11,40	0,50	0,00	0,00	0,00
1	0	0023	1	1325	0,0000393	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	1325	0,0000031	1	0,00	80,31	13,86	0,00	0,00	0,00
1	0	0025	1	1325	0,0000235	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0026	1	1325	0,0000315	1	0,00	57,73	7,16	0,00	0,00	0,00
1	0	6011	3	1325	0,0035908	1	2,05	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	1325	0,0000046	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	1325	0,0000444	1	0,03	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	1325	0,0003946	1	0,23	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	1325	0,0001227	1	0,07	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	1325	0,0001227	1	0,07	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	1325	0,0000231	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	1325	0,0000429	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	1325	0,0000039	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	1325	0,0000039	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	1325	0,0000304	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6022	3	1325	0,0000304	1	0,02	11,40	0,50	0,00	0,00	0,00
		Итог	o:		0,0106784		22,76			0,00		

Группа суммации: 6038 Серы диоксид и фенол

Nº	No	Nº	5.1	Код	Выброс			Лето			Зима	
пл.	цех.	ист.	Тип	в-ва	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0001	1	0330	0,0000056	1	0,00	61,53	0,74	0,00	0,00	0,00
1	0	0004	1	0330	0,0010179	1	0,02	15,64	0,50	0,00	0,00	0,00
1	0	0008	1	0330	0,0000072	1	0,00	77,84	0,94	0,00	0,00	0,00
1	0	0014	1	0330	0,0000033	1	0,00	33,12	0,64	0,00	0,00	0,00
1	0	0023	1	1071	0,0000231	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	1071	0,0000022	1	0,00	80,31	13,86	0,00	0,00	0,00

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

Подп. и дата

Инв. № подл.

		Итого	o :		0,0071036		17,19			0,00		
1	0	6022	3	1071	0,0000225	1	0,06	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	1071	0,0000225	1	0,06	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	1071	0,0000029	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	1071	0,0000029	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	1071	0,0000310	1	0,09	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	1071	0,0000224	1	0,06	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	1071	0,0000842	1	0,24	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	1071	0,0000842	1	0,24	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	1071	0,0003824	1	1,09	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	1071	0,0000328	1	0,09	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	1071	0,0000033	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6011	3	1071	0,0053144	1	15,18	11,40	0,50	0,00	0,00	0,00
1	0	0026	1	1071	0,0000227	1	0,00	57,73	7,16	0,00	0,00	0,00
1	0	0025	1	1071	0,0000161	1	0,00	84,27	15,26	0,00	0,00	0,00

Группа суммации: 6040 Серы диоксид и трехокись серы (аэрозоль серной кислоты), аммиак

Nº	Nº	Nº		Код	Выброс			Лето			Зима	
пл.	цех.	ист.	Тип	в-ва	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0001	1	0301	0,0027974	1	0,01	61,53	0,74	0,00	0,00	0,00
1	0	0004	1	0301	0,0194036	1	0,92	15,64	0,50	0,00	0,00	0,00
1	0	0005	1	0301	0,0015300	1	0,03	28,50	0,50	0,00	0,00	0,00
1	0	0008	1	0301	0,0036617	1	0,01	77,84	0,94	0,00	0,00	0,00
1	0	0014	1	0301	0,0016413	1	0,02	33,12	0,64	0,00	0,00	0,00
1	0	0023	1	0301	0,0000244	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	0301	0,0000035	1	0,00	80,31	13,86	0,00	0,00	0,00
1	0	0025	1	0301	0,0000140	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0026	1	0301	0,0000358	1	0,00	57,73	7,16	0,00	0,00	0,00
1	0	6011	3	0301	0,0008043	1	0,11	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	0301	0,0000053	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	0301	0,0000195	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	0301	0,0000607	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	0301	0,0000730	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	0301	0,0000730	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	0301	0,0000035	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	0301	0,0000488	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	0301	0,0000017	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	0301	0,0000017	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	0301	0,0000134	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6022	3	0301	0,0000134	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	0019	1	0303	0,0000007	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	0020	1	0303	0,0008880	1	0,02	24,48	0,50	0,00	0,00	0,00
1	0	0021	1	0303	0,0013320	1	0,02	24,48	0,50	0,00	0,00	0,00
1	0	0022	1	0303	0,0013320	1	0,02	24,48	0,50	0,00	0,00	0,00
1	0	0023	1	0303	0,0003119	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	0303	0,0000214	1	0,00	80,31	13,86	0,00	0,00	0,00

I						
I						
ı	Изм.	Кол.уч	Лист	№док	Подп.	Дата

		Итого) :		0,1115503		10,31			0,00		
1	0	0014	1	0330	0,0000033	1	0,00	33,12	0,64	0,00	0,00	0,00
1	0	0008	1	0330	0,0000072	1	0,00	77,84	0,94	0,00	0,00	0,00
1	0	0004	1	0330	0,0010179	1	0,02	15,64	0,50	0,00	0,00	0,00
1	0	0001	1	0330	0,0000056	1	0,00	61,53	0,74	0,00	0,00	0,00
1	0	0022	1	0322	0,0000042	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0021	1	0322	0,0000042	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0020	1	0322	0,0000028	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	6022	3	0304	0,0000639	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	0304	0,0000639	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	0304	0,0000083	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	0304	0,0000083	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	0304	0,0000834	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	0304	0,0000621	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	0304	0,0002358	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	0304	0,0002358	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	0304	0,0010623	1	0,08	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	0304	0,0000932	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	0304	0,0000090	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6011	3	0304	0,0143633	1	1,03	11,40	0,50	0,00	0,00	0,00
1	0	0026	1	0304	0,0000612	1	0,00	57,73	7,16	0,00	0,00	0,00
1	0	0025	1	0304	0,0000451	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0024	1	0304	0,0000060	1	0,00	80,31	13,86	0,00	0,00	0,00
1	0	0023	1	0304	0,0000990	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0014	1	0304	0,0002667	1	0,00	33,12	0,64	0,00	0,00	0,00
1	0	0008	1	0304	0,0005950	1	0,00	77,84	0,94	0,00	0,00	0,00
1	0	0005	1	0304	0,0002486	1	0,00	28,50	0,50	0,00	0,00	0,00
1	0	0004	1	0304	0,0031530	1	0,07	15,64	0,50	0,00	0,00	0,00
1	0	0001	1	0304	0,0004546	1	0,00	61,53	0,74	0,00	0,00	0,00
1	0	6022	3	0303	0,0000822	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	0303	0,0000822	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	0303	0,0000106	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	0303	0,0002377	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	0303	0,0002977	1	0,04	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	0303	0,0004342	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	0303	0,0004942	1	0,07	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	0303	0,0014417	1	0,21	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	0303	0,0001198	1	0,02	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	0303	0,0001198	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	0303	0,0517079 0,0000321	1	7,39 0,00	11,40	0,50	0,00	0,00	0,00
1	0	6011	3	0303	0,0002185	1		11,40	0,50	0,00	0,00	0,00
1	0	0025	1	0303		1	0,00	57,73	7,16	0,00	0,00	0,00
1	0	0025	1	0303	0,0000946	1	0,00	84,27	15,26	0,00	0,00	0,00

Группа суммации: 6041 Серы диоксид и кислота серная

Взам. И	
Подп. и дата	
Инв. Nº подл.	

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Nº	Nº	Nº		Код	Выброс			Лето			Зима	
пл.	цех.	ист.	Тип	в-ва	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0020	1	0322	0,0000028	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0021	1	0322	0,0000042	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0022	1	0322	0,0000042	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0001	1	0330	0,0000056	1	0,00	61,53	0,74	0,00	0,00	0,00
1	0	0004	1	0330	0,0010179	1	0,02	15,64	0,50	0,00	0,00	0,00
1	0	0008	1	0330	0,0000072	1	0,00	77,84	0,94	0,00	0,00	0,00
1	0	0014	1	0330	0,0000033	1	0,00	33,12	0,64	0,00	0,00	0,00
		Итог	o:		0,0010452		0,02			0,00		

Группа суммации: 6043 Серы диоксид и сероводород

No	Nº	Nº		Код	Выброс			Лето			Зима	
пл.	цех.	ист.	Тип	в-ва	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0001	1	0330	0,0000056	1	0,00	61,53	0,74	0,00	0,00	0,00
1	0	0004	1	0330	0,0010179	1	0,02	15,64	0,50	0,00	0,00	0,00
1	0	0008	1	0330	0,0000072	1	0,00	77,84	0,94	0,00	0,00	0,00
1	0	0014	1	0330	0,0000033	1	0,00	33,12	0,64	0,00	0,00	0,00
1	0	0023	1	0333	0,0000448	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	0333	0,0000419	1	0,01	80,31	13,86	0,00	0,00	0,00
1	0	0025	1	0333	0,0000210	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0026	1	0333	0,0004283	1	0,11	57,73	7,16	0,00	0,00	0,00
1	0	6011	3	0333	0,0041654	1	14,88	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	0333	0,0000629	1	0,22	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	0333	0,0000337	1	0,12	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	0333	0,0004856	1	1,73	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	0333	0,0001094	1	0,39	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	0333	0,0001094	1	0,39	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	0333	0,0000284	1	0,10	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	0333	0,0005836	1	2,08	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	0333	0,0000030	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	0333	0,0000030	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	0333	0,0000231	1	0,08	11,40	0,50	0,00	0,00	0,00
1	0	6022	3	0333	0,0000231	1	0,08	11,40	0,50	0,00	0,00	0,00
		Итог	o:		0,0072006		20,25			0,00		

Группа суммации: 6045 Сильные минеральные кислоты (серная, соляная и азотная)

Nº	Nº	⊵ № Код Выброс	Выброс			Лето			Зима			
пл.	цех.	ист.	Тип	в-ва	(r/c)	-	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0019	1	0302	1,9750000E-10	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	0020	1	0302	0,0000334	1	0,00	24,48	0,50	0,00	0,00	0,00

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	L

Взам. Инв. №

Подп. и дата

Инв. № подл.

		Итого	o:		0,0004376		0,01			0,00		
1	0	0022	1	0322	0,0000042	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0021	1	0322	0,0000042	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0020	1	0322	0,0000028	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0022	1	0316	0,0001083	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0021	1	0316	0,0001083	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0020	1	0316	0,0000722	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0019	1	0316	0,0000040	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	0022	1	0302	0,0000501	1	0,00	24,48	0,50	0,00	0,00	0,00
1	0	0021	1	0302	0,0000501	1	0,00	24,48	0,50	0,00	0,00	0,00

Группа суммации: 6053 Фтористый водород и плохорастворимые соли фтора

Nº	Nº	№ № Тип Код Выброс	Выброс			Лето			Зима			
пл.	цех.	ист.	Тип	в-ва	(r/c)		Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0005	1	0342	0,0009421	1	0,16	28,50	0,50	0,00	0,00	0,00
1	0	0005	1	0344	0,0005667	1	0,01	28,50	0,50	0,00	0,00	0,00
	-	Итог	o:		0,0015088		0,17			0,00		

Группа суммации: 6204 Азота диоксид, серы диоксид

Nº	Nº	Nº		Код	Выброс			Лето			Зима	
пл.	цех.	ист.	Тип	в-ва	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0001	1	0301	0,0027974	1	0,01	61,53	0,74	0,00	0,00	0,00
1	0	0004	1	0301	0,0194036	1	0,92	15,64	0,50	0,00	0,00	0,00
1	0	0005	1	0301	0,0015300	1	0,03	28,50	0,50	0,00	0,00	0,00
1	0	0008	1	0301	0,0036617	1	0,01	77,84	0,94	0,00	0,00	0,00
1	0	0014	1	0301	0,0016413	1	0,02	33,12	0,64	0,00	0,00	0,00
1	0	0023	1	0301	0,0000244	1	0,00	95,58	19,63	0,00	0,00	0,00
1	0	0024	1	0301	0,0000035	1	0,00	80,31	13,86	0,00	0,00	0,00
1	0	0025	1	0301	0,0000140	1	0,00	84,27	15,26	0,00	0,00	0,00
1	0	0026	1	0301	0,0000358	1	0,00	57,73	7,16	0,00	0,00	0,00
1	0	6011	3	0301	0,0008043	1	0,11	11,40	0,50	0,00	0,00	0,00
1	0	6012	3	0301	0,0000053	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6013	3	0301	0,0000195	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6014	3	0301	0,0000607	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6015	3	0301	0,0000730	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6016	3	0301	0,0000730	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6017	3	0301	0,0000035	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6018	3	0301	0,0000488	1	0,01	11,40	0,50	0,00	0,00	0,00
1	0	6019	3	0301	0,0000017	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6020	3	0301	0,0000017	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6021	3	0301	0,0000134	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6022	3	0301	0,0000134	1	0,00	11,40	0,50	0,00	0,00	0,00

подл.						
흳						
Инв.						
Ż	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

Подп. и дата

04/2022-151-00000-OBOC-TY

		Итого	o:		0,0312640		0,72			0,00		
1	0	0014	1	0330	0,0000033	1	0,00	33,12	0,64	0,00	0,00	0,00
1	0	0008	1	0330	0,0000072	1	0,00	77,84	0,94	0,00	0,00	0,00
1	0	0004	1	0330	0,0010179	1	0,02	15,64	0,50	0,00	0,00	0,00
1	0	0001	1	0330	0,0000056	1	0,00	61,53	0,74	0,00	0,00	0,00

Суммарное значение Ст/ПДК для группы рассчитано с учетом коэффициента неполной суммации 1,60

Группа суммации: 6205 Серы диоксид и фтористый водород

Nº	Nº	Nº		Код	Выброс			Лето			Зима	
пл.	цех.	ист.	Тип	в-ва	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	0001	1	0330	0,0000056	1	0,00	61,53	0,74	0,00	0,00	0,00
1	0	0004	1	0330	0,0010179	1	0,02	15,64	0,50	0,00	0,00	0,00
1	0	0008	1	0330	0,0000072	1	0,00	77,84	0,94	0,00	0,00	0,00
1	0	0014	1	0330	0,0000033	1	0,00	33,12	0,64	0,00	0,00	0,00
1	0	0005	1	0342	0,0009421	1	0,16	28,50	0,50	0,00	0,00	0,00
		Итог	o:		0,0019761		0,10		- 1	0,00		

Суммарное значение Ст/ПДК для группы рассчитано с учетом коэффициента неполной суммации 1,80

•	Подп. и дата									
	Инв. № подл.									
									04/2022-151-00000-OBOC-TY	Лист
			Изм.	Кол.уч	Лист	№док	Подп.	Дата		595
	_					. ,				

Расчет проводился по веществам (группам суммации)

			Предел	ьно допус	тимая концен	трация		Фоновая	
Код	Наименование вещества		ксимальных нтраций		еднегодовых ентраций		еднесуточных ентраций		центр.
		Тип	Значение	Тип	Значение	Тип	Значение	Учет	Интерп
0101	диАлюминий триоксид (в пересчете на алюминий)			ПДК с/г	0,005	ПДК с/с	0,010	Нет	Нет
0123	диЖелезо триоксид (железа оксид) (в пересчете на железо)	129.01	-	ПДК с/с	0,040	ПДК с/с	0,040	Нет	Нет
0143	Марганец и его соединения (в пересчете на марганец (IV) оксид)	ПДК м/р	0,010	ПДК с/г	0,001	ПДК с/с	0,001	Нет	Нет
0150	Натрий гидроксид (Натр едкий)	ОБУВ	0,010	× 1	-	ПДК с/с		Нет	Нет
0155	диНатрий карбонат (Натрий углекисл.; натриев.соль угольной к-ты)	ПДК м/р	0,150	ПДК с/с	0,050	ПДК с/с	0,050	Нет	Нет
0172	Алюминий, растворимые соли	ОБУВ	0,010	à-	-	ПДК с/с	-	Нет	Нет
0203	Хром (в пересчете на хрома (VI) оксид)			ПДК с/г	8,000E-06	ПДК с/с	0,002	Нет	Нет
0301	Азота диоксид (Двуокись азота; пероксид азота)	ПДК м/р	0,200	ПДК с/г	0,040	ПДК с/с	0,100	Да	Нет
0302	Азотная кислота (по молекуле HNO3)	ПДК м/р	0,400	ПДК с/г	0,040	ПДК с/с	0,150	Нет	Нет
0303	Аммиак (Азота гидрид)	ПДК м/р	0,200	ПДК с/г	0,040	ПДК с/с	0,100	Нет	Нет
0304	Азот (II) оксид (Азот монооксид)	ПДК м/р	0,400	ПДК с/г	0,060	ПДК с/с	-	Нет	Нет
0316	Гидрохлорид (по молекуле HC1) (Водород хлорид)	ПДК м/р	0,200	ПДК с/г	0,020	ПДК с/с	0,100	Нет	Нет
0322	Серная кислота (по молекуле H2SO4)	ПДК м/р	0,300	ПДК с/г	0,001	ПДК с/с	0,100	Нет	Нет
0328	Углерод (Пигмент черный)	ПДК м/р	0,150	ПДК с/г	0,025	ПДК с/с	0,050	Нет	Нет
0330	Сера диоксид	ПДК м/р	0,500	ПДК с/с	0,050	ПДК с/с	0,050	Да	Нет
0333	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	ПДК м/р	0,008	ПДК с/г	0,002	ПДК с/с	-	Нет	Нет
0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	ПДК м/р	5,000	ПДК с/г	3,000	ПДК с/с	3,000	Да	Нет
0342	Гидрофторид (Водород фторид; фтороводород)	ПДК м/р	0,020	ПДК с/г	0,005	ПДК с/с	0,014	Нет	Нет
0344	Фториды неорганические плохо растворимые	ПДК м/р	0,200	ПДК с/с	0,030	ПДК с/с	0,030	Нет	Нет
0403	Гексан (н-Гексан; дипропил; Hexane)	ПДК м/р	60,000	ПДК с/г	0,700	ПДК с/с	7,000	Нет	Нет
0410	Метан	ОБУВ	50,000		-	ПДК с/с	1	Нет	Нет
0416	Смесь предельных углеводородов C6H14-C10H22	ПДК м/р	50,000	ПДК с/с	5,000	ПДК с/с	5,000	Нет	Нет
0616	Диметилбензол (смесь о-, м-, п- изомеров) (Метилтолуол)	ПДК м/р	0,200	ПДК с/г	0,100	ПДК с/с	-	Нет	Нет
0621	Метилбензол (Фенилметан)	ПДК м/р	0,600	ПДК с/г	0,400	ПДК с/с		Нет	Нет
0703	Бенз/а/пирен	land a yani		ПДК с/г	1,000E-06	ПДК с/с	1,000E-06	Нет	Нет
0898	Трихлорметан	ПДК м/р	0,100	ПДК с/г	0,004	ПДК с/с	0,030	Нет	Нет
0906	Тетрахлорметан	ПДК м/р	4,000	ПДК с/г	0,017	ПДК с/с	0,040	Нет	Нет
1042	Бутан-1-ол (Бутиловый спирт)	ПДК м/р	0,100			ПДК с/с		Нет	Нет
1061	Этанол (Этиловый спирт; метилкарбинол)	ПДК м/р	5,000			ПДК с/с	1 = 2 3	Нет	Нет
1071	Гидроксибензол (фенол)	ПДК м/р	0,010	ПДК с/г	0,003	ПДК с/с	0,006	Нет	Нет
1119	Этиловый эфир этиленгликоля	ОБУВ	0,700			ПДК с/с		Нет	Нет
1210	Бутилацетат (Бутиловый эфир уксусной кислоты)	ПДК м/р	0,100			ПДК с/с	1	Нет	Нет
1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	ПДК м/р	0,050	ПДК с/г	0,003	ПДК с/с	0,010	Нет	Нет
1401	Пропан-2-он (Диметилкетон; диметилформальдегид)	ПДК м/р	0,350	-		ПДК с/с		Нет	Нет
1513	Аскорбиновая кислота	ОБУВ	0,500	1 × 1		ПДК с/с	1	Нет	Нет

№ подл. Подп. и дата Взам. Инв. №

Изм.	Кол.уч	Лист	№док	Подп.	Дата

			Предел	ъно допус	гимая концен	трация		Фоновая	
Код	Наименование вещества		ксимальных нтраций		еднегодовых нтраций		днесуточных нтраций		центр.
		Тип	Значение	Тип	Значение	Тип	Значение	Учет	Интерп.
1555	Этановая кислота (Метанкарбоновая кислота)	ПДК м/р	0,200	ПДК с/с	0,060	ПДК с/с	0,060	Нет	Нет
1580	Лимонная кислота	ПДК м/р	0,100	7	-	ПДК с/с	(5	Нет	Нет
1716	Одорант СПМ	ПДК м/р	0,012			ПДК с/с	-	Нет	Нет
1728	Этантиол	ПДК м/р	5,000E-05	1 4		ПДК с/с	14	Нет	Нет
2732	Керосин (Керосин прямой перегонки; керосин дезодорированный)	ОБУВ	1,200	Ā		ПДК с/с	1	Нет	Нет
2750	Сольвент нафта	ОБУВ	0,200	-		ПДК с/с	-	Нет	Нет
2752	Уайт-спирит	ОБУВ	1,000	*1	-	ПДК с/с		Нет	Нет
2754	Алканы С12-19 (в пересчете на С)	ПДК м/р	1,000			ПДК с/с	-	Нет	Нет
2908	Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20	ПДК м/р	0,300	ПДК с/с	0,100	ПДК с/с	0,100	Нет	Нет
2930	Пыль абразивная	ОБУВ	0,040			ПДК с/с	-	Нет	Нет
2984	Полиакриламид катионный АК-617	ОБУВ	0,250	-	-	ПДК с/с	_	Нет	Нет
3337	2-Гидроксибензойная кислота (орто-Гидроксибензойная кислота)	ОБУВ	0,010	÷		ПДК с/с		Нет	Нет
6003	Группа суммации: Аммиак, сероводород	Группа суммации		Группа суммации		Группа суммации	-	Нет	Нет
6004	Группа суммации: Аммиак, сероводород, формальдегид	Группа суммации	-	Группа суммации	-	Группа суммации	-	Нет	Нет
6005	Группа суммации: Аммиак, формальдегид	Группа суммации	J 5	Группа суммации	1	Группа суммации	1	Нет	Нет
6007	Группа суммации: Азота диоксид, гексан, углерода оксид, формальдегид	Группа суммации	-	Группа суммации	-	Группа суммации		Нет	Нет
6010	Группа суммации: Азота диоксид, серы диоксид, углерода оксид, фенол	Группа суммации	-	Группа суммации		Группа суммации		Нет	Нет
6013	Группа суммации: Ацетон и фенол	Группа суммации	-	Группа суммации	-	Группа суммации		Нет	Нет
6035	Группа суммации: Сероводород, формальдегид	Группа суммации	1	Группа суммации	1	Группа суммации		Нет	Нет
6038	Группа суммации: Серы диоксид и фенол	Группа суммации	. 3	Группа суммации		Группа суммации	,	Нет	Нет
6040	Группа суммации: Серы диоксид и трехокись серы (аэрозоль серной кислоты), аммиак	Группа суммации	-	Группа суммации		Группа суммации	-	Нет	Нет
6041	Группа суммации: Серы диоксид и кислота серная	Группа суммации		Группа суммации	-	Группа суммации) — 4	Нет	Нет
6043	Группа суммации: Серы диоксид и сероводород	Группа суммации		Группа суммации	e 5	Группа суммации	- 1-	Нет	Нет
6045	Группа суммации: Сильные минеральные кислоты (серная, соляная и азотная)	Группа суммации		Группа суммации		Группа суммации		Нет	Нет
6053	Группа суммации: Фтористый водород и плохорастворимые соли фтора	Группа суммации		Группа суммации		Группа суммации		Нет	Нет
6204	Группа неполной суммации с коэффициентом "1,6": Азота диоксид, серы диоксид	Группа суммации		Группа суммации		Группа суммации		Да	Нет
6205	Группа неполной суммации с коэффициентом "1,8": Серы диоксид и фтористый водород	Группа суммации		Группа суммации		Группа суммации		Нет	Нет

Инв. № подл. Подп. и дата Взам. Инв. №

ı						
ı		·				
I						
	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Посты измерения фоновых концентраций

12.05.00A	D. Control of the Con	Координаты (м)		
№ поста	Наименование	x	Y	
1 Фон БОС Нес	фтекамск	0,00	0,00	

10	Ministration of the last	N	Максимальная концентрация *					
Код в-ва	Наименование вещества	вание вещества Штиль		Восток	Юг	Запад	концентрация *	
0301	Азота диоксид (Двуокись азота; пероксид азота)	0,079	0,079	0,079	0,079	0,079	0,000	
0330	Сера диоксид	0,019	0,019	0,019	0,019	0,019	0,000	
0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	2,700	2,700	2,700	2,700	2,700	0,000	

^{*} Фоновые концентрации измеряются в мг/м3 для веществ и долях приведенной ПДК для групп суммации

Взам. Инв. №	
Подп. и дата	
1нв. № подл.	

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Перебор метеопараметров при расчете

Набор-автомат

Перебор скоростей ветра осуществляется автоматически

Направление ветра

Начало сектора	Конец сектора	Шаг перебора ветра
0	360	1

 В ни мев в ни не в в ни не в ни не в в ни не в в ни не в ни не в в ни не в ни

Расчетные области

Расчетные площадки

Код	Тип	Полное описание площадки								
		Координаты середины 1-й стороны (м)		Координаты середины 2-й стороны (м)		Ширина	Зона влияния	Шаг (м)		Высота (м)
			x	Υ	X	Υ	(M)	(M)	По ширине	По длине
1	Полное описание	-1887,60	10,85	2512,40	10,85	2600,00	0,00	200,00	200,00	2,00

Расчетные точки

	Координат	ы (м)	2000000	■ Lossificio	W. Control of the	
Код	x	Y	Высота (м)	Тип точки	Комментарий	
1	391,50	643,00	2,00	на границе СЗЗ	Расчетная точка	
2	1058,20	457,50	2,00	на границе СЗЗ	Расчетная точка	
3	1167,40	4,80	2,00	на границе СЗЗ	Расчетная точка	
4	1116,10	-481,90	2,00	на границе СЗЗ	Расчетная точка	
5	630,80	-873,20	2,00	на границе СЗЗ	Расчетная точка	
6	86,40	-709,70	2,00	на границе СЗЗ	Расчетная точка	
7	-412,40	-133,10	2,00	на границе СЗЗ	Расчетная точка	
8	-127,10	396,40	2,00	на границе СЗЗ	Расчетная точка	
9	-1095,40	88,20	2,00	на границе жилой зоны	Расчетная точка	
10	-842,00	-161,20	2,00	на границе жилой зоны	Расчетная точка	
11	-894,90	-417,80	2,00	на границе жилой зоны	Расчетная точка	
12	-1095,90	-717,50	2,00	на границе жилой зоны	Расчетная точка	

Взам. Ин							
Подп. и дата							
подл.							
₽							04/2022-151-00000-C
Инв.	Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Результаты расчета по веществам (расчетные точки)

Типы точек:

- 0 расчетная точка пользователя 1 точка на границе охранной зоны
- 2 точка на границе производственной зоны
- 3 точка на границе СЗЗ
- 4 на границе жилой зоны 5 на границе застройки 6 точки квотирования

Вещество: 0101 диАлюминий триоксид (в пересчете на алюминий)

	Коорд	Коорд	та	Концентр.	Концентр.	Hann	Скор.		Фон	Фон д	о исключения	- 5
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
12	-1095,90	-717,50	2,00		1,049E-04	60	0,93	-		4		- 4
9	-1095,40	88,20	2,00	-	1,262E-04	85	0,68	-		-		- 4
11	-894,90	-417,80	2,00	-	1,323E-04	66	0,68				o	- 4
10	-842,00	-161,20	2,00	-	1,470E-04	74	0,68	7-1			c	- 4
7	-412,40	-133,10	2,00	-	2,210E-04	69	6,00	34				- 3
8	-127,10	396,40	2,00	2	4,679E-04	105	6,00	- 74			6	- 3
6	86,40	-709,70	2,00	-	2,118E-04	25	0,68	-		-	- 1 6	- 3
1	391,50	643,00	2,00		9,661E-04	164	6,00	3-				- 3
5	630,80	-873,20	2,00	-	1,946E-04	354	0,68	-				- 3
2	1058,20	457,50	2,00	1.	5,701E-04	247	6,00	2.2	1.6			- 3
4	1116,10	-481,90	2,00	-	2,484E-04	319	6,00			-		- 3
3	1167,40	4,80	2,00	1	4,335E-04	288	6,00	-		-		- 3

Вещество: 0123 диЖелезо триоксид, (железа оксид) (в пересчете на железо) (Железо сесквиоксид)

	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
12	-1095,90	-717,50	2,00		9,859E-04	60	0,93	-		-	-	- 4
9	-1095,40	88,20	2,00		0,001	85	0,68		3	-	1-	. 4
11	-894,90	-417,80	2,00		0,001	66	0,68	-			<	. 4
10	-842,00	-161,20	2,00		0,001	74	6,00	-	- 3	-		. 4
7	-412,40	-133,10	2,00		0,003	69	6,00	- A		-	-	- 3
8	-127,10	396,40	2,00	-	0,005	105	6,00	-	1	-	0	- 3
6	86,40	-709,70	2,00		0,003	25	6,00	-	18			- 3
1	391,50	643,00	2,00	Y-	0,011	164	6,00	14		-	-	- 3
5	630,80	-873,20	2,00	-	0,002	354	6,00	-		-		- 3
2	1058,20	457,50	2,00	= 4	0,007	246	6,00	-				- 3
4	1116,10	-481,90	2,00		0,003	319	6,00	1		-		- 3
3	1167,40	4,80	2,00		0,005	288	6,00			4		- 3

Вещество: 0143 Марганец и его соединения (в пересчете на марганец (IV) оксид)

	Коорд	Коорд	ота	Концентр.	Концентр.	Напр.	Cron		Фон	Фон	до исключения	- X
Nº	Х(м)	Ү(м)	Bыco (M)	2 , 550	Programme and the second		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тит
1	391,50	643,00	2,00	0,04	4,029E-04	164	6,00	-		-		- 3

						Γ
Изм.	Кол.уч	Лист	№док	Подп.	Дата	l

Взам. Инв. №

2	1058,20	457,50	2,00	0,03	2,638E-04	246	6,00		-			3
8	-127,10	396,40	2,00	0,02	2,226E-04	106	6,00		1-2-	- 1	- 1,2	3
3	1167,40	4,80	2,00	0,02	2,107E-04	288	6,00			- 4	-1-	3
4	1116,10	-481,90	2,00	0,01	1,281E-04	319	6,00	-			- 4	3
7	-412,40	-133,10	2,00	0,01	1,129E-04	69	6,00	- 4	12.4	-		3
6	86,40	-709,70	2,00	0,01	1,075E-04	25	6,00	-				3
5	630,80	-873,20	2,00	9,49E-03	9,492E-05	354	6,00	- L-	1.1.4			3
10	-842,00	-161,20	2,00	5,98E-03	5,985E-05	75	6,00		2-	-	-	4
11	-894,90	-417,80	2,00	5,07E-03	5,070E-05	66	6,00		175	+		4
9	-1095,40	88,20	2,00	4,69E-03	4,689E-05	85	0,68	- 1 -	11-	-		4
12	-1095,90	-717,50	2,00	3,91E-03	3,906E-05	60	0,93	-	1.5-	- G-V-	174	4

Вещество: 0150 Натрий гидроксид (Натрия гидроокись, Натр едкий, Сода каустическая)

	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения		2
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)	2000	ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Tun	точки
1	391,50	643,00	2,00	2,66E-04	2,658E-06	171	6,00	-				-	3
8	-127,10	396,40	2,00	1,61E-04	1,607E-06	108	6,00	-	1-	12		-	3
2	1058,20	457,50	2,00	1,47E-04	1,474E-06	248	6,00	-	o-) -		-	3
3	1167,40	4,80	2,00	1,19E-04	1,189E-06	286	6,00	-	1-			-	3
7	-412,40	-133,10	2,00	7,85E-05	7,846E-07	68	6,00	-	1.79	1 m 2- 1		-	3
4	1116,10	-481,90	2,00	7,58E-05	7,580E-07	316	6,00) = (4)		-	3
6	86,40	-709,70	2,00	7,09E-05	7,088E-07	22	6,00	-	m 174	3 - 34 1		-	3
5	630,80	-873,20	2,00	5,87E-05	5,872E-07	351	6,00	-	-	41		-	3
10	-842,00	-161,20	2,00	3,95E-05	3,948E-07	74	6,00	- 4	-	2		-	4
11	-894,90	-417,80	2,00	3,30E-05	3,298E-07	65	6,00		P-	-		-	4
9	-1095,40	88,20	2,00	3,05E-05	3,051E-07	86	0,68	-	3-			-	4
12	-1095,90	-717,50	2,00	2,56E-05	2,562E-07	59	0,68	, i	-			-	4

Вещество: 0155 диНатрий карбонат (Натрий углекислый; натриевая соль угольной кислоты)

	Коорд	Коорд	та	Концентр.	Концентр.	Напп	Скор.		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Y(м)	Высота (м)	(д. ПДК)	(мг/куб.м)	N CO	ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	5,22E-05	7,834E-06	171	6,00	-				- 3
8	-127,10	396,40	2,00	3,16E-05	4,737E-06	108	6,00	-	10			- 3
2	1058,20	457,50	2,00	2,90E-05	4,343E-06	248	6,00	-				- 3
3	1167,40	4,80	2,00	2,34E-05	3,506E-06	286	6,00	-			10	- 3
7	-412,40	-133,10	2,00	1,54E-05	2,312E-06	68	6,00	-				- 3
4	1116,10	-481,90	2,00	1,49E-05	2,234E-06	316	6,00				10	- 3
6	86,40	-709,70	2,00	1,39E-05	2,089E-06	22	6,00	-				- 3
5	630,80	-873,20	2,00	1,15E-05	1,731E-06	351	6,00	(T-		-	-	- 3
10	-842,00	-161,20	2,00	7,76E-06	1,164E-06	74	6,00	-		-		- 4
11	-894,90	-417,80	2,00	6,48E-06	9,720E-07	65	6,00					- 4
9	-1095,40	88,20	2,00	5,99E-06	8,991E-07	86	0,68	1 4				- 4
12	-1095,90	-717,50	2,00	5,03E-06	7,551E-07	59	0,68	<u>6-</u>				- 4

Инв. № подл. Подп. и дата Взам. Инв. №

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Вещество: 0172 Алюминий, растворимые соли (нитрат, сульфат, хлорид, алюминиевые квасцы - аммониевые, калиевые) (в пересчете на алюминий)

	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
8	-127,10	396,40	2,00	5,86E-04	5,855E-06	120	4,40	7-1		-		3
1	391,50	643,00	2,00	5,80E-04	5,797E-06	189	4,40	- 14		- 746	- 0	3
7	-412,40	-133,10	2,00	3,41E-04	3,414E-06	69	6,00		1.	-		3
2	1058,20	457,50	2,00	3,16E-04	3,160E-06	247	6,00	-				3
3	1167,40	4,80	2,00	2,87E-04	2,867E-06	279	6,00	T. 7.				3
6	86,40	-709,70	2,00	2,82E-04	2,817E-06	15	6,00	-		- 30		3
4	1116,10	-481,90	2,00	2,23E-04	2,232E-06	308	6,00	1 3	1.3		4	3
5	630,80	-873,20	2,00	2,08E-04	2,084E-06	342	6,00					3
10	-842,00	-161,20	2,00	1,73E-04	1,731E-06	75	6,00	- 5	17			4
11	-894,90	-417,80	2,00	1,44E-04	1,435E-06	65	6,00					4
9	-1095,40	88,20	2,00	1,30E-04	1,297E-06	88	6,00	-				4
12	-1095,90	-717,50	2,00	9,79E-05	9,788E-07	59	6,00					4

Вещество: 0203 Хром (в пересчете на хрома (VI) оксид)

	Коорд	Коорд	ота)	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	- 3
Nº	Х(м)	Ү(м)	Bыco	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	ТиТ
12	-1095,90	-717,50	2,00	-	3,776E-07	59	0,68	-		-		-
9	-1095,40	88,20	2,00		4,496E-07	86	0,68	-		-		- 3
11	-894,90	-417,80	2,00	1	4,860E-07	65	6,00		1.0	-		-
10	-842,00	-161,20	2,00		5,819E-07	74	6,00		1 1			4
7	-412,40	-133,10	2,00		1,156E-06	68	6,00	- B+	-8	1		- 6
8	-127,10	396,40	2,00		2,368E-06	108	6,00	-	3.			4
6	86,40	-709,70	2,00	1 1	1,045E-06	22	6,00	- 4		4		-
1	391,50	643,00	2,00	-	3,917E-06	171	6,00	-	3	-		-
5	630,80	-873,20	2,00		8,654E-07	351	6,00		Te			-
2	1058,20	457,50	2,00	1	2,171E-06	248	6,00			-		-
4	1116,10	-481,90	2,00	-	1,117E-06	316	6,00	14		1		
3	1167,40	4,80	2,00		1,753E-06	286	6,00			-		- 5.3

Вещество: 0301 Азота диоксид (Двуокись азота; пероксид азота)

No Коорд	Коопп	Коорд	ота	Концентр.	Концентр.	Напр.	Cron		Фон	Фон до	о исключения	EN A
Nº	Х(м)	Ү(м)	Bыco (M)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	0,41	0,082	164	6,00	0,38	0,077	0,39	0,079	3
2	1058,20	457,50	2,00	0,41	0,081	247	6,00	0,39	0,078	0,39	0,079	3
8	-127,10	396,40	2,00	0,40	0,081	105	6,00	0,39	0,078	0,39	0,079	3
3	1167,40	4,80	2,00	0,40	0,081	288	6,00	0,39	0,078	0,39	0,079	3
4	1116,10	-481,90	2,00	0,40	0,080	319	6,00	0,39	0,078	0,39	0,079	3
7	-412,40	-133,10	2,00	0,40	0,080	69	6,00	0,39	0,078	0,39	0,079	3
6	86,40	-709,70	2,00	0,40	0,080	25	0,73	0,39	0,079	0,39	0,079	3
5	630,80	-873,20	2,00	0,40	0,080	354	0,73	0,39	0,079	0,39	0,079	3

Под						
Инв. № подл.						
일						
<u>뗲</u>						
Z	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

10	-842,00	-161,20	2,00	0,40	0,080	75	0,73	0,39	0,079	0,39	0,079	4
11	-894,90	-417,80	2,00	0,40	0,080	66	0,73	0,39	0,079	0,39	0,079	4
9	-1095,40	88,20	2,00	0,40	0,079	86	0,73	0,39	0,079	0,39	0,079	4
12	-1095,90	-717,50	2,00	0,40	0,079	60	1,03	0,39	0,079	0,39	0,079	4

Вещество: 0302 Азотная кислота (по молекуле HNO3)

	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	- 2
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)	10.00	ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	5,84E-05	2,336E-05	171	6,00	7	-	-		- 3
8	-127,10	396,40	2,00	3,53E-05	1,413E-05	108	6,00	-		40		- 3
2	1058,20	457,50	2,00	3,24E-05	1,295E-05	248	6,00	- J-		11 - 14 0	4	- 3
3	1167,40	4,80	2,00	2,61E-05	1,045E-05	286	6,00				19	- 3
7	-412,40	-133,10	2,00	1,72E-05	6,896E-06	68	6,00	+		1 - 4		- 3
4	1116,10	-481,90	2,00	1,67E-05	6,663E-06	316	6,00	- 7- C				- 3
6	86,40	-709,70	2,00	1,56E-05	6,230E-06	22	6,00	- ×	9		18	- 3
5	630,80	-873,20	2,00	1,29E-05	5,162E-06	351	6,00	T-	1.9		19	- 3
10	-842,00	-161,20	2,00	8,68E-06	3,471E-06	74	6,00	1	y <u>-</u>	12		- 4
11	-894,90	-417,80	2,00	7,25E-06	2,899E-06	65	6,00		· ·	·		- 4
9	-1095,40	88,20	2,00	6,70E-06	2,681E-06	86	0,68	14)-	1 - 2 +		- 4
12	-1095,90	-717,50	2,00	5,63E-06	2,252E-06	59	0,68	4	-	-		- 4

Вещество: 0303 Аммиак (Азота гидрид)

	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	- 1
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	TMT
3	1167,40	4,80	2,00	0,06	0,011	265	0,72	-		-		- 50
4	1116,10	-481,90	2,00	0,05	0,010	312	0,72	-				2
2	1058,20	457,50	2,00	0,05	0,009	221	0,72	G 3-				9
1	391,50	643,00	2,00	0,04	0,009	162	0,72	e - 3-1				
5	630,80	-873,20	2,00	0,04	0,007	0	0,72			4		-
8	-127,10	396,40	2,00	0,04	0,007	119	0,72	-				-
6	86,40	-709,70	2,00	0,03	0,007	39	0,72	-				- 1
7	-412,40	-133,10	2,00	0,03	0,006	84	0,72	-				
10	-842,00	-161,20	2,00	0,02	0,004	85	1,03	-			- V	4
11	-894,90	-417,80	2,00	0,02	0,003	76	1,03) - 17 <u>4</u>		- 1 - 1		-
9	-1095,40	88,20	2,00	0,01	0,003	94	1,46	-		-	×	-
12	-1095,90	-717,50	2,00	0,01	0,003	68	1,46	4				

Вещество: 0304 Азот (II) оксид (Азот монооксид)

	Коорд	Коорд	та	Концентр.	Концентр.	Напо	Cron		Фон	Фон д	о исключения	- 2
Nº	Х(м)	Y(м) (д. ПДК) (мг/куб.м) ветра в	1000000	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тит				
3	1167,40	4,80	2,00	8,19E-03	0,003	266	0,72	4	4	-	-	. 3
1	391,50	643,00	2,00	7,76E-03	0,003	162	0,72	- 1-				. 3
4	1116,10	-481,90	2,00	7,45E-03	0,003	312	0,72		1.	0 = 3 4	-	. 3
2	1058,20	457,50	2,00	6,74E-03	0,003	223	0,72	-	1,-	- C		. 3

						ſ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	L

Взам. Инв. №

Подп. и дата

Инв. № подл.

8	-127,10	396,40	2,00	5,90E-03	0,002	118	0,72	71.	-		-	3
5	630,80	-873,20	2,00	5,67E-03	0,002	359	0,72		9-0-		- 2	3
6	86,40	-709,70	2,00	5,22E-03	0,002	38	0,72			- 4:	-1-	3
7	-412,40	-133,10	2,00	4,40E-03	0,002	83	0,72	-	- 1	- 0 - 0	-	3
10	-842,00	-161,20	2,00	2,93E-03	0,001	84	1,03	- 1	1.5	-		4
11	-894,90	-417,80	2,00	2,64E-03	0,001	74	1,03	4		-		4
9	-1095,40	88,20	2,00	2,28E-03	9,104E-04	93	1,46	+	14	-	-	4
12	-1095,90	-717,50	2,00	2,04E-03	8,166E-04	67	1,46		9-1	-		4

Вещество: 0316 Гидрохлорид (по молекуле HC1) (Водород хлорид)

	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	2,61E-04	5,216E-05	171	6,00					- 3
8	-127,10	396,40	2,00	1,57E-04	3,133E-05	108	6,00	- 14 C				- 3
2	1058,20	457,50	2,00	1,44E-04	2,880E-05	248	6,00	-				- 3
3	1167,40	4,80	2,00	1,16E-04	2,320E-05	286	6,00	1 - L				- 3
7	-412,40	-133,10	2,00	7,65E-05	1,531E-05	68	6,00	-		-		- 3
4	1116,10	-481,90	2,00	7,39E-05	1,479E-05	317	6,00	-		- >		- 3
6	86,40	-709,70	2,00	6,92E-05	1,383E-05	22	6,00	-				- 3
5	630,80	-873,20	2,00	5,74E-05	1,147E-05	351	6,00	-	1.0	- 0 = 2 1	= - 5	- 3
10	-842,00	-161,20	2,00	3,87E-05	7,734E-06	74	6,00			-) (4)		- 4
11	-894,90	-417,80	2,00	3,23E-05	6,469E-06	65	6,00	-	m 17	- 5 - 5- 1		- 4
9	-1095,40	88,20	2,00	3,00E-05	6,001E-06	85	0,68	-		4		- 4
12	-1095,90	-717,50	2,00	2,51E-05	5,012E-06	59	0,68	1 4	1.5	- 1		- 4

Вещество: 0322 Серная кислота (по молекуле H2SO4)

	Коорд	Коорд	ота)	Концентр.	Концентр.	Hann	Скор.		Фон	Фон д	о исключения	1_ :	Z
Nº	Х(м)	Ү(м)	Bыco (M)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип	TOYK
1	391,50	643,00	2,00	6,53E-06	1,959E-06	171	6,00	-	- 3			3	3
8	-127,10	396,40	2,00	3,95E-06	1,184E-06	108	6,00	1				-	3
2	1058,20	457,50	2,00	3,62E-06	1,086E-06	248	6,00	-	ĮT.			1	3
3	1167,40	4,80	2,00	2,92E-06	8,765E-07	286	6,00	-				- 3	3
7	-412,40	-133,10	2,00	1,93E-06	5,781E-07	68	6,00	-	-		- V		3
4	1116,10	-481,90	2,00	1,86E-06	5,585E-07	316	6,00	4	13.	1 1		- 1	3
6	86,40	-709,70	2,00	1,74E-06	5,223E-07	22	6,00	-					3
5	630,80	-873,20	2,00	1,44E-06	4,327E-07	351	6,00	-					3
10	-842,00	-161,20	2,00	9,70E-07	2,909E-07	74	6,00	+		- 1		- 174	4
11	-894,90	-417,80	2,00	8,10E-07	2,430E-07	65	6,00	- 4				113	4
9	-1095,40	88,20	2,00	7,49E-07	2,248E-07	86	0,68	- 7-				-	4
12	-1095,90	-717,50	2,00	6,29E-07	1,888E-07	59	0,68	-				1	4

Вещество: 0328 Углерод (Пигмент черный)

	Коорд	Коорд	ота	Концентр.	Концентр.	Напр.	Скор.		Фон	Фон д	о исключения	- 2
Nº	X(M)	Y(м)	Bbic (M)	(д. ПДК)	(мг/куб.м)	ветра	Description of	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Точ

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

1	391,50	643,00	2,00	1,15E-03	1,718E-04	164	6,00		7-	-	-	3
2	1058,20	457,50	2,00	6,76E-04	1,014E-04	247	6,00		1.7-		- 2	3
8	-127,10	396,40	2,00	5,55E-04	8,320E-05	105	6,00		5-6	- 4		3
3	1167,40	4,80	2,00	5,14E-04	7,709E-05	288	6,00	-	1.4-			3
4	1116,10	-481,90	2,00	2,95E-04	4,418E-05	319	6,00			-		3
7	-412,40	-133,10	2,00	2,62E-04	3,930E-05	69	6,00	-	Ģ.	-		3
6	86,40	-709,70	2,00	2,51E-04	3,767E-05	25	0,68	-	1.0-			3
5	630,80	-873,20	2,00	2,31E-04	3,461E-05	354	0,68	-	5-	-	-	3
10	-842,00	-161,20	2,00	1,74E-04	2,614E-05	74	0,68			-		4
11	-894,90	-417,80	2,00	1,57E-04	2,352E-05	66	0,68	-	113-2		-	4
9	-1095,40	88,20	2,00	1,50E-04	2,243E-05	85	0,68	-	15-0			4
12	-1095,90	-717,50	2,00	1,24E-04	1,865E-05	60	0,93	-	- 1	2	-	4

Вещество: 0330 Сера диоксид

	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cvon		Фон	Фон до	о исключения	_ 5
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	0,04	0,019	164	6,00	0,04	0,019	0,04	0,019	3
2	1058,20	457,50	2,00	0,04	0,019	247	6,00	0,04	0,019	0,04	0,019	3
8	-127,10	396,40	2,00	0,04	0,019	105	6,00	0,04	0,019	0,04	0,019	3
3	1167,40	4,80	2,00	0,04	0,019	288	6,00	0,04	0,019	0,04	0,019	3
4	1116,10	-481,90	2,00	0,04	0,019	319	6,00	0,04	0,019	0,04	0,019	3
7	-412,40	-133,10	2,00	0,04	0,019	69	6,00	0,04	0,019	0,04	0,019	3
6	86,40	-709,70	2,00	0,04	0,019	25	0,71	0,04	0,019	0,04	0,019	3
5	630,80	-873,20	2,00	0,04	0,019	354	0,71	0,04	0,019	0,04	0,019	3
10	-842,00	-161,20	2,00	0,04	0,019	74	0,71	0,04	0,019	0,04	0,019	4
11	-894,90	-417,80	2,00	0,04	0,019	66	0,71	0,04	0,019	0,04	0,019	4
9	-1095,40	88,20	2,00	0,04	0,019	85	0,71	0,04	0,019	0,04	0,019	4
12	-1095,90	-717,50	2,00	0,04	0,019	60	1,02	0,04	0,019	0,04	0,019	4

Вещество: 0333 Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)

	Коорд	Коорд	та	Концентр.	Концентр.	Напп	Скор.		Фон	Фон д	о исключения	- 2
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)	and the same	ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
3	1167,40	4,80	2,00	0,13	0,001	267	0,77	-		-		- 3
4	1116,10	-481,90	2,00	0,11	9,173E-04	312	0,77			-	-	- 3
1	391,50	643,00	2,00	0,11	8,457E-04	165	0,54	-		-	7	- 3
8	-127,10	396,40	2,00	0,10	8,356E-04	118	1,52			-		- 3
2	1058,20	457,50	2,00	0,10	8,087E-04	224	0,54					- 3
5	630,80	-873,20	2,00	0,09	6,833E-04	358	0,77	-	1.7	-		- 3
6	86,40	-709,70	2,00	0,08	6,225E-04	36	0,54	(T.	17.			. 3
7	-412,40	-133,10	2,00	0,07	5,598E-04	82	0,77			J = 1-3		- 3
10	-842,00	-161,20	2,00	0,05	3,847E-04	83	1,08			1 14		. 4
11	-894,90	-417,80	2,00	0,04	3,526E-04	73	1,08	-		-		- 4
9	-1095,40	88,20	2,00	0,04	3,360E-04	92	1,52	D-		-		. 4
12	-1095,90	-717,50	2,00	0,04	2,887E-04	66	1,52	-	3-	-		- 4

ДЛ.						
№ подл.						<u> </u>
NHB.						
Z	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

Вещество: 0337 Углерода оксид (Углерод окись; углерод моноокись; угарный газ)

	Коорд	Коорд	ота)	Концентр.	Концентр.	Напр.	Cron		Фон	Фон до	о исключения	_ 5
Nº	Х(м)	Ү(м)	Bыco (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	0,54	2,708	164	6,00	0,54	2,695	0,54	2,700	3
2	1058,20	457,50	2,00	0,54	2,705	247	6,00	0,54	2,696	0,54	2,700	3
8	-127,10	396,40	2,00	0,54	2,704	105	6,00	0,54	2,697	0,54	2,700	3
3	1167,40	4,80	2,00	0,54	2,704	288	6,00	0,54	2,697	0,54	2,700	3
4	1116,10	-481,90	2,00	0,54	2,702	319	6,00	0,54	2,698	0,54	2,700	3
7	-412,40	-133,10	2,00	0,54	2,702	69	6,00	0,54	2,698	0,54	2,700	3
6	86,40	-709,70	2,00	0,54	2,702	24	6,00	0,54	2,699	0,54	2,700	3
5	630,80	-873,20	2,00	0,54	2,702	353	6,00	0,54	2,699	0,54	2,700	3
10	-842,00	-161,20	2,00	0,54	2,701	74	0,73	0,54	2,699	0,54	2,700	4
11	-894,90	-417,80	2,00	0,54	2,701	66	0,73	0,54	2,699	0,54	2,700	4
9	-1095,40	88,20	2,00	0,54	2,701	85	0,73	0,54	2,699	0,54	2,700	4
12	-1095,90	-717,50	2,00	0,54	2,701	60	1,03	0,54	2,699	0,54	2,700	4

Вещество: 0342 'Фтористые газообразные соединения (в пересчете на фтор): - Гидрофторид (Водород фторид; фтороводород)

	Коорд	ота	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	_ 5	
Nº	Х(м)	Ү(м)	Bыco	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	9,03E-03	1,806E-04	164	6,00	4		-		- 3
2	1058,20	457,50	2,00	6,10E-03	1,221E-04	246	6,00	-		-		- 3
8	-127,10	396,40	2,00	5,19E-03	1,038E-04	106	6,00		1.0			- 3
3	1167,40	4,80	2,00	4,93E-03	9,865E-05	288	6,00	- 4				- 3
4	1116,10	-481,90	2,00	3,04E-03	6,088E-05	319	6,00	- 4				- 3
7	-412,40	-133,10	2,00	2,68E-03	5,357E-05	70	6,00			-		- 3
6	86,40	-709,70	2,00	2,55E-03	5,110E-05	25	6,00	- 4	1.0	4		- 3
5	630,80	-873,20	2,00	2,26E-03	4,514E-05	354	6,00	-				- 3
10	-842,00	-161,20	2,00	1,40E-03	2,809E-05	75	6,00	-	1.0			- 4
11	-894,90	-417,80	2,00	1,18E-03	2,362E-05	66	6,00	-		-		- 4
9	-1095,40	88,20	2,00	1,08E-03	2,168E-05	86	6,00	-		4		- 4
12	-1095,90	-717,50	2,00	8,54E-04	1,708E-05	60	0,68					- 4

Вещество: 0344 Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат)

	Коорд	Коорд 💆 📻 Концентр. Концентр. Напр. С	Cron		Фон	Фон д	о исключения	=				
Nº	Х(м)	Ү(м)	Bыco (M)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	5,43E-04	1,086E-04	164	6,00	-	3-	7 - 7 - 4		-
2	1058,20	457,50	2,00	3,67E-04	7,342E-05	246	6,00	- 1				-
8	-127,10	396,40	2,00	3,12E-04	6,246E-05	106	6,00	-	ie ie			
3	1167,40	4,80	2,00	2,97E-04	5,934E-05	288	6,00	4	lar-	-		-
4	1116,10	-481,90	2,00	1,83E-04	3,662E-05	319	6,00			-		-
7	-412,40	-133,10	2,00	1,61E-04	3,223E-05	70	6,00	-				-
6	86,40	-709,70	2,00	1,54E-04	3,074E-05	25	6,00			0 - 3 4		4
5	630,80	-873,20	2,00	1,36E-04	2,715E-05	354	6,00	-	1-	-		-

Под						
№ подл.						
₽ □						
Инв.						
Z	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

Лист

10	-842,00	-161,20	2,00	8,45E-05	1,690E-05	75	6,00	 -			4
11	-894,90	-417,80	2,00	7,10E-05	1,421E-05	66	6,00	 10-			4
9	-1095,40	88,20	2,00	6,52E-05	1,304E-05	86	6,00	 	- 34		4
12	-1095,90	-717,50	2,00	5,14E-05	1,027E-05	60	0,68	 	-	-	4

Вещество: 0403 Гексан (н-Гексан; дипропил; Hexane)

	Коорд	Коорд	та	Концентр.	Концентр.	Напп	Скор.		Фон	Фон д	о исключения	- 2
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)	10.00	ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	1,90E-06	1,143E-04	170	6,00	7.4	-	-		- 3
8	-127,10	396,40	2,00	9,45E-07	5,669E-05	106	6,00	-	-	40		- 3
2	1058,20	457,50	2,00	9,02E-07	5,411E-05	248	6,00		1.3-	11 - 14 0		- 3
3	1167,40	4,80	2,00	7,00E-07	4,199E-05	287	0,68	-			0	- 3
7	-412,40	-133,10	2,00	5,18E-07	3,108E-05	68	0,68		111-	1		- 3
4	1116,10	-481,90	2,00	5,13E-07	3,076E-05	317	0,68	1-1-				- 3
6	86,40	-709,70	2,00	4,84E-07	2,902E-05	22	0,68	-	0-			- 3
5	630,80	-873,20	2,00	4,35E-07	2,609E-05	352	0,68	1 4	1.5	14	9	- 3
10	-842,00	-161,20	2,00	3,37E-07	2,020E-05	74	0,93	-	j <u>-</u>	- 2		- 4
11	-894,90	-417,80	2,00	2,89E-07	1,735E-05	65	0,93			·		- 4
9	-1095,40	88,20	2,00	2,68E-07	1,609E-05	85	1,27	4)-	1 - 2 +		- 4
12	-1095,90	-717,50	2,00	2,08E-07	1,248E-05	59	1,27	- 4	-			- 4

Вещество: 0410 Метан

№ Коорд	Коопп	Коорд	ота)	Концентр.	Концентр.	Напп	Скор.		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Ү(м)	Bыco (M)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
3	1167,40	4,80	2,00	1,20E-03	0,060	269	0,55			-		- 3
1	391,50	643,00	2,00	1,14E-03	0,057	167	0,55	-		-		- 3
4	1116,10	-481,90	2,00	1,12E-03	0,056	312	0,78	-				- 3
8	-127,10	396,40	2,00	1,11E-03	0,056	117	1,53	-				- 3
2	1058,20	457,50	2,00	9,78E-04	0,049	227	0,55			-		- 3
5	630,80	-873,20	2,00	8,36E-04	0,042	357	0,78	-		-	4	- 3
6	86,40	-709,70	2,00	7,65E-04	0,038	35	0,55	-		-		- 3
7	-412,40	-133,10	2,00	7,12E-04	0,036	80	0,78	-		4		- 3
10	-842,00	-161,20	2,00	4,97E-04	0,025	81	1,53	-			- V	- 4
11	-894,90	-417,80	2,00	4,51E-04	0,023	72	1,09	- 4	- 17			- 4
9	-1095,40	88,20	2,00	4,37E-04	0,022	91	1,53	-			10	- 4
12	-1095,90	-717,50	2,00	3,70E-04	0,019	65	1,53					- 4

Вещество: 0416 Смесь предельных углеводородов C6H14-C10H22

No	Коорд	Коорд	та	Концентр	Концентр.	Напр.	Crop		Фон	Фон д	о исключения	- 5
Nº	Х(м)	Ү(м)	Bbico (M)	Концентр. (д. ПДК)	(мг/куб.м)	1000	ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тит
3	1167,40	4,80	2,00	3,44E-04	0,017	267	0,74	-	4	-		- :
4	1116,10	-481,90	2,00	3,08E-04	0,015	312	0,74	- 1-				- (
1	391,50	643,00	2,00	2,90E-04	0,014	163	0,74	-	1.73	1 5 = (- :
2	1058,20	457,50	2,00	2,80E-04	0,014	223	0,74	-	1-	-		- :

						ſ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	L

Взам. Инв. №

Подп. и дата

Инв. № подл.

8	-127,10	396,40	2,00	2,54E-04	0,013	119	0,74		-	-	-	3
5	630,80	-873,20	2,00	2,32E-04	0,012	359	0,74		- 19-		- 2	3
6	86,40	-709,70	2,00	2,15E-04	0,011	37	0,74			- 4 : -	-1-	3
7	-412,40	-133,10	2,00	1,88E-04	0,009	83	0,74	-	17-	-	-	3
10	-842,00	-161,20	2,00	1,24E-04	0,006	84	1,05	10-				4
11	-894,90	-417,80	2,00	1,12E-04	0,006	74	1,05	1.4	-	-	· ·	4
9	-1095,40	88,20	2,00	9,84E-05	0,005	93	1,48		14-14		-	4
12	-1095,90	-717,50	2,00	8,76E-05	0,004	67	1,48	14	5-	-	- 2	4

Вещество: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (Метилтолуол)

	Коорд	Коорд	та	Концентр.	Концентр.	Напп	Скор.		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	0,03	0,007	164	6,00	- -				- 3
2	1058,20	457,50	2,00	0,02	0,004	247	6,00	7- 1- 0				- 3
8	-127,10	396,40	2,00	0,02	0,003	105	6,00	-		-		- 3
3	1167,40	4,80	2,00	0,01	0,003	288	6,00	1.4	1	-		- 3
4	1116,10	-481,90	2,00	8,47E-03	0,002	319	6,00	-				- 3
7	-412,40	-133,10	2,00	7,53E-03	0,002	69	6,00			-)		- 3
6	86,40	-709,70	2,00	7,22E-03	0,001	25	0,68	-		-		- 3
5	630,80	-873,20	2,00	6,64E-03	0,001	354	0,68	-	1.5			- 3
10	-842,00	-161,20	2,00	5,01E-03	0,001	74	0,68	- 4		-) 4		- 4
11	-894,90	-417,80	2,00	4,51E-03	9,019E-04	66	0,68			47 = 34 (- 4
9	-1095,40	88,20	2,00	4,30E-03	8,602E-04	85	0,68	-				- 4
12	-1095,90	-717,50	2,00	3,58E-03	7,153E-04	60	0,93	1 2		1	1. 1.	- 4

Вещество: 0621 Метилбензол (Фенилметан)

	Коорд	Коорд	ота	Концентр.	Концентр.	Напо	Скор.		Фон	Фон д	о исключения	1.	- 5
Nº	Х(м)	Ү(м)	Bыco (M)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	T	ТОЧКИ
1	391,50	643,00	2,00	4,47E-03	0,003	164	6,00	-				-	3
2	1058,20	457,50	2,00	2,64E-03	0,002	247	6,00	-				-	3
8	-127,10	396,40	2,00	2,17E-03	0,001	105	6,00	-	117			-	3
3	1167,40	4,80	2,00	2,01E-03	0,001	288	6,00	-				-	3
4	1116,10	-481,90	2,00	1,15E-03	6,901E-04	319	6,00	-	-	-		-	3
7	-412,40	-133,10	2,00	1,02E-03	6,139E-04	69	6,00		1.5			-	3
6	86,40	-709,70	2,00	9,81E-04	5,885E-04	25	0,68	-				-	3
5	630,80	-873,20	2,00	9,01E-04	5,407E-04	354	0,68	-				-	3
10	-842,00	-161,20	2,00	6,80E-04	4,083E-04	74	0,68	-		-		-	4
11	-894,90	-417,80	2,00	6,12E-04	3,674E-04	66	0,68	-	19			-	4
9	-1095,40	88,20	2,00	5,84E-04	3,505E-04	85	0,68	h				-	4
12	-1095,90	-717,50	2,00	4,86E-04	2,914E-04	60	0,93	-				-	4

Вещество: 0703 Бенз/а/пирен

	Коорд	Коорд	ота	Концентр.	Концентр.	Напр.	Скор.		Фон	Фон д	о исключения	- 2
Nº	Х(м)	Y(м)	Bbic (M)	(д. ПДК)	(мг/куб.м)	ветра		доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	TOT

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

Подп. и дата

Инв. № подл.

12	-1095.90	-717.50	2.00		5.237E-12	59	6.00	- 1	-		-	4
9	-1095,40	88,20	2,00	-	6,750E-12	85	6,00	1			-	4
11	-894,90	-417,80	2,00		7,352E-12	65	6,00	- 2		- 4		4
10	-842,00	-161,20	2,00		8,691E-12	74	6,00	-	1.1-		-	4
7	-412,40	-133,10	2,00	-	1,564E-11	68	6,00		11.	-	- 3	3
8	-127,10	396,40	2,00	-	2,643E-11	106	1,91	4	-	- 4	÷	3
6	86,40	-709,70	2,00	1.	1,346E-11	23	6,00	4	1.1		-	3
1	391,50	643,00	2,00		4,717E-11	167	1,43	-	2-	-	7	3
5	630,80	-873,20	2,00	-	1,157E-11	352	6,00	-	- I		- 4	3
2	1058,20	457,50	2,00		2,830E-11	248	2,54	-	-			3
4	1116,10	-481,90	2,00	-	1,460E-11	318	6,00	-	16-6	=		3
3	1167,40	4,80	2,00	-	2,192E-11	288	3,38	-		-	-	3

Вещество: 0898 Трихлорметан

	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cvon		Фон	Фон д	о исключения	1
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	0,03	0,003	171	6,00	-	1-	-		- ;
8	-127,10	396,40	2,00	0,02	0,002	107	6,00			÷ 1		- 3
2	1058,20	457,50	2,00	0,01	0,001	248	6,00	·	-			- 3
3	1167,40	4,80	2,00	0,01	0,001	286	6,00	-	-	T		- 3
7	-412,40	-133,10	2,00	7,84E-03	7,841E-04	68	6,00	4) - (4 I		- 3
4	1116,10	-481,90	2,00	7,59E-03	7,588E-04	317	6,00	-		5 margo l 1		- 3
6	86,40	-709,70	2,00	7,09E-03	7,089E-04	22	6,00	-	-	4 1		- 3
5	630,80	-873,20	2,00	5,90E-03	5,901E-04	351	6,00	į.	-	-		- 3
10	-842,00	-161,20	2,00	4,02E-03	4,019E-04	74	6,00	<u> </u>	-	-		- 4
11	-894,90	-417,80	2,00	3,40E-03	3,402E-04	65	0,93	-	-		10	- 4
9	-1095,40	88,20	2,00	3,20E-03	3,201E-04	85	0,93	- A	-			- 4
12	-1095,90	-717,50	2,00	2,60E-03	2,603E-04	59	0,93	-		4.5		- 4

Вещество: 0906 Тетрахлорметан (Углерод тетрахлорид; перхлорметан; тетрахлоруглерод)

	Коорд	Коорд	та	Концентр.	Концентр.	Напп	Скор.		Фон	Фон д	о исключения	- 2
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)	and the same	ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	3,06E-04	0,001	171	6,00	-		-		- 3
8	-127,10	396,40	2,00	1,72E-04	6,874E-04	107	6,00) - 37 4 ()	1.79		-	- 3
2	1058,20	457,50	2,00	1,61E-04	6,444E-04	248	6,00	-		-	7	- 3
3	1167,40	4,80	2,00	1,27E-04	5,076E-04	287	6,00	114	-	-		- 3
7	-412,40	-133,10	2,00	8,36E-05	3,345E-04	68	6,00					. 3
4	1116,10	-481,90	2,00	8,13E-05	3,252E-04	317	6,00	-	1 12	-		- 3
6	86,40	-709,70	2,00	7,57E-05	3,029E-04	22	6,00	1 74)	7.	1		. 3
5	630,80	-873,20	2,00	6,36E-05	2,545E-04	351	6,00	-		7-11		. 3
10	-842,00	-161,20	2,00	4,72E-05	1,887E-04	74	0,93			1,2		- 4
11	-894,90	-417,80	2,00	4,12E-05	1,647E-04	65	0,93	-		-		- 4
9	-1095,40	88,20	2,00	3,83E-05	1,531E-04	85	0,93	E 0-	1.09			. 4
12	-1095,90	-717,50	2,00	3,02E-05	1,208E-04	59	1,27	4		-	×-	- 4

	№ подл.						
	١ōN						
	Инв.						
	Z	Изм.	Кол.уч	Лист	№док	Подп.	Дата
•							

Взам. Инв. №

04/2022-151-00000-OBOC-TY

Лист

Вещество: 1042 Бутан-1-ол (Бутиловый спирт)

	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	8,05E-03	8,051E-04	164	6,00	14		-		3
2	1058,20	457,50	2,00	4,75E-03	4,750E-04	247	6,00	34			- 0	3
8	-127,10	396,40	2,00	3,90E-03	3,899E-04	105	6,00	1 34				3
3	1167,40	4,80	2,00	3,61E-03	3,613E-04	288	6,00	-				3
4	1116,10	-481,90	2,00	2,07E-03	2,070E-04	319	6,00	T. 7.				3
7	-412,40	-133,10	2,00	1,84E-03	1,842E-04	69	6,00	-	1.5	- 30		3
6	86,40	-709,70	2,00	1,77E-03	1,765E-04	25	0,68	1 - 4			4	3
5	630,80	-873,20	2,00	1,62E-03	1,622E-04	354	0,68	7-		-		3
10	-842,00	-161,20	2,00	1,22E-03	1,225E-04	74	0,68	-				4
11	-894,90	-417,80	2,00	1,10E-03	1,102E-04	66	0,68	7-10				4
9	-1095,40	88,20	2,00	1,05E-03	1,051E-04	85	0,68	-				4
12	-1095,90	-717,50	2,00	8,74E-04	8,742E-05	60	0,93	1 4		-		4

Вещество: 1061 Этанол (Этиловый спирт; метилкарбинол)

	Коорд	Коорд	ота	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Ү(м)	Bыco (M)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	1,39E-04	6,950E-04	166	6,00	-		-		- 3
2	1058,20	457,50	2,00	9,34E-05	4,670E-04	247	6,00	+				- 3
8	-127,10	396,40	2,00	8,34E-05	4,171E-04	106	6,00	-	1.0			- 3
3	1167,40	4,80	2,00	7,14E-05	3,570E-04	288	6,00	- 4	1 1			- 3
4	1116,10	-481,90	2,00	4,19E-05	2,097E-04	318	6,00	<u> </u>	-8			- 3
7	-412,40	-133,10	2,00	4,05E-05	2,026E-04	69	6,00	-	3.	-		- 3
6	86,40	-709,70	2,00	3,67E-05	1,835E-04	24	6,00	4	- 1	- 4		- 3
5	630,80	-873,20	2,00	3,16E-05	1,581E-04	353	0,68	-	3	-		- 3
10	-842,00	-161,20	2,00	2,41E-05	1,203E-04	74	0,68					- 4
11	-894,90	-417,80	2,00	2,15E-05	1,074E-04	65	0,68	-	3	-		- 4
9	-1095,40	88,20	2,00	2,04E-05	1,021E-04	85	0,68	-		4		- 4
12	-1095,90	-717,50	2,00	1,69E-05	8,457E-05	60	0,93			-	-	- 4

Вещество: 1071 Гидроксибензол (фенол) (Оксибензол; фенилгидроксид; фениловый спирт; моногидроксибензол)

	No Коорд	Коорд	ота	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	- 2
Nº	Х(м)	Ү(м)	Bыco (M)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
3	1167,40	4,80	2,00	0,12	0,001	265	0,72	-				- 3
4	1116,10	-481,90	2,00	0,10	0,001	312	0,72	- 1		-		- 3
2	1058,20	457,50	2,00	0,10	9,578E-04	222	0,72	-	2			- 3
1	391,50	643,00	2,00	0,09	9,240E-04	162	0,72	4	100	-		- 3
5	630,80	-873,20	2,00	0,08	7,768E-04	0	0,72	-		-		- 3
8	-127,10	396,40	2,00	0,08	7,748E-04	119	0,72	- I-				- 3
6	86,40	-709,70	2,00	0,07	7,241E-04	39	0,72	7-	- LT	- 44		- 3
7	-412,40	-133,10	2,00	0,06	5,996E-04	84	0,72	-	3	-		- 3

ĭ						
подл.						
No.						
Инв.						
Z	Изм.	Кол.уч	Лист	№док	Подп.	Дата
	_					

Взам. Инв. №

10	-842,00	-161,20	2,00	0,04	3,962E-04	85	1,02	 -	-	-	4
11	-894,90	-417,80	2,00	0,04	3,554E-04	76	1,02	 10-		_	4
9	-1095,40	88,20	2,00	0,03	3,065E-04	94	1,46	 	- 34 1		4
12	-1095,90	-717,50	2,00	0,03	2,767E-04	68	1,46	 114	-		4

Вещество: 1119 2-Этоксиэтанол (2-Этоксиэтиловый эфир; моноэтиловый эфир этиленгликоля; этокси-2-этанол)

	Коорд	Коорд	ота	Концентр.	Концентр.	Напп	Скор.		Фон	Фон д	о исключения	- 2
Nº	Х(м)	Ү(м)	Bbico (M)	(д. ПДК)	(мг/куб.м)	100000	ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	6,13E-04	4,294E-04	164	6,00	- 2		-		- 3
2	1058,20	457,50	2,00	3,62E-04	2,534E-04	247	6,00	-	10-	3 3 0		- 3
8	-127,10	396,40	2,00	2,97E-04	2,080E-04	105	6,00	1	- 3	3 - 3 - 4 - 6		- 3
3	1167,40	4,80	2,00	2,75E-04	1,927E-04	288	6,00	-	7	-	0	- 3
4	1116,10	-481,90	2,00	1,58E-04	1,104E-04	319	6,00	-		14		- 3
7	-412,40	-133,10	2,00	1,40E-04	9,823E-05	69	6,00	- 4		-		- 3
6	86,40	-709,70	2,00	1,35E-04	9,416E-05	25	0,68	-	15-		- 1	- 3
5	630,80	-873,20	2,00	1,24E-04	8,651E-05	354	0,68	1.5	1.			- 3
10	-842,00	-161,20	2,00	9,33E-05	6,533E-05	74	0,68	-	1.0	12		- 4
11	-894,90	-417,80	2,00	8,40E-05	5,879E-05	66	0,68	4		- 4		- 4
9	-1095,40	88,20	2,00	8,01E-05	5,607E-05	85	0,68	5-	7-			- 4
12	-1095,90	-717,50	2,00	6,66E-05	4,663E-05	60	0,93	-		-		- 4

Вещество: 1210 Бутилацетат (Бутиловый эфир уксусной кислоты)

	Коорд	Коорд	ота)	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	- :
Nº	Х(м)	Ү(м)	Bыco (M)	(д. ПДК)	(мг/куб.м)	C3 72	ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	TMT
1	391,50	643,00	2,00	5,37E-03	5,367E-04	164	6,00	-		-		- 50
2	1058,20	457,50	2,00	3,17E-03	3,167E-04	247	6,00	1 1				4
8	-127,10	396,40	2,00	2,60E-03	2,599E-04	105	6,00	-				9
3	1167,40	4,80	2,00	2,41E-03	2,409E-04	288	6,00	-				-
4	1116,10	-481,90	2,00	1,38E-03	1,380E-04	319	6,00			4		-
7	-412,40	-133,10	2,00	1,23E-03	1,228E-04	69	6,00	-				-
6	86,40	-709,70	2,00	1,18E-03	1,177E-04	25	0,68	-				- 1
5	630,80	-873,20	2,00	1,08E-03	1,081E-04	354	0,68	-				
10	-842,00	-161,20	2,00	8,17E-04	8,166E-05	74	0,68	-			- V	4
11	-894,90	-417,80	2,00	7,35E-04	7,349E-05	66	0,68			- 1 - 1		-
9	-1095,40	88,20	2,00	7,01E-04	7,009E-05	85	0,68	-		-	×	-
12	-1095,90	-717,50	2,00	5,83E-04	5,828E-05	60	0,93	1				

Вещество: 1325 Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)

	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cron		Фон	Фон	до исключения	- Z
Nº	Х(м)	Ү(м)	Bыco (M)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тит
3	1167,40	4,80	2,00	0,02	8,305E-04	266	0,73	74		-		. 3
4	1116,10	-481,90	2,00	0,01	7,378E-04	312	0,73	-				- 3
1	391,50	643,00	2,00	0,01	6,785E-04	163	0,73		1.	-) = 3		. 3
2	1058,20	457,50	2,00	0,01	6,770E-04	223	0,73	-		-		. 3

подл.						
흳						
NHB.						
Ē	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

8	-127,10	396,40	2,00	0,01	5,887E-04	119	0,73	-	-	-	-	3
5	630,80	-873,20	2,00	0,01	5,559E-04	359	0,73		19-11	- 1	- 10	3
6	86,40	-709,70	2,00	0,01	5,160E-04	38	0,73			- 4	-1-	3
7	-412,40	-133,10	2,00	8,84E-03	4,422E-04	83	0,73	-	114			3
10	-842,00	-161,20	2,00	5,84E-03	2,922E-04	84	1,03	142	124			4
11	-894,90	-417,80	2,00	5,26E-03	2,630E-04	75	1,03	4	75			4
9	-1095,40	88,20	2,00	4,56E-03	2,281E-04	93	1,47	-	1.1			4
12	-1095,90	-717,50	2,00	4,08E-03	2,040E-04	68	1,47		-	-	- 2	4

Вещество: 1401 Пропан-2-он (Диметилкетон; диметилформальдегид)

	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	1,07E-03	3,757E-04	164	6,00		100			- 3
2	1058,20	457,50	2,00	6,33E-04	2,217E-04	247	6,00	7-1-0	1			- 3
8	-127,10	396,40	2,00	5,20E-04	1,820E-04	105	6,00	-		-		- 3
3	1167,40	4,80	2,00	4,82E-04	1,686E-04	288	6,00	1 4	ī	-		- 3
4	1116,10	-481,90	2,00	2,76E-04	9,662E-05	319	6,00	-		-		- 3
7	-412,40	-133,10	2,00	2,46E-04	8,595E-05	69	6,00	, -				- 3
6	86,40	-709,70	2,00	2,35E-04	8,239E-05	25	0,68	-	2			- 3
5	630,80	-873,20	2,00	2,16E-04	7,570E-05	354	0,68	-	1.3	-0 = 0 1		- 3
10	-842,00	-161,20	2,00	1,63E-04	5,716E-05	74	0,68			-) - (-)		- 4
11	-894,90	-417,80	2,00	1,47E-04	5,144E-05	66	0,68			- 3- 1		- 4
9	-1095,40	88,20	2,00	1,40E-04	4,906E-05	85	0,68	-		- 41		- 4
12	-1095,90	-717,50	2,00	1,17E-04	4,080E-05	60	0,93		13	1 12		- 4

Вещество: 1513 Аскорбиновая кислота

	Коорд	Коорд	та	Концентр.	Концентр.	Напр	Скор.		Фон	Фон д	о исключения	- 5
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00		-	170	6,00	1 1 1 1 1	1.75			- 3
8	-127,10	396,40	2,00	1	-	106	6,00		1			- 3
2	1058,20	457,50	2,00	-	1-	248	6,00	-	11.			- 3
3	1167,40	4,80	2,00			287	0,68	-				- 3
7	-412,40	-133,10	2,00	-	-	68	0,68	-	7.			- 3
4	1116,10	-481,90	2,00	1 4		317	0,68		15.	1 - 1		- 3
6	86,40	-709,70	2,00		-	22	0,68	-	14	-	10	- 3
5	630,80	-873,20	2,00	1	- 1	352	0,68	1		-		- 3
10	-842,00	-161,20	2,00	- 4		74	0,93	-				- 4
11	-894,90	-417,80	2,00	- 4	-	65	0,93	14	109	-		- 4
9	-1095,40	88,20	2,00			85	1,27	<u> </u>		-		- 4
12	-1095,90	-717,50	2,00	-	n-	59	1,27	-		-		- /

Вещество: 1555 Этановая кислота (Метанкарбоновая кислота)

	Коорд	Коорд	эта	Концентр.	Концентр.	Напр.	Скор.		Фон	Фон д	о исключения	- 2
Nº	X(M)	Y(м)	Bbic (M)	(д. ПДК)	(мг/куб.м)	ветра	0.000	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тот

L						
ſ	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

1	391,50	643,00	2,00	6,55E-04	1,309E-04	171	6,00		-	-	-	3
8	-127,10	396,40	2,00	3,91E-04	7,817E-05	108	6,00		19-		- 4	3
2	1058,20	457,50	2,00	3,60E-04	7,204E-05	248	6,00	-7-	5-6			3
3	1167,40	4,80	2,00	2,90E-04	5,791E-05	286	6,00	-	14.4		-	3
7	-412,40	-133,10	2,00	1,91E-04	3,822E-05	68	6,00			-		3
4	1116,10	-481,90	2,00	1,85E-04	3,694E-05	317	6,00	374				3
6	86,40	-709,70	2,00	1,73E-04	3,454E-05	22	6,00	4	1.4			3
5	630,80	-873,20	2,00	1,43E-04	2,867E-05	351	6,00	-	-	-	-	3
10	-842,00	-161,20	2,00	9,69E-05	1,938E-05	74	6,00	-		-		4
11	-894,90	-417,80	2,00	8,12E-05	1,623E-05	65	6,00		11-1	-	-	4
9	-1095,40	88,20	2,00	7,55E-05	1,510E-05	85	0,68	-	100			4
12	-1095,90	-717,50	2,00	6,27E-05	1,254E-05	59	0,68	-			-	4

Вещество: 1580 2-Гидроксипропан-1,2,3-трикарбоновая кислота (Гидрокситрикарбоновая кислота, бета-гидрокситрикарбоновая кислота)

	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cvon		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	0,00	0,000	170	6,00	-		-		- 3
8	-127,10	396,40	2,00	0,00	0,000	106	6,00		-	÷ .		- 3
2	1058,20	457,50	2,00	0,00	0,000	248	6,00	-	7-			- 3
3	1167,40	4,80	2,00	0,00	0,000	287	0,68	-	1.7	I		- 3
7	-412,40	-133,10	2,00	0,00	0,000	68	0,68	-), 4		- 3
4	1116,10	-481,90	2,00	0,00	0,000	317	0,68	-		1 i		- 3
6	86,40	-709,70	2,00	0,00	0,000	22	0,68	-		41		- 3
5	630,80	-873,20	2,00	0,00	0,000	352	0,68	4	-			- 3
10	-842,00	-161,20	2,00	0,00	0,000	74	0,93		1.79	-	19	- 4
11	-894,90	-417,80	2,00	0,00	0,000	65	0,93	-	-	-		- 4
9	-1095,40	88,20	2,00	0,00		85	1,27	, ,	-	-		- 4
12	-1095,90	-717,50	2,00	0,00	14	59	1,27	+	-	7 4		- 4

Вещество: 1716 Одорант смесь природных меркаптанов с массовым содержанием этантиола 26 - 41%, изопропантиола 38 - 47%, вторбутантиола 7 - 13%

-	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	- 2
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)	C-CITOTIC	ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	8,90E-07	1,068E-08	174	0,68	-		-		. 3
8	-127,10	396,40	2,00	6,30E-07	7,557E-09	108	0,68) (- 3
2	1058,20	457,50	2,00	5,88E-07	7,062E-09	249	6,00	-			-	- 3
3	1167,40	4,80	2,00	4,65E-07	5,576E-09	286	0,68	1				- 3
7	-412,40	-133,10	2,00	3,93E-07	4,716E-09	67	0,68	-		1 - 1 -		. 3
6	86,40	-709,70	2,00	3,40E-07	4,076E-09	20	0,93	4		-		- 3
4	1116,10	-481,90	2,00	3,36E-07	4,036E-09	316	0,68	j				. 3
5	630,80	-873,20	2,00	2,86E-07	3,428E-09	349	0,93	-) III 1-)		. 3
10	-842,00	-161,20	2,00	2,33E-07	2,792E-09	74	0,93	14				- 4
11	-894,90	-417,80	2,00	2,00E-07	2,403E-09	64	0,93	-				- 4
9	-1095,40	88,20	2,00	1,87E-07	2,239E-09	85	0,93	D-		-		. 4
12	-1095,90	-717,50	2,00	1,46E-07	1,749E-09	58	1,27		3-			- 4

Взам. И	
Подп. и дата	
Инв. № подл.	

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Вещество: 1728 Этантиол (Меркаптоэтан; этилсульфгидрат; этилгидросульфид; тиоэтиловый спирт; тиоэтанол)

	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
3	1167,40	4,80	2,00	0,85	4,229E-05	266	0,73	-		-		- 3
4	1116,10	-481,90	2,00	0,75	3,744E-05	312	0,73	34.		-	- 0	- 3
2	1058,20	457,50	2,00	0,69	3,458E-05	222	0,73	1				. 3
1	391,50	643,00	2,00	0,68	3,421E-05	162	0,73	-			-	- 3
8	-127,10	396,40	2,00	0,58	2,915E-05	119	0,73	7,4		-		- 3
5	630,80	-873,20	2,00	0,57	2,826E-05	359	0,73	-		- (1 - 1		. 3
6	86,40	-709,70	2,00	0,53	2,626E-05	38	0,73	- J	1.3			- 3
7	-412,40	-133,10	2,00	0,44	2,216E-05	84	0,73	75-		-		. 3
10	-842,00	-161,20	2,00	0,29	1,465E-05	84	1,03	-	1.0			- 4
11	-894,90	-417,80	2,00	0,26	1,320E-05	75	1,03	3-10				. 4
9	-1095,40	88,20	2,00	0,23	1,142E-05	93	1,47	-	0			. 4
12	-1095,90	-717,50	2,00	0,21	1,027E-05	68	1,47			-		. 4

Вещество: 2732 Керосин (Керосин прямой перегонки; керосин дезодорированный)

	Коорд	Коорд	ота)	Концентр.	Концентр.	Hann	Скор.		Фон	Фон д	о исключения	_ ;
Nº	Х(м)	Ү(м)	Bыco (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	ТиТ
1	391,50	643,00	2,00	5,90E-04	7,080E-04	164	6,00	-		-		-
2	1058,20	457,50	2,00	3,48E-04	4,177E-04	247	6,00	+				. 8
8	-127,10	396,40	2,00	2,86E-04	3,429E-04	105	6,00		T-			-
3	1167,40	4,80	2,00	2,65E-04	3,177E-04	288	6,00	- 4				-
4	1116,10	-481,90	2,00	1,52E-04	1,821E-04	319	6,00	- B÷		14 4		-
7	-412,40	-133,10	2,00	1,35E-04	1,620E-04	69	6,00	-	3.			-
6	86,40	-709,70	2,00	1,29E-04	1,552E-04	25	0,68	- 4		4		- 9
5	630,80	-873,20	2,00	1,19E-04	1,426E-04	354	0,68	-	3-	1 3		-
10	-842,00	-161,20	2,00	8,98E-05	1,077E-04	74	0,68	-	1.54	1		-
11	-894,90	-417,80	2,00	8,08E-05	9,693E-05	66	0,68		-			-
9	-1095,40	88,20	2,00	7,70E-05	9,245E-05	85	0,68	-	11.			-
12	-1095,90	-717,50	2,00	6,41E-05	7,688E-05	60	0,93	-				-

Вещество: 2750 Сольвент нафта

	Коорд	Коорд	ота	Концентр.	Концентр.	Напп	Скор.		Фон	Фон д	о исключения	- 5
Nº	Х(м)	Ү(м)	Bыco (M)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	0,01	0,002	164	6,00	-	-	7-2-2		- 3
2	1058,20	457,50	2,00	5,94E-03	0,001	247	6,00	- 1				- 3
8	-127,10	396,40	2,00	4,87E-03	9,746E-04	105	6,00	-	7.		E.	- 3
3	1167,40	4,80	2,00	4,52E-03	9,030E-04	288	6,00	4	17			- 3
4	1116,10	-481,90	2,00	2,59E-03	5,175E-04	319	6,00	- 4		-		- 3
7	-412,40	-133,10	2,00	2,30E-03	4,604E-04	69	6,00	-	-			- 3
6	86,40	-709,70	2,00	2,21E-03	4,412E-04	25	0,68		·) = 344		- 3
5	630,80	-873,20	2,00	2,03E-03	4,054E-04	354	0,68	-	3-	-	10.00	- 3

ИНВ. № ПОДЛ.	ı	Подп. и дата	
— νιзм.	:	Инв. № подл.	Изм.

Лист №док

Подп.

Дата

10	-842,00	-161,20	2,00	1,53E-03	3,061E-04	74	0,68	-	-			4
11	-894,90	-417,80	2,00	1,38E-03	2,755E-04	66	0,68	- 4	1-2-			4
9	-1095,40	88,20	2,00	1,31E-03	2,628E-04	85	0,68			- 34 1		4
12	-1095,90	-717,50	2,00	1,09E-03	2,185E-04	60	0,93	-	11-	-	-	4

Вещество: 2752 Уайт-спирит

	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	- 2
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)	100 000	ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	5,37E-03	0,005	164	6,00	74		-		- 3
2	1058,20	457,50	2,00	3,17E-03	0,003	247	6,00	-				- 3
8	-127,10	396,40	2,00	2,60E-03	0,003	105	6,00	-	1.03	11-14	4	- 3
3	1167,40	4,80	2,00	2,41E-03	0,002	288	6,00	-	2	-	19	- 3
4	1116,10	-481,90	2,00	1,38E-03	0,001	319	6,00	-		14		- 3
7	-412,40	-133,10	2,00	1,23E-03	0,001	69	6,00	7-10		-		- 3
6	86,40	-709,70	2,00	1,18E-03	0,001	25	0,68	-	7,		18	- 3
5	630,80	-873,20	2,00	1,08E-03	0,001	354	0,68	1 4		14	9	- 3
10	-842,00	-161,20	2,00	8,17E-04	8,166E-04	74	0,68	-	1.	12		- 4
11	-894,90	-417,80	2,00	7,35E-04	7,349E-04	66	0,68	4)		- 4
9	-1095,40	88,20	2,00	7,01E-04	7,009E-04	85	0,68	14	7-	1 - 4		- 4
12	-1095,90	-717,50	2,00	5,83E-04	5,828E-04	60	0,93	- 4				- 4

Вещество: 2754 Алканы C12-19 (в пересчете на C)

	Коорд	Коорд	ота (Концентр.	Концентр.	Напп	Скор.		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Ү(м)	Высо (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
8	-127,10	396,40	2,00	1,09E-04	1,091E-04	122	6,00	-				- 3
1	391,50	643,00	2,00	1,09E-04	1,087E-04	189	6,00	-		-	100	- 3
7	-412,40	-133,10	2,00	6,19E-05	6,195E-05	70	6,00	- 2		-		- 3
2	1058,20	457,50	2,00	5,62E-05	5,625E-05	246	6,00	-	3			- 3
6	86,40	-709,70	2,00	5,24E-05	5,242E-05	15	6,00	- 4		-		- 3
3	1167,40	4,80	2,00	5,16E-05	5,164E-05	278	6,00					- 3
4	1116,10	-481,90	2,00	4,03E-05	4,032E-05	307	6,00	-		-		- 3
5	630,80	-873,20	2,00	3,79E-05	3,786E-05	342	6,00	-				- 3
10	-842,00	-161,20	2,00	2,99E-05	2,995E-05	76	6,00			-		- 4
11	-894,90	-417,80	2,00	2,47E-05	2,473E-05	66	6,00	- 4	1.5			- 4
9	-1095,40	88,20	2,00	2,21E-05	2,207E-05	88	6,00	-			1	- 4
12	-1095,90	-717,50	2,00	1,69E-05	1,694E-05	59	6,00			-		- 4

Вещество: 2908

Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем и другие)

ij.	Коорд	Коорд	ота	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Ү(м)	Bыco (м)	(д. ПДК)	(мг/куб.м)	ветра	10000	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	1,39E-03	4,159E-04	164	6,00	4		-	-	3
2	1058,20	457,50	2,00	7,95E-04	2,386E-04	246	6,00		- 17-		L	. 3
8	-127,10	396,40	2,00	6,57E-04	1,971E-04	106	6,00	- 79		3 3	-	. 3
3	1167,40	4,80	2,00	6,18E-04	1,853E-04	288	6,00		1-	-	-	. 3

						ſ
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв. №

Подп. и дата

Инв. № подл.

4	1116,10	-481,90	2,00	3,70E-04	1,111E-04	319	6,00	-	-	-	0-	3
7	-412,40	-133,10	2,00	3,29E-04	9,866E-05	69	6,00		19-11	-	- 14	3
6	86,40	-709,70	2,00	3,11E-04	9,326E-05	25	6,00			- 4	-1-	3
5	630,80	-873,20	2,00	2,75E-04	8,239E-05	354	6,00	+	114	- 1-	- 4	3
10	-842,00	-161,20	2,00	1,76E-04	5,293E-05	74	6,00		11.	- 4		4
11	-894,90	-417,80	2,00	1,49E-04	4,478E-05	66	6,00	14		-	14	4
9	-1095,40	88,20	2,00	1,38E-04	4,143E-05	85	6,00	+	1.4	-		4
12	-1095,90	-717,50	2,00	1,07E-04	3,222E-05	60	6,00		3-	-	-	4

Вещество: 2930 Пыль абразивная

	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	0,03	0,001	162	6,00	1 1 3				- 3
2	1058,20	457,50	2,00	0,02	6,073E-04	247	6,00	7-10				- 3
8	-127,10	396,40	2,00	0,01	4,618E-04	104	6,00	-				- 3
3	1167,40	4,80	2,00	0,01	4,575E-04	289	6,00	1 -	ī	-		- 3
4	1116,10	-481,90	2,00	6,69E-03	2,675E-04	320	6,00	7.		-		- 3
7	-412,40	-133,10	2,00	5,77E-03	2,307E-04	69	6,00	- 4		- >		- 3
6	86,40	-709,70	2,00	5,48E-03	2,190E-04	25	6,00					- 3
5	630,80	-873,20	2,00	4,88E-03	1,951E-04	355	6,00	-	1.0	- 0 = 2 1	= - 5	- 3
10	-842,00	-161,20	2,00	3,15E-03	1,259E-04	74	6,00	4	1.1	-) (4)		- 4
11	-894,90	-417,80	2,00	2,66E-03	1,065E-04	66	6,00	-		- 5 - 5-1		- 4
9	-1095,40	88,20	2,00	2,48E-03	9,922E-05	85	6,00			4		- 4
12	-1095,90	-717,50	2,00	1,92E-03	7,679E-05	60	6,00	1 4		1 1		- 4

Вещество: 2984 Полиакриламид катионный АК-617

	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	- 2
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	2,89E-05	7,236E-06	159	2,89					- 3
2	1058,20	457,50	2,00	2,81E-05	7,015E-06	235	2,89	(- c- j				- 3
3	1167,40	4,80	2,00	2,75E-05	6,869E-06	282	2,89	-			-	- 3
8	-127,10	396,40	2,00	2,13E-05	5,313E-06	111	2,89					- 3
4	1116,10	-481,90	2,00	2,01E-05	5,035E-06	319	2,89	-				- 3
6	86,40	-709,70	2,00	1,58E-05	3,953E-06	31	2,89	- 4				- 3
5	630,80	-873,20	2,00	1,53E-05	3,815E-06	358	2,89	-			1)	- 3
7	-412,40	-133,10	2,00	1,45E-05	3,634E-06	76	2,89	- 1-			-	- 3
10	-842,00	-161,20	2,00	8,79E-06	2,198E-06	79	2,50	+				- 4
11	-894,90	-417,80	2,00	7,85E-06	1,962E-06	70	2,50					- 4
9	-1095,40	88,20	2,00	7,13E-06	1,782E-06	89	2,50	terror in				- 4
12	-1095,90	-717,50	2,00	5,98E-06	1,496E-06	63	2,50	-				- 4

Вещество: 3337 2-Гидроксибензойная кислота (орто-Гидроксибензойная кислота)

	Коорд	Коорд	эта	Концентр.	Концентр.	Напр.	Скор.		Фон	Фон д	о исключения	- 2
Nº	X(M)	Y(M)	Bbic (M)	(д. ПДК)	(мг/куб.м)	ветра	Description of	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тот

L						
ſ	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

1	391,50	643,00	2,00	2,67E-10	2,669E-12	170	6,00	-	-	-	-	3
8	-127,10	396,40	2,00	1,32E-10	1,324E-12	106	6,00		9-	-		3
2	1058,20	457,50	2,00	1,26E-10	1,264E-12	248	6,00		===	- 4	-1-	3
3	1167,40	4,80	2,00	9,81E-11	9,807E-13	287	0,68	-	1.4-			3
7	-412,40	-133,10	2,00	7,26E-11	7,258E-13	68	0,68	= 2	14	-		3
4	1116,10	-481,90	2,00	7,19E-11	7,186E-13	317	0,68	-	,-	-	-	3
6	86,40	-709,70	2,00	6,78E-11	6,779E-13	22	0,68	-	12-	-		3
5	630,80	-873,20	2,00	6,09E-11	6,093E-13	352	0,68	-	2-	-	-	3
10	-842,00	-161,20	2,00	4,72E-11	4,719E-13	74	0,93			-	- 4	4
11	-894,90	-417,80	2,00	4,05E-11	4,051E-13	65	0,93	-	11-	-	-	4
9	-1095,40	88,20	2,00	3,76E-11	3,759E-13	85	1,27	-	16-0	= 1		4
12	-1095,90	-717,50	2,00	2,91E-11	2,914E-13	59	1,27	-		2	-	4

Вещество: 6003 Аммиак, сероводород

	Коорд	Коорд	та	Концентр.	Концентр.	Hann	Скор.		Фон	Фон д	о исключения	- 2
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
3	1167,40	4,80	2,00	0,18		266	0,75	-		-		- 3
4	1116,10	-481,90	2,00	0,16		312	0,75			+		- 3
1	391,50	643,00	2,00	0,15		164	0,75	-	7 <u>-</u>			- 3
2	1058,20	457,50	2,00	0,15		223	0,75	-	1.7-	Total		- 3
8	-127,10	396,40	2,00	0,14		118	1,51	4) - T4 T		- 3
5	630,80	-873,20	2,00	0,12		359	0,75	-		January 2		- 3
6	86,40	-709,70	2,00	0,11		38	0,75	-		41		- 3
7	-412,40	-133,10	2,00	0,10	18	82	0,75	4	-	2		- 3
10	-842,00	-161,20	2,00	0,07		83	1,07		1.00	9 - 4	10	- 4
11	-894,90	-417,80	2,00	0,06		74	1,07	-	3-		E4	- 4
9	-1095,40	88,20	2,00	0,06		92	1,51		-		- 0	- 4
12	-1095,90	-717,50	2,00	0,05		- 66	1,51	-	19	4		- 4

Вещество: 6004 Аммиак, сероводород, формальдегид

	Коорд	Коорд	та	Концентр.	Концентр.	Напп	Скор.		Фон	Фон д	о исключения	- 2
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
3	1167,40	4,80	2,00	0,20	-	266	0,75	-				- 3
4	1116,10	-481,90	2,00	0,18	-	312	0,75			-		- 3
1	391,50	643,00	2,00	0,16	-	163	0,75	-		-	(1)	- 3
2	1058,20	457,50	2,00	0,16		223	0,75	14		-		- 3
8	-127,10	396,40	2,00	0,15		119	0,75	-				- 3
5	630,80	-873,20	2,00	0,13		359	0,75	3.4	1.9			- 3
6	86,40	-709,70	2,00	0,12	-	38	0,75	- 74				- 3
7	-412,40	-133,10	2,00	0,11	-	82	0,75	-		-		- 3
10	-842,00	-161,20	2,00	0,07		83	1,06	4				- 4
11	-894,90	-417,80	2,00	0,07	3	74	1,06	-				- 4
9	-1095,40	88,20	2,00	0,06	3	92	1,50	Q-		4		- 4
12	-1095,90	-717,50	2,00	0,05		67	1,50	-	3			- 4

Инв. № подл. Подп. и дата Взам. Инв. №

14014	Уол у ш	Пиот	Nonor	Попп	Пото
VISIVI.	Кол.уч	TINCI	м≌док	Подп.	дата

Вещество: 6005 Аммиак, формальдегид

	Коорд	Коорд	та	Концентр.	Концентр.	Hann	Скор.		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
3	1167,40	4,80	2,00	0,07		- 265	0,72	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4		3
4	1116,10	-481,90	2,00	0,06		- 312	0,72	·			- 0	3
2	1058,20	457,50	2,00	0,06		- 221	0,72	1-14				3
1	391,50	643,00	2,00	0,06		162	0,72	-				3
5	630,80	-873,20	2,00	0,05		- 0	0,72	- 1,4		-		3
8	-127,10	396,40	2,00	0,05		119	0,72	-		- (1 - 3)		3
6	86,40	-709,70	2,00	0,04		- 39	0,72	<u> </u>	1.3	- 1 - 4		3
7	-412,40	-133,10	2,00	0,04		- 84	0,72	-	2	-		3
10	-842,00	-161,20	2,00	0,02		- 85	1,03	-	1.7			4
11	-894,90	-417,80	2,00	0,02		- 76	1,03	7-15				4
9	-1095,40	88,20	2,00	0,02		- 94	1,46	-	0			4
12	-1095,90	-717,50	2,00	0,02		- 68	1,46	1 4				4

Вещество: 6007 Азота диоксид, гексан, углерода оксид, формальдегид

	Коорд	Коорд	та	Концентр.	Концентр.	Напп	Скор.		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)	100000000000000000000000000000000000000	ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	0,04	-	164	6,00	-		-		- 3
3	1167,40	4,80	2,00	0,02		274	0,51					- 3
4	1116,10	-481,90	2,00	0,02		314	0,73	4		-		- 3
8	-127,10	396,40	2,00	0,02	-	113	0,73	- 4	1 1		- 0	- 3
2	1058,20	457,50	2,00	0,02	-	235	0,51		-0	-		- 3
5	630,80	-873,20	2,00	0,02		357	0,73	-	3.	-		- 3
6	86,40	-709,70	2,00	0,02	-	32	0,73	_	- 1	- 4		- 3
7	-412,40	-133,10	2,00	0,02		77	0,73	-	3	-		- 3
10	-842,00	-161,20	2,00	0,01		80	1,03	-			-	- 4
11	-894,90	-417,80	2,00	9,06E-03		71	1,03	-				- 4
9	-1095,40	88,20	2,00	8,14E-03	1-	90	1,03	-				- 4
12	-1095,90	-717,50	2,00	6,91E-03	- 2	64	1,47					- 4

Вещество: 6010 Азота диоксид, серы диоксид, углерода оксид, фенол

	No Коорд Коор	Коопп	ота	Концентр.	Концентр.	Напп	Скор.		Фон	Фон д	о исключения	- 2
Nº	Х(м)	Ү(м)	Bыco (M)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
3	1167,40	4,80	2,00	0,12		266	0,72	-	2-			- 3
1	391,50	643,00	2,00	0,11		162	0,72	- 1		-		- 3
4	1116,10	-481,90	2,00	0,11		312	0,72	-				- 3
2	1058,20	457,50	2,00	0,10	- 1	223	0,72	4	i re	-		- 3
8	-127,10	396,40	2,00	0,09	-	118	0,72	-		-		- 3
5	630,80	-873,20	2,00	0,08		359	0,72	- I -				- 3
6	86,40	-709,70	2,00	0,08		38	0,72		- 174) = 3 1		- 3
7	-412,40	-133,10	2,00	0,07	10	83	0,72	-	3-	-	100	- 3

Подп					
Инв. № подл.					
일					
至.					
Z	Изм.	Кол.уч	Лист	№док	Подп.

Взам. Инв. №

04/2022-151-00000-OBOC-TY

Лист

10	-842,00	-161,20	2,00	0,04	-	84	1,03	-	-	-		4
11	-894,90	-417,80	2,00	0,04	- 4	75	1,03		1 12-51		_	4
9	-1095,40	88,20	2,00	0,03	- 1-	93	1,46			- 34		4
12	-1095,90	-717,50	2,00	0,03	- 4	67	1,46	-		7	1-	4

Вещество: 6013 Ацетон и фенол

	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)	12 1 2 2 2	ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
3	1167,40	4,80	2,00	0,12		265	0,72	- 2	-	-		- 3
4	1116,10	-481,90	2,00	0,10		312	0,72	-	-	-		- 3
2	1058,20	457,50	2,00	0,10	-	222	0,72	- 4	1.3-	0.00		- 3
1	391,50	643,00	2,00	0,09	-	162	0,72	-				- 3
5	630,80	-873,20	2,00	0,08	- 1	0	0,72	-		14		- 3
8	-127,10	396,40	2,00	0,08	- 0	119	0,72	74.0			-	- 3
6	86,40	-709,70	2,00	0,07	-	39	0,72	-		4 .	- 1	- 3
7	-412,40	-133,10	2,00	0,06		84	0,72	-				- 3
10	-842,00	-161,20	2,00	0,04	3	85	1,02		1-	12	-	- 4
11	-894,90	-417,80	2,00	0,04	- Ja	75	1,02	-)		- 4
9	-1095,40	88,20	2,00	0,03	-	94	1,46	140	7-	1 - 14 +		- 4
12	-1095,90	-717,50	2,00	0,03	Į.	68	1,46	4	-	- I		4

Вещество: 6035 Сероводород, формальдегид

	Коорд	Коорд	ота)	Концентр.	Концентр.	Напп	Скор.		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Ү(м)	Bыco (M)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
3	1167,40	4,80	2,00	0,14	-	267	0,76			-		- 3
4	1116,10	-481,90	2,00	0,13	d-	312	0,76	-			14	- 3
1	391,50	643,00	2,00	0,12		164	0,76	6 34				- 3
8	-127,10	396,40	2,00	0,11		118	1,52	-				- 3
2	1058,20	457,50	2,00	0,11	-	224	0,54	15-				- 3
5	630,80	-873,20	2,00	0,10		358	0,76	-				- 3
6	86,40	-709,70	2,00	0,09	1-	37	0,76	-				- 3
7	-412,40	-133,10	2,00	0,08		82	0,76	-				- 3
10	-842,00	-161,20	2,00	0,05	10-	83	1,08	-				- 4
11	-894,90	-417,80	2,00	0,05		74	1,08					- 4
9	-1095,40	88,20	2,00	0,05	-	92	1,52	-		-	1	- 4
12	-1095,90	-717,50	2,00	0,04		66	1,52					- 4

Вещество: 6038 Серы диоксид и фенол

E.	Коорд	Коорд	Коорд Б	Коорд 5 К	оорд 5 К	5 - K	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	- X
Nº	Х(м)	Ү(м)	Bыco (M)	(д. ПДК)	(мг/куб.м)	100000	ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип			
3	1167,40	4,80	2,00	0,12		- 265	0,72	4	-	-		. 3			
4	1116,10	-481,90	2,00	0,10		- 312	0,72	-	-			- 3			
2	1058,20	457,50	2,00	0,10		- 222	0,72	7.) — J		. 3			
1	391,50	643,00	2,00	0,09		162	0,72	-) <u>-</u>	-	100	. 3			

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

Подп. и дата

Инв. № подл.

5	630,80	-873,20	2,00	0,08	-	0	0,72	-	-	-	0-	3
8	-127,10	396,40	2,00	0,08	- 1,5	119	0,72		12	- 1	- 14	3
6	86,40	-709,70	2,00	0,07	- 14	39	0,72		====	- 4	-1-	3
7	-412,40	-133,10	2,00	0,06	-	84	0,72	-	1/4	- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-		3
10	-842,00	-161,20	2,00	0,04	3-	85	1,02	13	12-			4
11	-894,90	-417,80	2,00	0,04	4	75	1,02	-	-	-		4
9	-1095,40	88,20	2,00	0,03	-	94	1,46	+	12-14	- 4	4.5	4
12	-1095,90	-717,50	2,00	0,03	-	68	1,46		0-	-		4

Вещество: 6040 Серы диоксид и трехокись серы (аэрозоль серной кислоты), аммиак и окислы азота

	Коорд	Коорд	та	Концентр.	Концентр.	Напп	Скор.		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	0,07		163	0,72					- 3
3	1167,40	4,80	2,00	0,07		267	0,72	140				- 3
4	1116,10	-481,90	2,00	0,06	-	313	0,72	-	-		-	- 3
2	1058,20	457,50	2,00	0,06	-	224	0,72	1.4		-		- 3
8	-127,10	396,40	2,00	0,05		117	0,72	-	ļ <u>.</u>	2		- 3
5	630,80	-873,20	2,00	0,05	- 1	359	0,72			-		- 3
6	86,40	-709,70	2,00	0,04		38	0,72	-)-			- 3
7	-412,40	-133,10	2,00	0,04	- 1	82	0,72	-		- n- 1-		- 3
10	-842,00	-161,20	2,00	0,02		83	1,03	14		0 - 4 1		- 4
11	-894,90	-417,80	2,00	0,02	-	74	1,03			J = 34 1	- 0.7	- 4
9	-1095,40	88,20	2,00	0,02		93	1,46	-		9 1		- 4
12	-1095,90	-717,50	2,00	0,02	- 1	67	1,46	1 2		12		- 4

Вещество: 6041 Серы диоксид и кислота серная

	Коорд	Коорд	ота)	Концентр.	Концентр.	Шапп	Скор.		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Ү(м)	Bыco (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	4,77E-04	-	164	6,00	-				- 3
2	1058,20	457,50	2,00	2,84E-04		247	6,00	-			la de	- 3
8	-127,10	396,40	2,00	2,33E-04	9	105	6,00	-	11.			- 3
3	1167,40	4,80	2,00	2,16E-04		288	6,00	-			- 6	- 3
4	1116,10	-481,90	2,00	1,24E-04		319	6,00		3			- 3
7	-412,40	-133,10	2,00	1,11E-04		69	6,00	4	1.5	1 1		- 3
6	86,40	-709,70	2,00	1,06E-04	-	25	0,71	-	-		10	- 3
5	630,80	-873,20	2,00	9,69E-05		354	0,71	1.				- 3
10	-842,00	-161,20	2,00	7,32E-05		74	0,71	-		- 1		- 4
11	-894,90	-417,80	2,00	6,58E-05	-	66	0,71	4				- 4
9	-1095,40	88,20	2,00	6,28E-05		85	0,71					- 4
12	-1095,90	-717,50	2,00	5,13E-05		60	1,02	-		0.00		- 4

Вещество: 6043 Серы диоксид и сероводород

	Коорд	Коорд	ота	Концентр.	Концентр.	Напр.	Скор.		Фон	Фон д	о исключения	- 2
Nº	Х(м)	Y(м)	Bbic (M)	(д. ПДК)	(мг/куб.м)	ветра	0.535.9	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Точ

_							
							ſ
Н							l
							ı
V	1зм.	Кол.уч	Лист	№док	Подп.	Дата	l

Взам. Инв. №

3	1167,40	4,80	2,00	0,13		267	0,54	-	-	-	-	3
4	1116,10	-481,90	2,00	0,11	- 13	312	0,77	4	1 -2-		- 2	3
1	391,50	643,00	2,00	0,11	-12	165	0,54			- 34 1 -		3
8	-127,10	396,40	2,00	0,10		118	1,52					3
2	1058,20	457,50	2,00	0,10	-	224	0,54		1.4	-		3
5	630,80	-873,20	2,00	0,09	-	358	0,77		,-		÷	3
6	86,40	-709,70	2,00	0,08	-	36	0,54		1.1	-		3
7	-412,40	-133,10	2,00	0,07	-	82	0,77	-	2-		-	3
10	-842,00	-161,20	2,00	0,05		83	1,08			-		4
11	-894,90	-417,80	2,00	0,04	-	73	1,08	- 1 2	11-	-		4
9	-1095,40	88,20	2,00	0,04	-	92	1,52	e I	16-			4
12	-1095,90	-717,50	2,00	0,04	-	66	1,52	4				4

Вещество: 6045 Сильные минеральные кислоты (серная, соляная и азотная)

	Коорд	Коорд	та	Концентр.	Концентр.	Напр. ветра	Cron		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)			доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	3,26E-04	-	171	6,00	-	-	-		- 3
8	-127,10	396,40	2,00	1,96E-04		108	6,00		-			- 3
2	1058,20	457,50	2,00	1,80E-04		248	6,00	-	7-			- 3
3	1167,40	4,80	2,00	1,45E-04		286	6,00		1 -	T		- 3
7	-412,40	-133,10	2,00	9,57E-05		68	6,00	4) - (4 I		- 3
4	1116,10	-481,90	2,00	9,25E-05	-	317	6,00		- 1	5 margo 4 1		- 3
6	86,40	-709,70	2,00	8,65E-05	-	22	6,00	-		41		- 3
5	630,80	-873,20	2,00	7,17E-05	-	351	6,00	- 4	<u> </u>	2		- 3
10	-842,00	-161,20	2,00	4,83E-05		74	6,00	4	1. De		19	- 4
11	-894,90	-417,80	2,00	4,04E-05		65	6,00		-		E4	- 4
9	-1095,40	88,20	2,00	3,75E-05	59	85	0,68		-	· ·		- 4
12	-1095,90	-717,50	2,00	3,13E-05		59	0,68	6		71		- 4

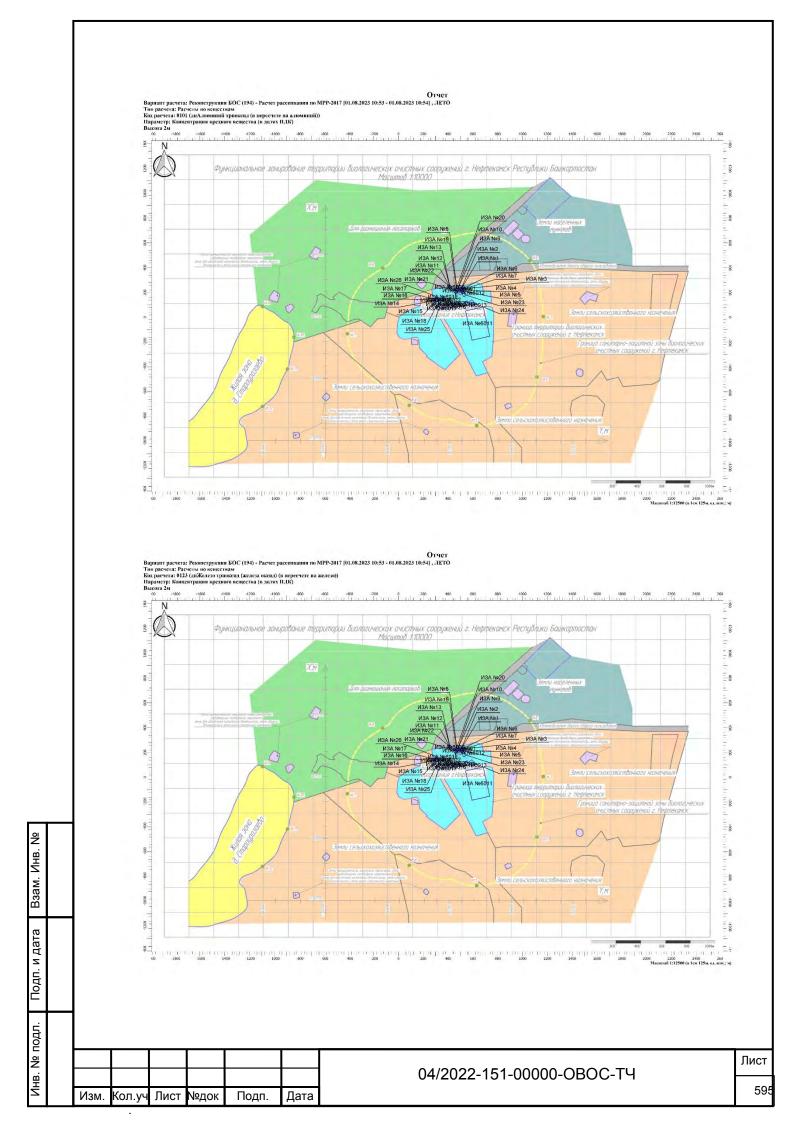
Вещество: 6053 Фтористый водород и плохорастворимые соли фтора

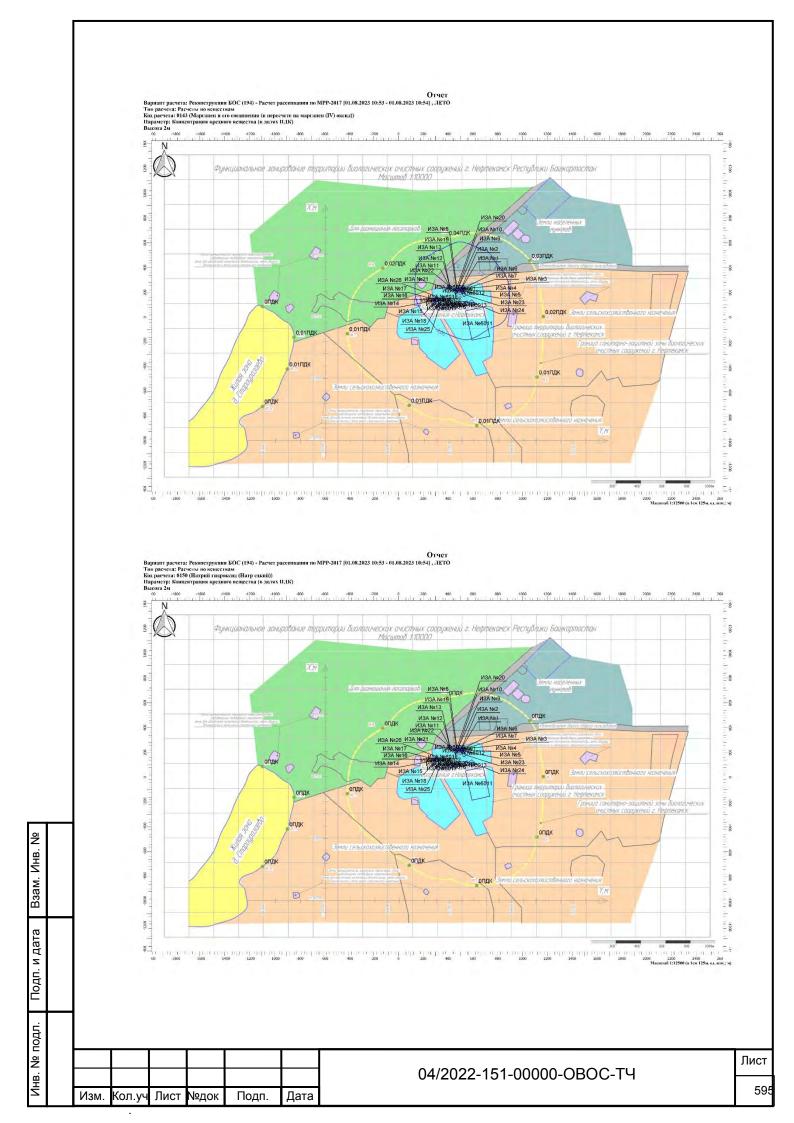
	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cvon		Фон	Фон д	о исключения	- 2
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	9,57E-03	-	164	6,00	-	-	-		3
2	1058,20	457,50	2,00	6,47E-03	-	246	6,00) 			-	3
8	-127,10	396,40	2,00	5,50E-03		106	6,00	-		-	7.	3
3	1167,40	4,80	2,00	5,23E-03	G G	288	6,00	- 1		-		3
4	1116,10	-481,90	2,00	3,23E-03		319	6,00	-				3
7	-412,40	-133,10	2,00	2,84E-03		70	6,00	-	- 19			3
6	86,40	-709,70	2,00	2,71E-03	-	25	6,00	()	1			3
5	630,80	-873,20	2,00	2,39E-03	1-	354	6,00	-		0 = 74 (3
10	-842,00	-161,20	2,00	1,49E-03		75	6,00	4				4
11	-894,90	-417,80	2,00	1,25E-03	72	66	6,00	1 3-) -	-		4
9	-1095,40	88,20	2,00	1,15E-03	-	86	6,00	<u> 6</u> -	0-	- 4		4
12	-1095,90	-717,50	2,00	9,05E-04	75-	60	0,68	4	3-		×-	4

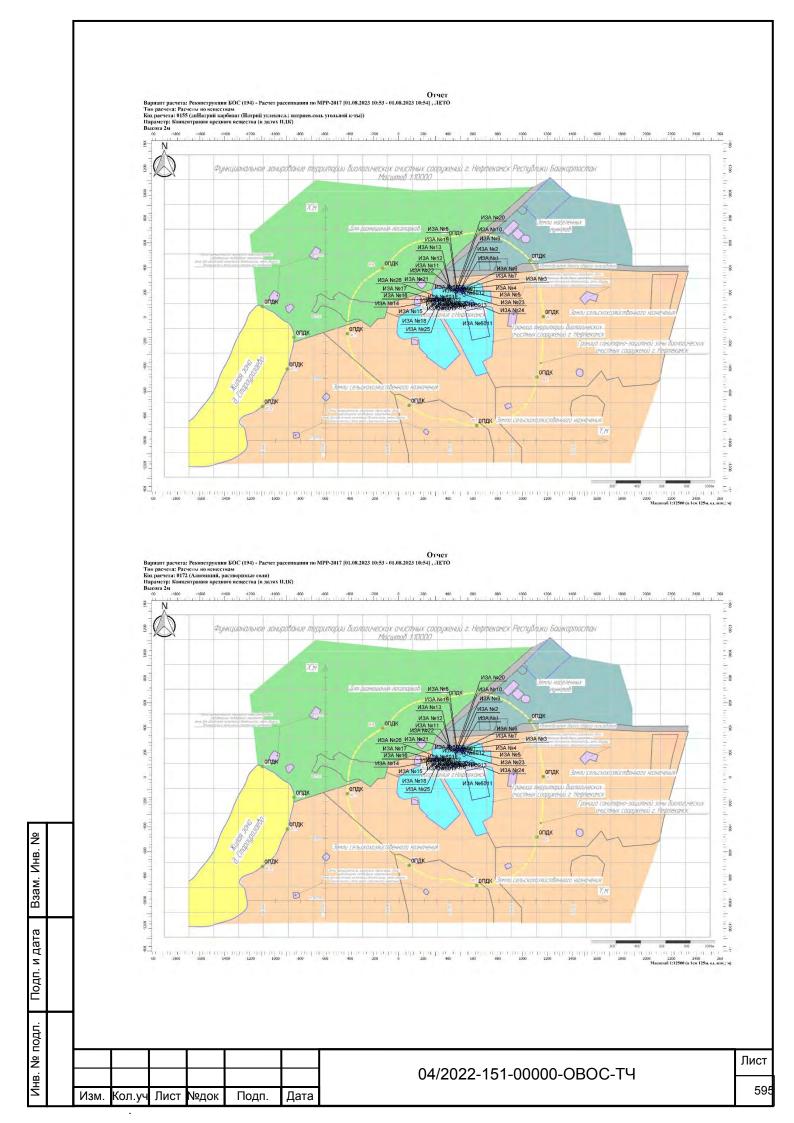
Инв. № подл. Подп. и дата Взам. Инв. №

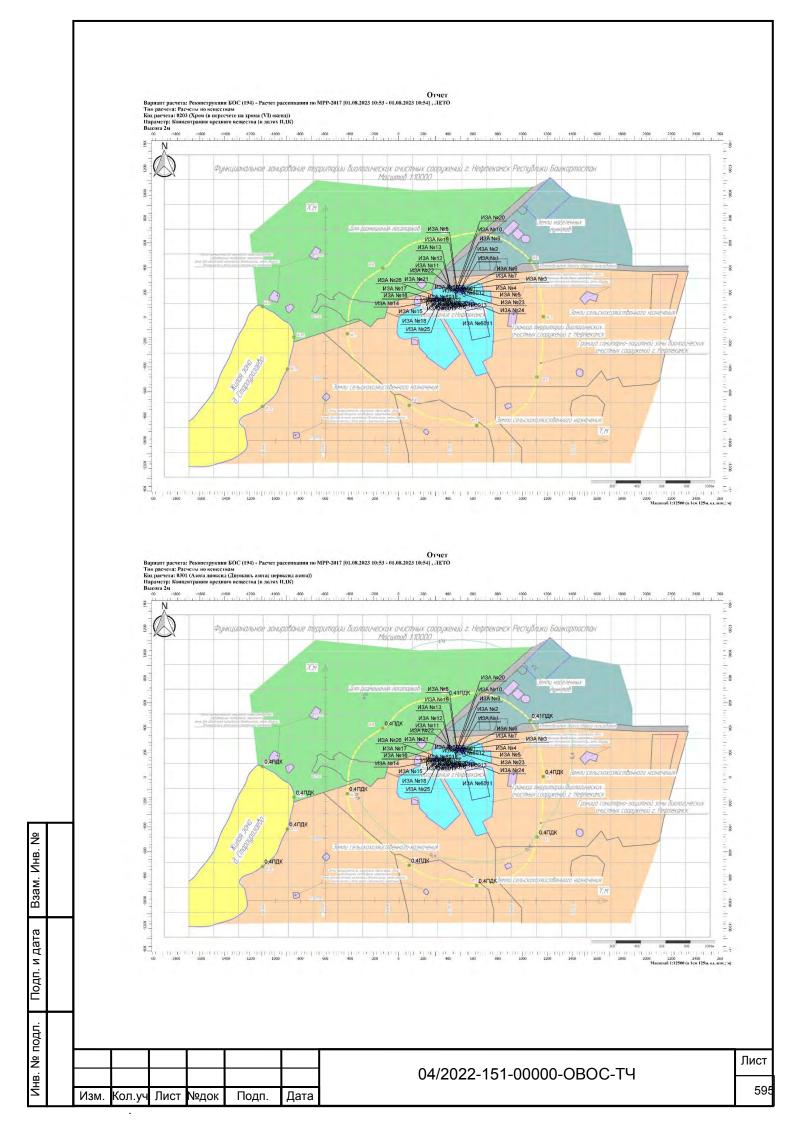
Изм.	Кол.уч	Лист	№док	Подп.	Дата

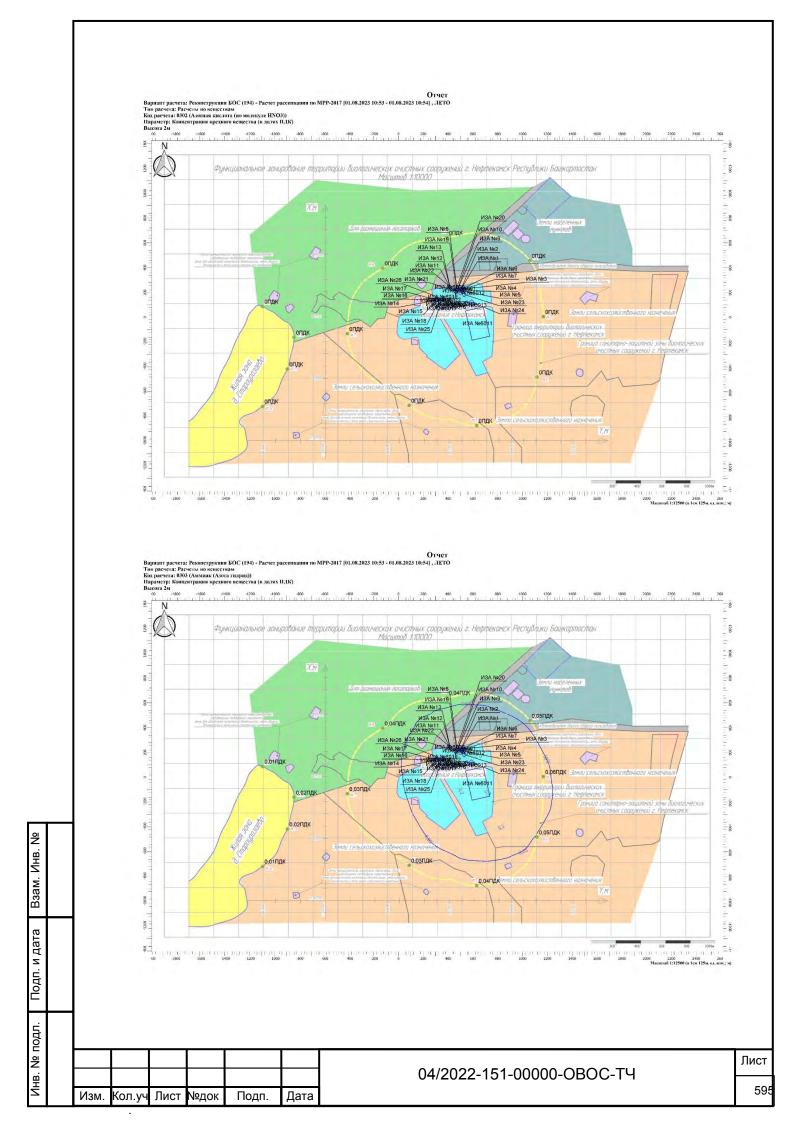
Вещество: 6204 Азота диоксид, серы диоксид

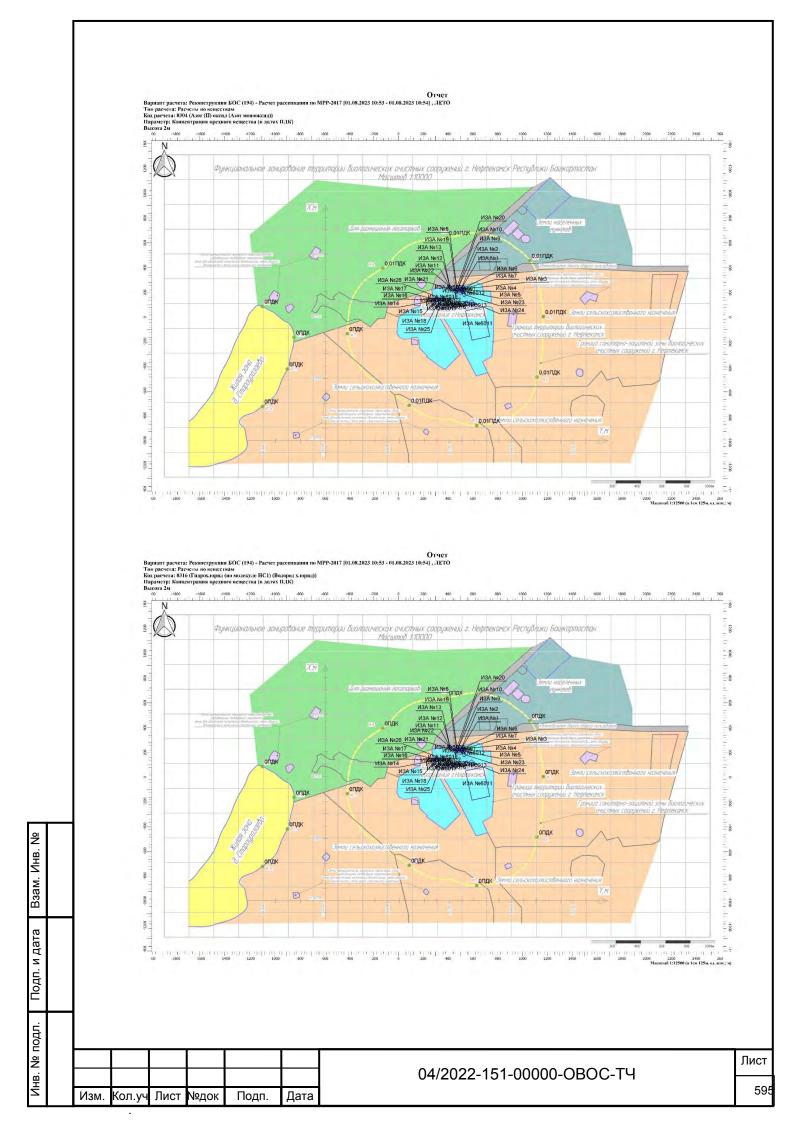

	Коорд	Коорд	та	Концентр.	Концентр.	Напр. ветра	Cron		Фон		о исключения	- 2
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)			доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	0,28		164	6,00	0,26		- 0,27		- 3
2	1058,20	457,50	2,00	0,28	715	247	6,00	0,27		- 0,27		- 3
8	-127,10	396,40	2,00	0,28		105	6,00	0,27		- 0,27		- 3
3	1167,40	4,80	2,00	0,28	-	288	6,00	0,27		- 0,27		- 3
4	1116,10	-481,90	2,00	0,27		319	6,00	0,27		- 0,27		- 3
7	-412,40	-133,10	2,00	0,27		69	6,00	0,27		- 0,27		- 3
6	86,40	-709,70	2,00	0,27		25	0,73	0,27		- 0,27		- 3
5	630,80	-873,20	2,00	0,27		354	0,73	0,27		- 0,27		- 3
10	-842,00	-161,20	2,00	0,27	- A	75	0,73	0,27		- 0,27		- 4
11	-894,90	-417,80	2,00	0,27		66	0,73	0,27		- 0,27		- 4
9	-1095,40	88,20	2,00	0,27	-	- 86	0,73	0,27		- 0,27	18	- 4
12	-1095,90	-717,50	2,00	0,27		60	1,03	0,27		- 0,27		- 4

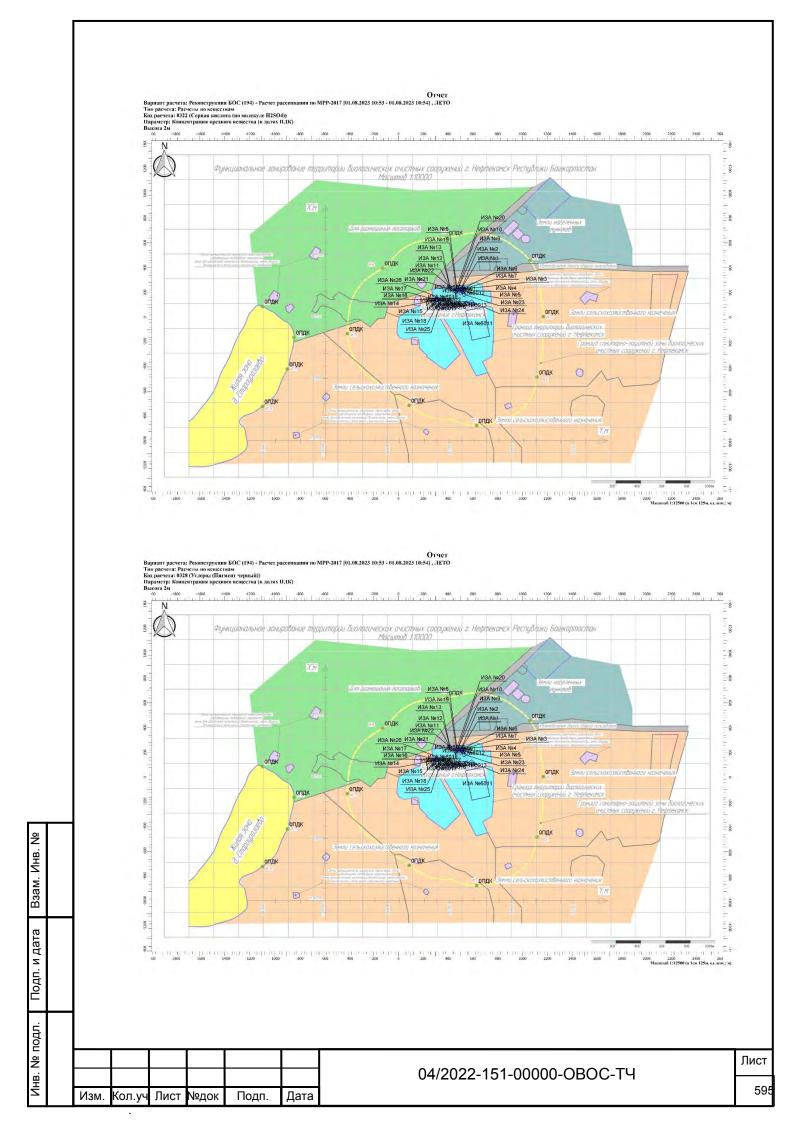

Вещество: 6205 Серы диоксид и фтористый водород

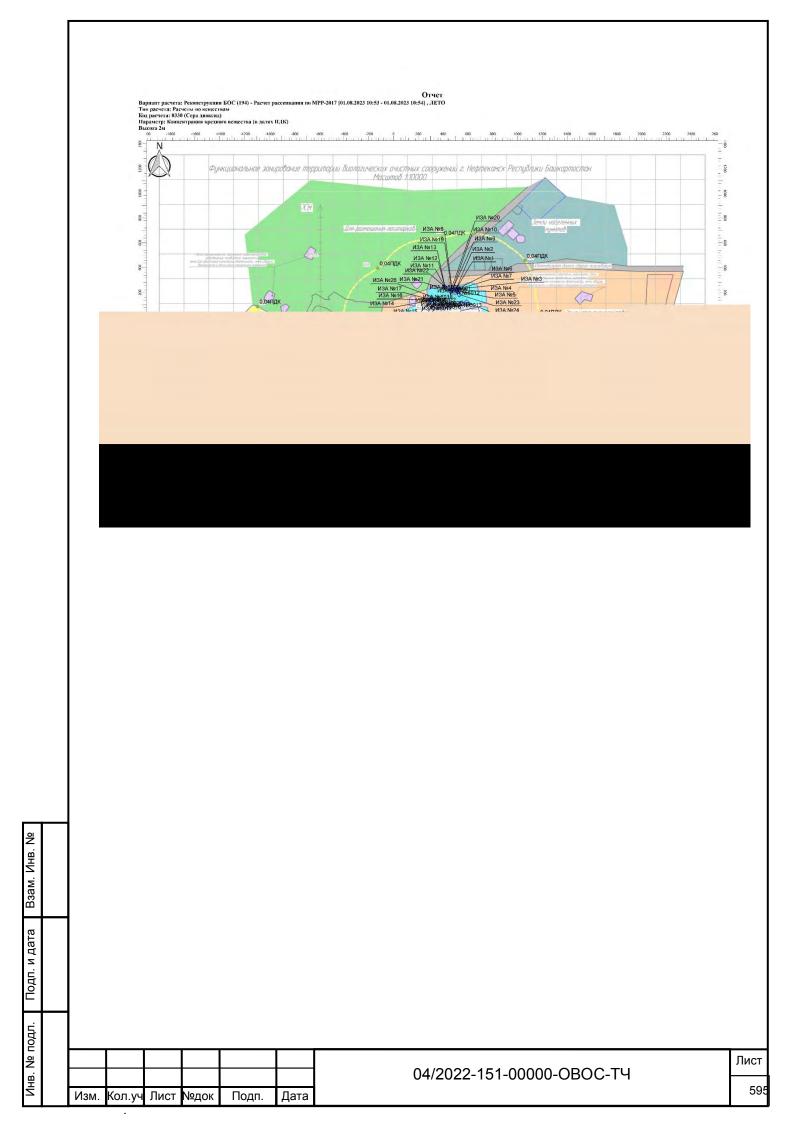

	Коорд	Коорд	ота	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	_ 5
Nº	Х(м)	Ү(м)	Высота (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
1	391,50	643,00	2,00	5,28E-03	-	164	6,00	-		-		- 3
2	1058,20	457,50	2,00	3,55E-03		246	6,00					- 3
8	-127,10	396,40	2,00	3,01E-03		106	6,00	- 4	T-			- 3
3	1167,40	4,80	2,00	2,86E-03	1-	288	6,00	14		1 3 1		- 3
4	1116,10	-481,90	2,00	1,76E-03		319	6,00	- B		1 2 2		- 3
7	-412,40	-133,10	2,00	1,55E-03		70	6,00	4	3.			- 3
6	86,40	-709,70	2,00	1,48E-03		25	6,00	- 4		- 4		- 3
5	630,80	-873,20	2,00	1,30E-03	-	354	6,00	7-1	5-	-		- 3
10	-842,00	-161,20	2,00	8,14E-04		75	6,00		1.5			- 4
11	-894,90	-417,80	2,00	6,85E-04		66	6,00	-	7.			- 4
9	-1095,40	88,20	2,00	6,29E-04	1-	86	6,00	14	11.			- 4
12	-1095,90	-717,50	2,00	5,03E-04	-/-	60	0,71	- 1-				- 4

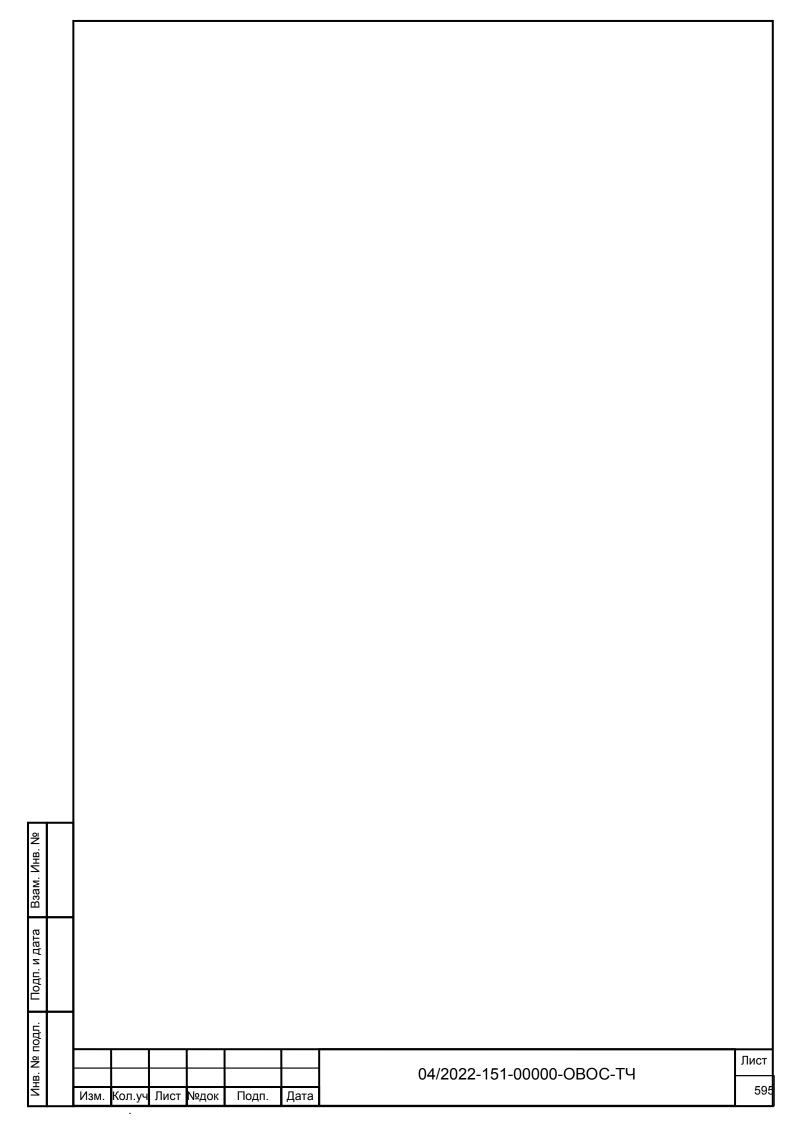

Подп. и дата								
подл.								
읟							04/2022-151-00000-OBOC-TY	Лист
Инв.	Изм	Изм. Кол.уч		№лок	Подп.	Дата	04/2022-131-00000-01500-1-1	59
ш	7.5111.		7	How		Дата		

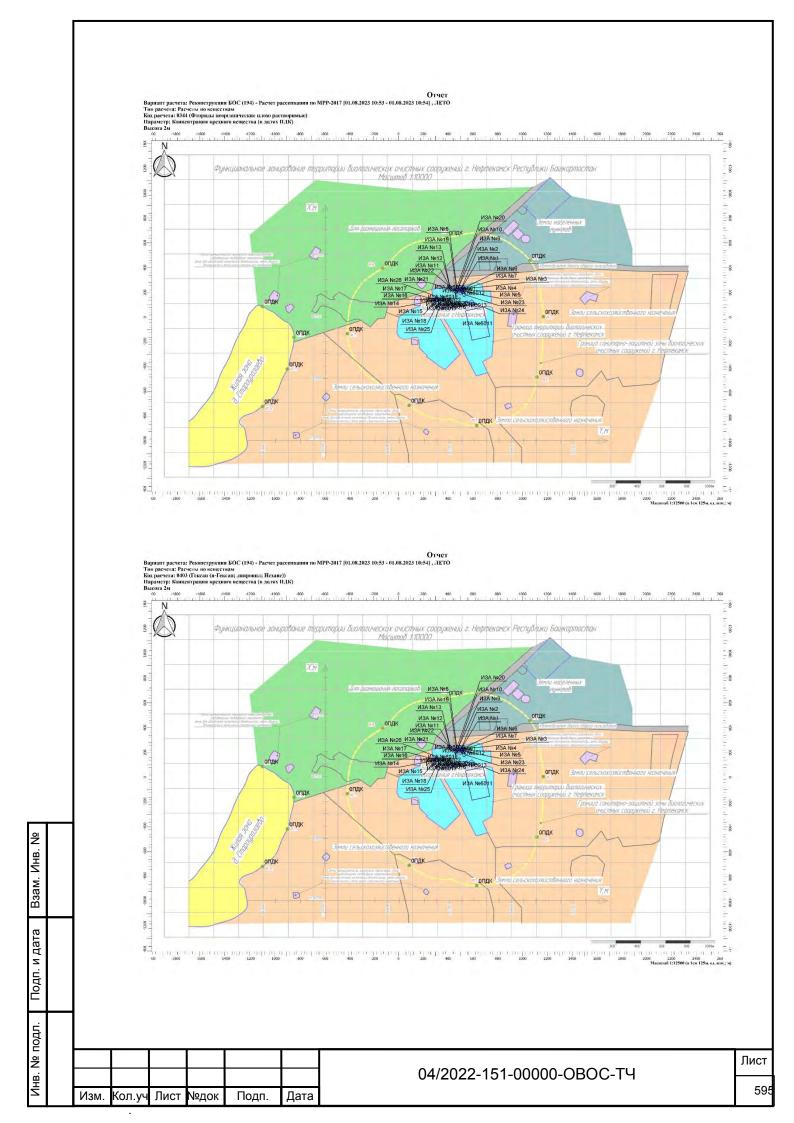

Взам. Инв. №

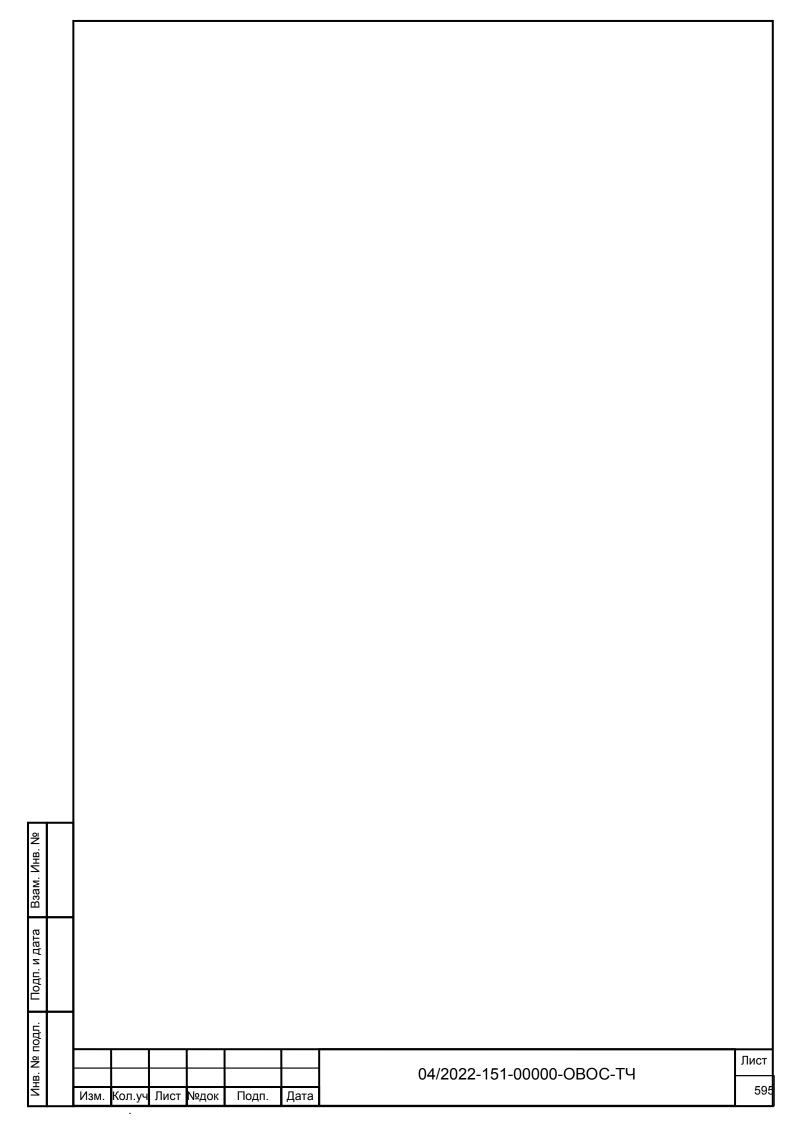


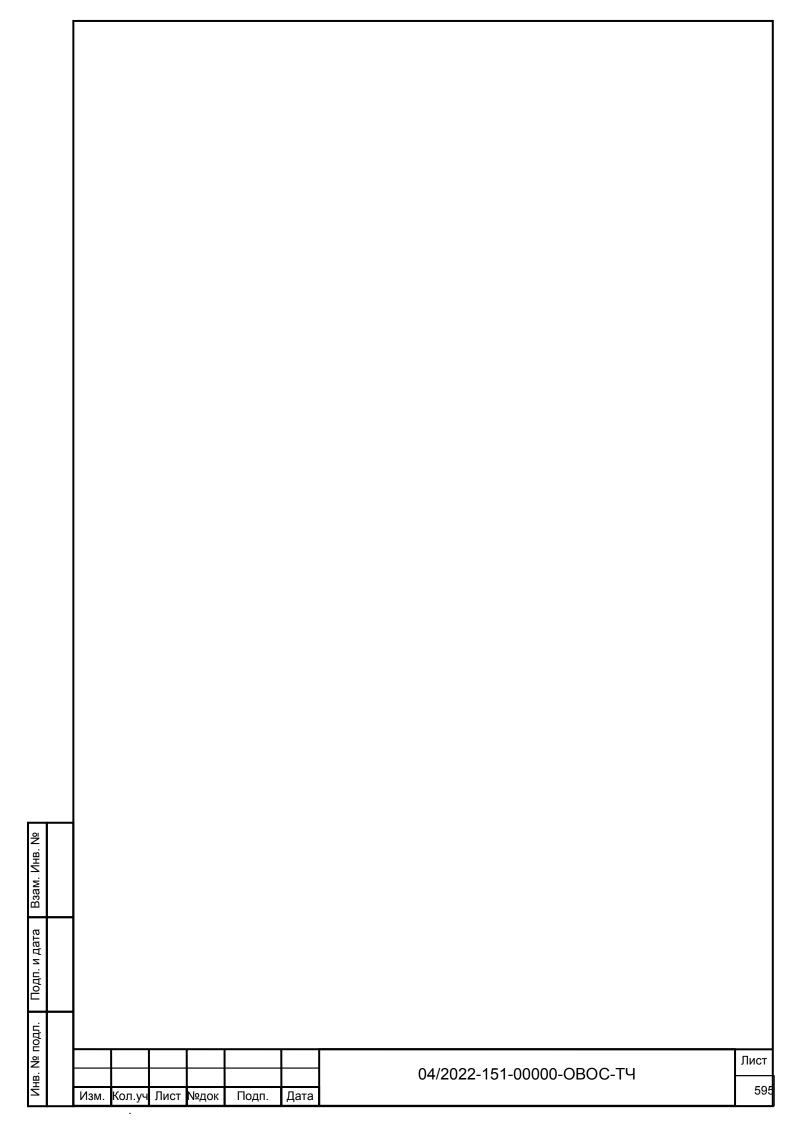


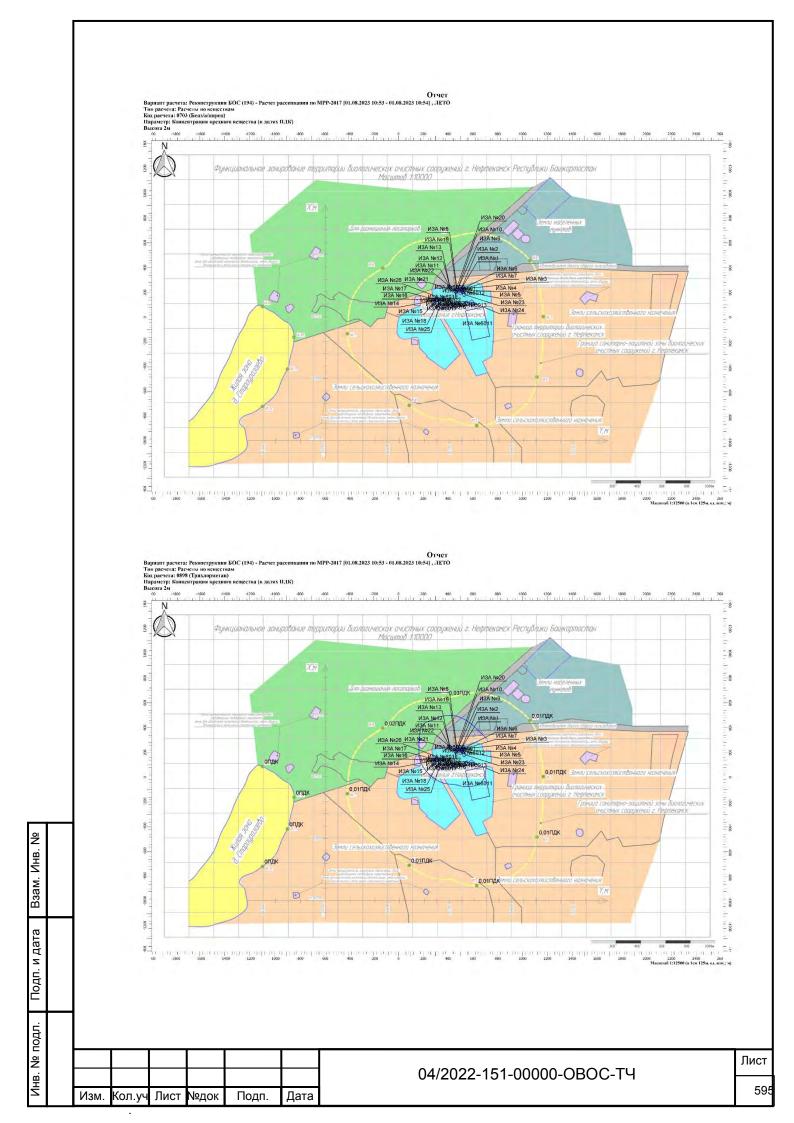


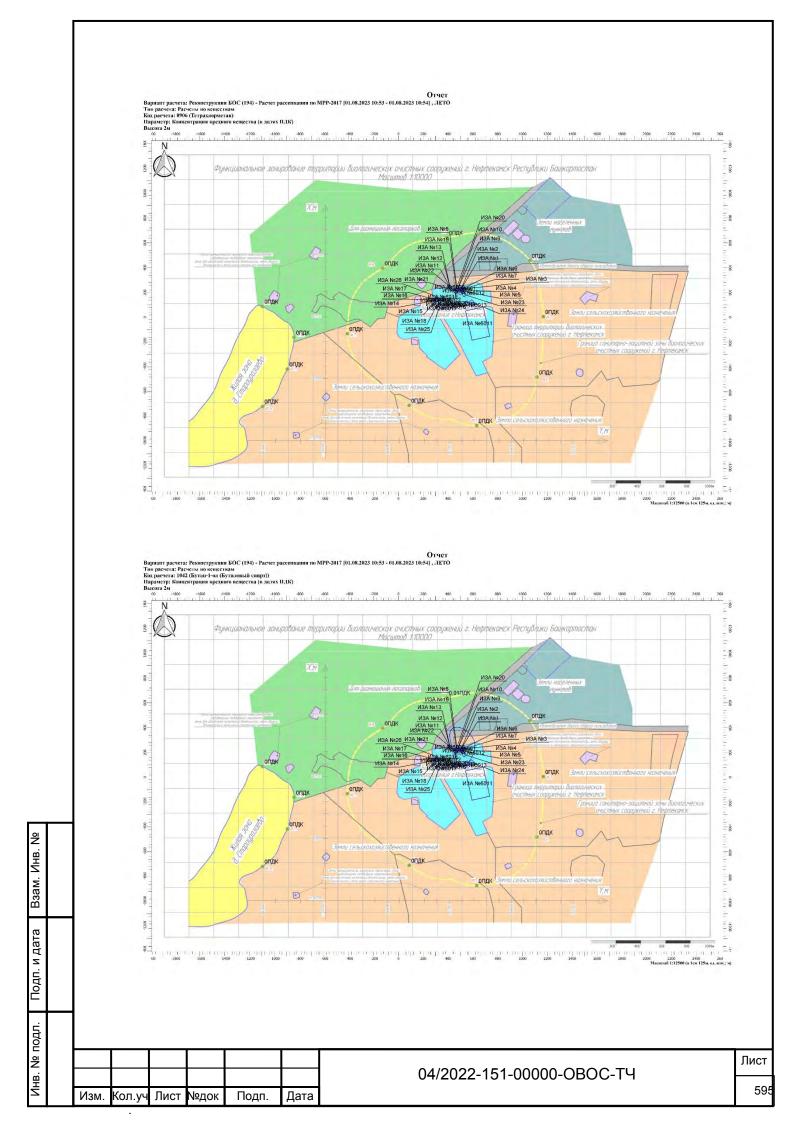


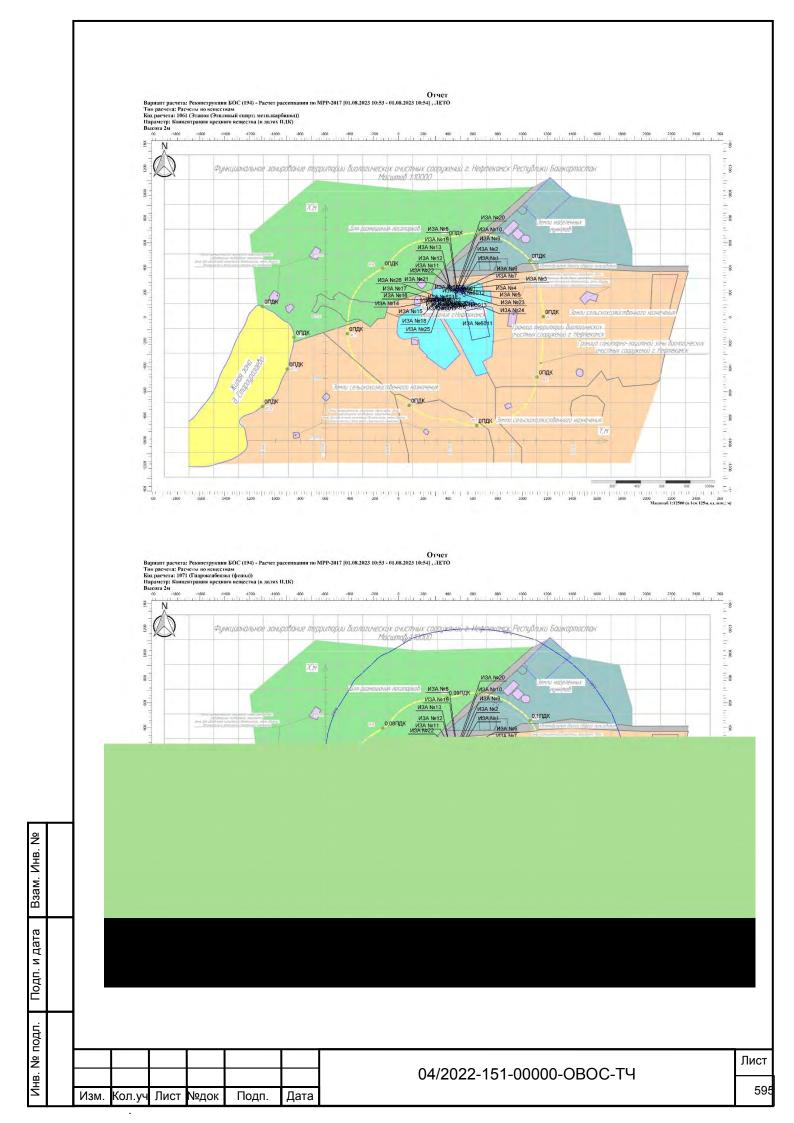




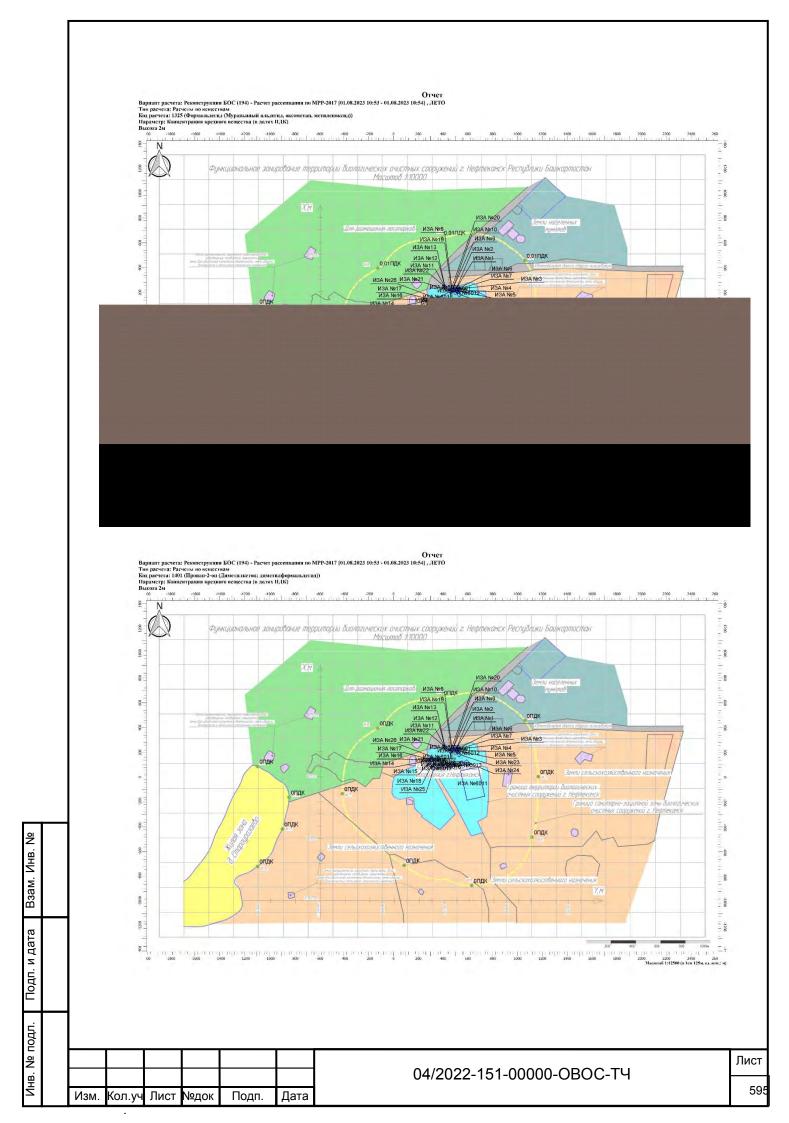


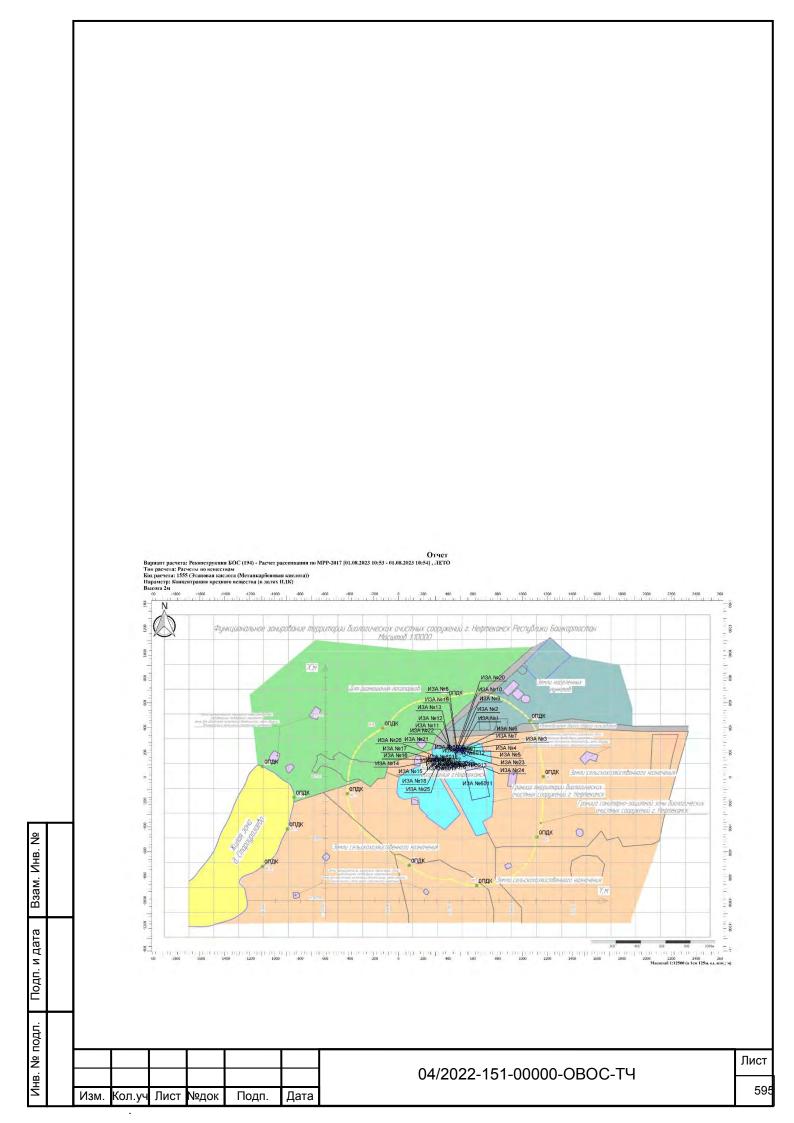


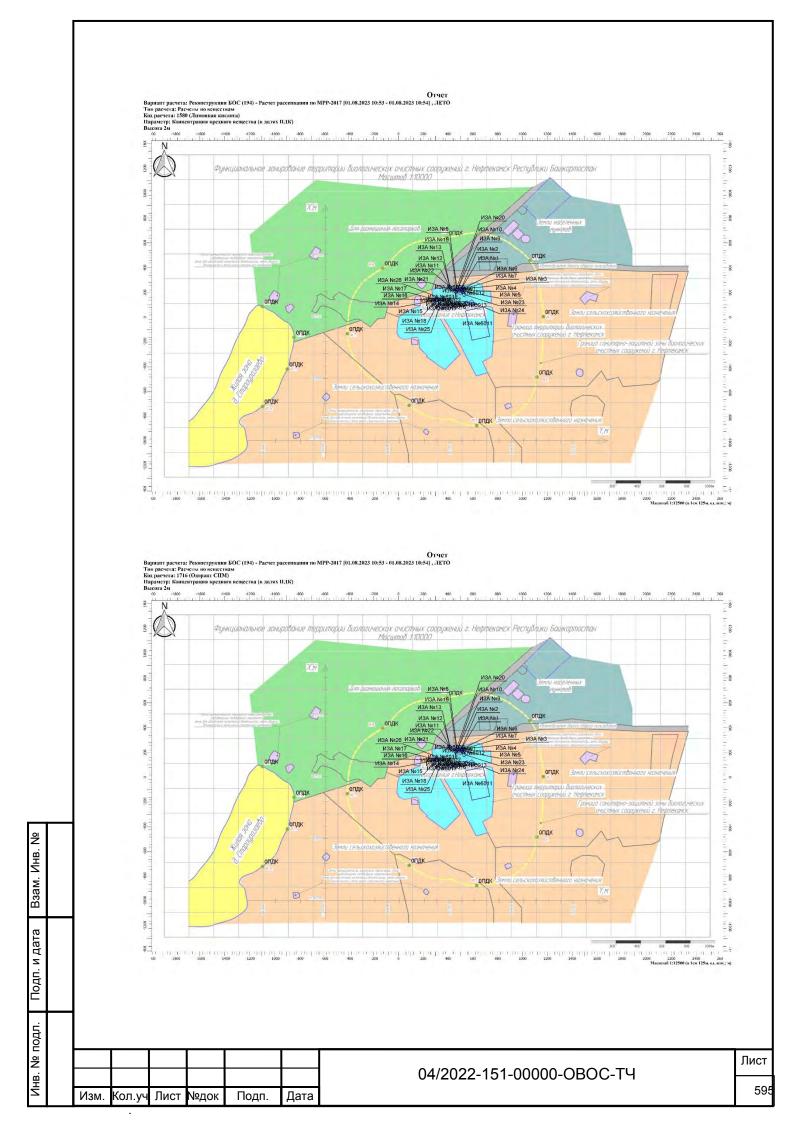


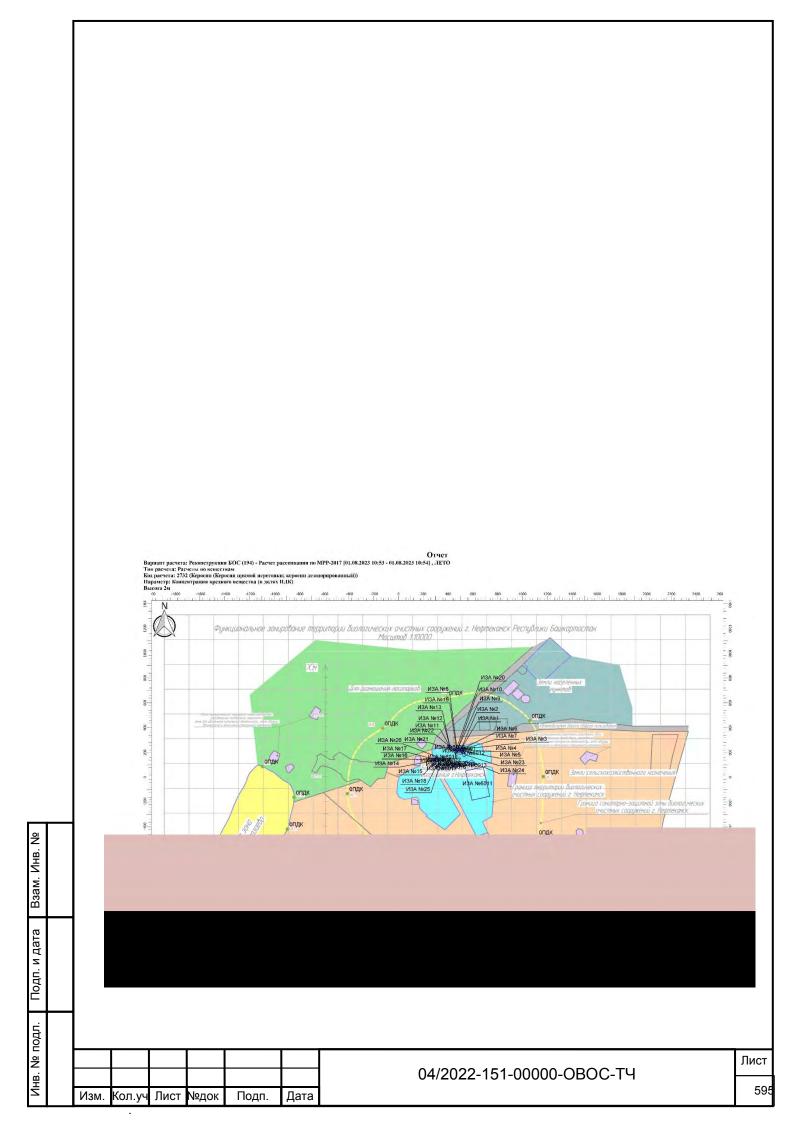


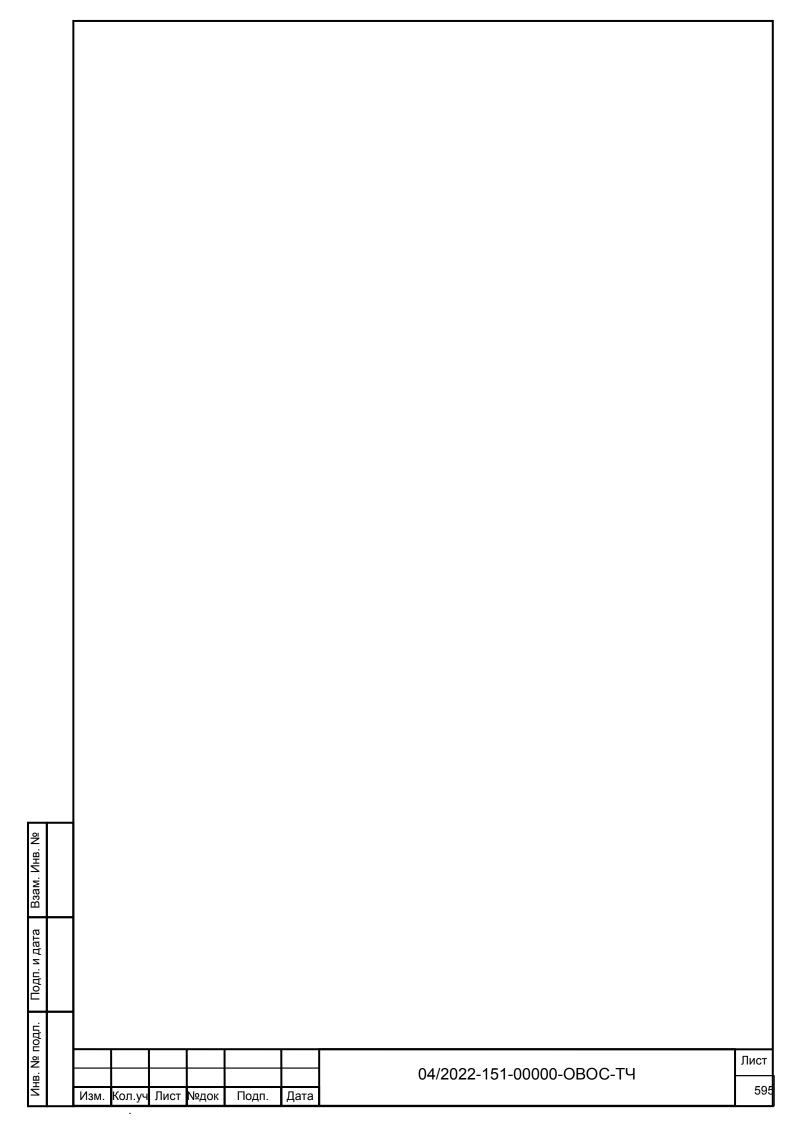


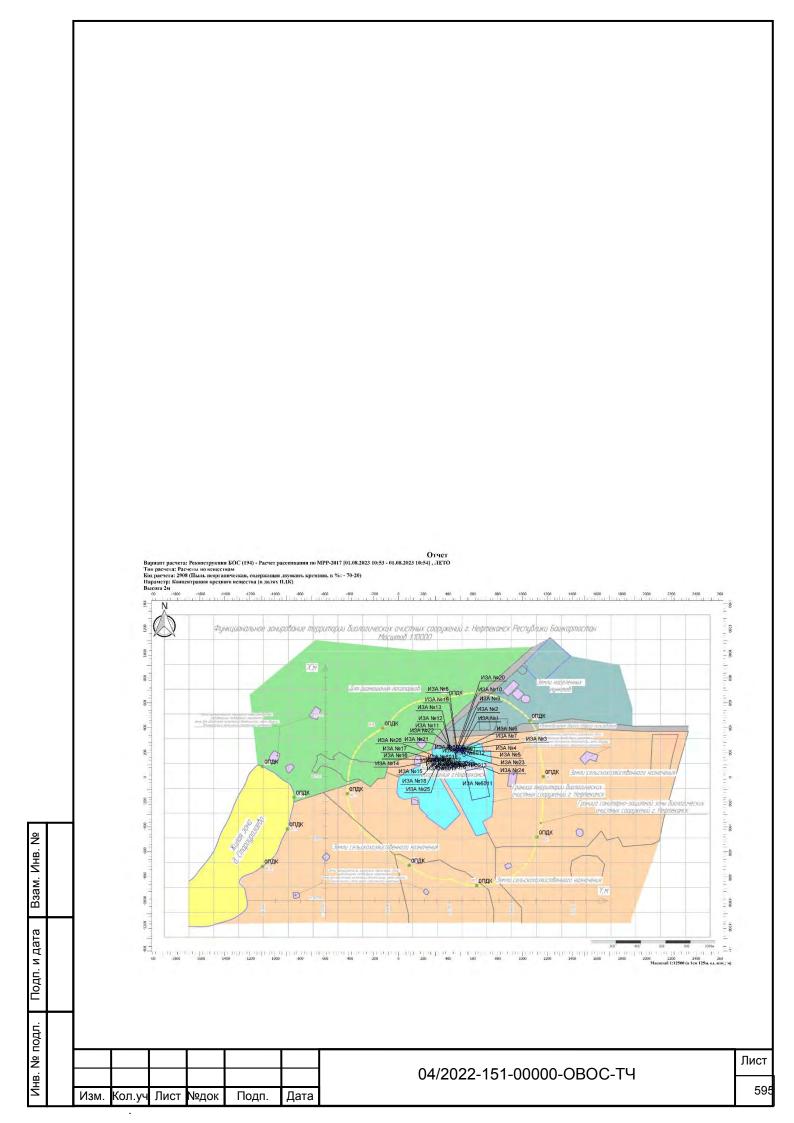


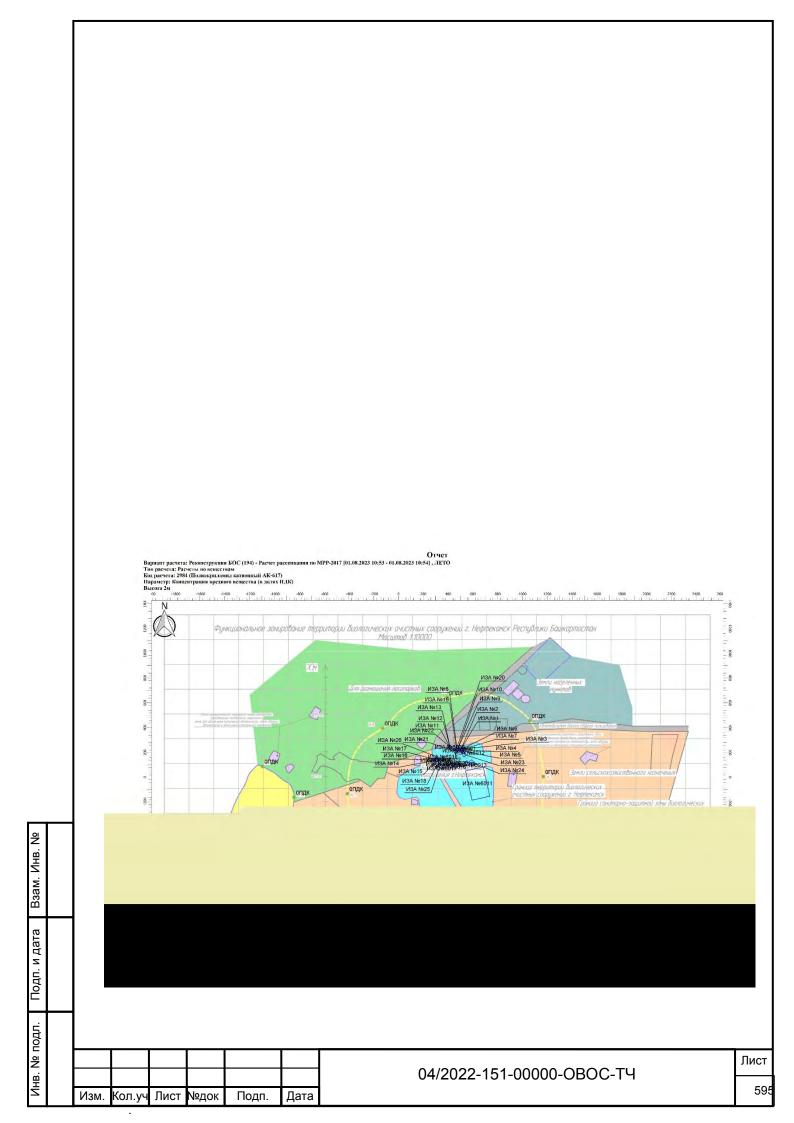


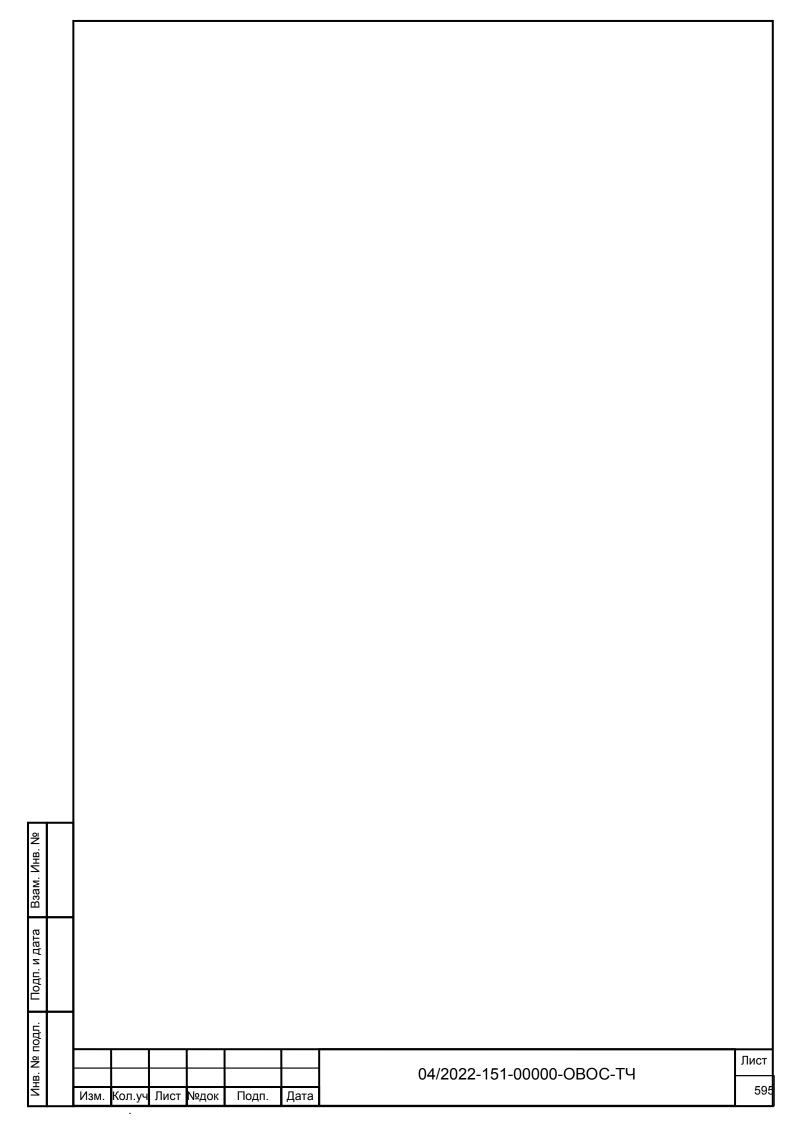


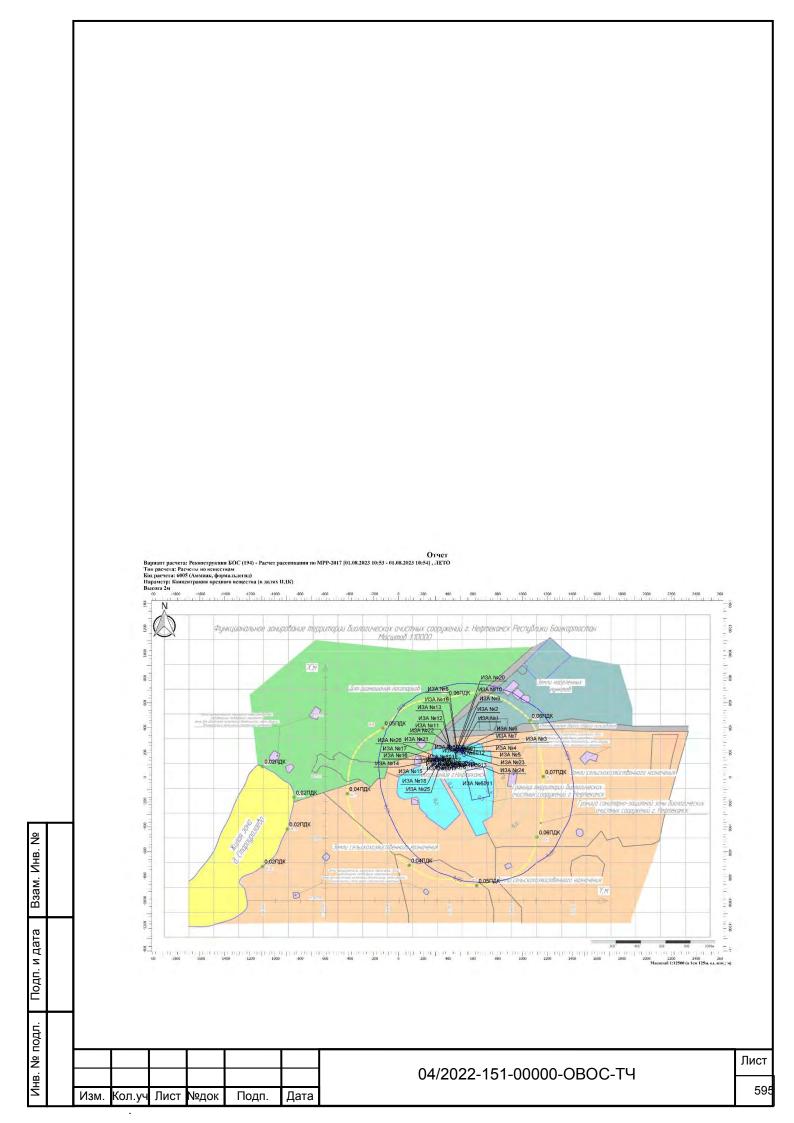


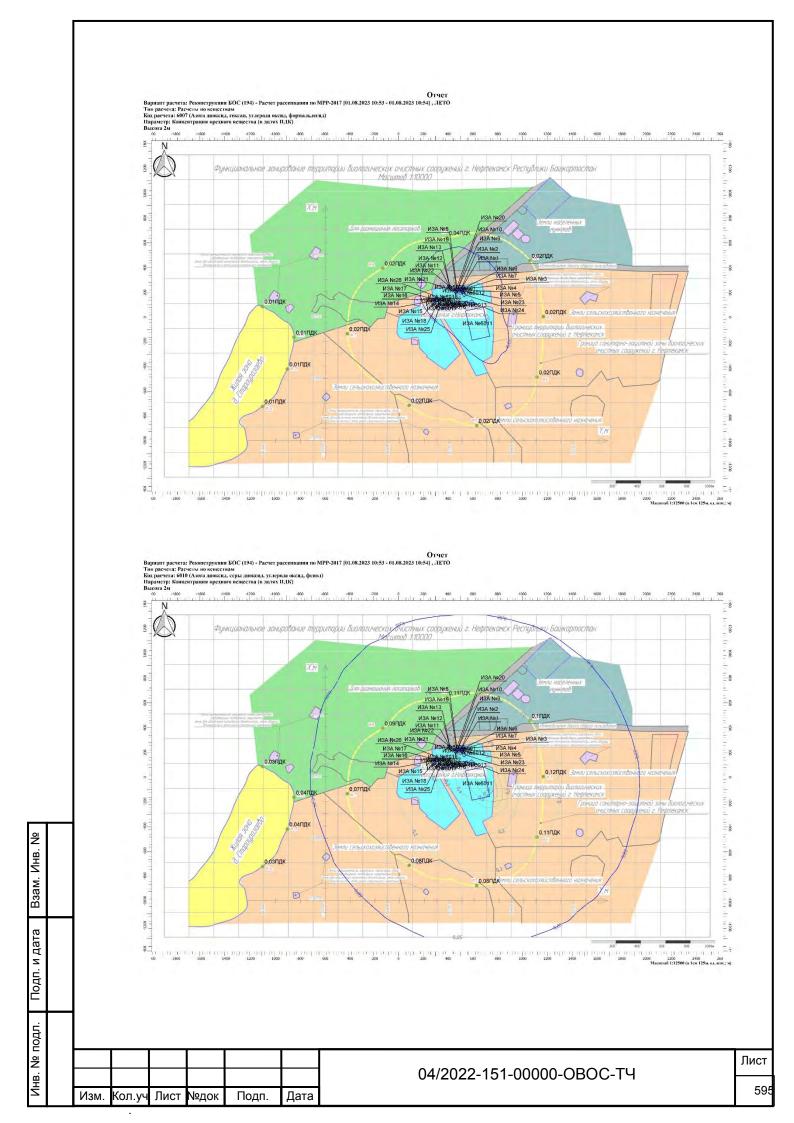


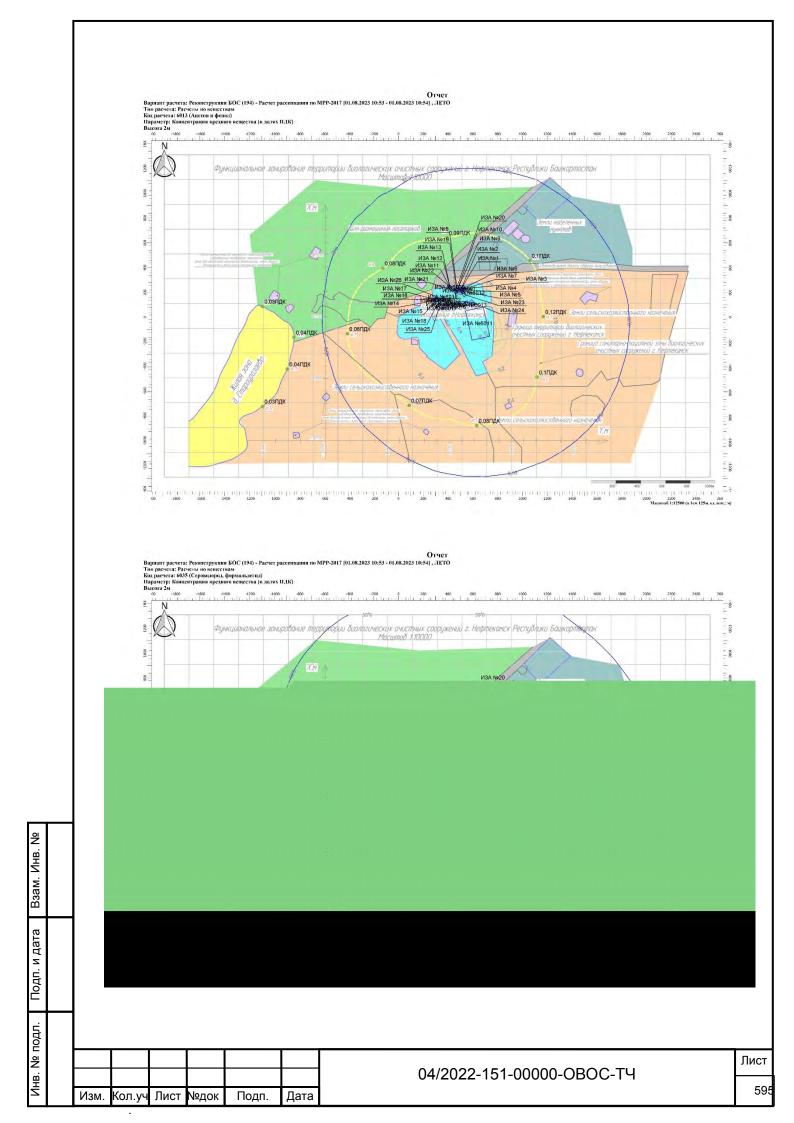


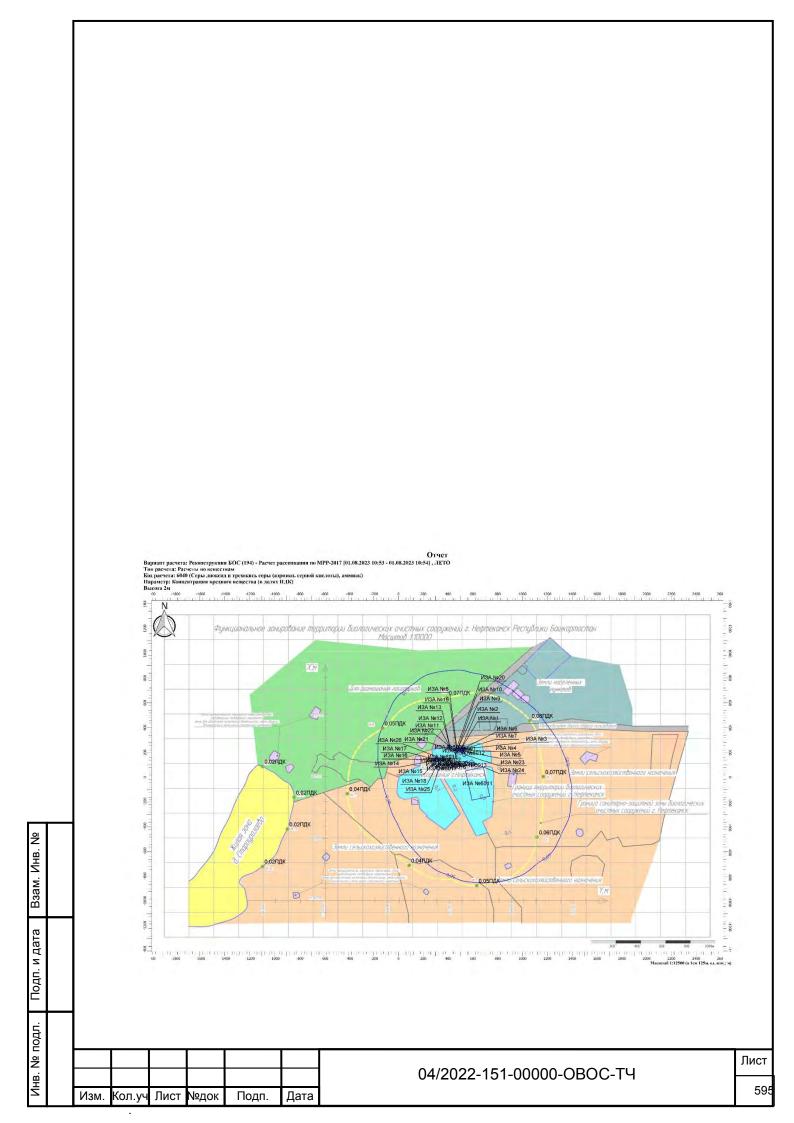


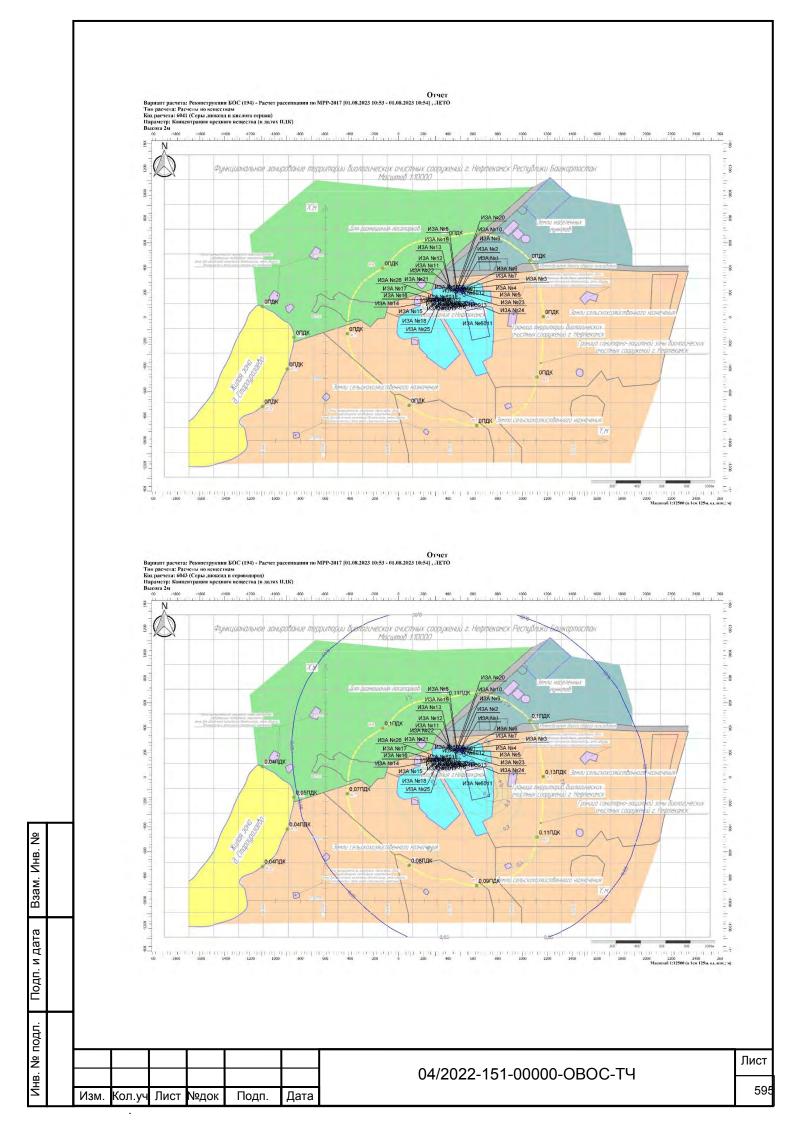


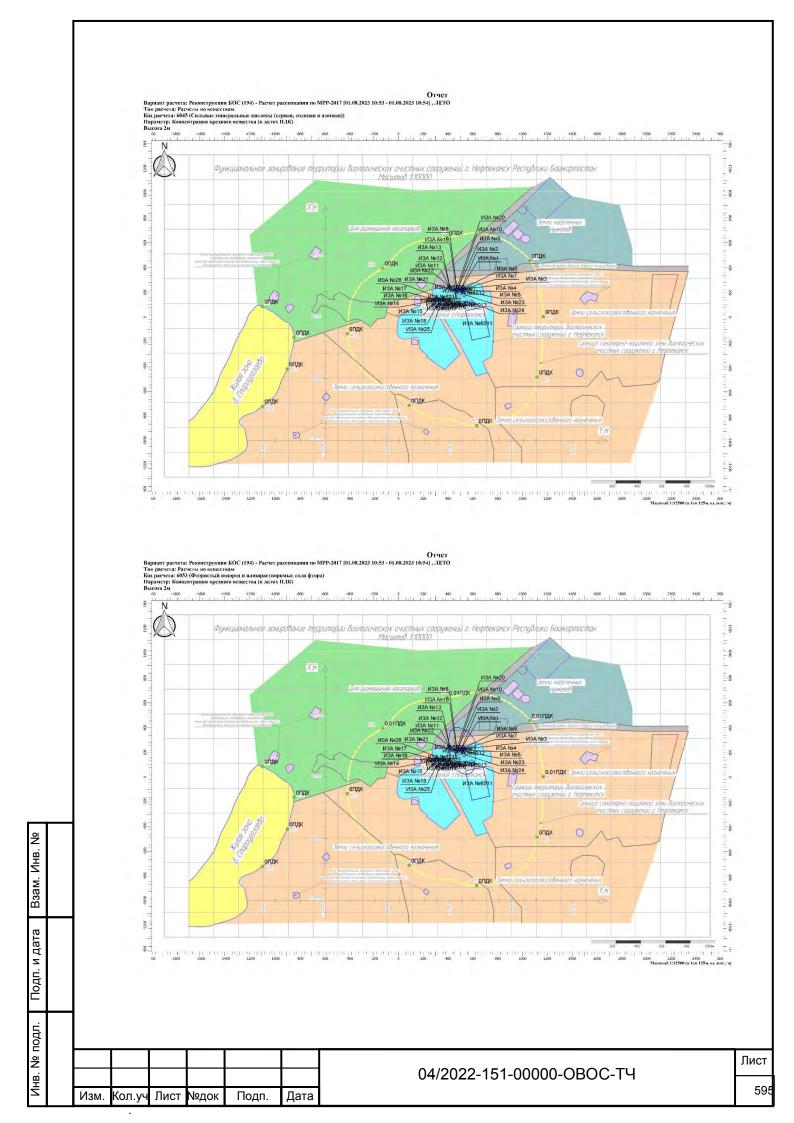


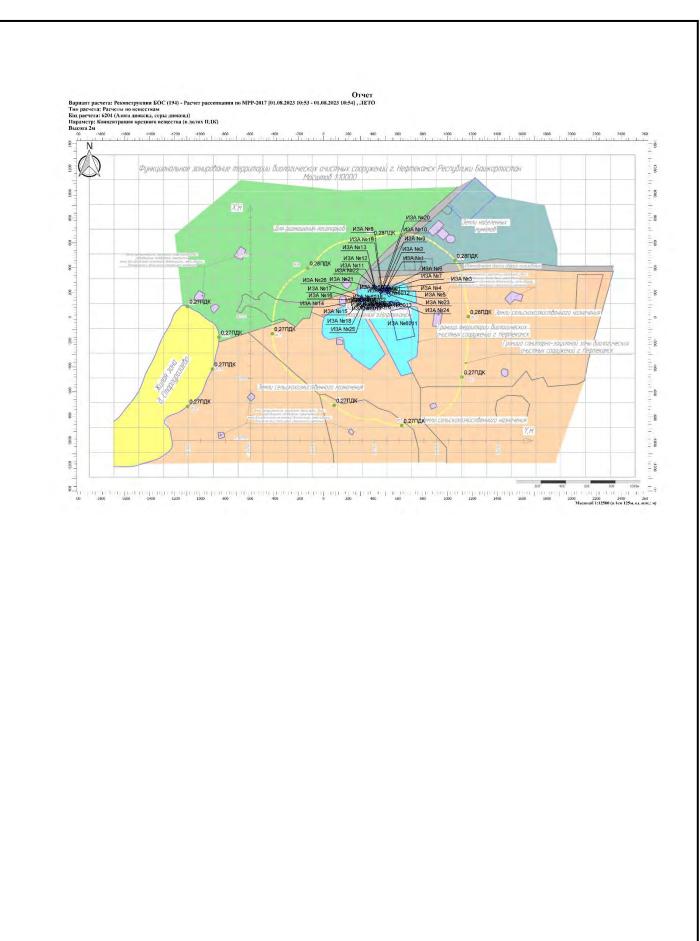


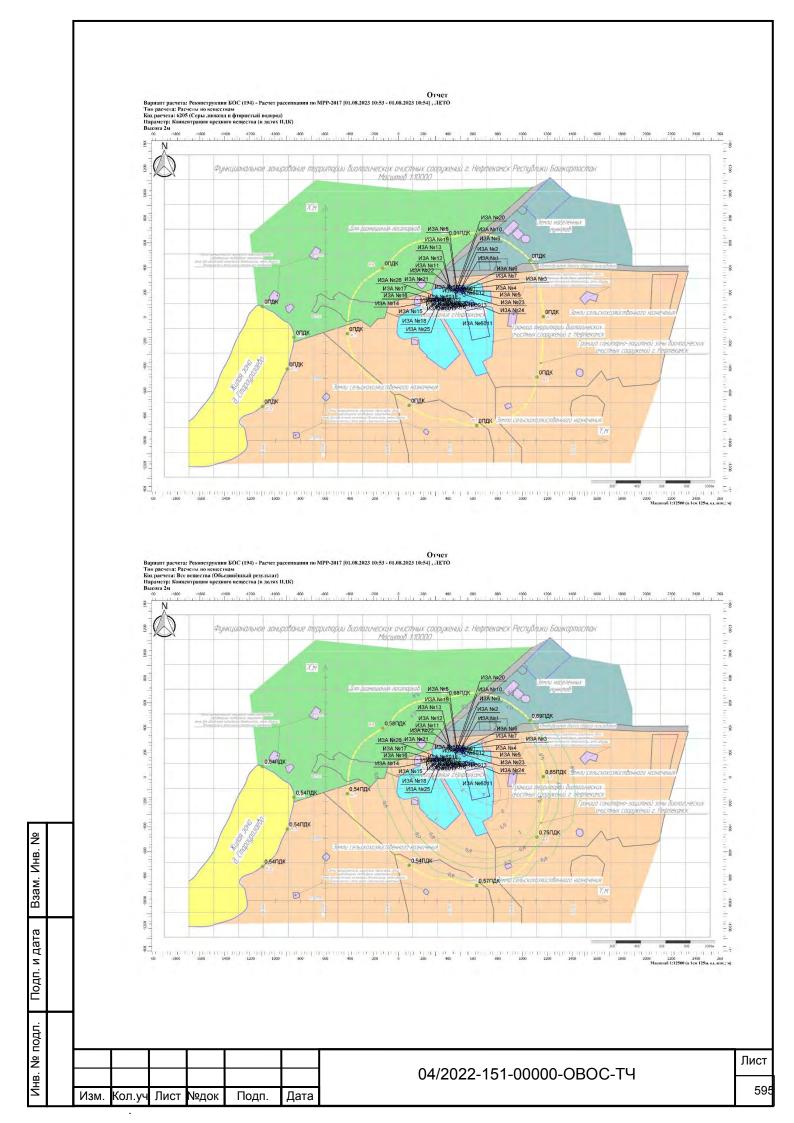












MHB. №

Взам.

Подп. и дата

Инв. № подл.

Реконструкция

УПРЗА «ЭКОЛОГ» 4.70 Copyright © 1990-2022 ФИРМА «ИНТЕГРАЛ»

Предприятие: 194, Реконструкция БОС

Город: 32, Башкортостан Район: 9, Нефтекамск Адрес предприятия:

Разработчик:

ИНН: ОКПО: Отрасль:

Величина нормативной санзоны: 0 м

ВИД: 2, Строительство ВР: 1, Строительство

Расчетные константы: S=999999,99

Расчет: «Расчет рассеивания по МРР-2017» (лето)

Метеорологические параметры

Расчетная температура наиболее холодного месяца, °C:	-20,7
Расчетная температура наиболее теплого месяца, °C:	26,2
Коэффициент А, зависящий от температурной стратификации атмосферы:	160
U* – скорость ветра, наблюдаемая на данной местности, повторяемость превышения которой находится в пределах 5%, м/с:	8
Плотность атмосферного воздуха, кг/м3:	1,29
Скорость звука, м/с:	331

Структура предприятия (площадки, цеха)

1 - Площадка строительства

Взам.								
Подп. и дата								
№ подл.								
<u>S</u>						1	04/2022-151-00000-OBOC-TY	Лист
NHB.	Изм.	Кол.уч	Лист	№док	Подп.	Дата	5 1/2522 151 00000 OBOO 1 1	595

Параметры источников выбросов

Учет:
"%" - источник учитывается с исключением из фона;
"+" - источник учитывается без исключения из фона;
"-" - источник не учитывается и его вклад исключается из фона. При отсутствии отметок источник не учитывается.

* - источник имеет дополнительные параметры

Типы источников:

1 - Точечный; 2 - Линейный;

3 - Неорганизованный;

3 - Пеорганизованный,
4 - Совокупность точечных источников;
5 - С зависимостью массы выброса от скорости ветра;
6 - Точечный, с зонтом или выбросом горизонтально;
7 - Совокупность точечных (зонт или выброс вбок);

8 - Автомагистраль (неорганизованный линейный);

Nº	ACT.		_		NCT.	Диаметр усть я (м)	O6sem FBC (Ky6.M/c)	4 0 (c)	LBC	рел.	Коорд	инаты	а ист.
ист.	Учет ист	Bap.	Тип	Наименование источника	bicora (M)	(м)	6bem FB (Ky6.M/c)	CKOPOCTE FBC (M/c)	Temn. FBC (°C)	Коэф.	Х1, (м)	X2, (M)	Ширина
	7				a	Диа	0	o	ř	K	Y1, (M)	Y2, (M)	à
					Nº	пл.: 1, І	Nº цеха	: 0					
5501	+	1	1	Труба ПДЭС	5	0.12	0.58	50,99	400,00	1	544,80		0,00
0001		-		трусатьдоо		0,12	0,00	00,00	400,00		157,30		0,00
Код			На	именование вещества	Вы	брос	F -		Лето			Зима	
в-ва					г/с	T/F		Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0301	A30	ота д	иоксид	ц (Двуокись азота; пероксид азота)	0,0853333	0,017920	1	0,19	100,50	3,87	0,00	0,00	0,00
0304			Азот (II) оксид (Азот монооксид)	0,0138667	0,002912	1	0,02	100,50	3,87	0,00	0,00	0,00
0328			Угл	ерод (Пигмент черный)	0,0039722	0,000799	1	0,01	100,50	3,87	0,00	0,00	0,00
0330				Сера диоксид	0,0333333	0,007000	1	0,03	100,50	3,87	0,00	0,00	0,00
0337	Угле	рода	оксид	(Углерод окись; углерод моноокись; угарный газ)	0,0861111	0,018200	1	0,01	100,50	3,87	0,00	0,00	0,00
0703				Бенз/а/пирен	0,0000001	2,240000E- 08	1	0,00	100,50	3,87	0,00	0,00	0,00
1325	Фор	маль	дегид	(Муравь иный аль дегид, оксометан, метиленоксид)	0,0009444	0,000200	1	0,01	100,50	3,87	0,00	0,00	0,00
2732	K	epoci	н (Кер	осин прямой перегонки; керосин дезодорированный)	0,0230278	0,004801	1	0,01	100,50	3,87	0,00	0,00	0,00
6501	+	1	3	Дорожная техника	5	0,00			0.00	1	285,70	598,70	150,00
0301		,	3	дорожная техника	3	0,00			0,00		140,80	174,70	130,00
Код			На	именование вещества	Вы	брос	F -		Лето			Зима	
в-ва					r/c	T/F	. (Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0301	A30	ота д	иоксид	ц (Двуокись азота; пероксид азота)	0,0859258	3,733669	1	1,45	28,50	0,50	0,00	0,00	0,00
0304			Азот (II) оксид (Азот монооксид)	0,0139611	0,606624	1	0,12	28,50	0,50	0,00	0,00	0,00
0328			Угл	перод (Пигмент черный)	0,0160782	0,697906	1	0,36	28,50	0,50	0,00	0,00	0,00
0330				Сера диоксид	0,0097979	0,422930	1	0,07	28,50	0,50	0,00	0,00	0,00
0337	Угле	рода	оксид	(Углерод окись ; углерод моноокись ; угарный газ)	0,0769173	3,325509	1	0,05	28,50	0,50	0,00	0,00	0,00
2732	K	epoci	ін (Кер	осин прямой перегонки; керосин дезодорированный)	0,0219909	0,945049	1	0,06	28,50	0,50	0,00	0,00	0,00
6502	+	1	3	Canonada nos accinina	5	0.00			0.00	1	293,90	588,10	120.00
0002	•		3	Строитель ная техника	3	0,00			0,00	14	140,80	173,50	130,00
Код			Ü-	именование вещества	Вы	брос	F -		Лето			Зима	
в-ва			Tie	именование вещества	г/с	T/F	, (Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0301	Ази	ота ді	иоксид	ц (Двуокись азота; пероксид азота)	0,0075689	0,029453	1	0,13	28,50	0,50	0,00	0,00	0,00
0304			Азот (II) оксид (Азот монооксид)	0,0012299	0,004787	1	0,01	28,50	0,50	0,00	0,00	0,00
0328			Угл	ерод (Пигмент черный)	0,0004000	0,001743	1	0,01	28,50	0,50	0,00	0,00	0,00
0330				Сера диоксид	0,0014694	0,006606	1	0,01	28,50	0,50	0,00	0,00	0,00
0337	Угле	рода	оксид	(Углерод окись ; углерод моноокись ; угарный газ)	0,0204444	0,079364	1	0,01	28,50	0,50	0,00	0,00	0,00
2732	K	epoci	н (Кер	оосин прямой перегонки; керосин дезодорированный)	0,0073389	0,031911	1	0,02	28,50	0,50	0,00	0,00	0,00
					9.4	200			100		510,20	512,20	Thu
6503		1	3	Компрессор	5	0,00			0.00	1 -			2,00

Подп. и дата Инв. № подл.

Взам. Инв. №

Лист №док Изм. Кол.уч Подп. Дата

04/2022-151-00000-OBOC-TY

Код			Har	именование вещества	Вы	брос	F		Лето			Зима	
в-ва			ilai	писнование вещества	г/с	T/F		Cm/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0301	Аз	ота д	иоксид	(Двуокись азота; пероксид азота)	0,0010089	0,011506	1	0,02	28,50	0,50	0,00	0,00	0,00
0304			Азот (І	I) оксид (Азот монооксид)	0,0001639	0,001870	1	0,00	28,50	0,50	0,00	0,00	0,00
0328			Угле	ерод (Пигмент черный)	0,0000783	0,000892	1	0,00	28,50	0,50	0,00	0,00	0,00
0330				Сера диоксид	0,0003625	0,004134	1	0,00	28,50	0,50	0,00	0,00	0,00
0337	Угле	рода	оксид (Углерод окись; углерод моноокись; угарный газ)	0,0015238	0,017378	1	0,00	28,50	0,50	0,00	0,00	0,00
2732	К	epoci		осин прямой перегонки; керосин дезодорированный)	0,0004275	0,004876	1	0,00	28,50	0,50	0,00	0,00	0,00
				47.45.47.37	100				2307		382,80	384,80	1 6
6504	+	1	3	Виброплита	5	0,00			0,00	1	171,50	171,50	2
Код					Вы	брос	200		Лето			Зима	
в-ва			Hai	именование вещества	r/c	т/г	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0301	Аз	ота д	иоксид	(Двуокись азота; пероксид азота)	0,0010089	0,011506	1	0,02	28,50	0,50	0,00	0,00	0,00
0304) оксид (Азот монооксид)	0,0001639	0,001870	1	0,00	28,50	0,50	0,00	0,00	0,00
0328					0,0000783	0,000892	1	0,00	28,50	0,50	0,00	0,00	0,00
0330			31116	ерод (Пигмент черный)		0.004134	1	0,00			0,00	1.000	
0000	Vrno	nona	OVCMB /	Сера диоксид Углерод окись ; углерод моноокись ;	0,0003625	0,004134	,	0,00	28,50	0,50	0,00	0,00	0,00
0337				угарный газ) осин прямой перегонки; керосин	0,0015238	0,017378	1	0,00	28,50	0,50	0,00	0,00	0,00
2732	N	еросі		дезодорированный)	0,0004275	0,004876	1	0,00	28,50	0,50	0,00	0,00	0,00
0505						0.00			0.00		396,90	398,90	
6505	*	1	3	Укладка асфаль та	2	0,00			0,00	1	120,20	120,20	2
Код			-	Leading to the Control	Вы	брос	4.5		Лето			Зима	
в-ва			Hai	именование вещества	г/с	T/F	F	Cm/ПДК	Xm	Um	Cm/ПДK	Xm	Um
0333				ль фид (Водород сернистый, осуль фид, гидросуль фид)	0,0001350	0,000039	1	0,48	11,40	0,50	0,00	0,00	0,00
2754				С12-19 (в пересчете на С)	0,0279900	0,008061	1	0,80	11,40	0,50	0,00	0,00	0,00
2101			I	O12 10 (B hepecació na O)	0,0213300	0,000001	-	0,00	11,40	1 ,00	365,30	367,30	0,00
6506	+	1	3	Сварка полиэтиленовых труб	2	0,00		1	0,00	1 -	140,00	140,00	_ 2
Von					PLI	брос			Лето		110,00	Зима	
Код в-ва			Hai	именование вещества	r/c	T/F	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0007	Угле	рода	оксид (Углерод окись ; углерод моноокись ;									
0337		Part.		угарный газ)	0,0001530	0,000003	1	0,00	11,40	0,50	0,00	0,00	0,00
1537				Метановая кислота	0,0003060	0,000006	1	0,04	11,40	0,50	0,00	0,00	0,00
6507	+	1	3	Поскоструйная установка	2	0,00			0,00	1	487,90	489,90	_ 2
0307		4	3	Пескоструйная установка	2	0,00			0,00	1	183,20	183,20	
Код			Llou	MANUARAUMA RAUMATRA	Вы	брос	F		Лето			Зима	
в-ва			Па	именование вещества	r/c	T/r		Ст/ПДК	Xm	Um	Cm/ПДК	Xm	Um
2902			Вз	вешенные вещества	0,0320160	0,030735	3	5,49	5,70	0,50	0,00	0,00	0,00
2908	Γ	Ыль		ническая, содержащая двуокись	0.0213440	0.020490	3	6,10	5,70	0,50	0,00	0,00	0,00
			K	ремния, в %: - 70-20	1					1 1		3.55	
6508	+	1	3	Металлообработка	2	0,00			0,00	1	516,00	518,00	_ 2
1.						-		1	Лето		158,70	158,70	1
Код в-ва			Hai	именование вещества		брос	F	Ст/ПДК	Xm	Um	Ст/ПДК	Зима Хm	Um
	ли	епе»	Thuor	сид, (железа оксид)/в пересчете на	r/c	T/r							
0123	Huly	C3	PHOK	железо/(Железо	0,0036000	0,015552	3	0,00	5,70	0,50	0,00	0,00	0,00
2930				Пыль абразивная	0,0024000	0,010368	3	5,14	5,70	0,50	0,00	0,00	0,00
	L II	10.2		Carried Section 1	17.2				1 7.32		358,40	360,40	
6509	+	1	3	Сварочные работы	5	0,00		10.	0,00	1 -	104,90	104,90	2
Код			- 44		Вы	брос	4		Лето			Зима	
в-ва			Hai	именование вещества	r/c	т/г	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
0123	диЖ	елез	триок	сид, (железа оксид)/в пересчете на	0.0032819	0,003545	1	0,00	28,50	0,50	0,00	0,00	0,00
		Manra	Hell M 4	железо/(Железо его соединения (в пересчете на									
0143		viapie		ло соединения (в пересчете на парганец (IV) оксид)	0,0002574	0,000278	1	0,09	28,50	0,50	0,00	0,00	0,00
0301	Аз	ота д		(Двуокись азота; пероксид азота)	0,0005100	0,000551	1	0,01	28,50	0,50	0,00	0,00	0,0
0304			Азот (І	I) оксид (Азот монооксид)	0,0000829	0,000089	1	0,00	28,50	0,50	0,00	0,00	0,00

Изм. Кол.уч Лист №док Подп. Дата

Взам. Инв. №

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

Выбросы источников по веществам

Типы источников:

- 1 Точечный;
- 2 Линейный;

- 3 Неорганизованный;4 Совокупность точечных источников;5 С зависимостью массы выброса от скорости ветра;
- 6 Точечный, с зонтом или выбросом горизонтально;
- 7 Совокупность точечных (зонт или выброс вбок);
- 8 Автомагистраль (неорганизованный линейный); 9 Точечный, с выбросом в бок;
- 10 Свеча;
- 11- Неорганизованный (полигон);
- 12 Передвижной.

Вещество: 0123 диЖелезо триоксид, (железа оксид) (в пересчете на железо) (Железо сесквиоксид)

Nº	Nº	Nº		Выброс	_	Лето Зим		Зима			
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	6508	3	0,0036000	3	0,00	5,70	0,50	0,00	0,00	0,00
1	0	6509	3	0,0032819	1	0,00	28,50	0,50	0,00	0,00	0,00
	Ит	ого:		0,0068819		0,00			0,00		

Вещество: 0143 Марганец и его соединения (в пересчете на марганец (IV) оксид)

Nº	Nº	Nº		Выброс	F		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	+	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	6509	3	0,0002574	1	0,09	28,50	0,50	0,00	0,00	0,00
	Ито	ого:		0,0002574		0,09			0,00		

Вещество: 0301 Азота диоксид (Двуокись азота; пероксид азота)

Nº	Nº	Nº	32.1	Выброс			Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	5501	1	0,0853333	1	0,19	100,50	3,87	0,00	0,00	0,00
1	0	6501	3	0,0859258	1	1,45	28,50	0,50	0,00	0,00	0,00
1	0	6502	3	0,0075689	1	0,13	28,50	0,50	0,00	0,00	0,00
1	0	6503	3	0,0010089	1	0,02	28,50	0,50	0,00	0,00	0,00
1	0	6504	3	0,0010089	1	0,02	28,50	0,50	0,00	0,00	0,00
1	0	6509	3	0,0005100	1	0,01	28,50	0,50	0,00	0,00	0,00
	Ит	ого:		0,1813558		1,81			0,00		

Вещество: 0304 Азот (II) оксид (Азот монооксид)

Nº	Nº	Nº		Выброс	4	Лето Зима					
пл.	цех.	ист.	Тип	(г/с)		Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	5501	1	0,0138667	1	0,02	100,50	3,87	0,00	0,00	0,00

						Γ
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв.

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

	Ит	гого:		0,0294684		0,15			0,00		
1	0	6509	3	0,0000829	1	0,00	28,50	0,50	0,00	0,00	0,00
1	0	6504	3	0,0001639	1	0,00	28,50	0,50	0,00	0,00	0,00
1	0	6503	3	0,0001639	1	0,00	28,50	0,50	0,00	0,00	0,00
1	0	6502	3	0,0012299	1	0,01	28,50	0,50	0,00	0,00	0,00
1	0	6501	3	0,0139611	1	0,12	28,50	0,50	0,00	0,00	0,00

Вещество: 0328 Углерод (Пигмент черный)

Nº	Nº	Nº		Выброс	2		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	5501	1	0,0039722	1	0,01	100,50	3,87	0,00	0,00	0,00
1	0	6501	3	0,0160782	1	0,36	28,50	0,50	0,00	0,00	0,00
1	0	6502	3	0,0004000	1	0,01	28,50	0,50	0,00	0,00	0,00
1	0	6503	3	0,0000783	1	0,00	28,50	0,50	0,00	0,00	0,00
1	0	6504	3	0,0000783	1	0,00	28,50	0,50	0,00	0,00	0,00
	Ит	ого:		0,0206070		0,39			0,00		- 1

Вещество: 0330 Сера диоксид

Nº	Nº	Nº	2.4	Выброс	4		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Cm/ПДК	Xm	Um	Cm/ПДК	Xm	Um
1	0	5501	1	0,0333333	1	0,03	100,50	3,87	0,00	0,00	0,00
1	0	6501	3	0,0097979	1	0,07	28,50	0,50	0,00	0,00	0,00
1	0	6502	3	0,0014694	1	0,01	28,50	0,50	0,00	0,00	0,00
1	0	6503	3	0,0003625	1	0,00	28,50	0,50	0,00	0,00	0,00
1	0	6504	3	0,0003625	1	0,00	28,50	0,50	0,00	0,00	0,00
	Ит	ого:		0,0453256		0,11			0,00		

Вещество: 0333 Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)

Nº	Nº	Nº	22.1	Выброс (г/с)			Лето			Зима	
пл.	цех.	ист.	Тип		F	Cm/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	6505	3	0,0001350	1	0,48	11,40	0,50	0,00	0,00	0,00
	Ит	ого:		0,0001350		0,48			0,00		

Вещество: 0337 Углерода оксид (Углерод окись; углерод моноокись; угарный газ)

Nº	Nº	Nº	Тип	Выброс (г/с)		Лето			Зима			
пл.	цех.	ист.	Тип		F	Ст/ПДК	Xm	Um	Cm/ПДК	Xm	Um	
1	0	5501	1	0,0861111	1	0,01	100,50	3,87	0,00	0,00	0,00	
1	0	6501	3	0,0769173	1	0,05	28,50	0,50	0,00	0,00	0,00	
1	0	6502	3	0,0204444	1	0,01	28,50	0,50	0,00	0,00	0,00	
1	0	6503	3	0,0015238	1	0,00	28,50	0,50	0,00	0,00	0,00	

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв. №

Подп. и дата

	Ит	ого:		0,1898137		0,08			0,00		
1	0	6509	3	0,0031403	1	0,00	28,50	0,50	0,00	0,00	0,00
1	0	6506	3	0,0001530	1	0,00	11,40	0,50	0,00	0,00	0,00
1	0	6504	3	0,0015238	1	0,00	28,50	0,50	0,00	0,00	0,00

Вещество: 0342

'Фтористые газообразные соединения (в пересчете на фтор): - Гидрофторид (Водород фторид; фтороводород)

Nº	Nº	Nº		Выброс	20		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	6509	3	0,0002196	1	0,04	28,50	0,50	0,00	0,00	0,00
	Ит	ого:		0,0002196		0,04			0,00		

Вещество: 0344

Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат)

Nº	Nº	Nº	U. I	Выброс			Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Cm/ПДК	Xm	Um
1	0	6509	3	0,0002361	1	0,00	28,50	0,50	0,00	0,00	0,00
	Ит	ого:		0,0002361		0,00			0,00		

Вещество: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (Метилтолуол)

Nº	Nº	Nº	0.557	Выброс	- 2		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Cm/ПДК	Xm	Um
1	0	6510	3	0,0036124	1	0,52	11,40	0,50	0,00	0,00	0,00
	Ит	ого:	4	0,0036124		0,52	- 0		0,00		

Вещество: 0703 Бенз/а/пирен

Nº	Nº	Nº	Тип	Выброс			Лето		Зима			
пл.	цех.	ист.	ТИП	(r/c)		Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um	
1	0	5501	1	0,0000001	1	0,00	100,50	3,87	0,00	0,00	0,00	
	Ит	ого:		0,0000001		0,00			0,00			

Вещество: 1325 Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)

Nº	Nº	Nº	12.1	Выброс	2.1		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Cm/ПДК	Xm	Um
1	0	5501	1	0,0009444	1	0,01	100,50	3,87	0,00	0,00	0,00
	Ит	ого:		0,0009444		0,01			0,00		

Подп. и			
Инв. № подл.			
읟			
HB.			
Z	Изм.	Кол.уч	
			Ī

Лист №док

Подп.

Дата

Взам. Инв. №

04/2022-151	-00000-0	OBOC-TY

Вещество: 1537 Метановая кислота

Nº	Nº	Nº	123	Выброс			Лето		Зима		
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Cm/ПДК	Xm	Um
1	0	6506	3	0,0003060	1	0,04	11,40	0,50	0,00	0,00	0,00
	Ит	ого:		0,0003060		0,04			0,00		

Вещество: 2732 Керосин (Керосин прямой перегонки; керосин дезодорированный)

Nº	Nº	Nº		Выброс	2		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	5501	1	0,0230278	1	0,01	100,50	3,87	0,00	0,00	0,00
1	0	6501	3	0,0219909	1	0,06	28,50	0,50	0,00	0,00	0,00
1	0	6502	3	0,0073389	1	0,02	28,50	0,50	0,00	0,00	0,00
1	0	6503	3	0,0004275	1	0,00	28,50	0,50	0,00	0,00	0,00
1	0	6504	3	0,0004275	1	0,00	28,50	0,50	0,00	0,00	0,00
	Ит	ого:		0,0532126		0,09			0,00		

Вещество: 2752 Уайт-спирит

Nº	Nº	Nº		Выброс	2		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	6510	3	0,0018365	1	0,05	11,40	0,50	0,00	0,00	0,00
	Ит	ого:		0,0018365		0,05			0,00		

Вещество: 2754 Алканы С12-19 (в пересчете на С)

Nº Nº	Nº		Выброс	12.7		Лето			Зима		
пл.	цех.	ист.	Тип	(r/c)	•	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	6505	3	0,0279900	1	0,80	11,40	0,50	0,00	0,00	0,00
	Ит	ого:		0,0279900		0,80			0,00		

Вещество: 2902 Взвешенные вещества

Nº Nº	Nº	4_34.7	Выброс	25		Лето			Зима		
пл.	цех.	ист.	Тип	(r/c)	F	Cm/ПДК	Xm	Um	Cm/ПДК	Xm	Um
1	0	6507	3	0,0320160	3	5,49	5,70	0,50	0,00	0,00	0,00
1	0	6510	3	0,0021548	1	0,12	11,40	0,50	0,00	0,00	0,00
	Ит	ого:		0,0341708		5,61		- 3	0,00		

Ľ						
Инв. № подл.						
ᅵᅙ						
HB.						
Ż	Изм.	Кол.уч	Лист	№док	Подп.	Дат

Взам. Инв. №

Вещество: 2908

Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем и другие)

Nº	Nº	Nº	25	Выброс	121		Лето			Зима	
пл.	цех.	ист.	Тип	(г/c)	г	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	6507	3	0,0213440	3	6,10	5,70	0,50	0,00	0,00	0,00
1	0	6509	3	0,0002361	1	0,00	28,50	0,50	0,00	0,00	0,00
1	0	6511	3	0,0029127	3	0,83	5,70	0,50	0,00	0,00	0,00
	Ит	ого:		0,0244928		6,93			0,00		

Вещество: 2930 Пыль абразивная

Nº	Nº	Nº		Выброс	1.2		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	6508	3	0,0024000	3	5,14	5,70	0,50	0,00	0,00	0,00
	Ит	ого:		0,0024000		5,14			0,00		

 8 эн
 Изм. Кол.уч Лист №док Подп. Дата
 04/2022-151-00000-OBOC-TЧ
 Лист

 595

Выбросы источников по группам суммации

Типы источников:

- 1 Точечный;
- 2 Линейный;

- 3 Неорганизованный;4 Совокупность точечных источников;5 С зависимостью массы выброса от скорости ветра;
- 6 Точечный, с зонтом или выбросом горизонтально;
- 7 Совокупность точечных (зонт или выброс вбок);
- 8 Автомагистраль (неорганизованный линейный); 9 Точечный, с выбросом в бок;
- 10 Свеча;
- 11- Неорганизованный (полигон);
- 12 Передвижной.

Группа суммации: 6035 Сероводород, формальдегид

Nº	Nº	№ № _{тип} Код Выброс		Выброс	F		Лето			Зима		
пл.	цех.	ист.	Тип	в-ва	2.1	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	6505	3	0333	0,0001350	1	0,48	11,40	0,50	0,00	0,00	0,00
1	0	5501	1	1325	0,0009444	1	0,01	100,50	3,87	0,00	0,00	0,00
		Итог	o:		0,0010794		0,49		= = 1	0,00		- 1

Группа суммации: 6043 Серы диоксид и сероводород

Nº	Nº	Nº		Код	Выброс	2		Лето			Зима	
пл.	цех.	ист.	Тип	в-ва	(r/c)	F	Ст/ПДК	Xm	Um	Cm/ПДК	Xm	Um
1	0	5501	1	0330	0,0333333	1	0,03	100,50	3,87	0,00	0,00	0,00
1	0	6501	3	0330	0,0097979	1	0,07	28,50	0,50	0,00	0,00	0,00
1	0	6502	3	0330	0,0014694	1	0,01	28,50	0,50	0,00	0,00	0,00
1	0	6503	3	0330	0,0003625	1	0,00	28,50	0,50	0,00	0,00	0,00
1	0	6504	3	0330	0,0003625	1	0,00	28,50	0,50	0,00	0,00	0,00
1	0	6505	3	0333	0,0001350	1	0,48	11,40	0,50	0,00	0,00	0,00
	Итого: 0,0454606			0,59			0,00					

Группа суммации: 6053 Фтористый водород и плохорастворимые соли фтора

Nº		Nº		Код	Выброс			Лето			Зима	
125	цех.	ех. ист.	Тип	в-ва	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	6509	3	0342	0,0002196	1	0,04	28,50	0,50	0,00	0,00	0,00
1	0	6509	3	0344	0,0002361	1	0,00	28,50	0,50	0,00	0,00	0,00
		Итог	o:		0,0004557	-	0,04			0,00		

подл.						
2						
Инв.						
Ż	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

одп. и дата

04/2022-151-00000-OBOC-TY

Группа суммации: 6204 Азота диоксид, серы диоксид

Nº	No	Nº		Код	Выброс			Лето			Зима	
пл.	цех.	ист.	Тип	в-ва	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	5501	1	0301	0,0853333	1	0,19	100,50	3,87	0,00	0,00	0,00
1	0	6501	3	0301	0,0859258	1	1,45	28,50	0,50	0,00	0,00	0,00
1	0	6502	3	0301	0,0075689	1	0,13	28,50	0,50	0,00	0,00	0,00
1	0	6503	3	0301	0,0010089	1	0,02	28,50	0,50	0,00	0,00	0,00
1	0	6504	3	0301	0,0010089	1	0,02	28,50	0,50	0,00	0,00	0,00
1	0	6509	3	0301	0,0005100	1	0,01	28,50	0,50	0,00	0,00	0,00
1	0	5501	1	0330	0,0333333	1	0,03	100,50	3,87	0,00	0,00	0,00
1	0	6501	3	0330	0,0097979	1	0,07	28,50	0,50	0,00	0,00	0,00
1	0	6502	3	0330	0,0014694	1	0,01	28,50	0,50	0,00	0,00	0,00
1	0	6503	3	0330	0,0003625	1	0,00	28,50	0,50	0,00	0,00	0,00
1	0	6504	3	0330	0,0003625	1	0,00	28,50	0,50	0,00	0,00	0,00
		Итог	o:		0,2266814	-	1,20			0,00		

Суммарное значение Ст/ПДК для группы рассчитано с учетом коэффициента неполной суммации 1,60

Группа суммации: 6205 Серы диоксид и фтористый водород

Nº	No	Nº		Код	Выброс	F	Лето				Зима	
пл.	цех.	ист.	Тип	в-ва	(r/c)		Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	0	5501	1	0330	0,0333333	1	0,03	100,50	3,87	0,00	0,00	0,00
1	0	6501	3	0330	0,0097979	1	0,07	28,50	0,50	0,00	0,00	0,00
1	0	6502	3	0330	0,0014694	1	0,01	28,50	0,50	0,00	0,00	0,00
1	0	6503	3	0330	0,0003625	1	0,00	28,50	0,50	0,00	0,00	0,00
1	0	6504	3	0330	0,0003625	1	0,00	28,50	0,50	0,00	0,00	0,00
1	0	6509	3	0342	0,0002196	1	0,04	28,50	0,50	0,00	0,00	0,00
		Итог	o:		0,0455452		0,08			0,00		

Лист

595

Суммарное значение Ст/ПДК для группы рассчитано с учетом коэффициента неполной суммации 1,80

Взам. И								
Подп. и дата								
подл.								
윋								04/2022-151-00000-OBOC-TY
ZHB		Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Расчет проводился по веществам (группам суммации)

			Фоновая						
Код	Наименование вещества	Расчет максимальных концентраций		Расчет среднегодовых концентраций		Расчет среднесуточных концентраций		концентр.	
		Тип	Значение	Тип	Значение	Тип	Значение	Учет	Интерп.
0123	диЖелезо триоксид (железа оксид) (в пересчете на железо)			ПДК с/с	0,040	ПДК с/с	0,040	Нет	Нет
0143	Марганец и его соединения (в пересчете на марганец (IV) оксид)	ПДК м/р	0,010	ПДК с/г	0,001	ПДК с/с	0,001	Нет	Нет
0301	Азота диоксид (Двуокись азота; пероксид азота)	ПДК м/р	0,200	ПДК с/г	0,040	ПДК с/с	0,100	Да	Нет
0304	Азот (II) оксид (Азот монооксид)	ПДК м/р	0,400	ПДК с/г	0,060	ПДК с/с	9	Нет	Нет
0328	Углерод (Пигмент черный)	ПДК м/р	0,150	ПДК с/г	0,025	ПДК с/с	0,050	Нет	Нет
0330	Сера диоксид	ПДК м/р	0,500	ПДК с/с	0,050	ПДК с/с	0,050	Да	Нет
0333	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	ПДК м/р	0,008	ПДК с/г	0,002	ПДК с/с		Нет	Нет
0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	ПДК м/р	5,000	ПДК с/г	3,000	ПДК с/с	3,000	Да	Нет
0342	Гидрофторид (Водород фторид; фтороводород)	ПДК м/р	0,020	ПДК с/г	0,005	ПДК с/с	0,014	Нет	Нет
0344	Фториды неорганические плохо растворимые	ПДК м/р	0,200	ПДК с/с	0,030	ПДК с/с	0,030	Нет	Нет
0616	Диметилбензол (смесь о-, м-, п- изомеров) (Метилтолуол)	ПДК м/р	0,200	ПДК с/г	0,100	ПДК с/с		Нет	Нет
0703	Бенз/а/пирен		-	ПДК с/г	1,000E-06	ПДК с/с	1,000E-06	Нет	Нет
1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	ПДК м/р	0,050	ПДК с/г	0,003	ПДК с/с	0,010	Нет	Нет
1537	Метановая кислота	ПДК м/р	0,200	ПДК с/с	0,050	ПДК с/с	0,050	Нет	Нет
2732	Керосин (Керосин прямой перегонки; керосин дезодорированный)	ОБУВ	1,200	-		ПДК с/с	76	Нет	Нет
2752	Уайт-спирит	ОБУВ	1,000		L	ПДК с/с		Нет	Нет
2754	Алканы С12-19 (в пересчете на С)	ПДК м/р	1,000	- 1	-	ПДК с/с	-	Нет	Нет
2902	Взвешенные вещества	ПДК м/р	0,500	ПДК с/г	0,075	ПДК с/с	0,150	Нет	Нет
2908	Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20	ПДК м/р	0,300	ПДК с/с	0,100	ПДК с/с	0,100	Нет	Нет
2930	Пыль абразивная	ОБУВ	0,040		-	ПДК с/с	-	Нет	Нет
6035	Группа суммации: Сероводород, формальдегид	Группа суммации	1-	Группа суммации		Группа суммации	-	Нет	Нет
6043	Группа суммации: Серы диоксид и сероводород	Группа суммации		Группа суммации	1	Группа суммации		Нет	Нет
6053	Группа суммации: Фтористый водород и плохорастворимые соли фтора	Группа суммации		Группа суммации		Группа суммации	-	Нет	Нет
6204	Группа неполной суммации с коэффициентом "1,6": Азота диоксид, серы диоксид	Группа суммации		Группа суммации		Группа суммации		Да	Нет
6205	Группа неполной суммации с коэффициентом "1,8": Серы диоксид и фтористый водород	Группа суммации	-	Группа суммации		Группа суммации		Нет	Нет

подл. Подп. и дата	Взам. Инв. №	
подл.	Подп. и дата	
	№ подл.	

ı						
	Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY
04/2022-131-00000-0000-1-1

Перебор метеопараметров при расчете

Набор-автомат

Перебор скоростей ветра осуществляется автоматически

Направление ветра

Начало сектора	Конец сектора	Шаг перебора ветра
0	360	1

 8 мини
 1 мени
 1 мени

Расчетные области

Расчетные площадки

	од Тип		Полное с	описание плоц	цадки					
Код	Тип	Координаты 1-й сторо		Координаты 2-й сторо		Ширина	Зона влияния	Шаг	(M)	Высота (м)
		х	Υ	х	Υ	(M)	(M)	По ширине	По длине	
1	Полное описание	-1887,60	10,85	2512,40	10,85	2600,00	0,00	200,00	200,00	2,00

Расчетные точки

	Координат	гы (м)	B	F42.0000	Washington 18
Код	х	Y	Высота (м)	Тип точки	Комментарий
9	-1095,40	88,20	2,00	на границе жилой зоны	Расчетная точка
10	-842,00	-161,20	2,00	на границе жилой зоны	Расчетная точка
11	-894,90	-417,80	2,00	на границе жилой зоны	Расчетная точка
12	-1095,90	-717,50	2,00	на границе жилой зоны	Расчетная точка

Результаты расчета по веществам (расчетные точки)

Типы точек:

- 0 расчетная точка пользователя 1 точка на границе охранной зоны
- 2 точка на границе производственной зоны
- 3 точка на границе СЗЗ
- 4 на границе жилой зоны 5 на границе застройки 6 точки квотирования

Вещество: 0123 диЖелезо триоксид, (железа оксид) (в пересчете на железо) (Железо сесквиоксид)

	Коорд	Коорд	ота	Концентр.	Концентр.	Hann	Скор.		Фон	Фон д	о исключения	- 2
Nº	Х(м)	Ү(м)	Высо (м)	(д. ПДК)	(мг/куб.м)	ветра		доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	ТИТ
12	-1095,90	-717,50	2,00	- 4	1,306E-04	61	6,00	-		4		. 4
9	-1095,40	88,20	2,00	-	1,648E-04	89	6,00	-				. 4
11	-894,90	-417,80	2,00	-	1,875E-04	68	6,00	- 4				. 4
10	-842,00	-161,20	2,00		2,235E-04	77	6,00	T-1				. 4

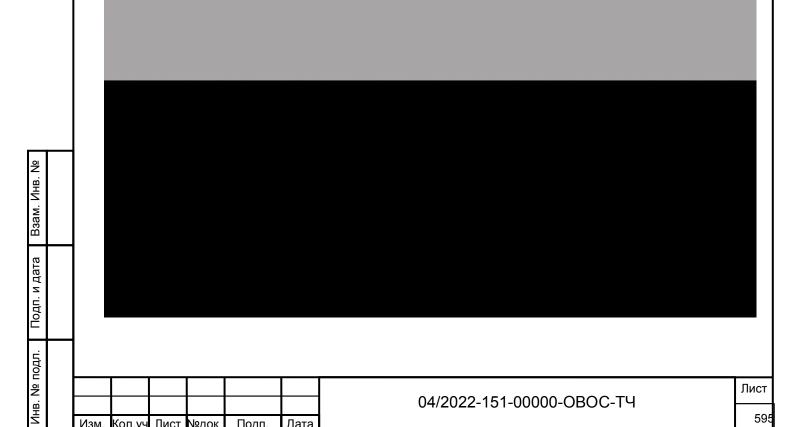
Вещество: 0143 Марганец и его соединения (в пересчете на марганец (IV) оксид)

	Коорд	Коорд	ота	Концентр.	Концентр.	Напр	Скор.		Фон	Фон д	до исключения	- 2
Nº	Х(м)	Ү(м)	Bыcc (M)	(д. ПДК)	(мг/куб.м)	ветра	10000	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
10	-842,00	-161,20	2,00	9,87E-04	9,874E-06	78	6,00	4		-		- 4
11	-894,90	-417,80	2,00	8,19E-04	8,186E-06	67	6,00	-				- 4
9	-1095,40	88,20	2,00	7,19E-04	7,191E-06	89	6,00	-				- 4
12	-1095,90	-717,50	2,00	5,54E-04	5,542E-06	61	6,00	= 4				- 4

Вещество: 0301 Азота диоксид (Двуокись азота; пероксид азота)

	Коорд	Коорд	ота	Концентр.	Концентр.	Напп	Скор.		Фон	Фон де	о исключения	- X
Nº	Х(м)	Ү(м)	Bыcc (M)	(д. ПДК)	(мг/куб.м)	ветра		доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Точ
10	-842,00	-161,20	2,00	0,42	0,084	77	1,14	0,39	0,079	0,39	0,079	4
11	-894,90	-417,80	2,00	0,42	0,083	67	1,14	0,39	0,079	0,39	0,079	4
9	-1095,40	88,20	2,00	0,42	0,083	87	0,86	0,39	0,079	0,39	0,079	4
12	-1095,90	-717,50	2,00	0,41	0,082	61	0,86	0,39	0,079	0,39	0,079	4

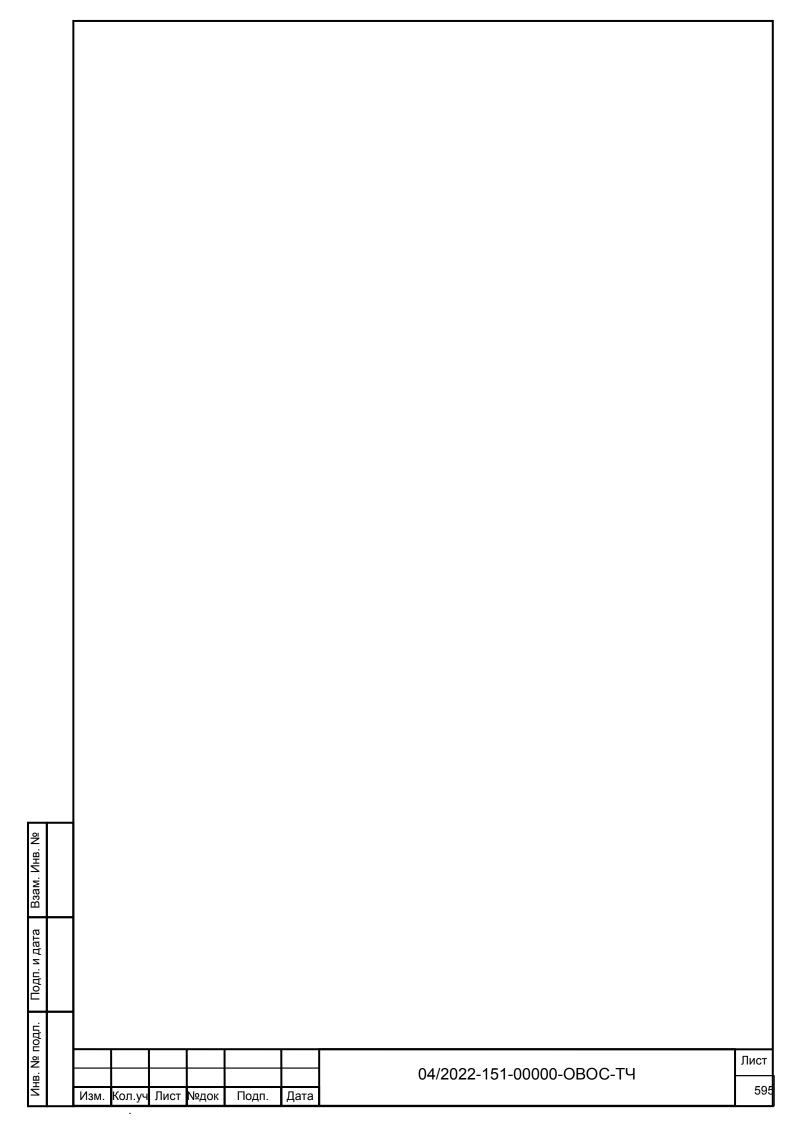
Вещество: 0304 Азот (II) оксид (Азот монооксид)


	Коорд	Коорд	та	Концентр.	Концентр.	Hann	Скор.		Фон	Фон д	о исключения	1,	ž
Nº	Х(м)	Y(м)	Bыco (м)	(д. ПДК)	(мг/куб.м)	ветра		доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Tul	TOT
10	-842,00	-161,20	2,00	2,07E-03	8,284E-04	77	1,14	100	- 5			-	4
11	-894,90	-417,80	2,00	1,81E-03	7,252E-04	67	1,14		-			-	4
9	-1095,40	88,20	2,00	1,68E-03	6,704E-04	87	0,86			100		-	4
12	-1095,90	-717,50	2,00	1,39E-03	5,570E-04	61	0,86				-	-	4

Взам. Инв. №	
Подп. и дата	
Инв. № подл.	

Изм.	1.6	_	Подп.	Дата

Вещество: 0328 Углерод (Пигмент черный)


	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения	_	Ž
Nº	Х(м)	Ү(м)	Bыco (M)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Ти	TOT
10	-842,00	-161,20	2,00	4,13E-03	6,199E-04	76	6,00	-		-		-	4
11	-894,90	-417,80	2,00	3,48E-03	5,227E-04	67	6,00	3-		-		-	4
9	-1095,40	88,20	2,00	3,15E-03	4,718E-04	87	6,00					-	4
12	1005 00	717 50	2.00	2 60E 03	3 805E 04	61	0.84						

Изм. Кол.уч Лист №док

Подп.

Дата

Вещество: 2732 Керосин (Керосин прямой перегонки; керосин дезодорированный)

	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cron		Фон	Фон д	о исключения].	Ž
Nº	Х(м)	Ү(м)	Bыco (м)	(д. ПДК)		ветра		доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тиг	
10	-842,00	-161,20	2,00	1,26E-03	0,002	77	1,08	1-1	7-			-	4
11	-894,90	-417,80	2,00	1,11E-03	0,001	67	1,08	- 14				-	4
9	-1095,40	88,20	2,00	1,02E-03	0,001	87	1,08	4		-		-	4
12	-1095,90	-717,50	2,00	8,46E-04	0,001	61	1,08	- 4		-		-	4

Вещество: 2752 Уайт-спирит

	Коорд	Коорд	та	Концентр.	Концентр.	Напр	Скор.		Фон	Фон д	о исключения	- 2
Nº	Х(м)	Ү(м)	Bыco (м)	(д. ПДК)		ветра	200	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
10	-842,00	-161,20	2,00	1,30E-04	1,304E-04	79	0,93	, - 0 t		0.00	-	4
11	-894,90	-417,80	2,00	1,11E-04	1,107E-04	70	1,27	-			-	4
9	-1095,40	88,20	2,00	1,03E-04	1,031E-04	89	1,27		3		-	4
12	-1095,90	-717,50	2,00	8,30E-05	8,304E-05	63	1,73	-		13	_	4

Вещество: 2754 Алканы С12-19 (в пересчете на С)

Œ.	Коорд	Коорд	ота	Концентр.	Концентр.	Напп	Скор.		Фон	Фон де	о исключения	- 2
Nº	Х(м)	Ү(м)	Bыco (M)	(д. ПДК)		ветра	2.7.7.4.	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тит
10	-842,00	-161,20	2,00	2,34E-03	0,002	77	0,68	1				- 4
11	-894,90	-417,80	2,00	2,05E-03	0,002	67	0,93		-	i Li		- 4
9	-1095,40	88,20	2,00	1,85E-03	0,002	89	0,93		/ -	-		- 4
12	-1095,90	-717,50	2,00	1,51E-03	0,002	61	1,27	2-		-		- 4

Вещество: 2902 Взвешенные вещества

Ţ.	Коорд	Коорд	та	Концентр.	Концентр.	Напр.	Cron	Фон		Фон	- Z	
Nº	Х(м)	Ү(м)	Bыco (M)	(д. ПДК)	(мг/куб.м)	0.000	ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тит
10	-842,00	-161,20	2,00	1,99E-03	9,950E-04	76	6,00	-		-		- 4
11	-894,90	-417,80	2,00	1,70E-03	8,488E-04	67	6,00	-	>	-		- 4
9	-1095,40	88,20	2,00	1,56E-03	7,820E-04	87	6,00	34				- 4
12	-1095,90	-717,50	2,00	1,23E-03	6,149E-04	61	6,00	-				- 4

Вещество: 2908

Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем и другие)

	Коорд	Коорд	та	Концентр.	Концентр.	Напп	Напр. Скор.		Фон		Фон до исключения		
Nº	Х(м)	Ү(м)	Высо (м)	(д. ПДК)		ветра	10000	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	ТиТ	ТОЧКИ
10	-842,00	-161,20	2,00	2,27E-03	6,821E-04	76	6,00	-	-	-		-	4
11	-894,90	-417,80	2,00	1,94E-03	5,815E-04	67	6,00	-		-		-	4
9	-1095,40	88,20	2,00	1,76E-03	5,277E-04	87	6,00	-		J		-	4
12	-1095,90	-717,50	2,00	1,38E-03	4,154E-04	61	6,00	3-		- i		-	4

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	L

Взам. Инв. №

Подп. и дата

Вещество: 2930 Пыль абразивная

	Коорд	Коорд	ота	Концентр.	Концентр.	Напп	Скор.	Фон		Фон до исключения			ž
Nº	Х(м)	Ү(м)	Bыco (M)	(д. ПДК)	(мг/куб.м)	ветра		доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	ТиТ	TOA
10	-842,00	-161,20	2,00	1,63E-03	6,509E-05	77	6,00	7-1	7-			-	4
11	-894,90	-417,80	2,00	1,39E-03	5,570E-05	68	6,00	1				-	4
9	-1095,40	88,20	2,00	1,26E-03	5,023E-05	87	6,00	1 - 34		-		-	4
12	-1095,90	-717,50	2,00	9,98E-04	3,993E-05	61	6,00	- 4		-	-	-	4

Вещество: 6035 Сероводород, формальдегид

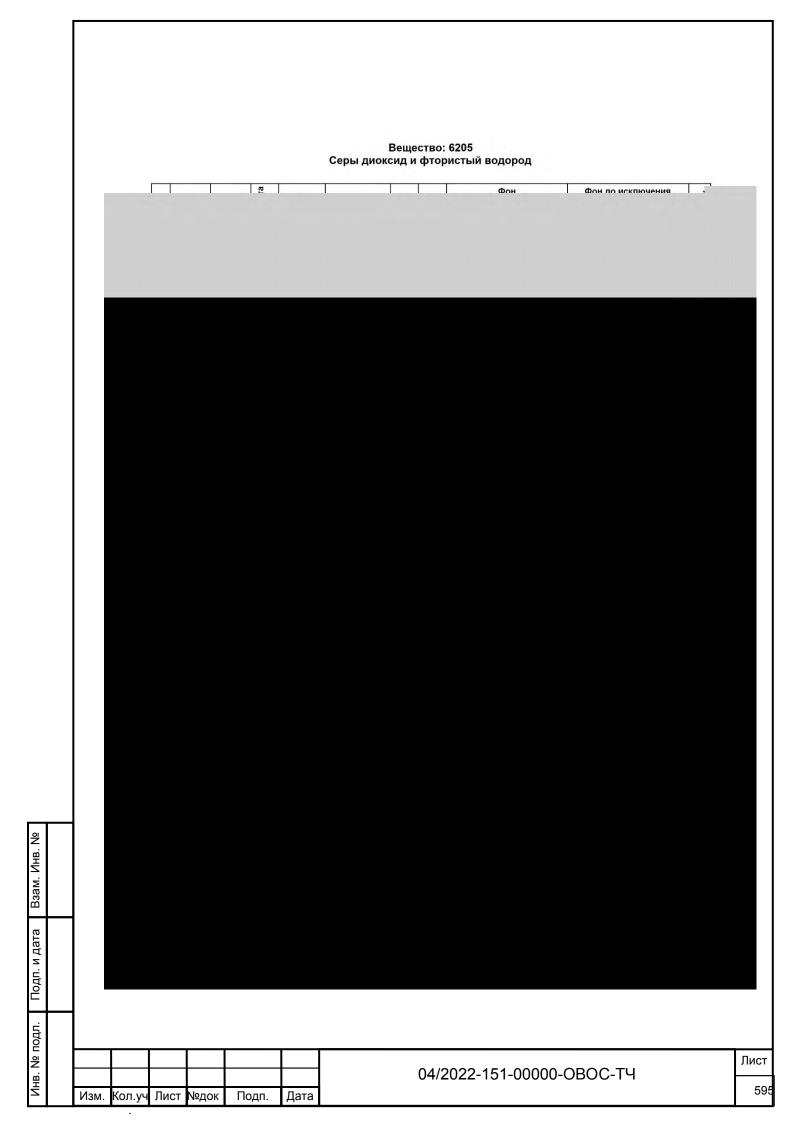
	Коорд	Коорд	та	Концентр.	Концентр.	Напп	Скор.	Фон		Фон до исключения		
Nº	Х(м)	Ү(м)	Bыco (м)	(д. ПДК)		ветра	200	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
10	-842,00	-161,20	2,00	1,91E-03		77	1,10	$t = c^{\frac{1}{2}}$		100		4
11	-894,90	-417,80	2,00	1,70E-03	-	68	1,10	-				4
9	-1095,40	88,20	2,00	1,57E-03	L i	88	1,10					4
12	-1095,90	-717,50	2,00	1,23E-03		61	1,10	-			-	4

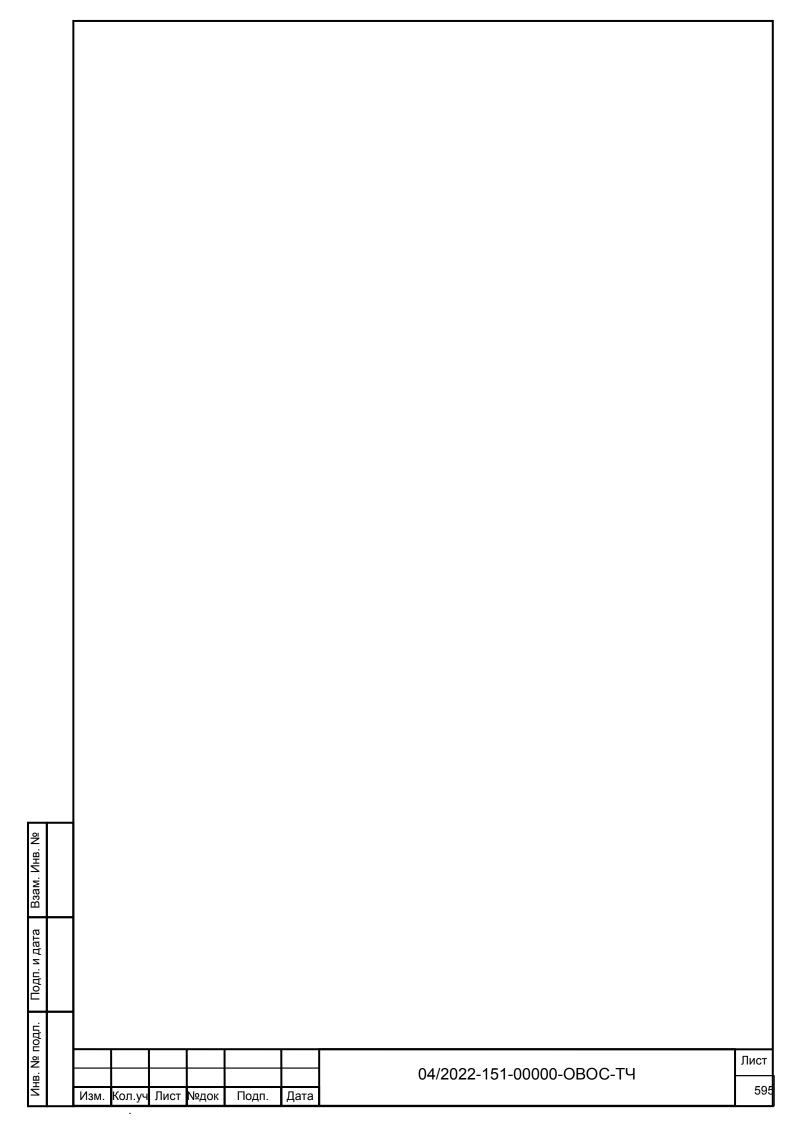
Вещество: 6043 Серы диоксид и сероводород

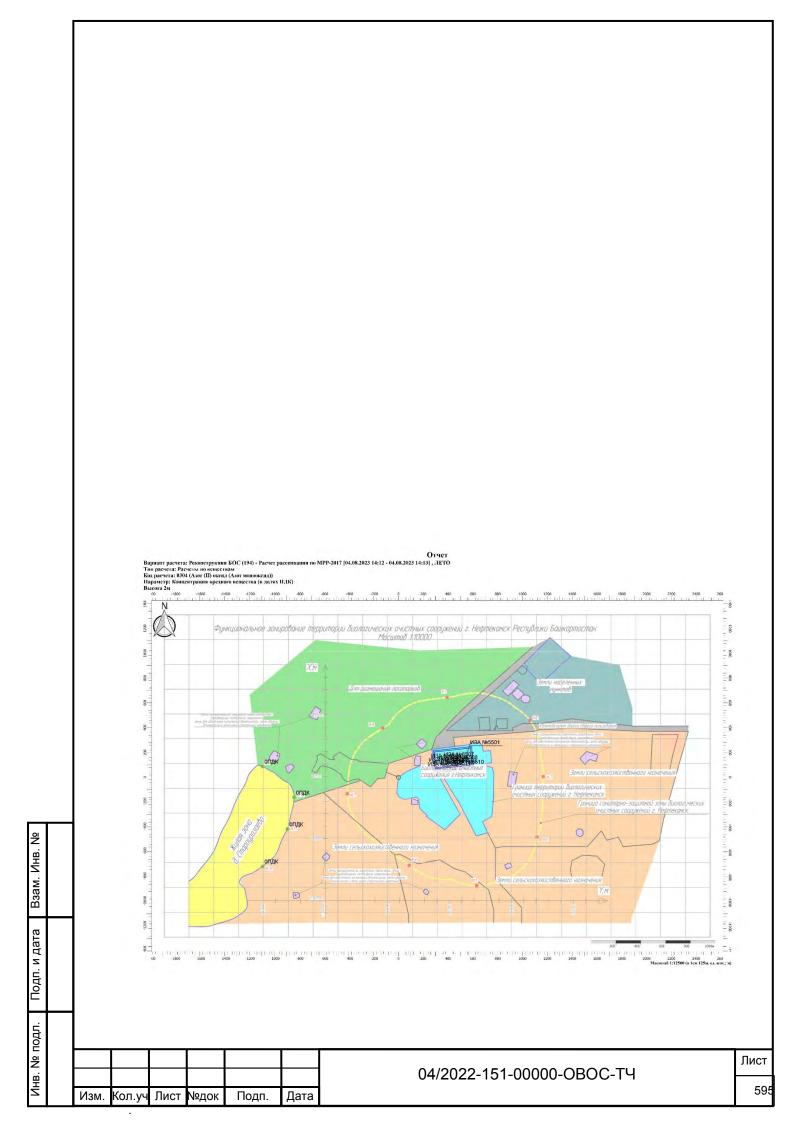
	Коорд	Коорд	та	Концентр.	Концентр.	Напп	Скор.	Фон		Фон до исключения		
Nº	Х(м)	Ү(м)	Bыco (M)	(д. ПДК)		ветра	2012/2016/01	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	ТиТ
10	-842,00	-161,20	2,00	4,10E-03		77	0,92		-	1000		-
11	-894,90	-417,80	2,00	3,63E-03		68	0,92	[-
9	-1095,40	88,20	2,00	3,30E-03	-	88	0,92	- 4	/-			-
12	-1095,90	-717,50	2,00	2,61E-03		61	0,92			-		

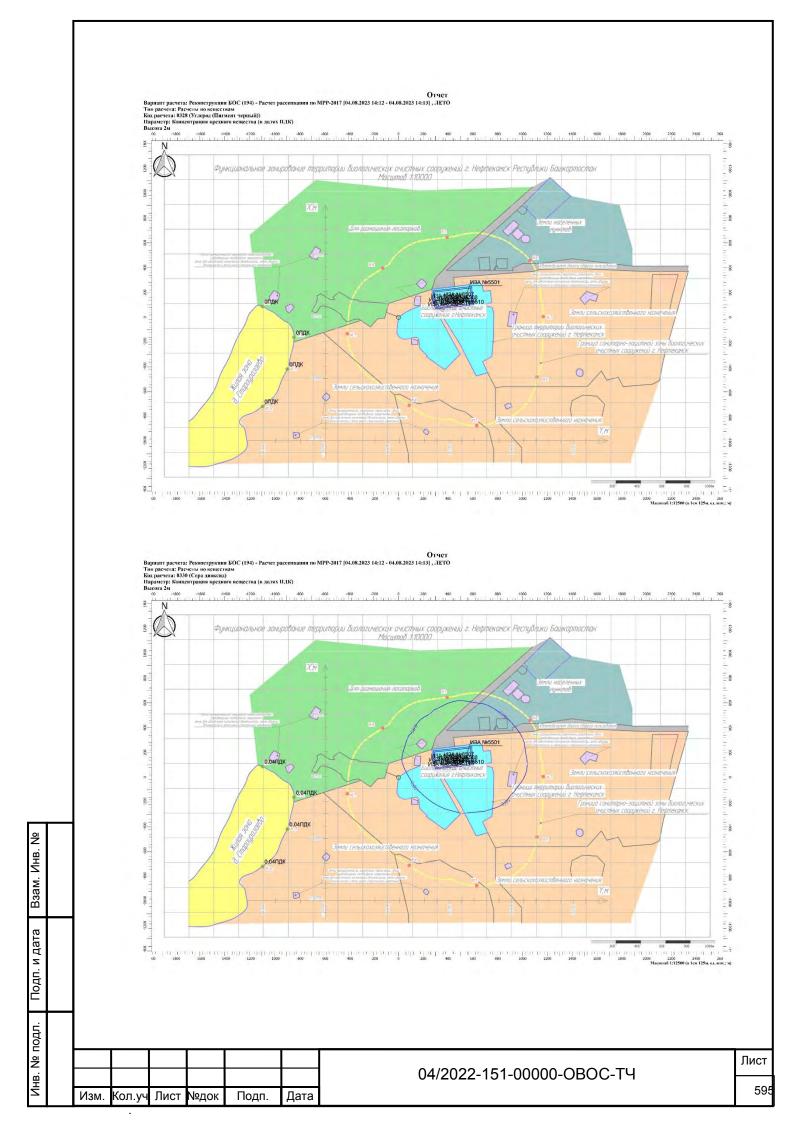
Вещество: 6053 Фтористый водород и плохорастворимые соли фтора

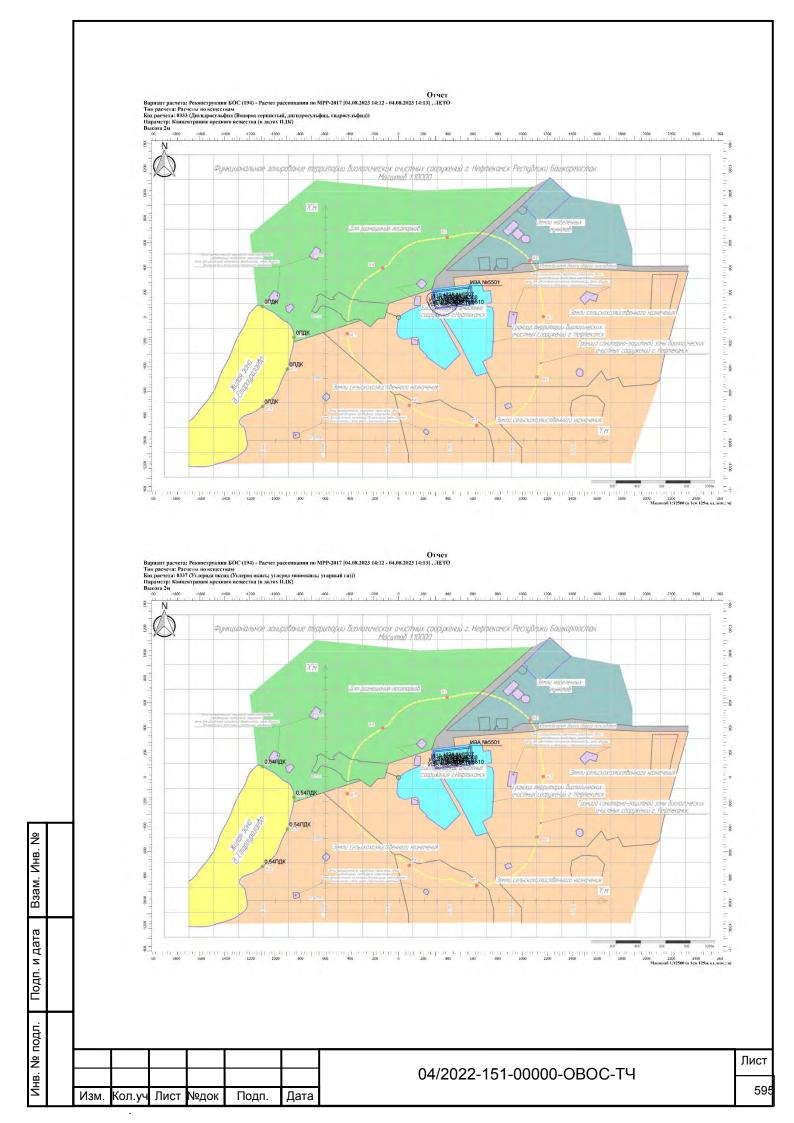
	Коорд	Коорд	та	Концентр.	Концентр.	Напр. Скор.		Фон		Фон д	- ž	
Nº	Х(м)	Ү(м)	Bыco (M)	(д. ПДК)	(мг/куб.м)	D. C	ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тит
10	-842,00	-161,20	2,00	4,66E-04		78	6,00	+	-	-		- 4
11	-894,90	-417,80	2,00	3,87E-04		67	6,00	-		-		- 4
9	-1095,40	88,20	2,00	3,40E-04		89	6,00	3-5-5	-	+	-	- 4
12	-1095,90	-717,50	2,00	2,62E-04		61	6,00		1-	-	10	- 4

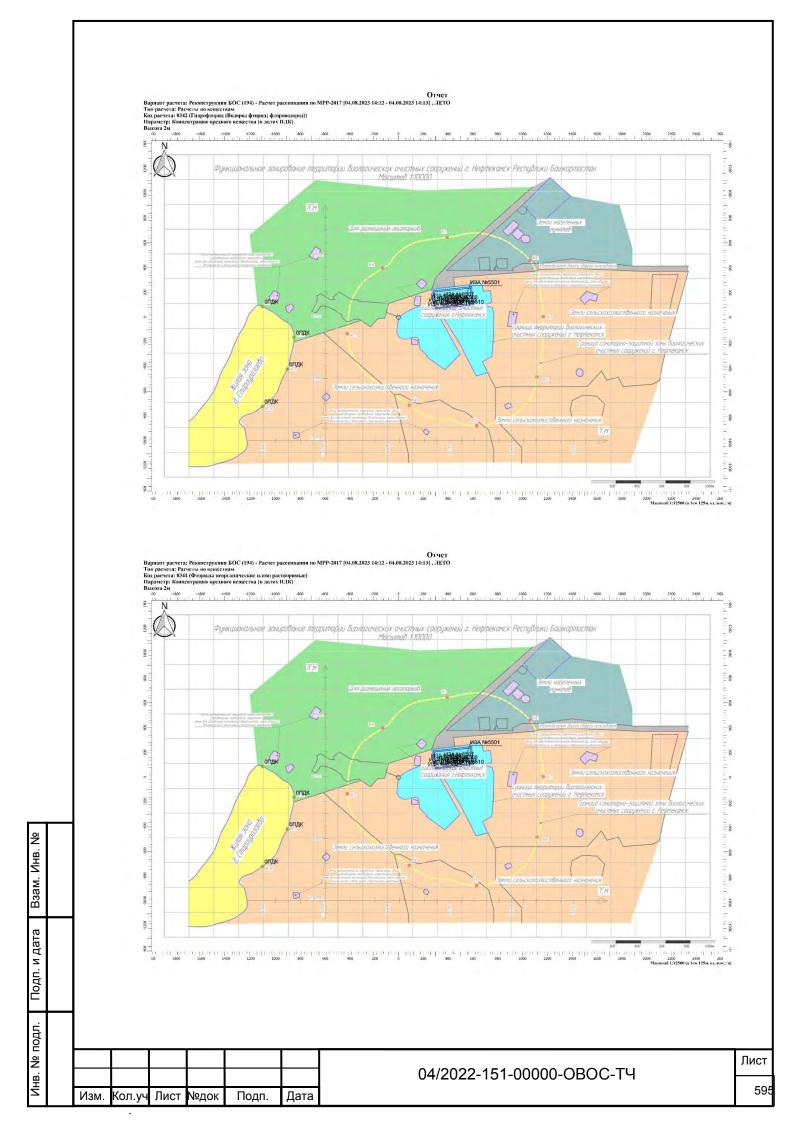

Вещество: 6204 Азота диоксид, серы диоксид

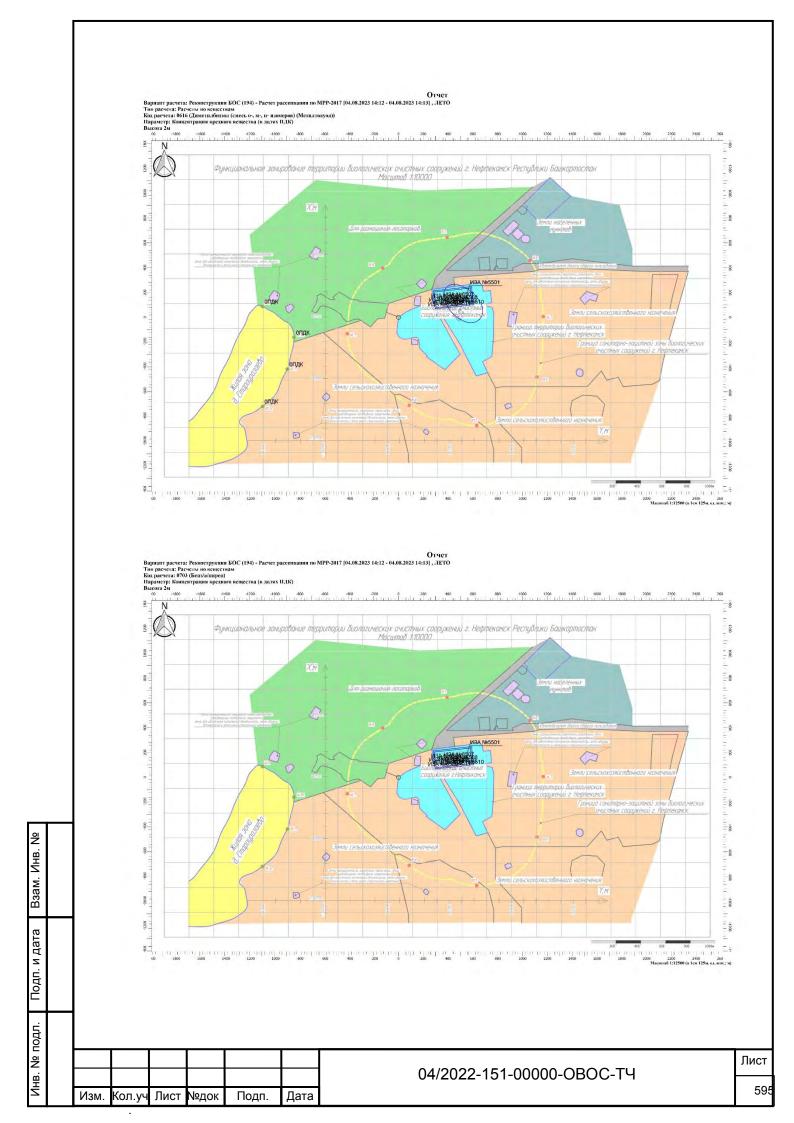

	Коорд	Коорд 5 Концентр. Концентр. Напр. Скор.		Фон		Фон до исключения			- ИХ				
Nº	Х(м)	Ү(м)	Высо (м)	(д. ПДК)	(мг/куб.м)		ветра	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	TMT	TO4
10	-842,00	-161,20	2,00	0,29	- 1	77	0,89	0,27	-	0,27		-	4
11	-894,90	-417,80	2,00	0,29		68	0,89	0,27		0,27		-	4
9	-1095,40	88,20	2,00	0,29	-	88	0,89	0,27	1.5-	0,27		-	4
12	-1095,90	-717,50	2,00	0,28		61	0,89	0,27		0,27		-	4

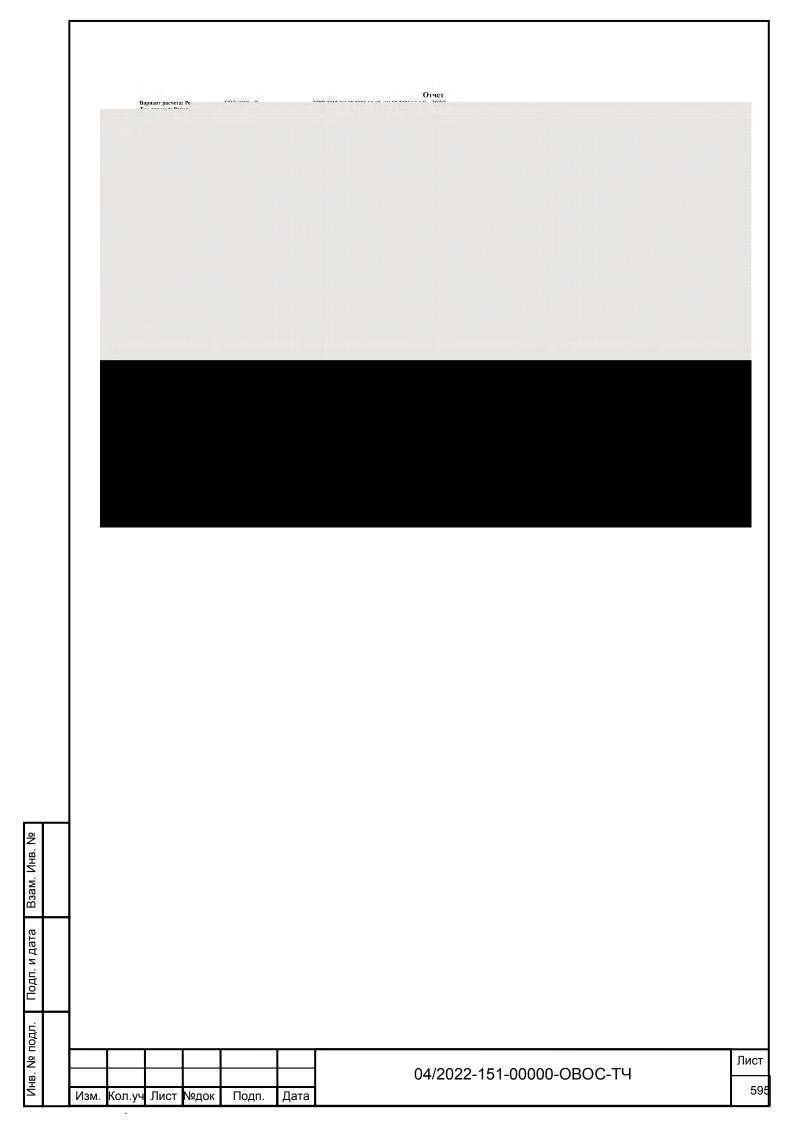

						ſ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

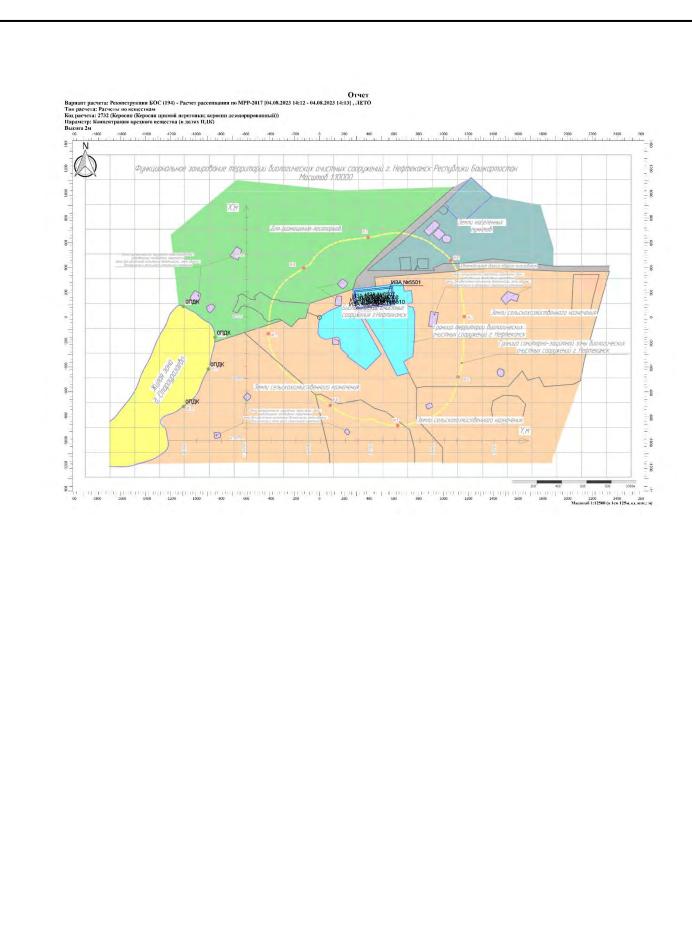

Взам. Инв. №

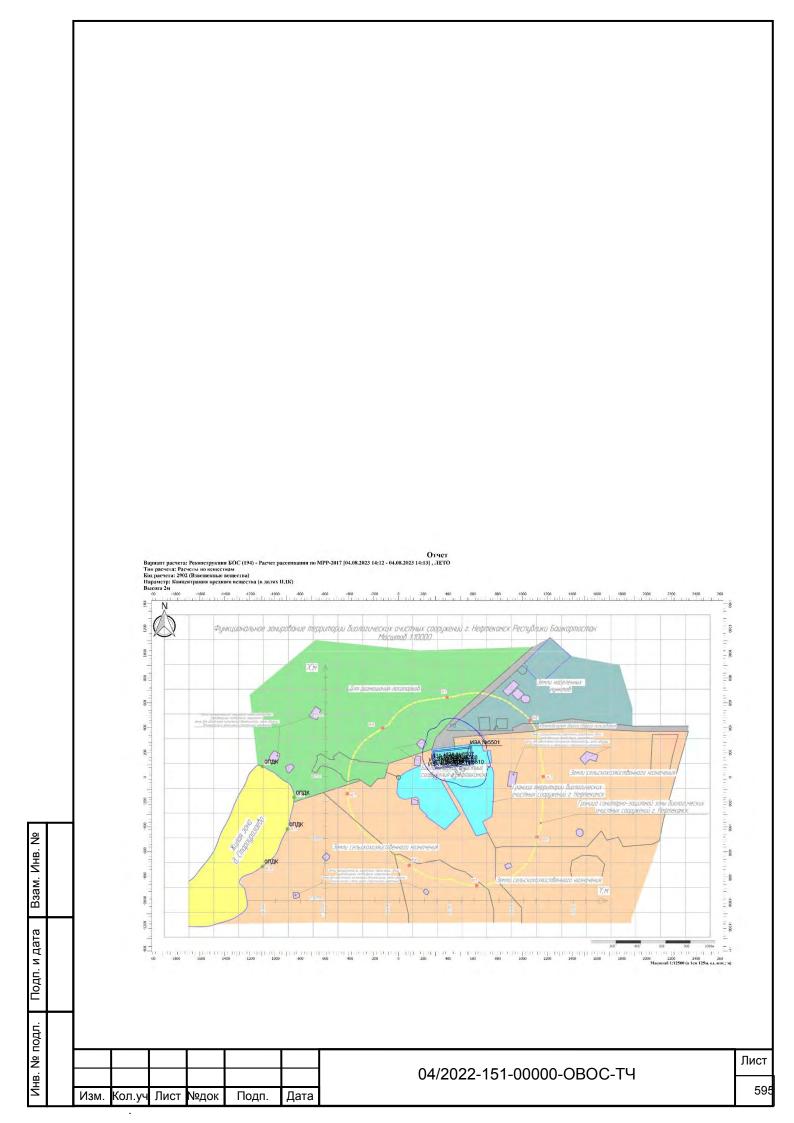

Подп. и дата



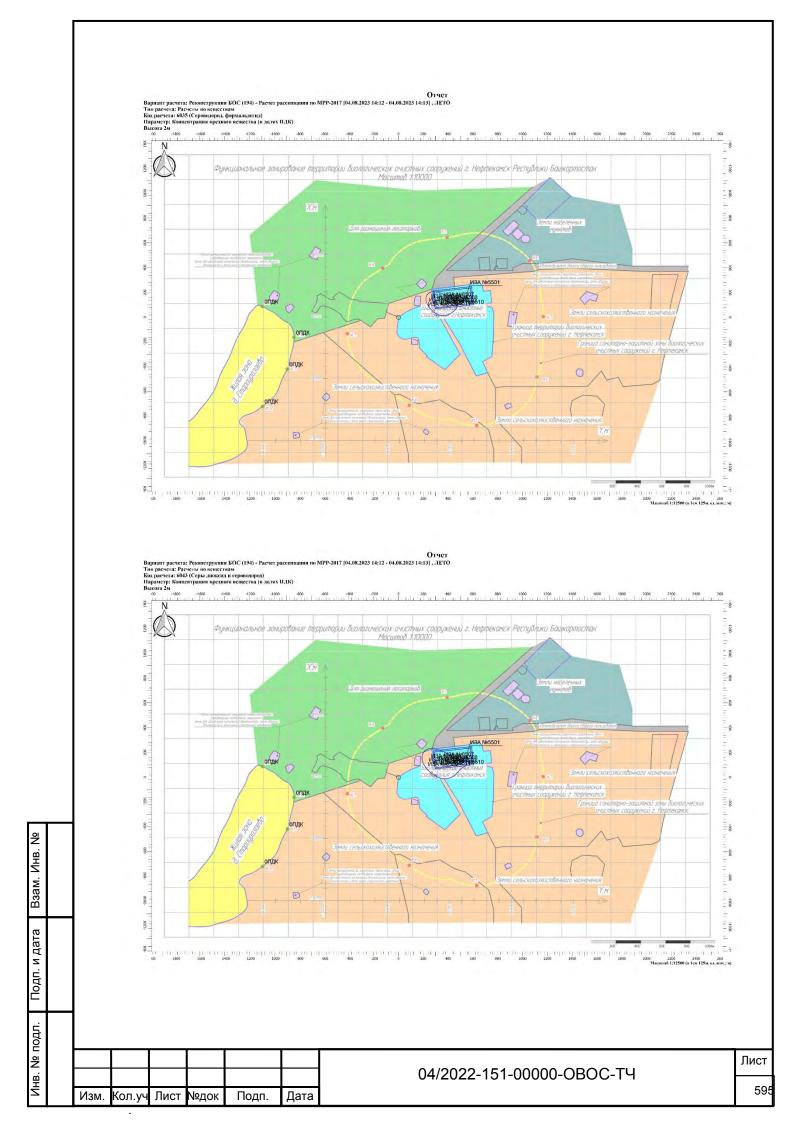


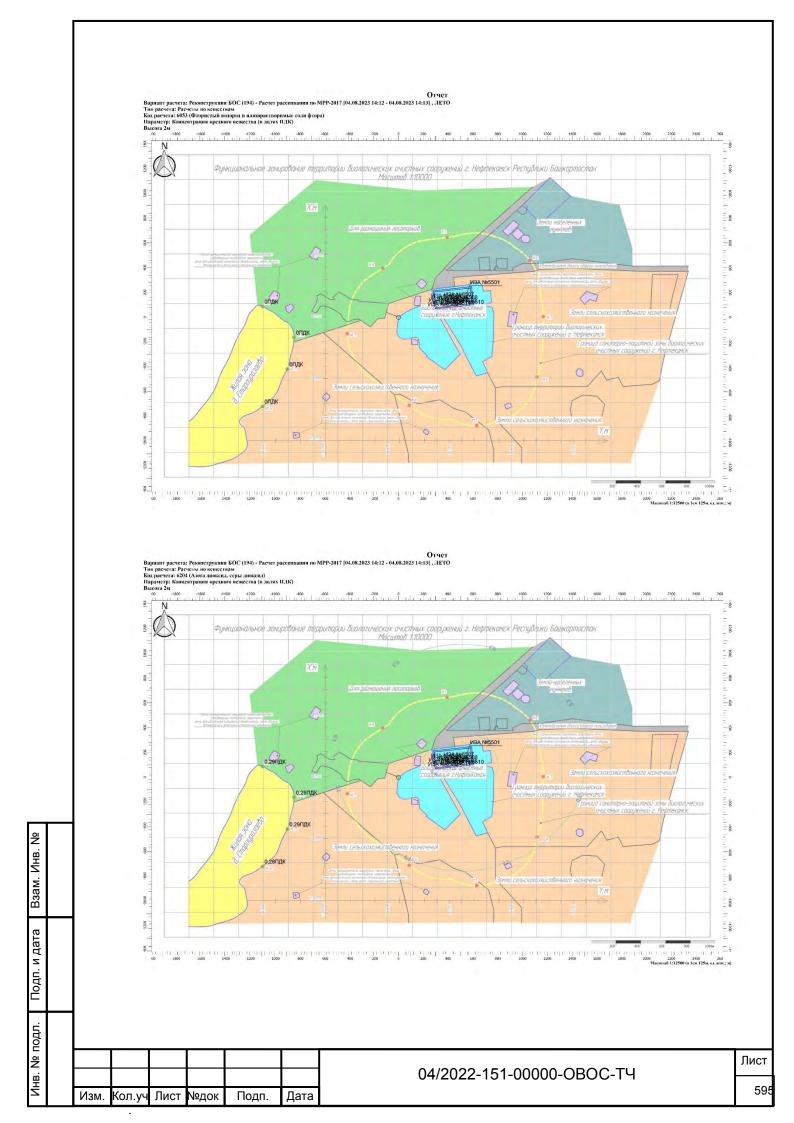


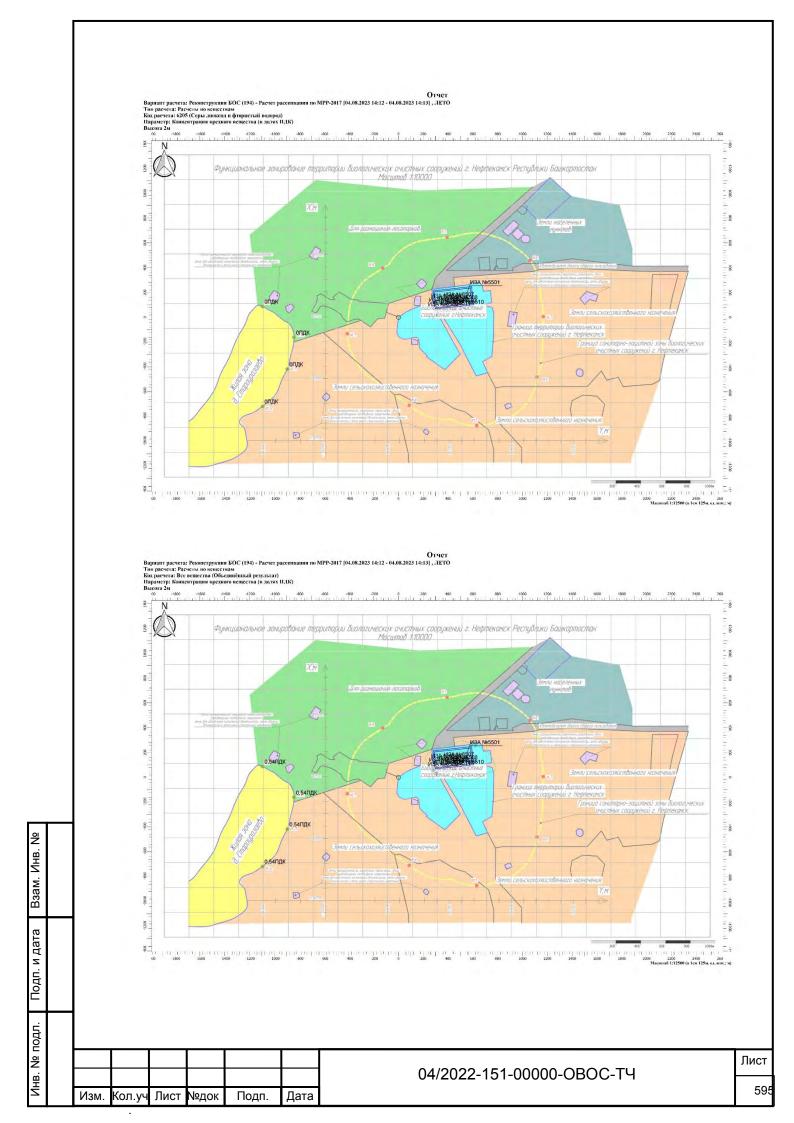



						04/2022-151-00000-OBOC-TY	Лист
Изм.	Кол.уч	Лист	№док	Подп.	Дата	04/2022-131-00000-0000-1-1	595
	•						

Инв. №


Взам. І


Подп. и дата


Инв. № подл.

Реконструкция

4 61 010 01 20 5 Лом и отходы, содержащие незагрязненные черные металлы в виде изделий, кусков, несортированные

Согласно справочным данным «Сборника типовых норм потерь материальных ресурсов в реконструкции» (дополнение к РДС 82-202-96), нормы потерь и отходов составляет 2% от расхода материала.

Расчет количества образования лома черных металлов

Вид строительного матер		Расход гроительного материала, т	Норма отходов, % от массы	Количество отхода, т
Трубы стальные		87,55	2	1,751
Стальные конструкциі	И	24,865	2	0,4973
Итого:				2,248

4 82 302 01 52 5 Отходы изолированных проводов и кабелей

Расчет образования отходов изолированных кабелей

Р _{і, Т} /период	C _{n,} %	Мот, т/период
0,645	2	0,013

4 05 811 01 60 5 Отходы упаковочных материалов из бумаги и картона несортированные незагрязненные

Отход образуется в результате распаковки (растаривания) используемых сырья и материалов.

Исходные данные и результаты расчета представлены в таблице:

Кол-	Ед.изм.	Кол-во материала в уп.таре, кг	Вес упаковки, кг	Количество образующегося отхода, т
300	КГ	25	0,250	0,003

7 33 100 01 72 4 Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный)

Количество твердых бытовых отходов, образующихся от жизнедеятельности работающих на реконструкции проектируемого объекта, определено из норматива образования отходов 70 кг/чел в год, $M=(N \cdot M_H \cdot D)/365$.

М - масса собранного мусора от бытовых помещений, т;

N - общее количество рабочих:

М_н - удельный показатель образования отходов, т/чел.

N, чел	Мн, т/чел	D, дни	М, т/период
32	0,07	396	2,430

9 19 100 01 20 5 Остатки и огарки стальных сварочных электродов

Расчет выполняется в соответствии с Методическими рекомендациями по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО, по формуле:

						Г
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

ZHB.

Взам.

Подп. и дата

№ подл.

04/2022-151-00000-OBOC-TY

где: M_{oz} - масса огарков, т/год;

 K_{n} —коэффициент, учитывающий неравномерность образования огарков (образование огарков разной длины при работе на объектах);

 P_{3} – масса израсходованных сварочных электродов, т/год.

 C_{oz} — норматив образования огарков, доли от массы израсходованных электродов;

Расчет представлен в таблице:

Марка используемых	$K_{\scriptscriptstyle H}$	$P_{\scriptscriptstyle 9}$, т/год	C_{oz}	Норматив образования отхода
электродов	Τ τ μ	1 3, 1/10д	002	т/год
AHO-3	1,10	0,150	0,05	0,00825
MP-3	1,10	0,150	0,05	0,00825
Итого:				0,017

9 19 100 02 20 4 Шлак сварочный

Расчет выполняется в соответствии с Методическими рекомендациями по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО, по формуле:

$$M_{un.c} = C_{un.c} \times P$$

где: $M_{ux.c}$ - масса образовавшегося шлака сварочного, т/год;

 $C_{uu.c}$ - удельный норматив образования отхода, доли от единицы;

P – масса израсходованных сварочных электродов, т/год

Расчет представлен в таблице:

-	ас тет представлен в тао	лице.		
	Объект образования отхода	$C_{\mathit{un.c}}$	<i>Р,</i> т/год	Норматив образования отхода т/год
	AHO-3	0,10	0,150	0,015
	MP-3	0,10	0,150	0,015
	Итого:			0,030

9 19 204 02 60 4 Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%)

Расчет образования отхода - Обтирочного материала, загрязненного нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%) — проведен согласно «Сборнику удельных показателей образования отходов производства и потребления, Государственный комитет Российской Федерации по охране окружающей среды», Москва 1999 г.

 $Mot = (N \cdot MH \cdot D) \cdot 10^{-3}$

где Мн – удельная норма ветоши на 1 рабочего - 0,21 кг/сут;

N – численность рабочих;

D – продолжительность производства работ.

общая численность работающих, чел.	количество дней	Мн, кг/сут	масса отхода, т
32	396	0,21	2,661

7 23 101 01 39 4 Осадок (шлам) механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15%, обводненный

Отход образуется от мойки колес стройтехники, представлен задержанными взвешенными веществами, обводненными.

						Γ
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам.

Подп. и дата

04/2022-151-00000-OBOC-TY

Количество моек колес – 1 шт. Среднесуточное количество автомашин на 1 мойку колес - 5 шт. Расход воды на 1 автомашину - 150 литров. $5 \text{ a/m} * 0.05 \text{ m}^3 = 0.75 \text{ m}^3$ /сутки - суточный расход воды на мойку автомашин. Расход воды на одну мойку автомашин за период составит 297 м³/пер. Расчет осадка взвешенных веществ и нефтепродуктов от установки мойки колес автотранспорта с установкой оборотного водоснабжения «Мойдодыр» произведен согласно «Методические рекомендации по оценке объемов образования отходов производства и потребления», Москва, 2003 год. Объем образования взвешенных веществ установки мойки колес составит: 297*(4500-200)/(1,5*(100-95)*10000) = 17,028 т/пер, где 297 м³/пер- расход воды на мойку автомашин за год строительства. 4500 мг/л - содержание взвеси в загрязненной воде; 200 мг/л - содержание взвеси в очищенной воде; 1,5 г/см² - плотность обводненного осадка; 95% - обводненность осадка. Лист 04/2022-151-00000-OBOC-TY Изм. Кол.уч Лист №док Подп. Дата

Взам.

Подп. и дата

Демонтаж

Расчет произведен согласно 122Д/ФНБ-П-00000-ОТР-ВОР.

№ п/п Наименование вида Ед.изм. Кол-во Масса Наименование

Nº II/II	работ	Ед.изм.	Кол-во	Масса 1 ед., кг	отхода	ΨΚΚΟ	т/период
1.	Демонтаж капитальнь	 	сооружен	 <u>ий</u>			
1.1.	Здание решеток мелкопрозорных кирпичное			30 000	Лом кирпичной кладки от сноса и разборки зданий	8 12 201 01 20 5	30,000
.1.1.	Решетки мелопрозорные 9,0x24,0x7,5 м	шт.	3	800	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	2,400
.1.2.	Шнековый транспортер 10,0x0,5x1,5 м	ШТ.	1	2250	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	2,250
.1.3.	Система отопления:						
1.1.3.1.	ИТП в сборе	компл.	1	200	Отходы (остатки) демонтажа бытовой техники, компьютерного, телевизионного и прочего оборудования, непригодные для получения вторичного сырья	7 41 343 11 72 4	0,200
.1.3.2.	Труба стальная ∅25	П.М.	40	65	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	2,600
.1.3.3.	Радиаторы стальные	компл.	7	50	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	0,350
1.1.4.	Мостовой кран	шт.	1	6 000	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	6,000
.1.	Камера приемного исходного стока (демонтаж)			3 000	Лом бетонных, железобетонных изделий в смеси при демонтаже строительных конструкций	8 22 911 11 20 4	3,000
.2.	Здание накопления песка (бункерная)			20 000	Лом кирпичной кладки от сноса и разборки зданий	8 12 201 01 20 5	20,000
1.3.	Монолитная плита (резервуар очищенной воды)			10 000	Лом бетонных, железобетонных изделий в смеси при демонтаже строительных конструкций	8 22 911 11 20 4	10,000
.4.	Монолитная плита (вторичный отстойник)			15 000	Лом бетонных, железобетонных изделий в смеси при демонтаже строительных конструкций	8 22 911 11 20 4	15,000
1.5.	Щитовая			3 000	Лом кирпичной кладки от сноса и разборки зданий	8 12 201 01 20 5	3,000

ФККО

Масса отхода,

Инв. № подл. Подп. и дата Взам. Инв. №

Из	М.	Кол.уч	Лист	№док	Подп.	Дата

№ п/п	Наименование вида работ	Ед.изм.	Кол-во	Масса 1 ед., кг	Наименование отхода	ФККО	Масса отхода т/период
1.6.	Насосная станция сырого осадка			3 000	Лом бетонных, железобетонных изделий в смеси при демонтаже строительных конструкций	8 22 911 11 20 4	3,000
1.6.1.	Центробежные насосы В т.ч. двигателт АИР 180S4	компл.	2	200 148	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	0,348
1.6.2.	Задвижки шиберные Ду 100 мм	ШТ.	4	12	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	0,048
1.6.3.	Задвижки шиберные Ду 150 мм	ШТ.	2	23	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	0,046
1.6.4.	Фильтр наклонный механический Ду 100 мм	ШТ.	2	26	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	0,052
1.6.5.	Затвор дисковый Ду 50		1	3	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	0,003
1.6.6.	Затвор дисковый Ду 32	ШТ.	1	2	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	0,002
1.6.7.	Труба ПЭ Ду 160	п.м.	20	90	Лом и отходы изделий из полиэтилена незагрязненные (кроме тары)	4 34 110 03 51 5	1,800
1.6.8.	Система отопления				(Rpoint rupin)		
1.6.8.1.	Труба стальная ∅25	П.М.	10	16	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	0,160
1.6.8.2.	Трубный регистр стальной ∅108	П.М.	10	103	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	1,030
1.6.9.	Шкаф управления насосами 600х300х1500 мм	шт.	1	20	Отходы (остатки) демонтажа бытовой техники, компьютерного, телевизионного и прочего оборудования, непригодные для получения вторичного сырья	7 41 343 11 72 4	0,020
1.7.	Фундамент (под мехобезвоживание)			10 000	Лом бетонных, железобетонных изделий в смеси при демонтаже строительных конструкций	8 22 911 11 20 4	10,000
1.8.	Фундамент (под здание)			10 000	Лом бетонных, железобетонных изделий в смеси при демонтаже строительных конструкций	8 22 911 11 20 4	10,000
2.	Демонтаж капитальны	ıх зданий <mark>и</mark>	сооружен	<u>ий</u>			
2.1.	Насос 300Д/90	шт.	1	2 800	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	2,800

Инв. № подл. Подп. и дата

Изм. Кол.уч Лист №док

Подп.

Дата

Взам. Инв. №

04/2022-151-00000-OBOC-TY

№ п/п	Наименование вида работ	Ед.изм.	Кол-во	Масса 1 ед., кг	Наименование отхода	ФККО	Масса отхода т/период
2.2.	Насос Д1250х62	шт.	2	4 000	Лом и отходы стальных изделий	4 61 200 01 51 5	8,000
2.3.	Насос 6Ш8-2	ШТ.	2	420	незагрязненные Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	0,840
2.4.	Hacoc 1K150-125-315	шт.	1	500	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	0,500
2.5.	Воздуходувки ТВ-300- 1,6	ШТ.	2	9 000	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	18,000
2.6.	Станция приготовления и дозирования гипохлорита натрия	компл.	1	1 000	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	1,000
3.	Демонтаж наружных т	рубопровод	<u>цов</u>				
3.1.	Камеры из ФБС						
	4х4х4 м	ШТ.	2	500	Лом бетонных, железобетонных изделий в смеси при демонтаже строительных конструкций	8 22 911 11 20 4	1,000
3.2.	Колодец канализационный из ж/б колец						
	Ø1000 гл.2,0 м	шт.	2	500	Лом бетонных, железобетонных изделий в смеси при демонтаже строительных конструкций	8 22 911 11 20 4	1,000
3.3.	Колодец водопроводный из ж/б колец				конструкции		
	Ø1500 гл.2,0 м	шт.	2	750	Лом бетонных, железобетонных изделий в смеси при демонтаже строительных конструкций	8 22 911 11 20 4	1,500
3.4.	подземные трубопроводы Труба стальная						
	канализация						
3.5.	Сталь ∅ 1000	М	330	57 000	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	18810,000
3.6.	Сталь ∅ 600	M	175	16 160	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	2828,000
3.7.	Сталь Ø 200	M	100	2 120	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	212,000
3.8.	Сталь ∅ 150	M	180	2 300	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	414,000
3.9.	Сталь Ø 100	М	50	205	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	10,250

Подп. и дата Инв. № подл.

Изм. Кол.уч Лист №док

Подп.

Взам. Инв. №

04/2022-151-00000-OBOC-TY

№ п/п	Наименование вида работ	Ед.изм.	Кол-во	Масса 1 ед., кг	Наименование отхода	ФККО	Масса отхода, т/период
3.10.	ПЭ Ø 300	М	45	783	лом и отходы изделий из полиэтилена незагрязненные (кроме тары)	4 34 110 03 51 5	35,235
3.11.	ПЭ Ø200	М	80	715	лом и отходы изделий из полиэтилена незагрязненные (кроме тары)	4 34 110 03 51 5	57,200
3.12.	ПЭ Ø160	М	80	360	лом и отходы изделий из полиэтилена незагрязненные (кроме тары)	4 34 110 03 51 5	28,800
	Труба стальная водопровод				(RPONT INPU)		0,000
3.13.	Ø 159	М	40	610	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	24,400
3.14.	Ø 100	M	40	410	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	16,400
	Труба стальная теплосеть						0,000
3.15.	∅ 50 гл.1,2 м	М	145	580	Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	84,100

Итого:

Наименование отхода	ФККО	Масса отхода,
		т/период
Лом кирпичной кладки от сноса и разборки зданий	8 12 201 01 20 5	53,000
Лом и отходы стальных изделий незагрязненные	4 61 200 01 51 5	22445,579
Отходы (остатки) демонтажа бытовой техники,	7 41 343 11 72 4	0,220
компьютерного, телевизионного и прочего		
оборудования, непригодные для получения вторичного		
сырья		
Лом бетонных, железобетонных изделий в смеси при	8 22 911 11 20 4	54,500
демонтаже строительных конструкций		
Лом и отходы изделий из полиэтилена незагрязненные	4 34 110 03 51 5	123,035
(кроме тары)		

Взам. Инв. №	
Подп. и дата	
Инв. № подл.	

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Эксплуатация

Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный)

 $M = (N \cdot M_H \cdot D)/365.$

М - масса собранного мусора от бытовых помещений, т;

N - общее количество рабочих;

М_н - удельный показатель образования отходов, т/чел.

Расчет норматива образования отхода выполнен на основании (ПРАВИТЕЛЬСТВО РЕСПУБЛИКИ БАШКОРТОСТАН ПОСТАНОВЛЕНИЕ от 12 октября 2017 года N 466 Об утверждении нормативов накопления твердых коммунальных отходов на территории Республики Башкортостан)»; постановление Региональной энергетической комиссии Свердловской области от 30.08.2017 № 78-ПК (ред. от 28.06.2018) «Об утверждении нормативов накопления твердых коммунальных отходов в границах муниципального образования «город Екатеринбург»)

Удельный норматив образования отхода, т, кг/чел•год	Численность сотрудников, N, чел	Норматив образования отхода, т/год
1,51 м3 (124,7 кг)	29	43,79 м3 (3,616 т)

Смет с территории предприятия практически неопасный

Рассчитан согласно СП 42.13330.2016 по формуле:

M=S*m*10-3 т/год,

где S – площадь твердых покрытий, м2

m-удельная норма образования смета с 1м2 твердых покрытий, согласно Приложению K равна 5-15кг/год на 1м2 (принимаем среднее значение 5кг/год с 1 м2).

Учитывая площадь твердых покрытий S=8569 м2.

M=42,845 т/год. (68,552 м3)

Расчет образования отходов спецодежда и обувь

Вид	Число	Кол-во	Средняя	Норматив	Маса отхода
ождежды	рабочих, N	использованной спецодежды,	масса, кг М	образования отхода, %	G=m*n*g*10 ⁻ ³ /100
		шт/год g		n	
Одежда персонала	29	29	0,7	100	0,0203
Ботинки	29	29	1,5	100	0,004

(9 19 204 02 60 4) Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%)

Расчет образования отхода, согласно «Сборнику удельных показателей образования отходов производства и потребления», производится по формуле:

Изм.	Кол.уч	Лист	№док	Подп.	Дата

ZHB.

Взам.

Подп. и дата

Инв. № подл.

 $MoT = (N \times MH \times D) \times 10^{-3} (J.1)$

где M_{or} – масса отхода, т/период;

М_н – удельная норма ветоши на 1 рабочего;

N – количество рабочих, чел;

D – продолжительность производства работ, дни.

Количество работающих,	Мн, кг/сут	Man m/nov
чел	китсут	Мот, т/год
29	0,21	2,222 (14,82 м3)

7 22 101 01 71 4 Мусор с защитных решеток хозяйственно-бытовой и смешанной канализации малоопасный

Суточное количество обезвоженных отбросов с решетки блока механической очистки 1 очереди строительства составит 1,7 тонн или 1700 кг/сутки. Влажность отбросов 60%, плотность 0,75 т/м³. Суточное количество обезвоженных отбросов с решетки блока механической очистки 2 очереди строительства составит 1,89 тонн или 1890 кг/сутки. Влажность отбросов 60%, плотность 0,75 т/м³. При накоплении свыше 2 суток – отходы присыпаются обеззараживающим реагентом. Накопление отбросов свыше 5 суток запрещается.

Для первой очереди строительства объем песка, улавливаемый за сутки, составит:

V= Nnp
$$\cdot$$
 0,02/1000=86775 \cdot 0,02/1000= 1,74 m^3

Масса песка:

$$M = 1.74 \cdot 1.5 = 2.61 \text{ T/cyt.}$$

Количество песка годовое определено в соответствии с пунктом ГЗ.З СП 32.13330:

M год =
$$365 \cdot 0.7 \cdot 2.61 = 666.86$$
 т/год

V год =
$$365 \cdot 0.7 \cdot 1.74 = 444.57 \text{ м}^3/\text{год}$$

Для второй очереди строительства объем песка, улавливаемый за сутки, составит:

$$V = N\pi p \cdot 0.02/1000 = 96565 \cdot 0.02/1000 = 1.931 \text{ m}^3$$

Масса песка:

$$M = 1.931 \cdot 1.5 = 2.9 \text{ T/cyt.}$$

масса отхода составит 1058,5 т

7 22 221 12 39 5

Взам.

Подп. и дата

осадок биологических очистных сооружений хозяйственно-бытовых и смешанных сточных вод обезвоженный практически неопасный

Объем обезвоженного до 82% осадка 4 класса опасности составит 33,7 м 3 /сут. масса отхода 33,7 * 1,6 * 365=19680,8 т.

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

Приложение Г (обязательное) Документы об установлении СЗЗ объекта

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ В СФЕРЕ ЗАЩИТЫ ПРАВ ПОТРЕБИТЕЛЕЙ И БЛАГОПОЛУЧИЯ ЧЕЛОВЕКА Управление Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека пу веспублике Башкортостан

«13» mail

2020 г.

РЕШЕНИЕ

об установлении санитарно-защитной зоны

Заявление об установлении санитарно-защитной зоны для биологических очистных сооружений г. Нефтекамск Республики Башкортостан

наименование объекта

поступило в Управление Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека по Республике Башкортостан «15» апреля 2020 г., зарегистрировано под № 02-6485-2020/вх

К заявлению об установлении санитарно-защитной зоны прилагались:

Проект санитарно-защитной зоны

биологических очистных сооружений г. Нефтекамск Республики Башкортостан наименование проекта санитарно-защитной зонь

Муниципальное унитарное предприятие «Нефтекамскводоканал», ИНН 0264014479, OFPH 1020201883481

наименование юридического лица (индивидуального предпринимателя) ИНН, ОГРИ (ОГРИП)

адрес фактического осуществления деятельности: Республика Башкортостан, г. Нефтекамск, с. Ташкиново, ул. Башкирская, д. 1Б, кадастровый номер земельного участка: 02:66:020601:0026,

адрес места нахождения юридического лица, адрес фактического осуществления деятельности

разработанный ООО «ЭкоПроект»

наименование организации, разработавшей проект санитарно-защитной зоны,

Республика Башкортостан, г. Нефтекамск, ул. Дорожная, 15, кв. 4

адрес места нахождения проектной организации

фактический адрес осуществления деятельности

• экспертное заключение о проведении санитарно-эпидемиологической экспертизы в отношении проекта санитарно-защитной зоны Индивидуального предпринимателя Тимербулатова Гая Арамовича

наименование органа инспекции

ФИО эксперта

Аттестат аккредитации № RA.RU.710109 выдан 23.11.2015

сведения об аттестате аккредитации

628300, ХМАО-Югра, г. Нефтеюганск. Ул. Мира, д. 8/1, офис 9

адрес места нахождения органа инспекции, эксперта

от «11» ноября 2019 г. № 873/2019

OOO «Печатный двор», 2015. Заказ 50299, тираж 5000.

Взам. Подп. и дата 읟

Кол.уч Лист №док Изм. Подп. Дата

04/2022-151-00000-OBOC-TY

Решение об установлении санитарно-защитной зоны принято на основании части 2 статьи 12 Федерального закона от 30.03.1999 № 52-ФЗ «О санитарно-эпидемиологическом благополучии населения», п.п. 3, 17 Правил установления санитарно-защитных зон и использования земельных участков, расположенных в границах санитарно-защитных 30Н, утвержденных постановлением Правительства Российской Федерации от 03.03.2018 № 222.

для биологических очистных сооружений г. Нефтекамск Республики Башкортостан

наименование объекта, в отношении которого устанавливается санитарно-защитная зона,

Республика Башкортостан, г. Нефтекамск, с. Ташкиново, ул. Башкирская, д.

адрес такого объекта (в отношении вновь создаваемого объекта указывается наименование объекта в соответствии с проектной документацией такого объекта и адрес (при его отсутствии сведения кадастровый номер земельного участка: 02:66:020601:0026

о местоположении) земельного участка, на котором планируется строительство такого объекта)

Ограничения использования земельных участков, расположенных в границах санитарно-защитной зоны, установлены п. 5 Правил установления санитарно-защитных зон и использования земельных участков, расположенных санитарно-защитных границах 30Н, утвержденных постановлением Правительства Российской Федерации от 03.03.2018 № 222

Размер и границы санитарно-защитной зоны обоснованы в соответствии законодательства в области обеспечения санитарноэпидемиологического благополучия населения, в том числе с учетом расчетов рассеивания выбросов вредных (загрязняющих) веществ в атмосферном воздухе, физического воздействия на атмосферный воздух.

Решение об установлении санитарно-защитной зоны, в соответствии с полномочиями, установленными п. 3 Правил установления санитарнозащитных зон и использования земельных участков, расположенных в границах санитарно-защитных зон, утвержденных постановлением Правительства Российской Федерации от 03.03.2018 № 222, принял

Руководитель Управления Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека по Республике Башкортостан, Главный государственный санитарный врач

по Республике Башкортостан

Е.Г. Степанов (фамилия, имя, отчество)

Взам. Подп. и дата

읟

Лист №док Кол.уч Подп. Дата

04/2022-151-00000-OBOC-TY

				3		
		Р	ешение об установл	ении (изменении) сани	тарно-защитной зоны	
		получил Ф «»	иО, должность, ФИО инд 2020 года.	ивидуального предпринимател	я, ФИО гражданина	
		Получил по п	приказу (довереннос	ти)		
			2020 года.	реквизиты приказа	(доверенности)	
				ANNU COMPRENDE COMPRENDE	тной зоны направлено заявителю_	
		- Temenine do y				
		реестр от «»	азным письмом с ув 202	рио индивидуального предпри ведомлением «» 0 года,	2020 года,	
		Сведения о Республике Башкор	санитарно-защитно тостан» для внесен азным письмом с ув 2020 года,	ния в Единый государ ведомлением «»	в ФГБУ «ФКП Росресстра по	
일						
Взам. Инв. №						
Взам						
\vdash	1					
Подп. и дата						
Подп	>					
\vdash	1					
тод ₀	 	 				Лис
Инв. № подл.				04/2022-151-000	000-OBOC-TY	
Z	Изм. Кол.уч Ли	іст №док Подп. Да	ата			5

Приложение № 1

к Решению об установлении санитарно-защитной зоны Управления Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека по Республике Башкортостан

Башкортостан от « 13 » мал № 49/с33

2020 года

Сведения о границах санитарно-защитной зоны

для биологических очистных сооружений г. Нефтекамск Республики Башкортостан

<u>Муниципальное унитарное предприятие «Нефтекамскводоканал», ИНН</u> 0264014479, ОГРН 1020201883481

ИНН, ОГРН (ОГРИП)

Республика Башкортостан, г. Нефтекамск, с. Ташкиново, ул. Башкирская, д. <u>1Б</u>

_адрес фактического осуществления деятельности

кадастровый номер земельного участка: 02:66:020601:0026

Размер санитарно-защитной зоны установить: 400 м во всех направлениях.

Взам. Инв. №			
Подп. и дата			
подл.			

Изм. Кол.уч

Лист №док

Подп.

Дата

04/2022-151-00000-OBOC-TY

Лист

Приложение № 2

Решению об установлении санитарно-защитной зоны Управления Федеральной службы по надзору в сфере защиты прав потребителей И благополучия человека Республике по Башкортостан от « <u>13</u> » <u>шал</u> № <u>49/с33</u>

2020 года

Графическое описание местоположения границ санитарно-защитной зоны

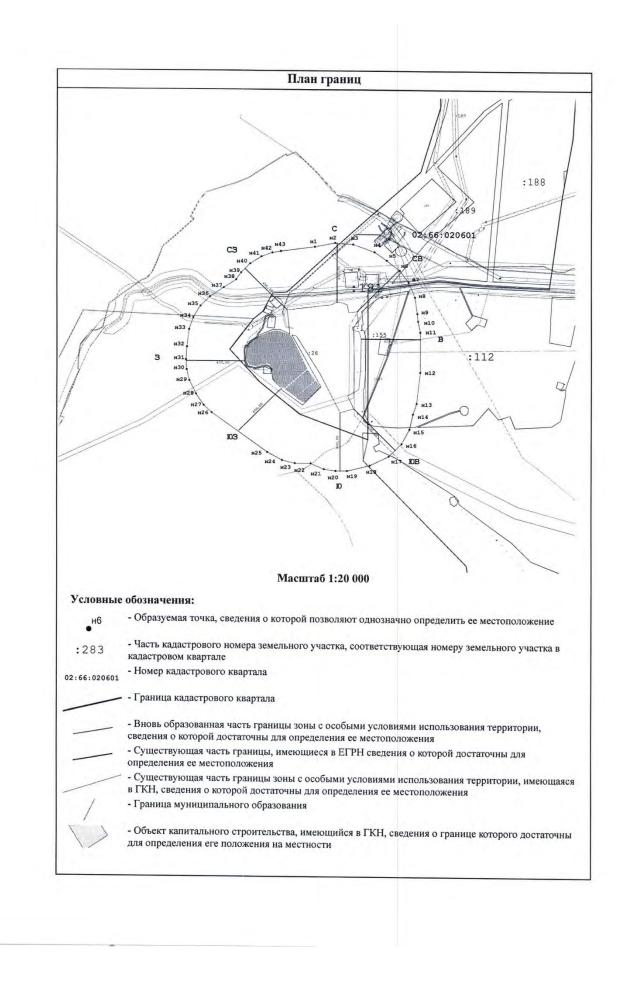
для биологических очистных сооружений г. Нефтекамск Республики Башкортостан

Муниципальное унитарное предприятие «Нефтекамскводоканал», 0264014479, OFPH 1020201883481

ИНН, ОГРН (ОГРИП)

Республика Башкортостан, г. Нефтекамск, с. Ташкиново, ул. Башкирская, д. 1Б

_адрес фактического осуществления деятельности


кадастровый номер земельного участка: 02:66:020601:0026

Взам. Инв. №	
Подп. и дата	
№ подл.	
의	

	_				_
Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

Лист

Изм. Кол.уч Лист №док Подп. Дата

Взам.

Подп. и дата

읟

04/2022-151-00000-OBOC-TY

Лист

Приложение № 3

Решению об установлении санитарно-защитной зоны Управления Федеральной службы по надзору в сфере защиты прав потребителей благополучия человека Республике ПО 2020 года

Перечень координат характерных точек границ санитарно-защитной зоны объекта в системе координат, используемой для ведения Единого государственного реестра недвижимости

для биологических очистных сооружений г. Нефтекамск Республики Башкортостан

Муниципальное унитарное предприятие «Нефтекамскводоканал», ИНН 0264014479, OFPH 1020201883481

ИНН, ОГРН (ОГРИП)

Республика Башкортостан, г. Нефтекамск, с. Ташкиново, ул. Башкирская, д.

_адрес фактического осуществления деятельности кадастровый номер земельного участка: 02:66:020601:0026

1	804147	1249146	
2	804174	1249283	
3	804164	1249404	
4	804114	1249549	
5	804057	1249631	
6	803989	1249718	
7	803912	1249777	
8	803810	1249819	
9	803698	1249835	
10	803646	1249840	
11	803571	1249855	
12	803293	1249855	
13	803086	1249832	
14	803013	1249807	
15	802910	1249784	
16	802811	1249731	
17	802725	2725 1249645	
18	802663	1249518	

ZHB. Взам. Подп. и дата Инв. № подл.

		_		_	_
Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

7

19	802625	1249364
20	802625	1249286
21	802637	1249207
22	802676	1249117
23	802676	1249010
24	802697	1248923
25	802751	1248824
26	803018	1248449
27	803068	1248396
28	803144	1248344
29	803236	1248299
30	803311	1248281
31	803379	1248276
32	803466	1248283
33	803583	1248297
34	803665	1248325
35	803744	1248374
36	803808	1248438
37	803870	1248530
38	803924	1248613
39	803971	1248646
40	804032	1248707
41	804080	1248783
42	804108	1248858
43	804118	1248915

Инв. № подл. Подп. и дата Взам. Инв. №

Изм.	Кол.уч	Лист	№док	Подп.	Дата

ОРГАН ИНСПЕКЦИИ ИНДИВИДУАЛЬНЫЙ ПРЕДПРИНИМАТЕЛЬ ТИМЕРБУЛАТОВ ГАЙ АРАМОВИЧ

Юр. адрес: 628306, ХМАО-Югра, г. Нефтеюганск, мкр. 15, д. 9, кв. 66. Факт. адрес: 628300, ХМАО-Югра, г. Нефтеюганск, ул. Мира, д. 8/1. Тел.: 8-982-410-26-46, www.sanepidexpertiza.nyug.ru, e-mail: sanepidexpertiza@mail.ru ИНН 026808648597, ОГРНИП 314861903100022

Аттестат аккредитации органа инспекции № RA.RU.710109 выдан 23.11.2015 г.

УТВЕРЖДАЮ Руководитель органа инспекции имербугий Тимербулатов Г.А.

Тимербулатов Γ .А. (подпись, Ф.И.О.)

Экспертное заключение

по результатам санитарно-эпидемиологической экспертизы

проекта санитарно - защитной зоны

(наименование вида экспертизы)

№ 873/2019 от 11.11.2019 г.

Наименование проекта: <u>Проект санитарно-защитной зоны биологических очистных сооружений г. Нефтекамск Республики Башкортостан (далее – Проект санитарно-защитной зоны).</u>

(необходимо указать полное название проекта)

Заявитель и его юридический адрес: <u>ООО «ЭкоПроект»</u>, 452689, РФ, РБ, г. Нефтекамск, ул. Дорожная, д. 15, кв. 4 (ИНН 0264056292).

Разработчик проекта и его адрес: <u>ООО «ЭкоПроект», 452689, РФ, РБ, г. Нефтекамск, ул. Дорожная, д. 15, кв. 4 (ИНН 0264056292).</u>

Цель проведения экспертизы: установить соответствие (несоответствие) проекта санитарнозащитной зоны требованиям Постановления Правительства РФ от 03.03,2018 г. № 222 «Об
утверждении Правил установления санитарно-защитных зон и использования земельных участков,
расположенных в границах санитарно-защитных зон», СанПиН 2.2.1/2.1.1.1200-03 «Санитарнозащитные зоны и санитарная классификация предприятий, сооружений и иных объектов. Новая
редакция» (с изменениями), СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых,
общественных зданий и на территории жилой застройки», СанПиН 2.1.6.1032-01 «Гигиенические
требования к обеспечению качества атмосферного воздуха населенных мест», ГН 2.1.6.3492-17
«Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе
городских и сельских поселений», ГН 2.1.6.2309-07 «Ориентировочные безопасные уровни
воздействия (ОБУВ) загрязняющих веществ в атмосферном воздухе населенных мест».

(наименование объекта экспертизы, наименование технических регламентов, санитарных правил и нормативов)

Рассмотренные (представленные) документы:

<u>- Проект санитарно-защитной зоны биологических очистных сооружений г. Нефтекамск Республики Башкортостан.</u>

За полноту и достоверность информации, представленной для проведения экспертизы, несут ответственность Заказчик проектной документации (МУП «Нефтекамскводоканал») и Проектировщик (ООО «ЭкоПроект»).

В ходе санитарно-эпидемиологической экспертизы проектной документации установлено:

Данная работа выполнена с целью установления размера санитарно-защитной зоны для биологических очистных сооружений г. Нефтекамск Республики Башкортостан в части загрязнения атмосферного воздуха и по уровню шума.

Страница 1 из 16

Под						
№ подл.						
흳						
Инв.						
Z	Изм.	Кол.уч	Лист	№док	Подп.	Дата
		-				

Взам.

04/2022-151-00000-OBOC-TY

Биологические очистные сооружения предназначены для приема, усреднения и очистки сточных вод до норм сброса в водоем рыбохозяйственного назначения, а также обработки осадка с последующей его утилизацией. Статус объекта: действующий, без перспективного увеличения мощности. Производительность БОС составляет 25 000 м³ /сут.

Адрес объекта: Республика Башкортостан, ГО г. Нефтекамск, с. Ташкиново, ул. Башкирская, д. 1Б.

Территория биологических очистных сооружений расположена на земельном участке с кадастровым номером 02:66:020601:0026. Категория земель: земли населённых пунктов; разрешенное использование: под иными объектами специального назначения; по документу: для размещения биологических очистных сооружений.

Земельный участок БОС г. Нефтекамск РБ находится в аренде по договору с Администрацией городского округа г. Нефтекамск. Подтверждением этого является договор аренды земельного участка №1319к от 14 декабря 2005 года.

Согласно разд. 7.1.13 СанПиН 2.2.1/2.1.1.1200-03 «Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов. Новая редакция» (с изменениями) для сооружений с механической и биологической очисткой с иловыми площадками для сброженных осадков производительностью более 5,0 тыс. до 50 тыс. м³/сутки установлена ориентировочная санитарно-защитная зона составляет 400 м.

<u>Данным</u> проектом предлагается установить санитарно-защитную зону для объекта 400 метров во всех направлениях, так как на этих расстояниях концентрации компонентов выбросов и уровни шума не превышают значений гигиенических нормативов.

Согласно информации с официального вебсайта публичной кадастровой палаты Росреестра (https://pkk5.rosreestr.ru) в районе расположения БОС находятся следующие земельные участки и объекты:

с юга:

- земли сельскохозяйственного назначения (разрешенное использование: для сельскохозяйственного производства);
- земли населённых пунктов на расстоянии 1,4 км (д. Новоуразаево, Краснокамский район) разрешенное использование: для ведения личного подсобного хозяйства, по документу: для ведения личного подсобного хозяйства.

Ближайшая селитебная территория в южном направлении (жилая зона д. Новоуразаево) находится на расстоянии 1,4 км.

с юго-запада:

- земли сельскохозяйственного назначения (разрешенное использование: для сельскохозяйственного производства);
- земли населённых пунктов (разрешенное использование: для ведения гражданами животноводства, по документу: животноводство (выпас сельскохозяйственных животных);
- земли населённых пунктов на расстоянии 1,4 км (д. Новоуразаево, Краснокамский район) разрешенное использование: для ведения личного подсобного хозяйства, по документу: для ведения личного подсобного хозяйства;

Ближайшая селитебная территория в юго-западном направлении (жилая зона д. Новоуразаево) находится на расстоянии 1,4 км.

с запала:

- земли сельскохозяйственного назначения (разрешенное использование: для сельскохозяйственного производства);
- земли населённых пунктов на расстоянии от БОС 860 м (д. Староуразаево, Краснокамский район) разрешенное использование: для ведения личного подсобного хозяйства, по документу: для ведения личного подсобного хозяйства;

Ближайшая селитебная территория в западном направлении (жилая зона д. Староуразаево) находится на расстоянии 860 м.

с северо-запада:

- земли сельскохозяйственного назначения (разрешенное использование: для сельскохозяйственного производства);
 - земли лесного фонда.

Селитебной территории в районе расположения БОС в северо-западном направлении нет.

Страница 2 из 16

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам.

Подп. и дата

с севера:

- земли населённых пунктов (разрешенное использование: для размещения объектов электросетевого хозяйства, по документу: для производственных нужд);

- земли населённых пунктов (разрешенное использование: под иными объектами специального назначения, по документу: для размещения насосной станции «Уразаево»);

- земли лесного фонда.

Селитебной территории в районе расположения БОС в северном направлении нет.

с северо-востока:

- земли населённых пунктов (разрешенное использование: для размещения объектов сельскохозяйственного назначения и сельскохозяйственных угодий, по документу: для освоения земель сельскохозяйственного использования и проектирования, строительства растениеводческих сооружений);

- земли населённых пунктов (разрешенное использование: под иными объектами специального назначения, по документу: для размещения водоочистных сооружений);

- - земли населённых пунктов на расстоянии 2,0 км (с. Ташкиново) разрешенное использование: для индивидуальной жилой застройки, по документу: для строительства индивидуального жилого дома.

Ближайшая селитебная территория в северо-восточном направлении (жилая зона с. Ташкиново) находится на расстоянии 2,0 км.

с востока:

- земли сельскохозяйственного назначения (разрешенное использование: для сельскохозяйственного производства);

- земли сельскохозяйственного назначения протяженностью 1,3 км;

- земли сельскохозяйственного назначения (разрешенное использование: для иных видов сельскохозяйственного использования, по документу: для размещения мастерской по ремонту сельскохозяйственных машин и оборудования);
- земли сельскохозяйственного назначения (разрешенное использование: для ведения гражданами животноводства, по документу: для размещения свинокомплекса).

Селитебной территории в районе расположения БОС в восточном направлении нет.

с юго-востока:

- земли сельскохозяйственного назначения (разрешенное использование: для сельскохозяйственного производства, по документу: для ведения сельского хозяйства);
- земли сельскохозяйственного назначения на расстоянии 780 м от БОС (разрешенное использование: для ведения крестьянского (фермерского) хозяйства, по документу: земли сельскохозяйственного назначения)

Селитебной территории в районе расположения БОС в юго-восточном направлении нет.

Назначение санитарно-защитной зоны.

Санитарно-защитная зона представляет собой территорию между границами промплощадки и селитебной застройкой и устанавливается в целях снижения уровня загрязнения атмосферного воздуха и шумового воздействия до соответствующих гигиенических нормативов.

Целью разработки санитарно-защитной зоны является определение расчетных границ и размеров санитарно-защитной зоны, обоснование достаточности принятого ориентировочного размера, экологической эффективности предлагаемых мероприятий, позволяющих свести до минимума отрицательное воздействие на окружающую среду в санитарно-защитной зоне и в жилой застройке в период эксплуатации предприятия. В санитарно-защитной зоне действует режим ограниченной хозяйственной деятельности.

Перечень ограничений использования земельных участков.

В соответствии с п. 5 правил Постановления Правительства РФ от 03.03.2018 г. № 222, в границах санитарно-защитной зоны не допускается использования земельных участков в целях:

- а) размещения жилой застройки, объектов образовательного и медицинского назначения, спортивных сооружений открытого типа, организаций отдыха детей и их оздоровления, зон рекреационного назначения и для ведения дачного хозяйства и садоводства;
- б) размещения объектов для производства и хранения лекарственных средств, объектов пищевых отраслей промышленности, оптовых складов продовольственного сырья и пищевой продукции, комплексов водопроводных сооружений для подготовки и хранения питьевой воды,

Страница 3 из 16

						Γ
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам.

Подп. и дата

№ подл.

04/2022-151-00000-OBOC-TY

использования земельных участков в целях производства, хранения и переработки сельскохозяйственной продукции, предназначенной для дальнейшего использования в качестве пищевой продукции, если химическое, физическое и (или) биологическое воздействие объекта, в отношении которого установлена санитарно-защитная зона, приведет к нарушению качества и безопасности таких средств, сырья, воды и продукции в соответствии с установленными к ним требованиями.

В пределах границ ориентировочного размера санитарно-защитной зоны биологических очистных сооружений отсутствуют нормируемые объекты, запрещенные к размещению по п. 5 Постановления Правительства РФ от 3 марта 2018 г. № 222.

В санитарно-защитной зоне БОС имеются земельные участки с категорией земель «земли сельскохозяйственного назначения».

Согласно п. 56 Постановления Правительства РФ от 3 марта 2018 г. № 222, в границах санитарно-защитной зоны не допускается использования земельных участков в целях производства, хранения и переработки сельскохозяйственной продукции, предназначенной для дальнейшего использования в качестве пищевой продукции, если химическое, физическое и (или) биологическое воздействие объекта, в отношении которого установлена санитарно-защитная зона, приведет к нарушению качества и безопасности таких средств, сырья, воды и продукции в соответствии с установленными к ним требованиями.

На земельных участках сельскохозяйственного назначения в районе расположения БОС осуществляется выращивание силосной кукурузы, предназначенной на корм животным, т.е. на этих землях не ведется производство сельскохозяйственной продукции, предназначенной для дальнейшего использования в качестве пищевой продукции.

Таким образом, в границы санитарно-защитной зоны БОС не попадают земельные участки, разрешенный вид использования которых предназначен для размещения объектов, обозначенных п. 5б постановления Правительства Российской Федерации от 03.03.2018 № 222 «Об утверждении Правил установления санитарно-защитных зон и использования земельных участков, расположенных в границах санитарно-защитных зон». Соответственно, обоснование возможности использования земельных участков для целей, указанных в подпункте "б" пункта 5 Правил, не требуется.

Согласно п. 1 Правил установления санитарно-защитных зон и использования земельных участков, расположенных в границах санитарно-защитных зон, утв. Постановлением Правительства РФ от 03.03.2018 г. № 222, санитарно-защитные зоны устанавливаются в отношении действующих, планируемых к строительству, реконструируемых объектов капитального строительства, являющихся источниками химического, физического, биологического воздействия на среду обитания человека (далее — объекты), в случае формирования за контурами объектов химического, физического и (или) биологического воздействия, превышающего санитарно-эпидемиологические требования.

Пунктом 6 Правил регламентировано при планировании строительства или реконструкции объекта застройщик не позднее чем за 30 дней до дня направления в соответствии с Градостроительным кодексом Российской Федерации заявления о выдаче разрешения на строительство представляет в уполномоченный орган заявление об установлении или изменении санитарно-защитной зоны.

Согласно п. 3.12. СанПиН 2.2.1/2.1.1.1200-03 «Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов. Новая редакция» (с изменениями) размеры санитарно-защитной зоны для проектируемых, реконструируемых и действующих промышленных объектов, и производств устанавливаются на основании расчетов рассеивания загрязнения атмосферного воздуха и физических воздействий на атмосферный воздух (шум, вибрация, электромагнитные поля (ЭМП) и др.) по разработанным в установленном порядке методикам.

В соответствии с технологической схемой принимается следующая схема работы биологических очистных сооружений:

Сточная вода, поступающая на очистные сооружения, подвергается механической очистке на аэрируемых песколовках и первичных отстойниках, после чего проходит биологическую очистку активным илом в аэротенках. Освобождённая от ила во вторичных отстойниках очищенная вода обеззараживается и откачивается на сброс в р. Кама. Образующийся при очистке

Страница 4 из 16

	дој ј						
	ИНВ. № ПОДЛ.						
	H						
	Ξ	Изм.	Кол.уч	Лист	№док	Подп.	Дата
		-	•				

Взам.

избыточный активный ил, а также сырой осадок с первичных отстойников откачиваются на иловые площадки для минерализации, обезвоживания и естественного обеззараживания. По мере накопления осадка и обезвоживания его транспортируют на полигон твердых бытовых отходов для рекультивации земель.

Сброс очищенных стоков осуществляется в р. Кама через рассеивающий выпуск на расстоянии 17,0 км от насосной станции БОС.

В составе биологических очистных сооружений следующие технологические сооружения:

Приемная камера обеспечивает прием стоков от центральной канализационной насосной станции (ЦКНС). Приемная камера частично перекрыта бетонными плитами.

Песколовки предназначены для удаления крупных фракций песка и отделения органики от неорганики. Представлены песколовки типовые, двухсекционные, горизонтальные с круговым движением сточных вод 500-900 л/сек, в количестве двух единиц. Удаление песка осуществляется гидроэлеваторами, рабочей водой для которых является вода контактных резервуаров. Сточная вода после песколовок отводится в распределительную камеру первичных отстойников, откуда дюкерами подается в первичные отстойники, которые входят в блок технологических емкостей.

Преаэратор служит для предварительной аэрации стоков кислородом воздуха с добавлением активного ила, который способствует укрупнению взвесей и лучшему выпадению их в осадок на первичных отстойниках. Продолжительность предварительной аэрации сточной жидкости 10-20 минут по расчетному расходу. Рабочая глубина-4,5 м.

Первичные отстойники предназначены для осветления сточных вод, т.е. для отделения стоков от взвешенных веществ, которые оседают под действием силы тяжести на дно отстойника горизонтального типа, прямоугольной формы, размером 36*9*4,0 м. Количество секций - 4 единицы: два оборудованы скребковыми механизмами цепного типа и два других - тележечного типа. Удаление осадка с приемников каждой секции отстойников производится самотеком в лоток, оттуда при помощи насосов направляется на иловые площадки, а осветленные сточные воды из сборных переливных лотков по отводящим трубам распределяются в два коллектора диаметром 800 мм, по которым воды поступают самотеком в аэротенки.

По работе приняты трехкоридорные двухсекционные аэротенки, с рабочей глубиной 4,5 м. Полезный объем аэротенка: 20*18*4,5 м. Продолжительность аэрации стоков равна 5,2 часа. Расход воздуха 12150 м³/час. Каждая секция состоит из трех коридоров, образованных перегородками, не доходящие до конца. Один из коридоров является регенератором. В секциях аэротенок происходит контакт активного ила со сточными водами, для поддержания активного ила во взвешенном состоянии и обеспечения кислорода, необходимого для протекания в аэротенках биологических процессов окисления органических веществ непрерывно подается воздух. Подача активного ила в аэротенк-регенератор производится по илопроводу. Регенератор предназначен для восстановления и активизации жизнедеятельности микроорганизмов возвратного активного ила. Это достигается интенсивным продуванием воздуха.

Подача воздуха в аэротенки производится непрерывно из воздуходувной станции, оборудованной двумя нагнетателями типа ТВ-300-1,6, производительностью 18 000 $\rm m^3/час$ каждая.

Сточные воды, прошедшие биологическую очистку, и активный ил поступают в распределительную камеру вторичных отстойников.

Вторичные отстойники. На данном этапе происходит отстаивание очищенных сточных вод от активного ила. Вторичные отстойники разделены на 4 секции - железобетонные, горизонтальные, прямоугольные, размером 36*9*4,5 м. Два из которых оборудованы скребковыми механизмами цепного типа, два - илососом. Время пребывания активного ила во вторичном отстойнике не должно превышать двух часов, т. к. в анаэробных условиях активный ил может погибнуть. Осветленные очищенные воды из вторичных отстойников поступают в резервуары-усреднители, где происходит отстаивание очищенной сточной воды.

Для поддержания оптимальной концентрации активного ила, избыточный активный ил постоянно удаляют на иловые площадки. Площадь составляет 4,04 га.

При сбросе в р.Каму предварительно происходит обеззараживание сточных вод с целью уничтожение оставшихся в них патогенных бактерий.

Отопление основных зданий на территории БОС – АБК, гаража и здания насосной – осуществляется индивидуальными котельными. Для осуществления сварочных работ и газорезки имеется сварочный пост. Для ремонта оборудования БОС на территории имеются механический и

Страница 5 из 16

′0⊔						
№ подл.						
의						
Инв. Г						
Z	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам.

04/2022-151-00000-OBOC-TY

токарный участки с металлообрабатывающими станками. Также на балансе промплощадки находятся 3 единицы спецтехники (трактора). Для проведения исследований до и после очистки сточных вод имеется собственная химическая лаборатория. Лакокрасочные работы проводятся в гараже.

Источниками выбросов в атмосферу являются:

В котельной гаража установлены 2 газовых котла: основной — Lamborgini TL DB 98, резервный — Dakon HM P 90. Высота дымовой трубы источника выброса — 14,70 м; диаметр устья — 0,33 м. Состав выбросов: азота диоксид, азота оксид, сера диоксид, углерода оксид, бензапирен. Источник выброса - организованный, № 0001.

Выбросы происходят и через неплотности запорно-регулирующей арматуры (в качестве которой принята задвижка) и изолирующих фланцевых соединений (ИФС), установленных на линии газопровода. Источник выброса – организованный, № 0002 и неорганизованный – № 6001.

Для продувки газопроводов перед пуском и при ремонтных работах предусмотрена система продувочных газопроводов. Продувка газопроводов осуществляется согласно «Правилам безопасности систем газораспределения и газопотребления» ПБ 12-529-03. Выбросы от источников выделения природного газа идентифицированы по метану. Выделяются ЗВ: метан, одорант СПМ. На продувочном трубопроводе предусмотрена свеча, которая выводятся на высоту 6,8 м. Источник выброса — организованный, № 0003.

Во время проведения ремонтных работ при пересыпке цемента, которые проводятся в гараже выделяются вещества: пыль неорганическая, содержащая 70-20% двуокиси кремния через дефлектор диаметром 0,4 м и высотой 5,9 м. Источник выброса — организованный, №0004.

Выбросы загрязняющих веществ в атмосферу, поступающие при выполнении работ на газорезке, осуществляются через дефлектор высотой 5,9 м, диаметром 0,4 м. Состав выбросов: диЖелезо триоксид (железа оксид), марганец и его соединения, азота диоксид (азот (IV) оксид), азот (II) оксид (азота оксид), углерод оксид. Источник выброса – организованный, № 0004.

При проведении лакокрасочных работ в гараже выделяются выбросы ЗВ: диАлюминий триоксид, диметилбензол, метилбензол, бутан-1-ол, этанол, 2-этоксиэтанол, бутилацетат, пропан-2-он, сольвент нафта, уайт-спирит через дефлектор высотой 5,9 м, диаметром 0,4 м. Источник выброса – организованный, № 0004.

Выделение загрязняющих веществ при выполнении сварочных работ осуществляется через местный отсос высотой – 5 м, диаметром – 0,2 м. Выбросы 3В: марганец и его соединения, железа оксид, фториды неорганические, азота диоксид, азота оксид, углерод оксид, пыль неорганическая. Источник выброса – организованный, № 0005.

На токарном участке установлены металлообрабатывающие станки, при работе которых происходят выбросы железа оксид через дефлектор высотой 5,9 м, диаметром 0,25 м. Источник выброса – организованный, № 0006.

При выполняемых работах на заточном станке происходят выбросы через местный отсос (высота - 1 м, диаметр - 0,1 м) пыль абразивная, железа оксид. Источник выброса – организованный, № 0007.

В котельной АБК установлены два газовых котла: основной — Dakon Prexal Р 120 мощностью 120 кВт, и резервный — Dakon HM Р 90 мощностью 90 кВт. Выбросы осуществляются через дымовую трубу высотой 14,7 м диаметром 0,53 м. В результате сжигания газового топлива в котлах происходит выброс в атмосферу: азота диоксид, азота оксид, сера диоксид, углерода оксид, бензапирен. Источник выброса — организованный, № 0008.

Выбросы происходят и через неплотности запорно-регулирующей арматуры (в качестве которой принята задвижка) и изолирующих фланцевых соединений (ИФС), установленных на линии газопровода. Источник выброса – организованный, №0009 и неорганизованный - №6002.

Для продувки газопроводов перед пуском и при ремонтных работах предусмотрена система продувочных газопроводов. Продувка газопроводов осуществляется согласно «Правилам безопасности систем газораспределения и газопотребления» ПБ 12-529-03. Выбросы от

Страница 6 из 16

ат				
Подп. и дат				
Инв. № подл.				
J⊚N				Τ
HB.				
И	Изм.	Кол.уч	Лист	
		•		

Подп.

Дата

04/2022-151-00000-OBOC-TY

источников выделения природного газа идентифицированы по метану. Выделяются 3В: метан, одорант СПМ. На продувочном трубопроводе предусмотрена свеча, которая выводятся на высоту 7.5 м. Источник выброса - организованный, $N\!\!=\!\!0010$.

На входе газопровода на территорию БОС расположен пункт редуцирования газа.

Для продувки газопроводов перед пуском и при ремонтных работах предусмотрена система продувочных газопроводов. Продувка газопроводов осуществляется согласно «Правилам безопасности систем газораспределения и газопотребления». Выбросы от источников выделения природного газа идентифицированы по метану. Выделяются ЗВ: метан, одорант СПМ. На продувочном трубопроводе предусмотрена свеча, которая выводятся на высоту 4 м. Источник выброса – организованный, №0013.

Выбросы происходят и через неплотности запорно-регулирующей арматуры (в качестве которой принята задвижка) и изолирующих фланцевых соединений (ИФС), установленных на линии газопровода (источник выброса — организованный, №0011 и неорганизованный №6003), а также через предохранительный сбросный клапан в результате сброса газа при повышении давления газа в сети сверх допустимого значения на высоте 4,0 м (источник выброса - организованный, № 0012).

В котельной здания насосной установлен один котел Dakon HM Р 50 Lux мощностью 50 кВт. В процессе его работы происходят выбросы: азота диоксид, азота оксид, сера диоксид, углерода оксид, бензапирен. Отвод дымовых газов осуществляется через дымовую трубу высотой 9.0 м диаметром 0.22 м. Источник выброса - организованный, № 0014.

Выбросы происходят и через неплотности запорно-регулирующей арматуры (в качестве которой принята задвижка) и изолирующих фланцевых соединений (ИФС), установленных на линии газопровода Источник выброса — организованный, № 0015 и неорганизованный № 6004.

Для продувки газопроводов перед пуском и при ремонтных работах предусмотрена система продувочных газопроводов. Продувка газопроводов осуществляется согласно «Правилам безопасности систем газораспределения и газопотребления» ПБ 12-529-03. Выбросы от источников выделения природного газа идентифицированы по метану. Выделяются ЗВ: метан, одорант СПМ. На продувочном трубопроводе предусмотрена свеча, которая выводятся на высоту 8,0 м. Источник выброса — организованный, № 0016.

В здании насосной во время эксплуатации насосного оборудования осуществляется выброс загрязняющих веществ в связи с испарением индустриального масла. Также в этом здании ведется приготовление дезинфицирующего раствора (гипохлорита натрия), выбросы происходят в процессе пересыпки соли. В атмосферу загрязняющие вещества поступают через дефлектор диаметром 0,5 м и высотой 7 м. Выбросы: углеводороды предельные C_{12} - C_{19} , натрий хлорид. Источник выброса – организованный, N = 0.017.

При работе масляных трансформаторов происходит выброс углеводородов предельных через дефлектор диаметром 0,6 м и высотой 7 м. Источник выброса — организованный, №0018.

Осуществление контроля по организации и выполнению водно-химического режима оборудования осуществляется в химических лабораториях. Лаборатории оснащены вытяжными шкафами с вентиляционными коробами, выброс загрязняющих веществ от которых осуществляется через вентиляционные трубы высота − 7 м, диаметр − 0,25 м. Хранение химреагентов ведется в плотно закрытой таре в отдельной комнате (склад) с принудительной вентиляцией, выброс загрязняющих веществ при переливе реактивов происходит через вытяжную трубу высотой 2 м, диаметром 0,17 м. В результате работы лаборатории происходят выбросы в атмосферу азотная кислота, аммиак, соляная кислота, гексан, трихлорметан, тетрахлорметан, этанол, аскорбиновая кислота, этановая кислота, лимонная кислота, кислота салициловая, натр едкий, диНатрий карбонат, хром, серная кислота. Источник выброса − организованный, № 0019-0022.

Во время приема стока от центральной канализационной насосной станции в приемной камере происходит выброс в атмосферу: азота диоксид, аммиак, азота оксид, сероводород, метан, фенол, формальдегид, метилмеркаптан. Источник выброса – неорганизованный, № 6005.

При механической очистке в песколовках во время удаления крупных фракций песка и отделение органики от неорганики происходит выброс загрязняющих веществ: азота диоксид, аммиак, азота оксид, сероводород, метан, фенол, формальдегид, метилмеркаптан. Источник выброса – неорганизованный, № 6006.

Страница 7 из 16

Подп						
Инв. № подл.						
읟						
单						
Ž	Изм.	Кол.уч	Лист	№док	Подп.	Дата
		•				

ZHB.

Взам.

Первичные отстойники служат для осветления сточных вод в процессе его работы выделяются следующие выбросы 3В: азота диоксид, аммиак, азота оксид, сероводород, метан, фенол, формальдегид, метилмеркаптан. Источник выброса – неорганизованный, N = 6007.

В время работы аэротенка выделяются вещества: азота диоксид, аммиак, азота оксид, сероводород, метан, фенол, формальдегид, метилмеркаптан. Источник выброса — неорганизованный, N = 6008.

Во вторичных отстойниках происходит отстаивание очищенных сточных вод от активного ила. Выбросы: азота диоксид, аммиак, азота оксид, сероводород, метан, фенол, формальдегид, метилмеркаптан. Источник выброса – неорганизованный, № 6009.

Во время работы преаэратора выделяются загрязняющие вещества: азота диоксид, аммиак, азота оксид, сероводород, метан, фенол, формальдегид, метилмеркаптан. Источник выброса - неорганизованный, N = 6010.

На иловых площадках происходят выбросы: азота диоксид, аммиак, азота оксид, сероводород, метан, фенол, формальдегид, метилмеркаптан. Источник выброса — неорганизованный, № 6011.

Инвентаризационный перечень загрязняющих веществ, выбрасываемых в атмосферу.

â	Загрязняющее вещество	Использ. критерий	Значение критерия	Класс опас-		Суммарный выброс вещества		
Код	Наименование	критерии	Mr/m³	ности	г/с	т/год		
1	2	3	4	5	6	7		
0101	диАлюминий триоксид (в пересчете на алюминий)	ПДК с/с	0,01000	2	0,0041667	0,000600		
	диЖелезо триоксид (Железа оксид) (в пересчете на железо)	ПДК с/с	0,04000	3	0,0511641	0,040927		
_	Марганец и его соединения (в пересчете на марганца (IV) оксид)	ПДК м/р	0,01000	2	0,0020147	0,000632		
	Натр едкий	ОБУВ	0,01000		0,0000152	0,000024		
0152	Натрий хлорид (Поваренная соль)	ПДК м/р	0,50000	3	0,0006288	0,023814		
0155	диНатрий карбонат (Натрия карбонат, Сода кальцинированная)	ПДК м/р	0,15000	3	0,0000448	0,000080		
0203	Хром (Хром шестивалентный) (в пересчете на хрома (VI) оксид)	ПДК с/с	0,00150	1	0,0000224	0,000040		
0301	Азота диоксид (Азот (IV) оксид)	ПДК м/р	0,20000	3	0,0362705	0,270138		
0302	Азотная кислота (по молекуле HNO ₃)	ПДК м/р	0,40000	2	0,0001336	0,000232		
0303	Аммиак	ПДК м/р	0,20000	4	0,3800688	7,709125		
0304	Азот (II) оксид (Азота оксид)	ПДК м/р	0,40000	3	0,1142830	2,260172		
_	Соляная кислота	ПДК м/р	0,20000	2	0,0002928	0,000512		
	Серная кислота (по молекуле H ₂ SO ₄)	ПДК м/р	0,30000	2	0,0000112	0,000016		
	Углерод (Сажа)	ПДК м/р	0,15000	3	0,0007409	0,000974		
0330	Сера диоксид (Ангидрид сернистый)	ПДК м/р	0,50000	3	0,0010340	0,00154		
0333	Дигидросульфид (Сероводород)	ПДК м/р	0,00800	2	0,0361507	0,73790:		
_	Углерод оксид	ПДК м/р	5,00000	4	0,0826754	0,40273		
0342	Фтористые газообразные соединения /в пересчете на фтор/	ПДК м/р	0,02000	2	0,0009421	0,00022		
	Фториды неорганические плохо растворимые	ПДК м/р	0,20000	2	0,0005667	0,00013		
0403	Гексан	ПДК м/р	60,00000	4	0,0002687	0,00000		
0410	Метан	ОБУВ	50,00000	-	2,2511903	46,22184		
0616		ПДК м/р	0,20000	3	0,0284091	0,40444		
0621	Метилбензол (Толуол)	ПДК м/р	0,60000	3	0,0115741	0,10000		
0703	Бенз/а/пирен (3,4-Бензпирен)	ПДК с/с	1,00e-06	1	5,03e-10	2,70e-0		
0898	Трихлорметан (Хлороформ)	ПДК м/р	0,10000	2	0,0142916	0,01920		
0906	Тетрахлорметан (Углерод четыреххлористый)	ПДК м/р	4,00000	2	0,0053324	0,00723		
1042	Бутан-1-ол (Спирт н-бутиловый)	ПДК м/р	0,10000	3	0,0034722	0,03675		
1061	Этанол (Спирт этиловый)	ПДК м/р	5,00000	4	0,0037958	0,02247		
1071	Гидроксибензол (Фенол)	ПДК м/р	0,01000	2	0,0402282	0,82262		
1119	2-Этоксиэтанол (Этилцеллозольв, Этиловый эфир этиленгликоля)	ОБУВ	0,70000	-	0,0018519	0,01645		
1210		ПДК м/р	0,10000	4	0,0023148	0,02000		
1325		ПДК м/р		2	0,0291946	0,59648		
1401		ПДК м/р		4	0,0016204	0,01400		
1513		ОБУВ	0,50000	-	1,97e-21	4,00e-2		
1555	,	ПДК м/р		3	0,0007220	0,00123		

Страница 8 из 16

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам.

Подп. и дата

№ подл.

рикарбоновая кислота (Лимонная ган) рнистый) (в пересчете на углерод)	ПДК м/р ПДК м/р ПДК м/р ПДК м/р	0,10000 0,00600 0,00005	3 4 3	1,64e-19 0,0017116	4,59e-23 0,034908			
	ПДК м/р	0,00005			0,034908			
рнистый) (в пересчете на углерод)			3	0.0000001				
рнистый) (в пересчете на углерод)	ПДК м/р	= 00000		0,0000001	0,000012			
		5,00000	4	0,0000000	0,000000			
	ОБУВ	1,20000	-	0,0030533	0,004012			
	ОБУВ	0,20000	-	0,0086787	0,043746			
	ОБУВ	1,00000	-	0,0231481	0,200103			
e C ₁₂ -C ₁₉	ПДК м/р	1,00000	4	0,0009000	0,716000			
20% SiO ₂	ПДК м/р	0,30000	3	0,0029000	0,000237			
белый, Монокорунд)	ОБУВ	0,04000	-	0,0048000	0,012442			
пота (Кислота салициловая)	ОБУВ	0,01000	-	6,28e-12	8,01e-15			
Всего веществ: 46								
в том числе твердых: 9								
жидких/газообразных: 37								
ффектом комбинированного вредного	о действия:							
•								
•								

Согласно п. 1 Правил установления санитарно-защитных зон и использования земельных участков, расположенных в границах санитарно-защитных зон, утв. Постановлением Правительства РФ от 03.03.2018 г. № 222, санитарно-защитные зоны устанавливаются, в случае формирования за контурами объектов химического, физического и (или) биологического воздействия, превышающего санитарно-эпидемиологические требования.

Проектные расчеты выполнены в соответствии с «Рекомендациями по разработке проектов СЗЗ промышленных предприятий, групп предприятий» и «Методами расчетов рассеивания выбросов вредных (загрязняющих) веществ в атмосферном воздухе», 2017 г.

Расчетным путем с использованием утвержденных методик и данных предприятия выполнена инвентаризация источников выделения. Расчёт выбросов загрязняющих веществ в атмосферу выполнен по унифицированной программе УПРЗА Эколог «Версия 4.5».

Расчет выполнен с учетом фоновых концентраций. Фоновые концентрации приняты справки ФГБУ «Башкирское УГМС» № 1-18-1847 от 08.05.2019 г. Фоновые концентрации аммиака, фенола не установлены.

В расчетах приняты следующие расчетные (контрольные точки):

Для расчетов приняты точки на границе СЗЗ по всем румбам и на границе ближайшего населенного пункта (с. Староуразаево) и для оценки негативного влияния выбросов загрязняющих веществ предприятия на качество и безопасность сельскохозяйственной продукции контрольные точки на границах земель сельскохозяйственного назначения с разрешенным использованием «для сельскохозяйственного производства».

№	Координаты (м)		Координаты (м)		Высота (м)	та Тип точки Комментарий	
1 1	X	Y					
1	1249081,00	804139,00	2,00	на границе СЗЗ	Расчетная точка на границе санитарно-защитной зоны (север)		
2	1249748,00	803953,00	2,00	на границе СЗЗ	Расчетная точка на границе санитарно-защитной зоны (северо-восток)		

Страница 9 из 16

							Г
							l
	Изм.	Кол.уч	Лист	№док	Подп.	Дата	
_		,					_

Взам.

Подп. и дата

3	1249857.00 80	03500,00	2,00	на границе СЗЗ	Расчетная точка на границе санитарно-защитной зоны (восток)
4	1249807,00 8		2,00	на границе СЗЗ	Расчетная точка на границе санитарно-защитной зоны (юго-восток)
5	1249320,00 8		2,00	на границе СЗЗ	Расчетная точка на границе санитарно-защитной зоны (юг)
6	1248775,00 8		2,00	на границе СЗЗ	Расчетная точка на границе санитарно-защитной зоны (юго-запад)
7	1248276,00 8		2,00	на границе СЗЗ	Расчетная точка на границе санитарно-защитной зоны (запад)
8	1248562,00 8		2,00	на границе СЗЗ	Расчетная точка на границе санитарно-защитной зоны (северо-запад)
9	1247592,00 8	-	2,00	на границе жилой зоны	Расчетная точка на границе жилой зоны (д. Староуразаево)
10	1247846,00 8		2,00	на границе жилой зоны	Расчетная точка на границе жилой зоны (д. Староуразаево)
11	1247794,00 8		2,00	на границе жилой зоны	Расчетная точка на границе жилой зоны (д. Староуразаево)
12	1247593,00 8		2,00	на границе жилой зоны	Расчетная точка на границе жилой зоны (д. Староуразаево)
13	1249456,00 8		2,00	точка пользователя	Расчетная точка на границе сельхозземель
14	1249485,00 8		2,00	точка пользователя	Расчетная точка на границе сельхозземель
15	1249339,00 8		2,00	точка пользователя	Расчетная точка на границе сельхозземель
16	1248955,00 8		2,00	точка пользователя	Расчетная точка на границе сельхозземель
17	1248648,00 8		2,00	точка пользователя	Расчетная точка на границе сельхозземель

Максимальная приземная концентрация загрязняющих веществ (доли ПДК)

Voz	Цаименорание решестра		ная приземная ко ощих веществ (до	
Озота диоксид Озота диоксид Озота диоксид Озота диоксид Озота дигидросульфид (Сероводород) Озота дигидросульфид (Сероводород) Озота дигидросульфид (Сероводород) Озота дигидросульфид (Сероводород) Озота дигидросилье газообразные соединения Озота дигидросиль Озота	На границе	На границе жилой зоны	На границе с/х земель	
1	2	3	4	5
0143	Марганец и его соединения	0,05	7,33E-03	0,09
0301		0,03	5,36E-03	0,05
0303		0,08	0,02	0,23
0304	Азот (II) оксид	0,01	4,36E-03	0,03
0333		0,56	0,44	0,76
0342		0,01	1,72E-03	0,02
0616	Диметилбензол (Ксилол)	0,04	5,10E-03	0,06
1042	Бутан-1-ол	9,17E-03	1,25E-03	0,02
1071	Гидроксибензол (Фенол)	0,17	0,06	0,50
1210		6,11E-03	8,31E-04	0,01
		0,03	0,01	0,08
1715		0,03	7,57E-03	0,04
2750		0,01	1,56E-03	0,02
2752		6,11E-03	8,31E-04	0,01
2930		0,06	8,53E-03	0,11
	Приземные концентрации по гру	уппам суммации		
6003	Аммиак, сероводород	0,37	0,12	0,85
6004	Аммиак, сероводород, формальдегид	0,41	0,13	0,92
6005	Аммиак, формальдегид	0,10	0,03	0,30
6007	Азота диоксид, гексан, углерода оксид, формальдегид	0,05	0,02	0,09
6010	Азота диоксид, серы диоксид, углерода оксид, фенол	0,20	0,06	0,51
6013	Ацетон и фенол	0,17	0,06	0,50
6035	Сероводород, формальдегид	0,34	0,11	0,70
6038	Серы диоксид, фенол	0,17	0,06	0,50
6040	Серы диоксид, трехокись серы, аммиак	0,11	0,03	0,28
6043	Серы диоксид, сероводород	0,31	0,10	0,64
6053	Фтористый водород	0,01	1,83E-03	0,02
6204	Азота диоксид, серы диоксид	0,02	3,40E-03	0,03
6205	Серы диоксид и фтористый водород	6,76E-03	9,98E-04	0,01

Согласно результатам расчетов рассеивания загрязняющих веществ, максимальные приземные концентрации загрязняющих веществ, создаваемые выбросами предприятия с учетом фонового загрязнения атмосферного воздуха, при наихудших условиях рассеивания и эксплуатации всего оборудования на границе предлагаемой СЗЗ не превышают ПДК. Изолинии в 1 ПДК не выходят за пределы предлагаемой к установлению СЗЗ по всем загрязняющим веществам и группам суммаций.

Расчёты уровня шумового воздействия.

Определение границ СЗЗ по шуму для предприятия выполнено согласно «Рекомендациям по разработке проектов санитарно-защитных зон промышленных предприятий, групп предприятий», М. 1998 г., СНиП 23-03-2003 «Защита от шума», а также программой «Эколог-Шум», версия 2.2.

Акустическое воздействие проектируемого объекта на окружающую среду определяется суммарным воздействием источников шума.

Допустимые эквивалентные уровни звука приняты по СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки»,

Страница 10 из 16

						Γ
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам.

Подп. и дата

табл. 3, п. 9. для территорий, непосредственно прилегающих к жилым домам, зданиям поликлиник, зданиям амбулаторий, диспансеров, домов отдыха, пансионатов, домов-интернатов для престарелых и инвалидов, детских дошкольных учреждений, школ и других учебных заведений, библиотек, допустимые эквивалентные уровни звука составляют 55 дБА днем и 45 дБА ночью.

Допустимые максимальные уровни звука приняты по СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки», табл. 3, п. 9. для территорий, непосредственно прилегающих к жилым домам, зданиям поликлиник, зданиям амбулаторий, диспансеров, домов отдыха, пансионатов, домов-интернатов для престарелых и инвалидов, детских дошкольных учреждений, школ и других учебных заведений, библиотек, допустимые максимальные уровни звука составляют 70 дБА днем и 60 дБА ночью.

С учетом того, что оборудование на рассматриваемом объекте работает круглосуточно, принимается наиболее жесткое ПДУ звукового давления – в ночное время (45 дБА).

В качестве максимальных принимаются нормативы для территорий, прилегающих к жилым зданиям, т.е. нормы для ночного времени суток (60 дБА).

В гараже биологических очистных сооружений базируется спецтехника: трактор Т-130, трактор ДТ-75, трактор ЮМЗ-6.

В здании насосной расположены следующие источники шума: насос центробежный Д-1250 (2 шт.), воздуходувки ТВ-300 (2 шт.), насос консольный К100.

В здании АБК расположены следующие источники шума: вентиляционное оборудование вытяжных систем.

В здании гаража расположены следующие источники шума: токарный станок, сверлильный станок, фрезерный станок, заточной, сварочный пост, пресс-ножницы, гидравлический пресс.

Стены зданий на площадке БОС выполнены из керамического кирпича толщиной 320 мм с утеплением пенополистиролом с последующей штукатуркой по сетке. Таким образом, стены зданий БОС являются ограждающей конструкцией, что значительно уменьшает шумовое воздействие работающего оборудования на прилегающую территорию.

Шумовые характеристики оборудования приняты согласно паспортным данным.

В расчетах приняты следующие расчетные (контрольные точки):

№	Координать	и точки (м)	Высота	Тип точки	Комментарий
245	X	X Y (M)		THE TOTAL	ALOMINA MARIA
1	1249081.00	804139.00	1,5	на границе СЗЗ	Расчетная точка на границе СЗЗ (север)
2	1249748.00	803953.00	1,5	на границе СЗЗ	Расчетная точка на границе СЗЗ (северо-восток)
3	1249857.00	803500.00	1,5	на границе СЗЗ	Расчетная точка на границе СЗЗ (восток)
4	1249807.00	803013.00	1,5	на границе СЗЗ	Расчетная точка на границе СЗЗ (юго-восток)
5	1249320.00	802621.00	1,5	на границе СЗЗ	Расчетная точка на границе СЗЗ (юг)
6	1248775.00	802785.00	1,5	на границе СЗЗ	Расчетная точка на границе СЗЗ (юго-запад)
7	1248276.00	803362.00	1,5	на границе СЗЗ	Расчетная точка на границе СЗЗ (запад)
8	1248562.00	803890.00	1,5	на границе СЗЗ	Расчетная точка на границе СЗЗ (северо-запад)
9	1247592.00	803580.00	1,5	на границе жилой зоны	Расчетная точка на границе жилой зоны (д. Староуразаево
10	1247794.00	803077.00	1,5	на границе жилой зоны	Расчетная точка на границе жилой зоны (д. Староуразаево
11	1247593.00	802776.00	1,5	на границе жилой зоны	Расчетная точка на границе жилой зоны (д. Староуразаево
12	1247846.00	803334.00	1,5	на границе жилой зоны	Расчетная точка на границе жилой зоны (д. Староуразаево

Результаты расчета уровня звукового давления.

В точках на границе ориентировочной санитарно-защитной зоны наибольшее значение эквивалентного уровня звука составляет 40,0 дБА, что не превышает ПДУ ночного времени для территорий, непосредственно прилегающих к жилым домам (45 дБА) согласно СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки».

В точках на границе ближайшей жилой зоны наибольшее значение эквивалентного уровня звука составляет 26,3 дБА, что не превышает ПДУ ночного времени для территорий, непосредственно прилегающих к жилым домам (45 дБА) согласно СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки».

В точках на границе ориентировочной санитарно-защитной зоны наибольшее значение максимального уровня звука составляет 49,4 дБА, что не превышает ПДУ ночного времени для территорий, непосредственно прилегающих к жилым домам (60 дБА) согласно СН 2.2.4/2.1.8.562-

Страница 11 из 16

подл.						_	
9							
ИНВ.							
Ē	Изм.	Кол.уч	Лист	№док	Подп.	Дата	

ZHB.

Взам.

Подп. и дата

04/2022-151-00000-OBOC-TY

96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки».

В точках на границе ближайшей жилой зоны наибольшее значение максимального уровня звука составляет 34,0 дБА, что не превышает ПДУ ночного времени для территорий, непосредственно прилегающих к жилым домам (60 дБА) согласно СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки».

Расчётные уровни шумового воздействия в контрольных точках не превысят предельно допустимых, установленных СН 2.2.4/2.1.8. 562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и территории жилой застройки»).

Как видно на картах расчета уровня шума, изолинии 45 дБА и более не затрагивают жилую зону и не выходят за границы предлагаемой санитарно-защитной зоны.

Негативное воздействие предприятия на прилегающую территорию определено по загрязняющим веществам и шумовому воздействию. Другие физические факторы, оказывающие неблагоприятное воздействие на окружающую среду и здоровье человека на предприятии отсутствуют.

Перечень координат характерных точек в системе координат, используемой для ведения Единого государственного реестра недвижимости представлен в проекте.

Расчетами обоснована достаточность предложенной проектом границы и размера санитарно-защитной зоны для размещения рассматриваемого объекта.

В проекте приведено описание границ и размеров санитарно-защитной зоны, что соответствует требованиям пп. б, п. 16 Правил установления санитарно-защитных зон и использования земельных участков, расположенных в границах санитарно-защитных зон, утв. Постановлением Правительства РФ от 03.03.2018 г. № 222.

При реконструкции, новом строительстве, перепрофилировании производства, увеличении объемов размещения отходов, предприятию необходимо проводить корректировку проекта санитарно-защитной зоны с учетом произошедших изменений.

В соответствии с п. 9, 10 «Правил установления санитарно-защитных зон и использования земельных участков, расположенных в границах санитарно-защитных зон», утвержденных Постановлением Правительства Российской Федерации от 03.03.2018 г. № 222:

в случае технического перевооружения объекта, изменения применяемых на объекте технологий производства продукции, изменения вида разрешенного использования или назначения объекта, правообладатель объекта обязан в срок не более одного года со дня наступления указанных обстоятельств провести исследования (измерения) атмосферного воздуха, уровней физического и (или) биологического воздействия на атмосферный воздух за контуром объекта и при выявлении превышения установленных гигиенических нормативов либо изменения такого воздействия объекта на среду обитания человека по сравнению с уровнем воздействия, исходя из которого была установлена санитарно-защитная зона, представить в уполномоченный орган заявление об установлении, изменении санитарно-защитной зоны.

в случае прекращения эксплуатации, ликвидации (в том числе сноса) объекта, изменения вида разрешенного использования или назначения такого объекта, предусматривающего осуществление деятельности, в результате которой за контурами объекта его химическое, физическое и (или) биологическое воздействие на среду обитания человека не превышает установленных гигиенических нормативов, правообладатель объекта обязан в срок не более одного месяца со дня наступления указанных обстоятельств представить в уполномоченный орган заявление о прекращении существования санитарно-защитной зоны.

Функциональное зонирование территории санитарно-защитной зоны и режим ее использования.

В пределах границ ориентировочного (нормативного) размера санитарно-защитной зоны биологических очистных сооружений отсутствуют нормируемые объекты, запрещенные к размещению по п. 5 Постановления Правительства РФ от 3 марта 2018 г. № 222.

В санитарно-защитной зоне БОС имеются земельные участки с категорией земель «земли сельскохозяйственного назначения». Согласно п. 56 Постановления Правительства РФ от 3 марта 2018 г. № 222, в границах санитарно-защитной зоны не допускается использования земельных участков в целях производства, хранения и переработки сельскохозяйственной продукции, предназначенной для дальнейшего использования в качестве пищевой продукции, если

Страница 12 из 16

	До∐							
	Инв. № подл.							
	흳							Ī
	<u>ё</u>							
	Ż	Изм.	Кол.уч	Лист	№док	Подп.	Дата	L
_			•					

Взам.

04/2022-151-00000-OBOC-TY

химическое, физическое и (или) биологическое воздействие объекта, в от-ношении которого установлена санитарно-защитная зона, приведет к нарушению качества и безопасности таких средств, сырья, воды и продукции в соответствии с установленными к ним требованиями.

На земельных участках сельскохозяйственного назначения в районе расположения БОС не ведется производство сельскохозяйственной продукции, предназначенной для дальнейшего использования в качестве пищевой продукции, а осуществляется выращивание силосной

кукурузы, предназначенной на корм животным.

Таким образом, в границы санитарно-защитной зоны БОС не попадают земельные участки разрешенный вид использования которых предназначен для размещения объектов, обозначенных п. 5б постановления Правительства Российской Федерации от 03.03.2018 № 222 «Об утверждении Правил установления санитарно-защитных зон и использования земельных участков, расположенных в границах санитарно-защитных зон». Соответственно, обоснование возможности использования земельных участков для целей, указанных в подпункте "б" пункта 5 Правил, не требуется.

Со дня установления СЗЗ на земельных участках, расположенных в границах СЗЗ, не допускаются строительство, реконструкция объектов капитального строительства, разрешенное использование которых не соответствует ограничениям использования земельных участков, предусмотренным решением об установлении СЗЗ, а также использование земельных участков, не соответствующее указанным ограничениям.

Реконструкция объектов капитального строительства осуществляется только путем их приведения в соответствие с ограничениями использования земельных предусмотренными решением об установлении СЗЗ.

Программа натурных исследований и измерений для подтверждения границ санитарно-защитной зоны.

Согласно п. 7. Правил установления санитарно-защитных зон и использования земельных участков, расположенных в границах санитарно-защитных зон, утв. Постановлением Правительства № 222 от 03.03.2018 г. в срок не более одного года со дня ввода в эксплуатацию построенного, реконструированного объекта, в отношении которого установлена или изменена санитарно-защитная зона, правообладатель такого объекта обязан обеспечить проведение исследований (измерений) атмосферного воздуха, уровней физического и (или) биологического воздействия на атмосферный воздух за контуром объекта и в случае, если выявится необходимость изменения санитарно-защитной зоны, установленной или измененной исходя из расчетных показателей уровня химического, физического и (или) биологического воздействия объекта на среду обитания человека, представить в уполномоченный орган заявление об изменении санитарно-защитной зоны.

Согласно п. 12 указанных правил, результаты указанных исследований и измерений в срок не более одного месяца со дня их проведения направляются лицом, обеспечившим их проведение, в уполномоченный орган.

Программа проведения натурных исследований для обоснования размеров предлагаемой санитарно-защитной зоны площадки представлена в Проекте. Месторасположение контрольных точек контроля уровней шума указано на ситуационном плане в Приложении Проекта.

Организация наблюдений за уровнем загрязнения атмосферы проводится в соответствии с ГОСТ 17.2.3.01-86 «Охрана природы. Атмосфера. Правила контроля качества воздуха населенных пунктов» и РД 52.04.186-89 «Руководство по контролю загрязнения атмосферы», лабораторией, аккредитованной на данные виды исследований.

Измерения шумового воздействия будут проведены в соответствии с программой, приведенной в Проекте. Измерения проводятся в дневное и ночное время. Во время измерений оборудование, являющееся источником шума, должно работать на полной мощности в соответствии с технологией. Для выявления тенденции изменения акустической обстановки показателей шума, в каждой точке измерения необходимо проводить во время максимальной нагрузке предприятия. Для выяснения влияния сезонных изменений показателей шума, в каждой точке измерения необходимо проводить два раза в год - зимой и летом в наиболее холодные/теплые месяцы сезона.

Методика измерения уровней шума на границе санитарно-защитной зоны будет выполнятся в соответствии с МУК 4.3.2194-07 «Контроль уровня шума на территории жилой

Страница 13 из 16

	Ī						
No non	т Т						
9	1						
9	<u>.</u>						
Ī	5	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам.

04/2022-151-00000-OBOC-TY

застройки, в жилых и общественных зданиях и помещениях».

Лабораторные исследования атмосферного воздуха и измерения физических воздействий на атмосферный воздух (шум, ЭМИ) проводятся лабораториями, аккредитованными в установленном порядке на проведение таких работ.

Критерием выбора загрязняющих веществ и точек контроля в селитебной зоне и на границе СЗЗ для программы натурных исследований и измерений за загрязнением атмосферы являются расчетные значения приземных концентраций. В программу натурных исследований должны быть включены приоритетные вещества. Согласно п.1.2. СанПиН 2.2.1/2.1.1.1200-03, к приоритетным веществам относятся вещества, для которых уровни создаваемого загрязнения за пределами промышленной площадки превышают 0,1 ПДК.

В данном случае контроль предлагается проводить по 4-м наименованиям загрязняющих веществ (аммиак, сероводород, фенол, формальдегид).

План-график проведения замеров проб атмосферного воздуха.

Наименование	Место контроля	Контролируемые вещества	ПДКм.р., мг/м ³	Периодичность контроля	Примечание	
Проведение натурных инструментальных исследований качества атмосферного воздуха на границе СЗЗ	m	Аммиак	0,200		В период	
	Точки №№1-8 согласно графическому	Сероводород	0,008	4 раза в год (в рамках производственного контроля)	максимальной нагрузки, в теплый и холодный	
		Гидроксибензол (Фенол)	0,010			
	приложению № 2	Формальдегид	0,05		периоды года	

		з уровня звукового дав	Периодичность	Патруочения	
Наименование	Место контроля	Контролируемый параметр	контроля	Примечание	
Проведение натурных	Точки №№1-8 согласно	Эквивалентный уровень звука	4 раза в год (в	В период максимальной	
замеров уровня	графическому	Максимальный уровень звука	рамках	нагрузки, в дневное и ночное	
звукового давления на границе СЗЗ		Уровни звукового давления в октавных частотах	производственного контроля)	время. В теплый и холодный периоды года.	

В санитарно-защитной зоне биологических очистных сооружений г. Нефтекамск имеются земельные участки с категорией земель «земли сельскохозяйственного назначения». Согласно п. 5б Постановления Правительства РФ от 3 марта 2018 г. № 222, в границах санитарно-защитной зоны не допускается использования земельных участков в целях производства, хранения и переработки сельскохозяйственной продукции, предназначенной для дальнейшего использования в качестве пищевой продукции, если химическое, физическое и (или) биологическое воздействие объекта, в отношении которого установлена санитарно-защитная зона, приведет к нарушению качества и безопасности таких средств, сырья, воды и продукции в соответствии с установленными к ним требованиями.

На земельных участках сельскохозяйственного назначения в районе расположения БОС осуществляется выращивание силосной кукурузы, предназначенной на корм животным, т.е. на этих землях не ведется производство сельскохозяйственной продукции, предназначенной для дальнейшего использования в качестве пищевой продукции.

В случае использования земель сельскохозяйственного назначения, расположенных в санитарно-защитной зоне БОС, для производства сельскохозяйственной продукции, предназначенной для дальнейшего использования в качестве пищевой продукции необходимо осуществлять контроль качества продукции в общем порядке, предусмотренном положениями законодательства, в том числе Технического регламента Таможенного союза ТР ТС 021/2011 «О безопасности пищевой продукции» с привлечением аккредитованной испытательной лаборатории для проведения лабораторных исследований.

Организация и режим использования территории санитарно-защитной зоны.

Согласно Постановлению Правительства РФ от 03.03.2018 № 222 «Правила установления санитарно-защитных зон и использования земельных участков, расположенных в границах санитарно-защитных зон» проект должен содержать перечень ограничений использования земельных участков, расположенных в границах санитарно-защитной зоны, в соответствии с пунктом 5 настоящих Правил. В границах санитарно-защитной зоны не допускается использования земельных участков в целях:

а) размещения жилой застройки, объектов образовательного и медицинского назначения, спортивных сооружений открытого типа, организаций отдыха детей и их оздоровления, зон

Страница 14 из 16

						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам.

Подп. и дата

04/2022-151-00000-OBOC-TY

рекреационного назначения и для ведения дачного хозяйства и садоводства;

б) размещения объектов для производства и хранения лекарственных средств, объектов пищевых отраслей промышленности, оптовых складов продовольственного сырья и пищевой продукции, комплексов водопроводных сооружений для подготовки и хранения питьевой воды, использования земельных участков в целях производства, хранения и переработки сельскохозяйственной продукции, предназначенной для дальнейшего использования в качестве пищевой продукции, если химическое, физическое и (или) биологическое воздействие объекта, в отношении которого установлена санитарно-защитная зона, приведет к нарушению качества и безопасности таких средств, сырья, воды и продукции в соответствии с установленными к ним требованиями.

Ввиду того, что промплощадка располагается в сложившейся застройке, дополнительных мероприятий по благоустройству и озеленению территории промплощадки и территории в границах СЗЗ не требуется.

Мероприятия по защите населения от воздействия выбросов загрязняющих веществ и физического воздействия.

Проектом санитарно-защитной зоны рекомендуются следующие мероприятия для соблюдения нормативов выбросов загрязняющих веществ в атмосферу и для снижения воздействия выбросов на окружающую среду:

- регулярный контроль за техническим состоянием и герметичностью очистных сооружений и оборудования, предназначенного для перекачки стоков;
 - плановый ремонт и замена оборудования;
 - использование технически исправного технологического оборудования;
- проведение мероприятий по регулярному обслуживанию оборудования очистных сооружений согласно требованиям производителя;
 - комплексная автоматизация технологических процессов;
 - защита сооружений и баков от коррозии;
 - озеленение прилегающей территории.

Для соблюдения ПДУ физического воздействия на окружающую среду необходимо выполнять следующие технологические решения:

- установка технологического оборудования с низкими уровнями шума и вибрации;
- установка основного производственного оборудования внутри здания дает значительное уменьшение уровней звука на прилегающих нормируемых объектах;
- установка закрепленного оборудования на покрытии, способствующем снижению уровня шума и вибрации;
- установка оборудования, с вибрационными показателями не превышающими ПДУ производственной вибрации.
- проведение профилактических и ремонтных работ технологического оборудования согласно плану планово-предупредительного ремонта.

Дополнительные мероприятия по планировочной организации и благоустройству СЗЗ, варианты озеленения площадки не требуются. Рекомендуется уход за существующими зелеными насаждениями, прокос газонных трав, подрезка деревьев, внесение удобрений и т.п.

Мероприятия по переселению жителей, сокращению объемов оказываемых услуг не предусматриваются.

Проектная документация представлена в объеме, позволяющем дать оценку соответствия проектных решений санитарным нормам и правилам.

Структура документа соответствует требованиям Правил установления санитарнозащитных зон и использования земельных участков, расположенных в границах санитарнозащитных зон, утв. Постановлением Правительства РФ от 03.03.2018 г. № 222 и СанПиН 2.2.1/2.1.1.1200-03 «Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов. Новая редакция» (с изменениями), а также «Рекомендациям по разработке проектов санитарно-защитных зон промышленных предприятий, групп предприятий», изд-во РЭФИА: М., 1998.

В проекте приведена характеристика предприятия, его расположения, обоснование размеров санитарно-защитной зоны по расчёту рассеивания вредных веществ в атмосфере; по

Страница 15 из 16

						ſ
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам.

Подп. и дата

расчету шума от источников шумового воздействия предприятия.

На карту-схему нанесена граница санитарно-защитной зоны по расчету рассеивания загрязняющих веществ в атмосферу, расчету шумового воздействия.

Предприятие не является источником вибрационного, радиационного воздействия на окружающую среду.

На основании вышеизложенного, проектом предлагается установить санитарно-защитную зону для объекта 400 метров во всех направлениях, так как на этих расстояниях концентрации компонентов выбросов и уровни шума не превышают значений гигиенических нормативов.

Площадь объекта землеустройства – 1918900 м^2 , в том числе: площадь земельного участка предприятия – 367018 m^2 .

Площадь $C33 - 1551882 \text{ м}^2$. Периметр C33 - 5100 м.

Заключение.

Проект санитарно-защитной зоны биологических очистных сооружений г. Нефтекамск Республики Башкортостан соответствует требованиям СанПиН 2.2.1/2.1.1.1200-03 «Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов. Новая редакция» (с изменениями), СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки», СанПиН 2.1.6.1032-01 «Гигиенические требования к обеспечению качества атмосферного воздуха населенных мест», ГН 2.1.6.3492-17 «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе городских и сельских поселений», ГН 2.1.6.2309-07 «Ориентировочные безопасные уровни воздействия (ОБУВ) загрязняющих веществ в атмосферном воздухе населенных мест».

(в заключение необходимо указать соответствие (несоответствие) материалов представленной проектно-сметной документации требованиям санитарных норм и правил. При несоответствии, необходимо дать обоснование по каждому замечанию)

	1	
Санитарно-эпидемиологическая	PERTURNANCE	иповелена.
Canniadno-siingemmosioi nacekas	JICH CHILLIAN	проведени.

Врач по общей гигиене

Деркач С.К

Проверено и согласовано:

Технический директор (врач по общей гигиене) (должность специалиста, Ф.И.О., подпись)

Молягов Д.И.

 Данное экспертное заключение не является документом, дающим право для дальнейшего производства работ до получения санитарноэпидемиологического заключения, установленного образца, в органах Роспотребнадзора.

Страница 16 из 16

Изм. Кол.уч Лист №док Подп. Дата

Взам.

Подп. и дата

№ подл.

HB.

04/2022-151-00000-OBOC-TY

Приложение Д (обязательное) Расчет шума

Эксплуатация

Взам. І

Подп. и дата

Инв. № подл.

Изм. Кол.уч Лист №док

Подп.

Дата

Эколог-Шум. Модуль печати результатов расчета Copyright © 2006-2021 ФИРМА "ИНТЕГРАЛ"

Источник данных: Эколог-Шум, версия 2.6.0.4670 (от 20.10.2022) [3D]

Х (м) У (м) Высота Дистанци 31.5 63 125 250 500 1000 2000 4000 8000

Уровни звукового давления (мощности, в случае R = 0), дБ, в

октавных полосах со среднегеометрическими частотами в Гц

04/2022-151-00000-OBOC-TY

La.эк

В

расчете

Лист

595

1. Исходные данные

Объект

1.1. Источники постоянного шума

Координаты точки

подъем

a (m)

я замера (расчета)

					R (M)											
001	Насос (сущ)	362.9 0	207.6 0	0.00		95.0	98.0	103. 0	100. 0	97.0	97.0	94.0	88. 0	87. 0	101. 0	Да
002	Насос	313.2	130.2	0.00		93.0	96.0	101. 0	98.0	95.0	95.0	92.0	86. 0	85. 0	99.0	Да
003	Hacoc	314.7	122.2	0.00		93.0	96.0	101.	98.0	95.0	95.0	92.0	86. 0	85. 0	99.0	Да
004	Сварочный пост (сущ)	561.6	184.3	0.00		81.0	84.0	89.0	86.0	83.0	83.0	80.0	74. 0	73. 0	87.0	Да
005	Пресс-ножницы (сущ)	529.7 0	173.8	0.00		94.0	97.0	102. 0	99.0	96.0	96.0	93.0	87. 0	86. 0	100. 0	Да
006	Гидравлический пресс (сущ)	527.9	218.5	0.00		88.0	91.0	96.0	93.0	90.0	90.0	87.0	81.	80. 0	94.0	Да
007	Токарный станок (сущ)	521.8	180.4	0.00		93.0	96.0	101. 0	98.0	95.0	95.0	92.0	86. 0	85. 0	99.0	Да
008	Сверлильный станок (сущ)	521.3	174.7 0	0.00		86.0	89.0	94.0	91.0	88.0	88.0	85.0	79. 0	78. 0	92.0	Да
009	Строгальный станок (сущ)	526.6	177.3	0.00		103. 0	106. 0	111. 0	108. 0	105. 0	105. 0	102. 0	96. 0	95. 0	109. 0	Да
010	Фрезерный станок (сущ)	524.4 0	172.5 0	0.00		94.0	97.0	102. 0	99.0	96.0	96.0	93.0	87. 0	86. 0	100.	Да
011	Токарный станок (сущ)	518.7	172.5 0	0.00		93.0	96.0	101.	98.0	95.0	95.0	92.0	86. 0	85. 0	99.0	Да
012	Заточной станок (сущ)	520.5	172.5 0	0.00		85.0	88.0	93.0	90.0	87.0	87.0	84.0	78. 0	77. 0	91.0	Да
013	П1 (здание механической очистки)	531.4	185.2	3.20		82.0	85.0	90.0	87.0	84.0	84.0	81.0	75. 0	74. 0	88.0	Да
014	ВЗ (здание механической очистки)	530.5	181.7 0	3.20		85.0	88.0	93.0	90.0	87.0	87.0	84.0	78. 0	77. 0	91.0	Да
015	В2 Здания №12 (Блок обезвоживания осадка)	585.3 0	137.0	0.00		85.0	88.0	93.0	90.0	87.0	87.0	84.0	78. 0	77. 0	91.0	Да
016	ВЗ Здания №12 (Блок обезвоживания осадка)	587.9 0	137.0	0.00		85.0	88.0	93.0	90.0	87.0	87.0	84.0	78. 0	77. 0	91.0	Да
017	В1 Здания №12 (Блок обезвоживания осадка)	589.2 0	108.6	0.00		85.0	88.0	93.0	90.0	87.0	87.0	84.0	78. 0	77. 0	91.0	Да
018	П1 Здания №12 (Блок обезвоживания осадка)	591.4	137.5	0.00		82.0	85.0	90.0	87.0	84.0	84.0	81.0	75. 0	74. 0	88.0	Да
019	ВЗ Здание №13. Блок доочистки	355.7 0	82.70	0.00		85.0	88.0	93.0	90.0	87.0	87.0	84.0	78. 0	77. 0	91.0	Да
020	В1 Здание №13. Блок доочистки	351.2 0	83.00	0.00		85.0	88.0	93.0	90.0	87.0	87.0	84.0	78. 0	77.	91.0	Да
021	ВЗ Здание №13. Блок доочистки	351.2 0	74.30	0.00		85.0	88.0	93.0	90.0	87.0	87.0	84.0	78. 0	77. 0	91.0	Да
022	В4 Здание №13. Блок доочистки	353.8 0	75.30	0.00		85.0	88.0	93.0	90.0	87.0	87.0	84.0	78. 0	77.	91.0	Да
023	П1 Здание №13.	356.4	75.60	0.00		82.0	85.0	90.0	87.0	84.0	84.0	81.0	75.	74.	88.0	Да

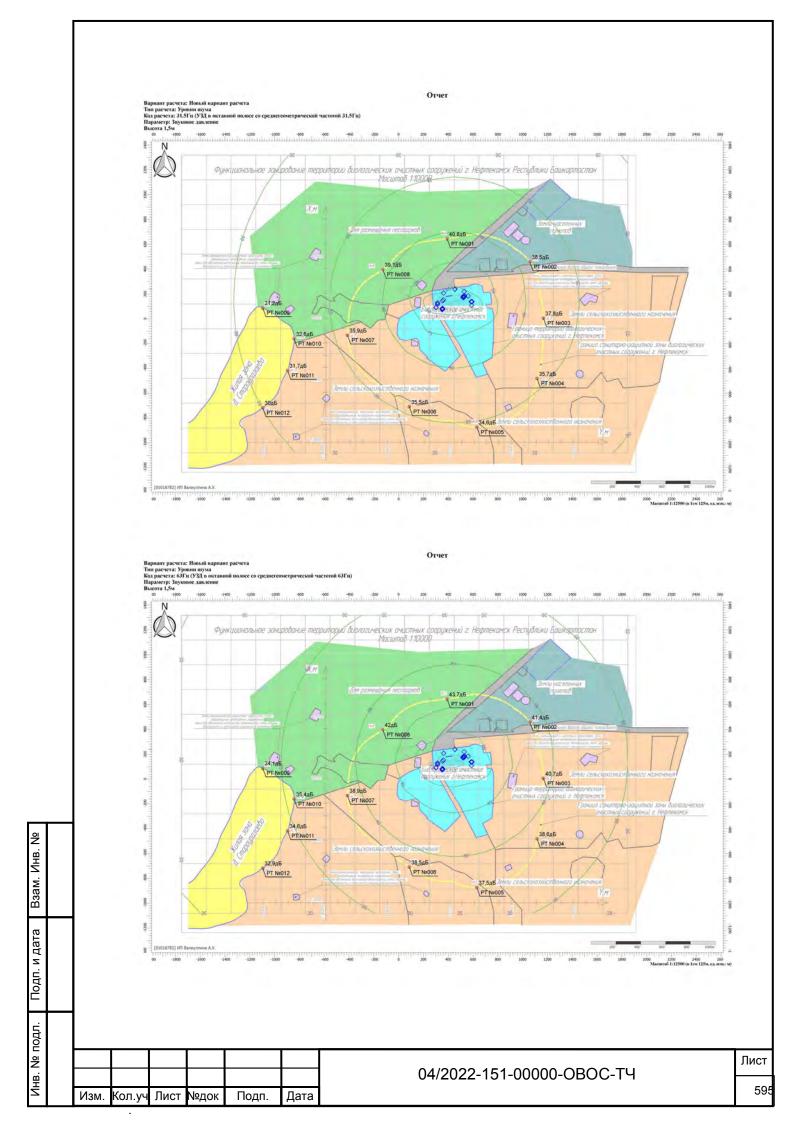
	Блок доочистки	0										0	0		
024	В1 Насосной	300.4	91.20	0.00	85.0	88.0	93.0	90.0	87.0	87.0	84.0	78.	77.	91.0	Да
	станции сброса	0										0	0		.
	очищенного стока														
025	П1 Насосной	303.3	90.70	0.00	82.0	85.0	90.0	87.0	84.0	84.0	81.0	75.	74.	88.0	Да
	станции сброса	0										0	0		.
	очищенного стока														
026	В1 Насосной ила	362.5	151.2	0.00	85.0	88.0	93.0	90.0	87.0	87.0	84.0	78.	77.	91.0	Да
		0	0									0	0		
027	П1 Насосной ила	353.0	144.2	0.00	82.0	85.0	90.0	87.0	84.0	84.0	81.0	75.	74.	88.0	Да
		0	0									0	0		
028	В1 КПП	453.2	247.0	0.00	85.0	88.0	93.0	90.0	87.0	87.0	84.0	78.	77.	91.0	Да
		0	0									0	0		
029	К1 КПП	454.2	247.4	0.00	49.0	52.0	57.0	54.0	51.0	51.0	48.0	42.	41.	55.0	Да
		0	0									0	0		
031	КТП	313.6	114.2	1.50	69.0	72.0	77.0	74.0	71.0	71.0	68.0	62.	61.	75.0	Да
		0	0									0	0		

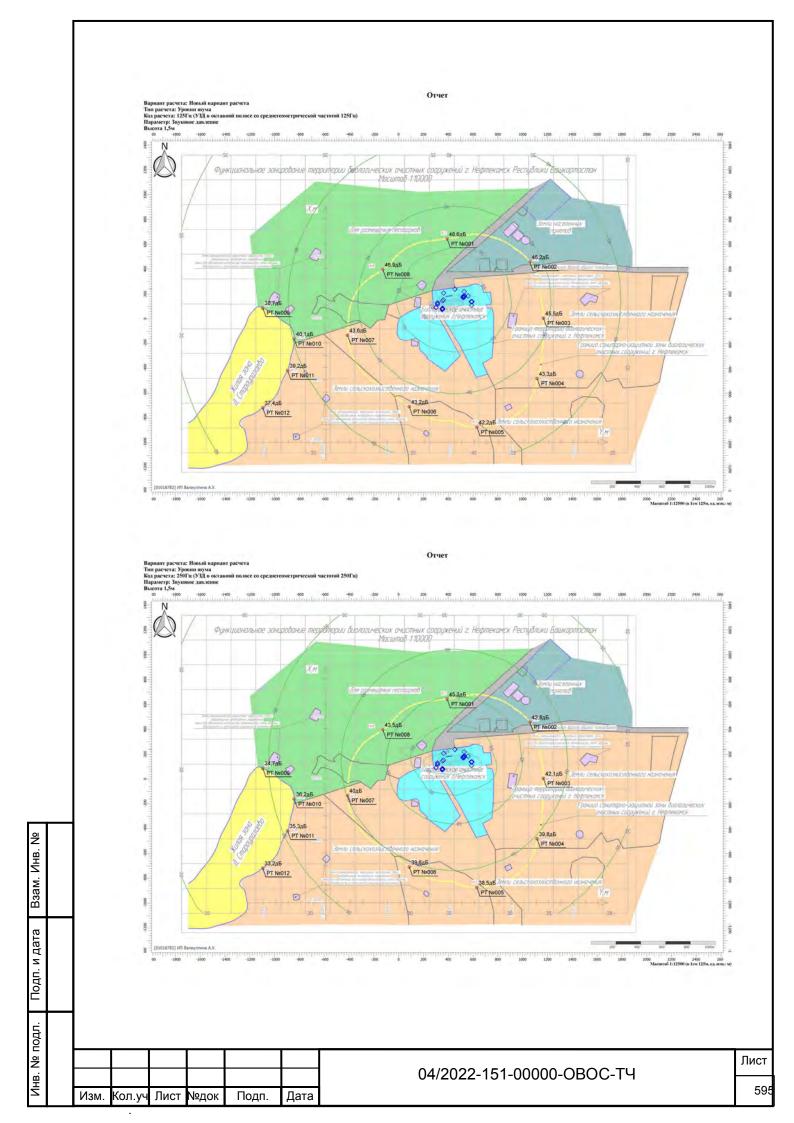
1.2. Источники непостоянного шума

N	Объект	Координаты точек (X, Y, Высота подъема)		Высот а (м)					,						La.эк в		В расчете
					Дистанци я замера (расчета) R (м)	31.5	63	125	250	500	1000	2000	4000	8000			
030	транспорт	(379.2, 179.6, 1.5), (431, 187.2, 1.5)	4.00		7.5	41. 7	44. 7	49. 7	46. 7	43. 7	43. 7	40. 7	34. 7	33. 7	47.7	64.2	Да

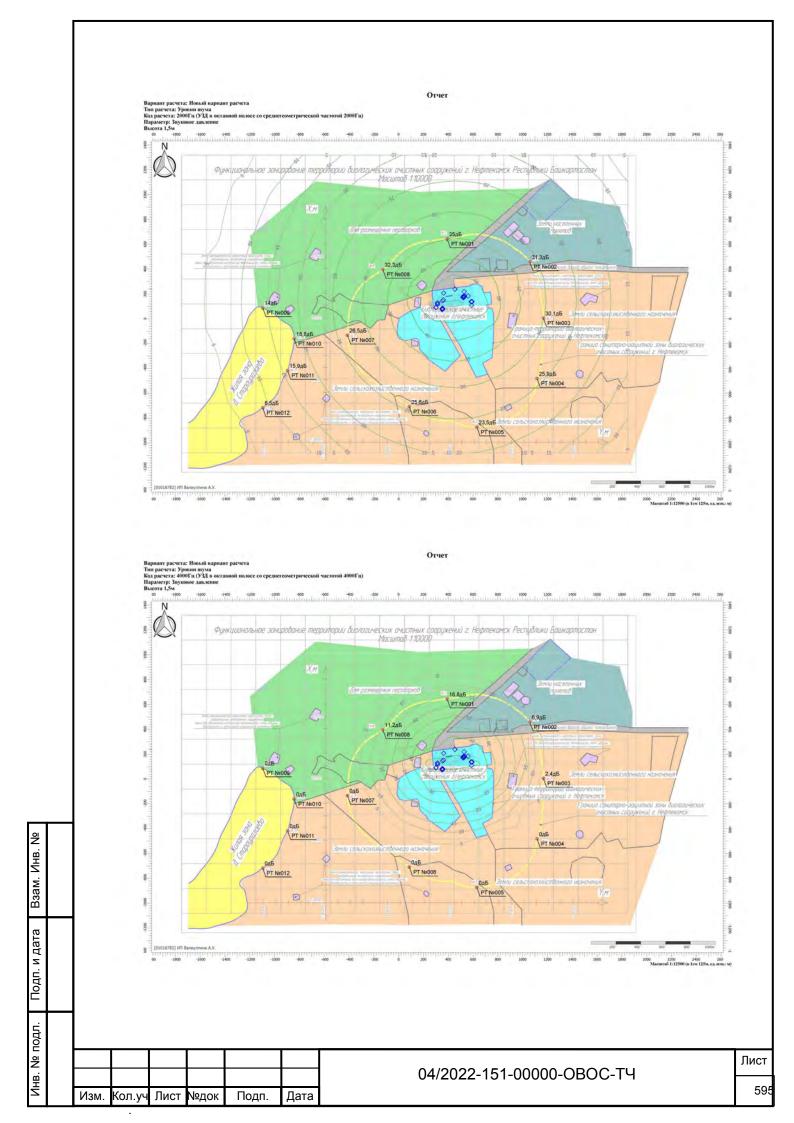
2. Условия расчета 2.1. Расчетные точки

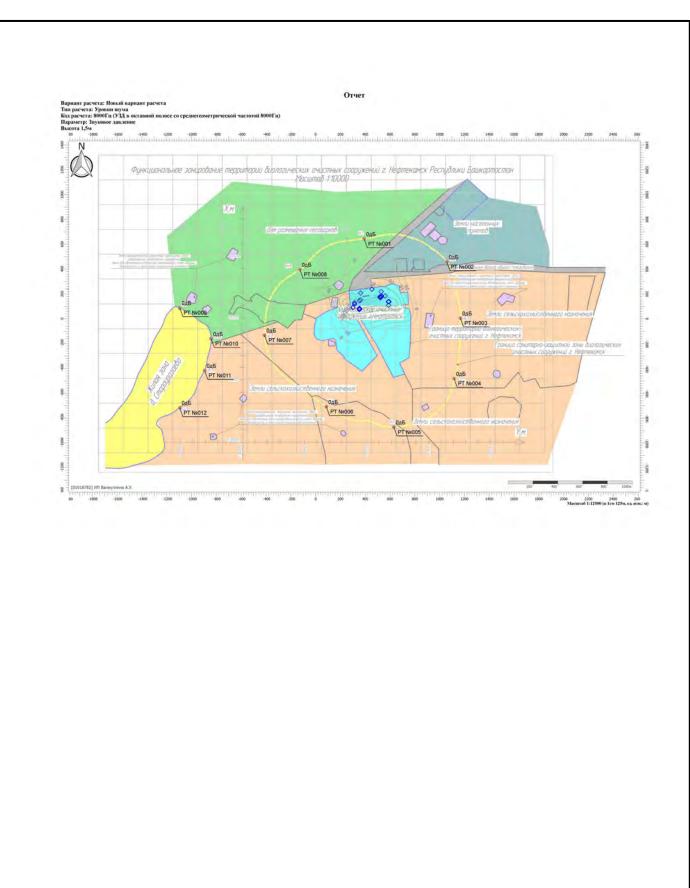
N	Объект	Коорд	цинаты	точки	Тип точки	В
		X (M)	Y (m)	Высота подъем		
				а (м)		
001	Расчетная точка	391.50	643.0	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
002	Расчетная точка	1058.2 0	457.5 0	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
003	Расчетная точка	1167.4 0	4.80	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
004	Расчетная точка	1116.1 0	481.9 0	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
005	Расчетная точка	630.80	873.2 0	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
006	Расчетная точка	86.40	709.7	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
007	Расчетная точка	-412.40	133.1	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
008	Расчетная точка	-127.10	396.4	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
009	Расчетная точка	1095.4	88.20	1.50	Расчетная точка на границе жилой зоны	Да
010	Расчетная точка	-842.00	161.2 0	1.50	Расчетная точка на границе жилой зоны	Да
011	Расчетная точка	-894.90	417.8	1.50	Расчетная точка на границе жилой зоны	Да
012	Расчетная точка	1095.9	717.5	1.50	Расчетная точка на границе жилой зоны	Да


Взам. Инв. № Подп. и дата Инв. № подл.


Изм.	Кол.уч	Лист	№док	Подп.	Дата

Вариант расчета: "Новый вариант расчета" 3. Результаты расчета (расчетный параметр "Звуковое давление") 3.1. Результаты в расчетных точках


	четная точка	Коорди	инаты	Высот	31.5	63	125	250	500	1000	2000	4000	8000	La.экв	La. макс
		точ		а (м)											
N	Название	Х (м)	Y (M)												
001	Расчетная точка	391.50	643.0	1.50	40.8	43.7	48.6	45.3	41.8	41	35	16.8	0	44.80	45.20
002	Расчетная точка	1058.2	457.5 0	1.50	38.5	41.4	46.2	42.8	39.3	38.1	31.3	6.9	0	42.10	42.30
003	Расчетная точка	1167.4 0	4.80	1.50	37.8	40.7	45.5	42.1	38.5	37.3	30.1	2.4	0	41.20	41.40
004	Расчетная точка	1116.1 0	481.9 0	1.50	35.7	38.6	43.3	39.8	36	34.4	25.9	0	0	38.40	38.70
005	Расчетная точка	630.80	873.2 0	1.50	34.6	37.5	42.2	38.5	34.6	32.8	23.5	0	0	37.00	37.20
006	Расчетная точка	86.40	709.7 0		35.5	38.5	43.2	39.6	35.8	34.2	25.6	0	0	38.30	38.50
007	Расчетная точка	-412.40	133.1	1.50	35.9	38.9	43.6	40	36.3	34.7	26.5	0	0	38.80	39.10
008	Расчетная точка	-127.10	396.4 0	1.50	39.1	42	46.9	43.5	39.9	38.9	32.3	11.2	0	42.80	43.10
009	Расчетная точка	1095.4 0	88.20	1.50	31.2	34.1	38.7	34.7	30.3	27.7	14	0	0	32.40	32.60
010	Расчетная точка	-842.00	161.2 0	1.50	32.6	35.4	40.1	36.2	32.1	29.8	18.8	0	0	34.30	34.50
011	Расчетная точка	-894.90	417.8 0	1.50	31.7	34.6	39.2	35.3	31	28.5	15.9	0	0	33.10	33.40
012	Расчетная точка	1095.9 0	717.5 0		30	32.9	37.4	33.2	28.7	25.7	8.5	0	0	30.60	30.90


Взам. И								
Подп. и дата								
подл.								
윋							04/2022-151-00000-OBOC-TY	Лист
NHB.	Изм.	Кол.уч	Лист	№док	Подп.	Дата	0 1/2022 101 00000 0200 1 1	595



Взам. Инв. №								
Подп. и дата								
Инв. № подл.	Изм.	Кол.уч	Лист	№док	Подп.	Дата	04/2022-151-00000-OBOC-TY	Лист 595

Строительство

Эколог-Шум. Модуль печати результатов расчета Copyright © 2006-2021 ФИРМА "ИНТЕГРАЛ"

Источник данных: Эколог-Шум, версия 2.6.0.4670 (от 20.10.2022) [3D]

1. Исходные данные

1.1. Источники постоянного шума

N	Объект	Коор	динаты	точки	Уровни зв в октавны				`							В расчете
		Х (м)	X (м) Y (м) Высота подъем а (м)				63	125	250	500	1000	2000	4000	8000		
004	дэс	400.0	157.7 0	1.50		55. 0	58. 0	63. 0	60. 0	57. 0	57. 0	54. 0	48. 0	47. 0	61.0	Да

1.2. Источники непостоянного шума

N	Объект	Коо	рдинаты то	чки		La. экв	L a.ма	В
		X (M)	Y (M)	Высота подъема (м)	Дистанция замера (расчета) R (м)		кс	расчете
001	Экскаватор	429.20	172.30	1.50	7.5	76.0	81.0	Да
002	Экскаватор	452.50	151.80	1.50	7.5	76.0	81.0	Да
003	Автосамосвал	417.50	143.10	1.50	7.5	76.0	81.0	Да

2. Условия расчета

2.1. Расчетные точки

N	Объект	Коорд	(инаты	точки	Тип точки	В	
		Х (м)	Y (m)	Высота		1	
				подъем			
				а (м)			
009	Расчетная точка	-	88.20	1.50	Расчетная точка на границе жилой	Да	
		1095.4			зоны		
		0					
010	Расчетная точка	-842.00	-	1.50	Расчетная точка на границе жилой	Да	
			161.2		зоны		
			0				
011	Расчетная точка	-894.90	-	1.50	Расчетная точка на границе жилой	Да	
			417.8		зоны		
			0				
012	Расчетная точка	-	_	1.50	Расчетная точка на границе жилой	Да	
		1095.9	717.5		зоны		
		0	0				

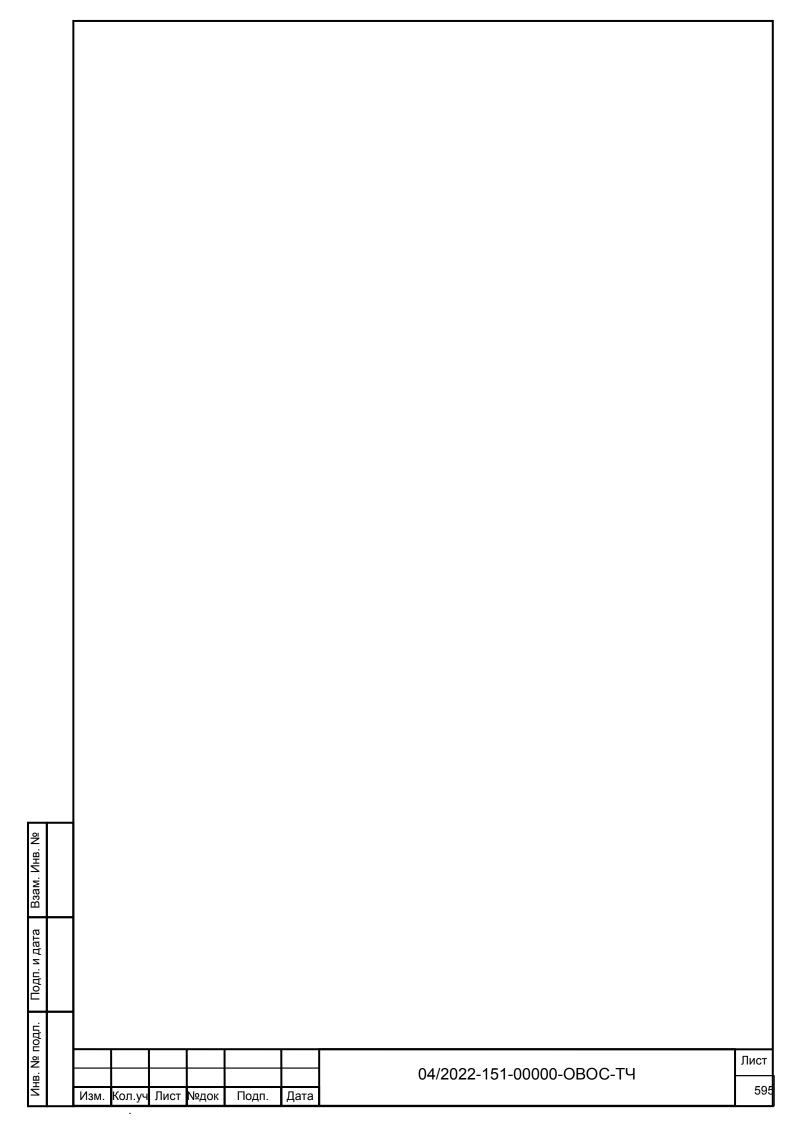
Вариант расчета: "Новый вариант расчета"

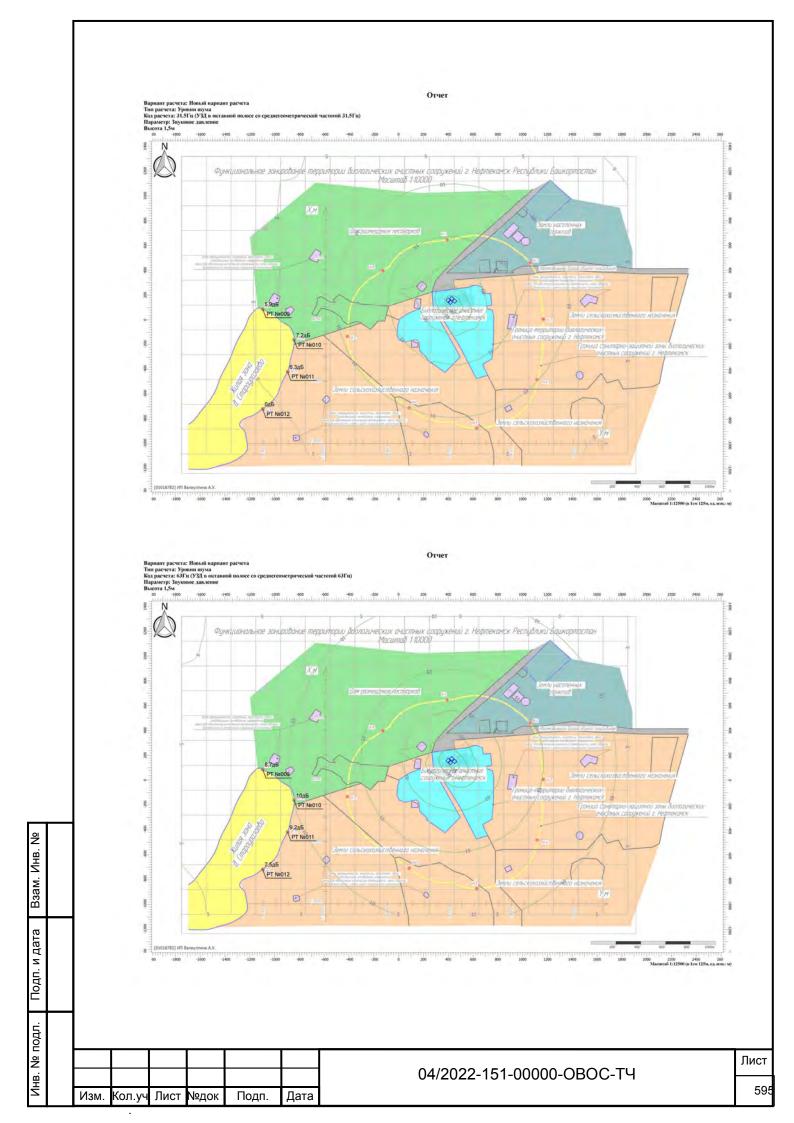
3. Результаты расчета (расчетный параметр "Звуковое давление")

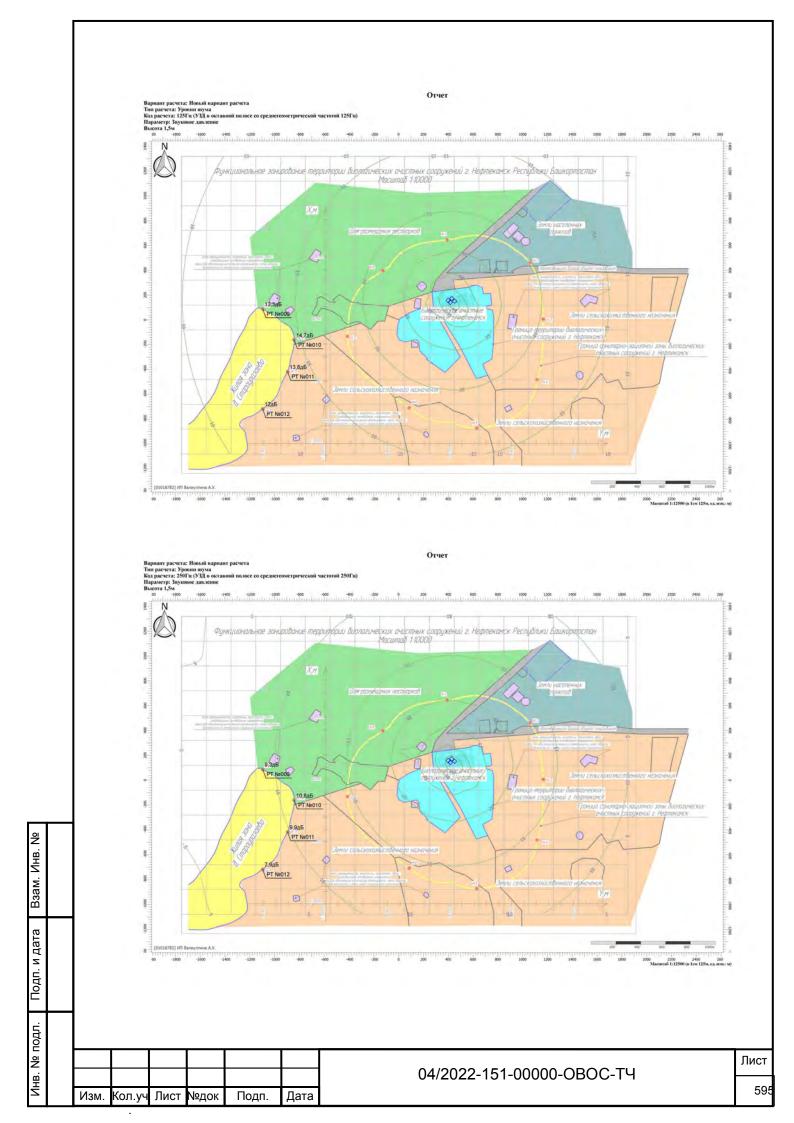
3.1. Результаты в расчетных точках

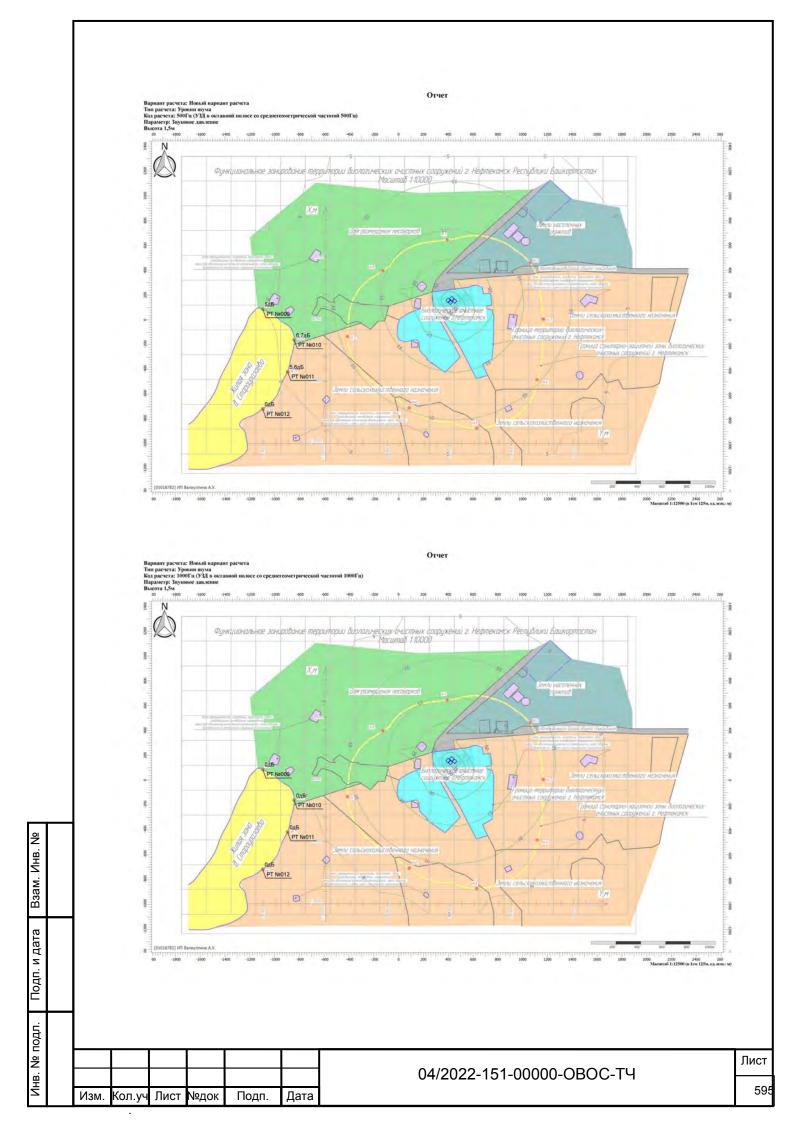
Взам. Инв. №

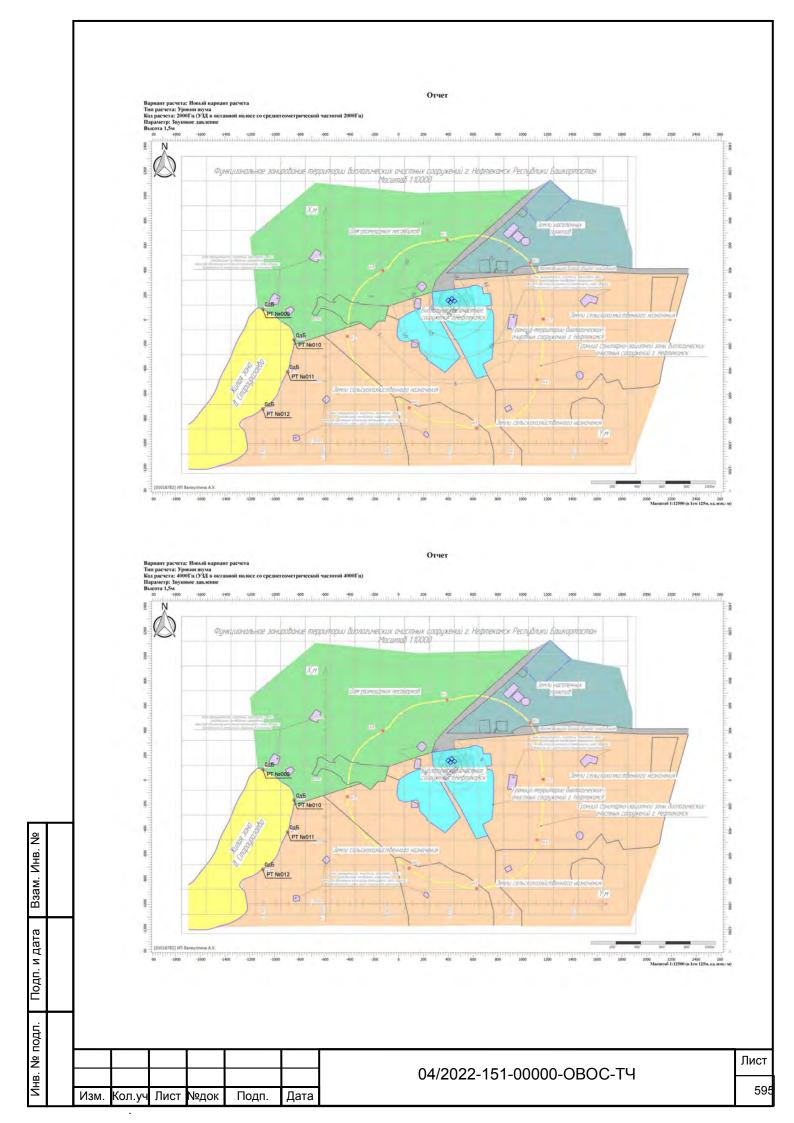
Подп. и дата

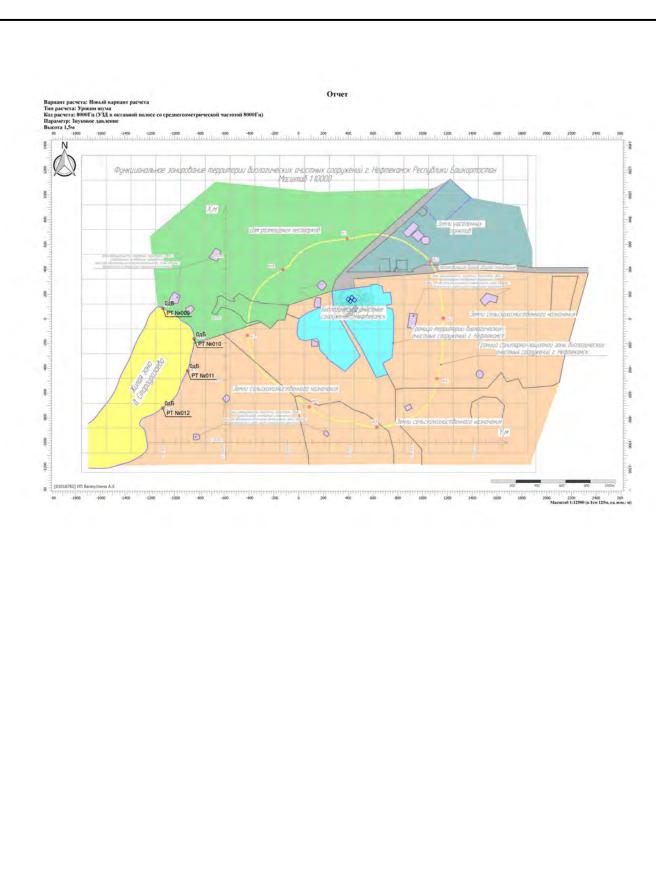

Инв. № подл.

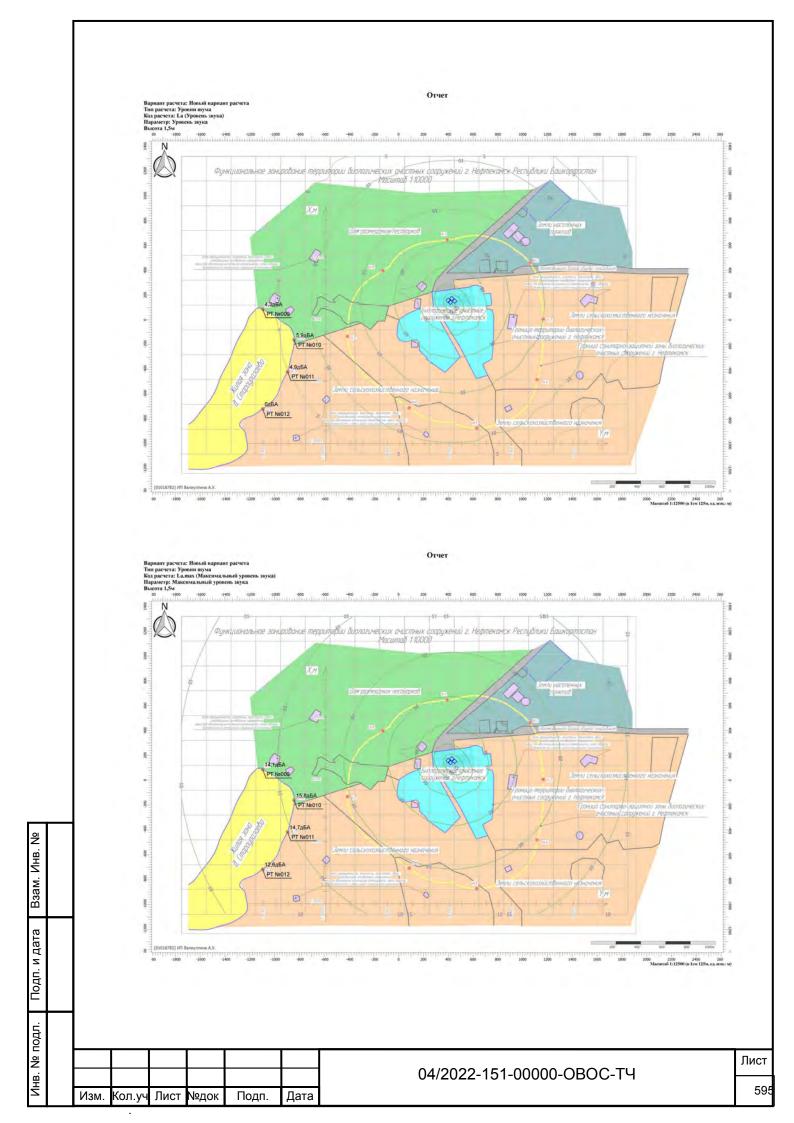

Точки типа: Расчетная точка на границе жилой зоны


Pac	четная точка	Коорди точ		Высот а (м)	31.5	63	125	250	500	1000	2000	4000	8000	La.экв	La. макс
N	Название	Х (м)	Y (m)												
009	Расчетная точка	1095.4 0	88.20	1.50	5.9	8.7	13.3	9.3	5	0	0	0	0	4.30	14.10
010	Расчетная точка	-842.00	161.2 0	1.50	7.2	10	14.7	10.8	6.7	0	0	0	0	5.90	15.80
011	Расчетная точка	-894.90	417.8 0	1.50	6.3	9.2	13.8	9.9	5.6	0	0	0	0	4.90	14.70
012	Расчетная точка	1095.9 0	717.5 0	1.50	0	7.5	12	7.9	0	0	0	0	0	0.00	12.60


Изм.	Кол.уч	Лист	№док	Подп.	Дата


04/2022-151-00000-OBOC-TY





Приложение Е (обязательное) Копии писем, документов

РОСГИДРОМЕТ
Федеральное государственное былькетное учреждение
«БАШКИРСКОЕ УПРАВЛЕНИЕ
ПО ГИДРОМЕТЕОРОЛОГИИ И МОНИТОРИНГУ
ОКРУЖАЮЩЕЙ СРЕДЫ»
(ФТБУ «Башкирское УГМС»)

Рихарда Зорге ул., д. 25/2, Уфа, Республика Башкортостан, 450059 Теп.: +7 (347) 223-30-42, факс.: *7 (347) 282-19-70 Етпа1: post@idew ru, http://xxxx.metcovb.cu ОКПО 0481009, О.ГР11 102002865946 ИНН/КПП 0276014882/027601001

05.09. k0l3 № 90k/01-18 2737 na № 120-23 or 25.08.23 Директору ООО «БурГеоИнжиниринг» И.А. Исламову

ФГБУ «Башкирское УГМС» сообщает, что в г. Нефтекамск РБ наблюдения не проводятся. Климатические характеристики г. Нефтекамск РБ для объекта: «Реконструкция биологических очистных сооружений в городе Нефтекамск РБ» предоставляются по данным метеорологических наблюдений близлежащей станции Янаул.

Характеристики рассчитаны за тридцатилетний период (1991 – 2020гг.).

Средняя минимальная температура воздуха наиболее холодного месяца составляет -20,7°C.

Средняя максимальная температура воздуха наиболее теплого месяца составляет +26,2°C.

Скорость ветра, среднегодовая повторяемость превышения которой составляет 5 %, равна 8 м/с. Направление ветра определяется той частью горизонта, откуда дует ветер.

Повторяемость различных направлений и скоростей ветра определяется сезонным режимом барических образований и рельефом местности.

Преобладающим направлением ветра зимой является южное и юго-западное, весной и осенью – юго-западное, летом - западное.

Таблица №1

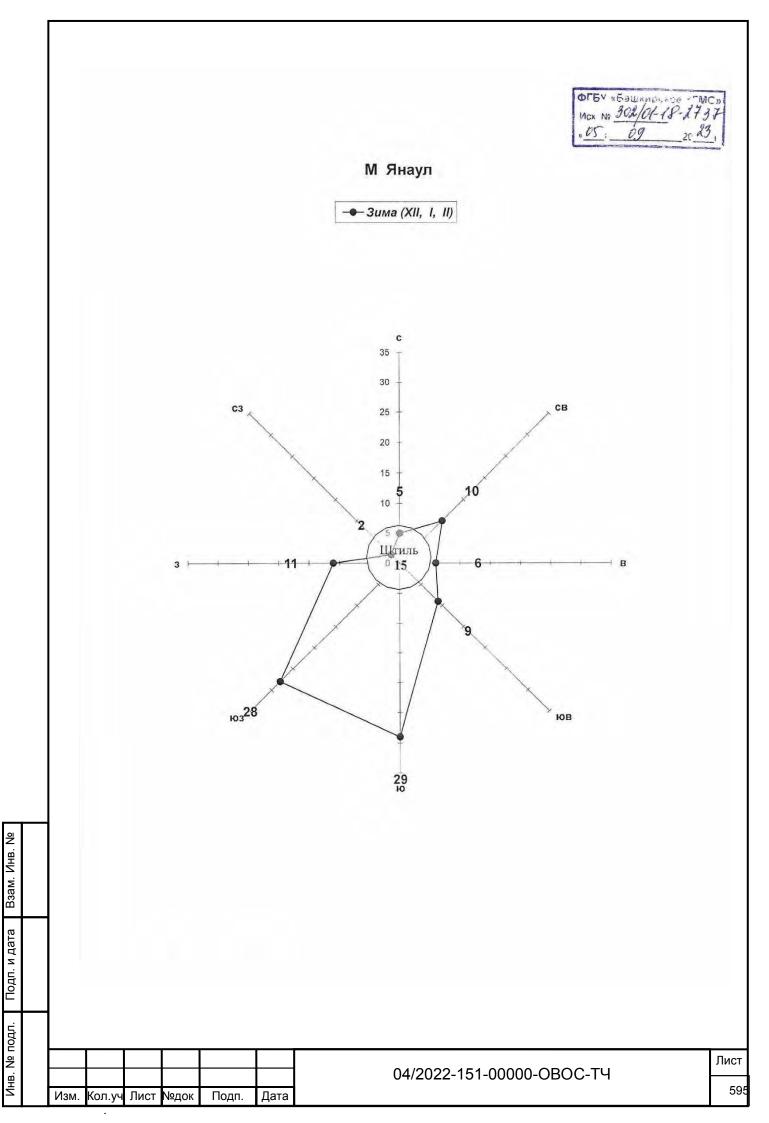
Повторяемость направлений ветра и штилей (%)

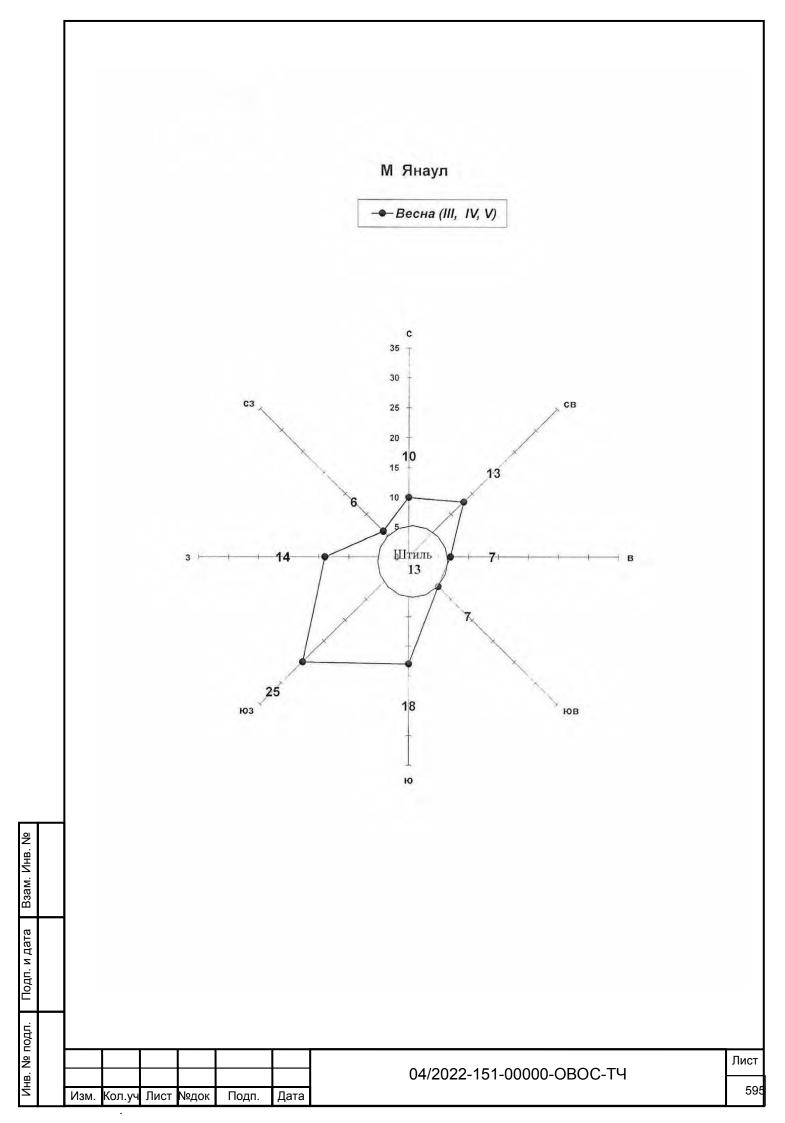
Сезон	Румбы								
	C	СВ	В	ЮВ	IO	ЮЗ	3	C3	Штиль
Зима (12,1,2)	5	10	6	9	29	28	11	2	15
Весна (3,4,5)	10	13	7	7	18	25	14	6	13
Лето (6,7,8)	17	14	8	5	10	1.5	20	11	22
Осень (9,10,11)	9	9	5	6	18	26	20	7	12
Год	10	12	6	7	19	23	16	7	15

Примечание: данные таблицы №1 представляют собой повторяемость направлений ветра, вычисленную в процентах от числа случаев ветров всех направлений, а повторяемость штиля – в процентах от общего числа наблюдений (суммы числа случаев ветров всех направлений и числа случаев штиля).

Поправочный коэффициент рассеивания с учетом рельефа равен 1. Коэффициент температурной стратификации атмосферы равен 160.

Приложение: Роза ветров на 5 страницах в 1 экземпляре.

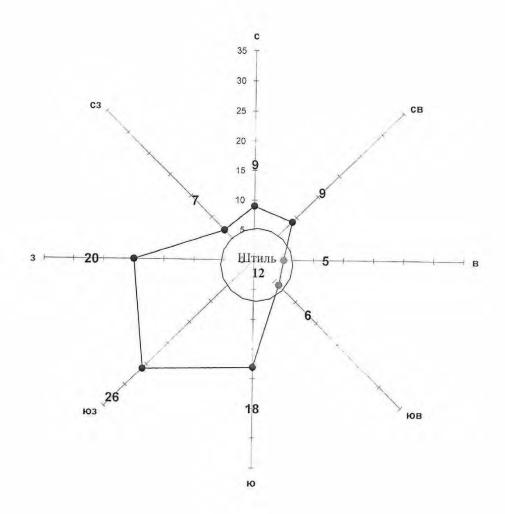

Зам. начальника

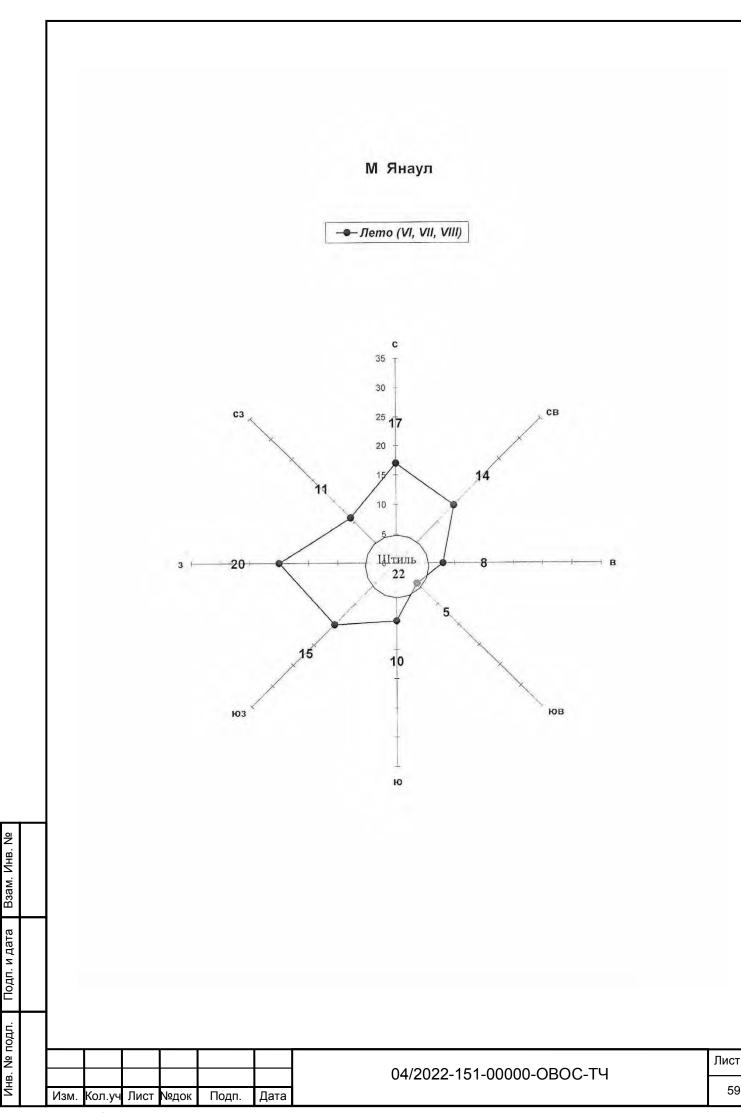

Исп. Муратова С.Ф. Тел. 282-19-57 А.А. Перонко

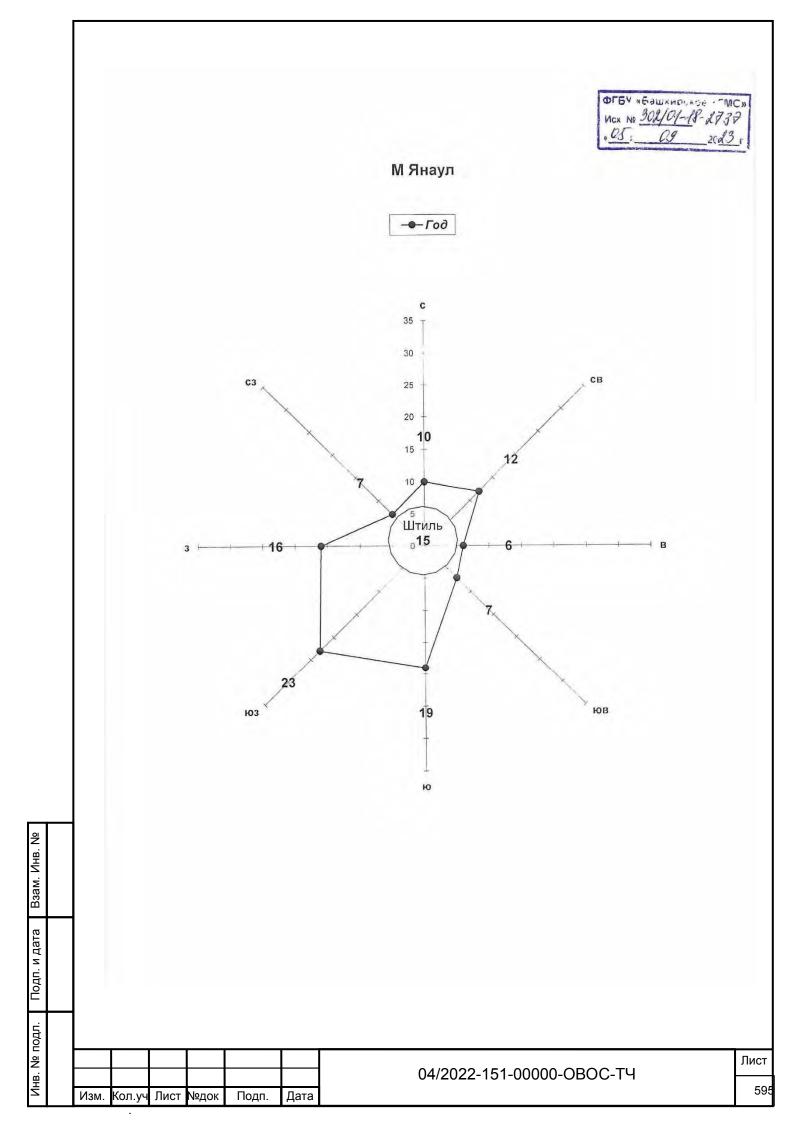
подл.						
일						
ZIHB.						
Ī	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам.

Подп. и дата




М Янаул


— Осень (IX, X, XI)

Взам. Инв. №	
Подп. и дата	
Инв. № подл.	

Изм.	Кол.уч	Лист	№док	Подп.	Дата

РОСГИДРОМЕТ

Федеральное государственное бюджетное учреждение «БАШКИРСКОЕ УПРАВЛЕНИЕ ПО ГИДРОМЕТЕОРОЛОГИИ И МОНИТОРИНГУ ОКРУЖАЮЩЕЙ СРЕДЫ» (ФГБУ «Башкирское УГМС»)

Рихарда Зорге ул., д. 25/2, Уфа, Республика Башкортостан, 450059 Тел.: +7 (347) 223-30-42, факс: +7 (347) 282-19-70

Email: post@adew.ru, http://www.meteorb.ru ОКПО 04816069, ОГРН 1020202865946 ИНН/КПП 0276014882/027601001

07.01.2013 No 302/01-18-374 OT 01.01.2023 L Директору ООО «УралБурКомплекс» Н.Р. Мусину

ФОНОВЫЕ КОНЦЕНТРАЦИИ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В ВОЗДУХЕ

г.Нефтекамск, Республика Башкортостан

Для инженерно-экологических изысканий по объекту «Реконструкция биологических очистных сооружений в городе Нефтекамске РБ»

Фоновые концентрации Сф (мг/м3) пыли (взв. вещ-ва), диоксида серы, оксида углерода, диоксида азота

Вещество	Фоновая концентрация
Пыль .	0,263
Диоксид серы	0,019
Оксид углерода	2,7
Диоксид азота	0,079

Данные действительны до 01.01.2024г.

Нормативные документы, на основании которых установлены фоновые концентрации: РД 52.04.186-89 «Руководство по контролю загрязнения атмосферы». – М., 1991; Временные рекомендации «Фоновые концентрации вредных (загрязняющих) веществ для городских и сельских поселений, где отсутствуют регулярные наблюдения за загрязнением атмосферного воздуха». - С-Пб, 2018; Изменение №1 к Руководству по контролю загрязнения атмосферы РД 52.04.186-89 «Определение фоновых концентраций бенз(а)пирена и металлов». - М., 1999.

Использование полученной информации в других документах и передача третьему лицу запрещается.

В.З. Горохольская

исп. В.Г. Хаматова тел.(347)223-96-58

Взам.

Подп. и дата

№ подл.

Изм.	Кол.уч	Лист	№док	Подп.	Дата	

04/2022-151-00000-OBOC-TY

Башкортостан Республиканышып Нефтекама калаһы кала округы хакимиате

Алминистрация городского округа город Нефтекамск Республики Башкортостан

Комсомол проспекты, 25-ге йорт. Пефтекама калабы. Бликортостан Республицайы, 452680

проспект Комеомольский, дом 25. город Нефтекамы Республика Башкортостан, 452(ж)

Tea: (34783) 4-32-00, place, 4-34-78, e-mail, adm55 a bashkoriostan nu, https://neilenv.to/ ОКПО 04046246, ОГРИ 1050203277663, ИНН КПП 0264053189 026401001

010823 No 14/8-6854 На № 100-23 от 27.07.2023

Директору ООО «БурГеоИнжиниринг» Исламову И.А. burgeoin@mail.ru

Объект: «Реконструкция биологических очистных сооружений г. Нефтекамек РБ»

Администрация городского округа город Нефтекамск Республики Башкортостан на запрос о вывозе хозяйственно-бытовых стоков с территории строительного городка сообщает, что на период реконструкции объекта хозяйственно-бытовые сточные воды, образующиеся на строительной площадке с последующей их очисткой на собственных сооружениях принимает МУП «Нефтекамскводоканал». Транспортирование стоков предусмотрено транспортом МУП «Нефтекамскводоканал». Для транспортировки и утилизации хозяйственнобытовых сточных вод лицензия не требуется.

Первый заместитель главы администрации

И.З. Минязев

Асхатова Ляйсан Рустамовна главный специалист ОКС (34783) 4-10-05, sektor cs a mail.ru

MHB.

Взам.

Подп. и дата

Инв. № подл.

Изм.	Кол.уч	Лист	№док	Подп.	Дата

04/2022-151-00000-OBOC-TY

Приложение Ж (обязательное) Программа производственного экологического контроля

УТВЕРЖДАЮ:

Директор

МУП «Нефтекамскводоканал»

Д.Х. Юсупов

2022 год

ПРОГРАММА

ПРОИЗВОДСТВЕННОГО ЭКОЛОГИЧЕСКОГО КОНТРОЛЯ

Производственной территории № 1

Наименование объекта, оказывающего негативное воздействие на окружающую среду

МУП «НЕФТЕКАМСКВОДОКАНАЛ»

Инженер по охране

окружающей среды

Е.В. Новоселова

г. Нефтекамск

2022 год

Взам. Подп. и дата Инв. № подл.

Лист №док Изм. Кол.уч Подп. Дата

04/2022-151-00000-OBOC-TY

МУП «Нефтекамскводоканал»	Программа производственного экологического контроля Производственной территории № 1
	(Биологические очистные сооружения г. Нефтекамск,
	КНС-2 и КНС-4)

СОДЕРЖАНИЕ

	6	ter tree of the state of the st	
	1	Общие положения	4
	2.	Сведения об инвентаризации выбросов загрязняющих веществ в атмо- сферный воздух и их источников	5
-	3.	Сведения об инвентаризации сбросов загрязняющих веществ в окружающую среду и их источников.	
	4.	Сведения об инвентаризации отходов производства и потребления и	6
	5.	объектов их размещения	7
	6.	за осуществление производственного экологического контроля Сведения о собственных и (или) привлекаемых испытательных лабора-	11
		ториях (центрах), аккредитованных в соответствии с законодательством Российской Федерации об аккредитации в национальной системе	Y
		аккредитации	17
	7.	Сведения о периодичности и методах осуществления производственного экологического контроля, местах отбора проб и методиках (методах)	
		измерений	17
	7.1.	ПЭК за охраной атмосферного воздуха	17
	7.2.	ПЭК за охраной водных объектов	21
	7.3.	ПЭК в области обращения с отходами	24
	8.	Оформление результатов производственного экологического контроля	
		и отчетность	27
		Приложения	30
		Приложение 1. Перечень и количество загрязняющих веществ, выбра-	
		сываемых в атмосферу, нормативы выбросов вредных (загрязняющих)	31
		веществ в атмосферу по конкретным источникам и веществам	
		Приложение 2. Решение о предоставлении водного объекта в пользова-	
		Ние	ÿ=
		Приложение 3. Схема водоснабжения и водоотведения	
		Приложение 4. Нормативы допустимых сбросов веществ и микроорга-	
		низмов в водные объекты (выпуск №1)	
		Приложение 5. График выпуска (сброса) сточных вод в водный объект	
		Приложение 6. Свидетельство о поверке прибора учета сброса сточных вод в водный объект	
-		Приложение 7. Программа проведения измерений качества сточных вод БОС г. Нефтекамск	
-		Приложение 8. Приказ «О назначении руководителя, координирующего действия в области охраны окружающей среды и экологической безопасности» от 31.09.2018года №328.	
		Приложение 9. Приказ «О назначении ответственных лиц по обраще-	
			2
		N.	2

Изм. Кол.уч Лист №док Подп.

Взам. Инв. №

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

My	П «Нефтекамскводоканал»	Программа произволств	венного экологического контро	па
	1	Производств (Биологические очист	енной территории № 1 ные сооружения г. Нефтекамс С-2 и КНС-4)	
	нию с отходами –I-IV	классов опасности и п	роизводственный экологи	-
•	Приложение 10. Атте	стат аккредитации ис	пытательной лаборатории	
			······································	
-	ского центра контроля	качества воды АО «Ба	публиканского аналитиче- шкоммунводоканал»	
-	Приложение 12. Аттес центра ФБУЗ «Центр г	стат аккредитации ис чигиены и эпилемиолог	пытательной лаборатории гии в Республике Башкор	1
	тостан»		····· 2 2 0012 0111110 2422100p	
2 9	Приложение 13. План	-график контроля нор	матив выбросов вредных	ζ.
	(загрязняющих) вещест	гв в атмосферный воз;	дух на источниках выбро-	-
54	Приложение 14. План-	график провеления на	блюдений за загрязнением	r
	атмосферного воздуха	КНС-2 и КНС-4		
-	Приложение 15. План-	график проведения на	блюдений за загрязнением	1
	attrochention popular	TOO TT 1		
-	Приложение 16. Графи	к лабораторно-произв	водственного контроля ра-	
9	Приложение 16. Графи боты биологических оч	к лабораторно-произв истных сооружений г.	водственного контроля ра- Нефтекамск	
9	Приложение 16. Графи боты биологических оч Приложение 17. Прогр	ик лабораторно-произв истных сооружений г. рамма ведения регуля	водственного контроля ра- Нефтекамскрных наблюдений за вод-	
9	Приложение 16. Графи боты биологических оч	ик лабораторно-произв истных сооружений г. рамма ведения регуля	водственного контроля ра- Нефтекамскрных наблюдений за вод-	
9	Приложение 16. Графи боты биологических оч Приложение 17. Прогр	ик лабораторно-произв истных сооружений г. рамма ведения регуля	водственного контроля ра- Нефтекамскрных наблюдений за вод-	
ý	Приложение 16. Графи боты биологических оч Приложение 17. Прогр	ик лабораторно-произв истных сооружений г. рамма ведения регуля	водственного контроля ра- Нефтекамскрных наблюдений за вод-	
9	Приложение 16. Графи боты биологических оч Приложение 17. Прогр	ик лабораторно-произв истных сооружений г. рамма ведения регуля	водственного контроля ра- Нефтекамскрных наблюдений за вод-	
9	Приложение 16. Графи боты биологических оч Приложение 17. Прогр	ик лабораторно-произв истных сооружений г. рамма ведения регуля	водственного контроля ра- Нефтекамскрных наблюдений за вод-	
ę	Приложение 16. Графи боты биологических оч Приложение 17. Прогр	ик лабораторно-произв истных сооружений г. рамма ведения регуля	водственного контроля ра- Нефтекамскрных наблюдений за вод-	
9	Приложение 16. Графи боты биологических оч Приложение 17. Прогр	ик лабораторно-произв истных сооружений г. рамма ведения регуля	водственного контроля ра- Нефтекамскрных наблюдений за вод-	
9	Приложение 16. Графи боты биологических оч Приложение 17. Прогр	ик лабораторно-произв истных сооружений г. рамма ведения регуля	водственного контроля ра- Нефтекамскрных наблюдений за вод-	
9 9	Приложение 16. Графи боты биологических оч Приложение 17. Прогр	ик лабораторно-произв истных сооружений г. рамма ведения регуля	водственного контроля ра- Нефтекамскрных наблюдений за вод-	
9	Приложение 16. Графи боты биологических оч Приложение 17. Прогр	ик лабораторно-произв истных сооружений г. рамма ведения регуля	водственного контроля ра- Нефтекамскрных наблюдений за вод-	
	Приложение 16. Графи боты биологических оч Приложение 17. Прогр	ик лабораторно-произв истных сооружений г. рамма ведения регуля	водственного контроля ра- Нефтекамскрных наблюдений за вод-	
	Приложение 16. Графи боты биологических оч Приложение 17. Прогр	ик лабораторно-произв истных сооружений г. рамма ведения регуля	водственного контроля ра- Нефтекамскрных наблюдений за вод-	
	Приложение 16. Графи боты биологических оч Приложение 17. Прогр	ик лабораторно-произв истных сооружений г. рамма ведения регуля	водственного контроля ра- Нефтекамскрных наблюдений за вод-	
	Приложение 16. Графи боты биологических оч Приложение 17. Прогр	ик лабораторно-произв истных сооружений г. рамма ведения регуля	водственного контроля ра- Нефтекамскрных наблюдений за вод-	
	Приложение 16. Графи боты биологических оч Приложение 17. Прогр	ик лабораторно-произв истных сооружений г. рамма ведения регуля	водственного контроля ра- Нефтекамскрных наблюдений за вод-	
	Приложение 16. Графи боты биологических оч Приложение 17. Прогр	ик лабораторно-произв истных сооружений г. рамма ведения регуля	водственного контроля ра- Нефтекамскрных наблюдений за вод-	

Взам. Инв. №

МУП «Нефтекамскводоканал»	Программа производственного экологического контроля
	Производственной территории № 1
	(Биологические очистные сооружения г. Нефтекамск,
	КНС-2 и КНС-4)

1. Общие сведения о предприятии

№ п/п		Наименование данных			Данные
1		3 (3 V M C			пальное унитарное гие «Нефтекамскво- доканал»
2	Адрес (мест	о нахождения)		спублика Башкорто- ртекамск ул. Чапаева д.5	
3		ть (ФИО, телефон, факс, элоидического лица)			
4	щие за осуп	ния и (или) должностные л цествление производственно оля (наименование подраздо етствующих лиц, телефон рес)	ого экологиче-	Шарифья технол инж Тел.8(1	неха водоотведения знов В.Н.; Главный ог Голушко А.Н.; кенер по ООС 34783)2-19-69, е- molognvk@mail.ru
	5. ИНН	6. ОГРН	A CONTRACTOR OF STREET		еской деятельности с
02	264014479	1020201883481	90.00.1 Удал	тение и обра	ботка сточных вод
8. Наименование объекта				кта, при- и его по- осударст- учет	11. Категория объекта
Производствен ная территория №1 МУП «Нефтекамск водоканал»		452680, РБ, г. Нефтекамск с. Ташкиново ул. Башкирская д.1Б; г. Нефтекамск пр. Юбилейный,29; г. Нефтекамск ул. Дзержинского, 19.	80-0102-00	0146-П	II

В соответствии с п. 3.1. утвержденного устава МУП «Нефтекамскводоканал» имущество предприятия (здания и сооружения) находится в муниципальной собственности муниципального образования городского округа города Нефтекамск Республики Башкортостан, принадлежит предприятию на праве хозяйственного ведения.

Данный объект, оказывающий негативное воздействие на окружающую среду, включают в себя канализационные насосные станции (КНС-2, КНС-4) и биологические очистные сооружения, которые объединены единым назначением и неразрывно связаны физически и технологически, в связи с чем расположены на трех производственных территориях.

К источникам негативного воздействия на окружающую среду данного объекта относятся:

- источники выбросов загрязняющих веществ в атмосферный воздух;

ı						
ı						
ı						
ı						
	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам.

Подп. и дата

МУП «Нефтекамскводоканал»	Программа производственного экологического контроля
	Производственной территории № 1
	(Биологические очистные сооружения г. Нефтекамск,
	КНС-2 и КНС-4)

- источники сбросов загрязняющих веществ в окружающую среду (в водные объекты);
- источники образования отходов производства (цеха, участки, технологические процессы).

В связи с тем, что МУП «Нефтекамскводоканал» относится к Федеральному уровню государственного экологического надзора, отчет об организации и о результатах осуществления производственного экологического контроля, предоставляется в Южно-Уральское Управление Росприроднадзора.

Дата утверждения данной Программы указана на титульном листе.

2. Сведения об инвентаризации выбросов загрязняющих веществ в атмосферный воздух и их источников

По данным инвентаризации источников выбросов загрязняющих веществ в атмосферный воздух, проведенной в 2019 году по данному объекту имеется 42 источников выбросов загрязняющих веществ, из них:

- организованных 28 (водогрейные котлы, КНС);
- неорганизованных 14 (пост сварки и резки металла, сверлильные и заточные станки, выбросы от работы биологических очистных сооружений хозяйственно бытовой канализации, гараж автотранспорта и др.).

Согласно нормативам предельно-допустимых выбросов загрязняющих веществ в атмосферный воздух валовый выброс загрязняющих веществ, выбрасываемых объектом в атмосферу, составляет 84,005756 тонн/год.

Показатель суммарной массы выбросов отдельно по каждому загрязняющему веществу по каждому источнику и по объекту указаны в таблице «Нормативы выбросов вредных (загрязняющих) веществ в атмосферный воздух по конкретным источникам и веществам» (Приложении 1).

В соответствии в п. 1,3 ст. 22 Федерального закона от 4 мая 1999 года №96-ФЗ «Об охране атмосферного воздуха» юридические лица и индивидуальные предприниматели, осуществляющие хозяйственную и иную деятельность с использованием стационарных источников, при осуществлении производственного экологического контроля в соответствии с установленными требованиями проводят инвентаризацию источников и выбросов (вредных) загрязняющих веществ в атмосферных воздух, документируют и хранят полученные в результате проведения инвентаризации и корректировки этой инвентаризации сведения. Корректировка данных инвентаризации стационарных источников выбросов вредных (загрязняющих) веществ в атмосферный воздух осуществляется в случаях:

- изменения технологических процессов;
- замены технологического оборудования, сырья, приводящих к изменению состава, объема и массы выбросов вредных (загрязняющих) веществ в атмосферный воздух;

Подп.

Взам.

Подп. и дата

№ подл.

Изм. Кол.уч Лист №док

МУП «Нефтекамскводоканал»	Программа производственного экологического контроля
	Производственной территории № 1
	(Биологические очистные сооружения г. Нефтекамск,
	КНС-2 и КНС-4)

1 1 1 1 1 1

- обнаружения несоответствия между выбросами вредных (загрязняющих) веществ в атмосферных воздух и данными последней инвентаризации;

- изменения требований к порядку проведения инвентаризации.

3. Сведения об инвентаризации сбросов загрязняющих веществ и окружающую среду и их источников

Сброс сточных вод осуществляется в Нижнекамское водохранилище на р. Кама, 137 км от створа Нижнекамского гидроузла, 213 км от устья р. Кама.

Право пользования поверхностным водным объектом осуществляется на основании Решения, выданного Федеральным агентством водных ресурсов Камского бассейнового водного управления № 02-10.01.014-X-PCBX-Т-2019-04574/00 от 05.03.2019года (Приложение 2).

Согласно схеме систем водоснабжения и водоотведения (Приложение 3) источником водоснабжения г. Нефтекамска, населенных пунктов Краснокамского района, в том числе с. Николо-Березовка являются подземные воды Камского инфильтрационного водозабора и поверхностного водозабора «Кама».

Основными объектами водоотведения являются:

- хозяйственно-бытовые сточные воды г. Нефтекамска, с. Николо-Березовка;
- производственные сточные воды промышленных предприятий; в том числе:
- завод автосамосвалов «Нефаз»;
- завод «Искож».

Сбор сточных вод от населения и предприятий перечисленных объектов осуществляется на биологические очистные сооружения, после чего очищенные стоки сбрасываются в Нижнекамское водохранилище на реке Кама.

Показатели массы сброса отдельно по каждому загрязняющему веществу данного выпуска представлены в нормативах допустимых сбросов веществ и микроорганизмов в водные объекты (Приложение 4).

Показатель суммарного объема сброса сточных вод указаны в графике, согласованным с Камским бассейновым водным управлением, отделом водных ресурсов по Республике Башкортостан (Приложение 5).

В соответствии Приказ Минприроды России от 09.11.2020 N 903 "Об утверждении Порядка ведения собственниками водных объектов и водопользователями учета объема забора (изъятия) водных ресурсов из водных объектов и объема сброса сточных, в том числе дренажных, вод, их качества" (Зарегистрировано в Минюсте России 18.12.2020 N 61582), юридические лица, которым предоставлено право пользование водным объектом в целях забора (изъятия) водных ресурсов и (или) сброса сточных и (или) дренажных вод обязаны вести учет объема забора (изъятия) водных ресурсов из водных объектов и объема сброса сточных вод и (или) дренажных вод, их качества, а также обработку и регистрацию результатов таких измерений.

6

						ſ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	l

ZHB.

Взам.

Подп. и дата

Инв. № подл.

МУП «Нефтекамскводоканал»	Программа производственного экологического контроля Производственной территории № 1
	(Биологические очистные сооружения г. Нефтекамск,
	КНС-2 и КНС-4)

Ежесуточный учет объемов сброса сточных вод (приложение к приказу от 09.11.2020г. №903) производит прибором, внесенным в государственный реестр средств измерений, «ЭРИС.ВЛТ» №500, установленным на напорном трубопроводе Ø 800 мм с выводом вторичного прибора в помещение воздуходувной станции. Свидетельство о поверки представлено в Приложении 6.

Состав и свойства сбрасываемых сточных вод регистрируются в журнале по формам 2.1-2.2 приложения к приказу от 09.11.2020г. №903.

Программа проведения измерений качества сточных вод (периодичность, место отбора, объем и перечень определяемых ингредиентов) представлено в Приложении 7.

Методы отбора и анализа проб для контроля состава и свойств сточных вод должны учитывать требования ГОСТ 17.1.5.05-85, ГОСТ Р 51592-2000, $\Pi H \Box \Phi$.

При анализе сточной воды, сбрасываемой в водные объекты и воды в фоновых и контрольных створах водного объекта-приемника сточных вод используют государственные стандартные методики (ГОСТы) и методики, внесенные в государственный реестр методик количественного химического анализа.

Производственный аналитический контроль осуществляется с помощью инструментальных, инструментально-лабораторных методов аналитическими лабораториями, центрами. МУП «Нефтекамскводоканал» имеет свой аналитический центр контроля, который аккредитован в системе аккредитации лабораторий, осуществляющих санитарно-эпидемиологические исследования, испытания, прошла процедуру оценки состояния измерений в соответствии с методическими инструкциями 2427-97 и отвечает требованиям стандарта ГОСТ Р ИСО/МЭК 17025-2000 «Общие требования к компетенции лаборатории испытательных и калибровочных лабораторий».

Сведения, полученные в результате учета объема забора (изъятия) водных ресурсов из водных объектов и объема сброса сточных вод и (или) дренажных вод, их качества (форма 3.1 − 3.3 приложения к приказу от 09.11.2020г. №903), предоставляются на бумажном и электронном носителях в территориальный орган Федерального агентства водных ресурсов ежеквартально в срок до 15 числа месяца, следующего за отчетным кварталом.

4. Сведения об инвентаризации отходов производства и потребления и объектов их размещения

На данном объекте отсутствует объект размещения отходов.

Перечень видов отходов и технологических процессов, в результате которых образуются отходы, приведены в ниже следующей таблице

1

						Г
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

ZHB.

Взам.

Подп. и дата

Инв. № подл.

МУП «Нефтекамскводоканал»	Программа производственного экологического контроля
	Производственной территории № 1 (Биологические очистные сооружения г. Нефтекамск,
	КНС-2 и КНС-4)

Наименование вида отходов		Код по ФККО	Кла сс опа сно сти	Наименование технологического про- цесса, в результате которого образуются отходы		
	2	3	4	5		
	Лампы ртутные, ртутно- кварцевые, люминесцент- ные, утратившие потреби- тельские свойства	4 71 101 01 52 1	1	Замена при техническом обслуживании освещения помещений и территории		
	Обтирочный материал, загрязненный нефтью и нефтепродуктами (содержание нефти и нефтепродуктов 15% и более)	9 19 204 01 60 3	3	Эксплуатация насосного оборудования		
	Опилки и стружка древесные, загрязненные нефть и нефтепродуктами 15% и более)	9 19 205 01 39 3	3	Удаление разливов нефти и нефтепродуктов		
	Песок, загрязненный нефтью и нефтепродуктами (содержание нефти и нефтепродуктов 15% и более)	9 19 201 01 39 3	3	Удаление разливов нефти и нефтепро-		
	Отходы минеральных масел индустриальных	4 06 130 01 31 3	3	Замена масла в технологическом оборудовании		
	Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный)	7 33 100 01 72 4	4	Жизнедеятельность работников, выполнение ими должностных обязанностей, уборка помещений		
	Мусор с защитных решеток хозяйственно-бытовой и смешанной канализации малоопасный	7 22 101 01 71 4	4	Грубая механическая очистка хозяйственно-бытовых и смешанных сточных вод		
8.	Отходы абразивных материалов в виде пыли	4 56 200 51 42 4	4	Обработка металла на точильно - шлифовальных (наждачных) станках		
1	Отходы резиноасбестовых изделий незагрязненные	4 55 700 00 71 4	4	Ремонт фланцевых соединений		
10.	Сальниковая набивка асбесто-графитовая промасленная (содержание масла менее 15%)	9 19 202 02 604	4	Ремонт насосного оборудования		
11.	Обрезки, кусковые отходы, древесно-стружечных и/или древесноволокнистых плит	3 05 313 41 21 4	4	Замена мебели утратившей потребительские свойства		
12.	Смет с территории гаража, автостоянки малоопасный	7 33 310 01 71 4	4	Уборка территории		

тр. Подп. и дата

Взам. Инв. №

Инв. № подл.

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

МУП «Нефтекамскводоканал»	Про	извод ие оч	дственного экологического контроля дственной территории № 1 истные сооружения г. Нефтекамск, КНС-2 и КНС-4)
13. Отходы резино- технических изделий, за- грязненные нефтепродук- тами (содержание нефте- продуктов менее 15%)	4 33 202 02 51 4	4	Ремонт фланцевых и резьбовых сое нений
14. Тара полиэтиленовая, загрязненная нефтепродуктами (содержание менее 15%)	4 38 113 01 51 4	4	Замена или пополнение в технолого ском и вспомогательном оборудова смазочных материалов
15. Тара черных металлов, загрязненная лакокрасочными материалами (содержание менее 5%)	4 68 112 02 51 4	4	Покраска технологического оборудния и сооружений
16. Отходы поливинилхлорида в виде изделий или лома изделий незагрязненные	4 35 100 03 51 4	4	Ремонт технологических трубопрово
17. Светодиодные лампы, утратившие потребительские свойства	4 81 415 01 52 4	4	Замена при техническом обслужива освещения
18. Ил стабилизированный биологических очистных сооружений хозяйственно-бытовых и смешанных сточных вод	7 22 200 02 39 5	5	Очистка хозяйственно-бытовых и с шанных сточных вод
19. Осадок с песколовок при очистке хозяйственно- бытовых и смешанных сточных вод	7 22 102 02 39 5	5	Осаждение взвешенных частиц очистке хозяйственно-бытовых и о шанных сточных вод
20. Обрезки и обрывки тканей смешанных	3 03 111 09 23 5	5	Замена пришедшей в негодно средств индивидуальной защиты (со одежды)
21. Стружка стальная незагрязненная	3 61 212 02 22 5	5	Механическая обработка металла на карных, сверлильных, фрезерных с ках
22. Лом и отходы, содержащие незагрязненные черные металлы в виде изделий, кусков, несортированные	4 61 010 01 20 5	5	Ремонт и замена оборудования и оружений
23. Лампы накаливания, утратившие потребительские свойства	4 82 411 00 52 5	5	Замена при техническом обслужива освещения помещений и территории
24. Смет с территории предприятия практически неопасный	7 33 390 02 71 5	5	Уборка территории
25. Остатки и огарки стальных сварочных электродов	9 19 100 01 20 5	5	Проведение сварочных работ
26. Лом кирпичной кладки от	8 12 201 01 20 5	5	Строительные и ремонтные работы

Изм. Кол.уч Лист №док

Подп.

Дата

Взам. Инв. №

Подп. и дата

Инв. № подл.

МУП «Нефтекамскводоканал»	Программа производственного экологического контроля
	Производственной территории № 1
	(Биологические очистные сооружения г. Нефтекамск,
	КНС-2 и КНС-4)

сноса и разборки зданий			
27. Лом железобетонных из- делий, отходы железобе- тона в кусковой форме	8 22 301 01 21 5	5	Строительство (реконструкция) биологических очистных сооружений
28. Абразивные круги отработанные, лом отработанных абразивных кругов	4 56 100 01 51 5	5	Замена пришедших в негодность абразивных кругов
 Растительные отходы при уходе за древесно- кустарниковыми посадка- ми 	7 31 300 02 20 5	5	Прореживание кустов, устранения разрастания деревьев
 Ленты конвейерные, при- водные ремни, утратившие потребительские свойства, незагрязненные 	4 31 120 01 51 5	5	Ремонт приводов электродвигателей технологического оборудования
31. Резинометаллические из- делия отработанные неза- грязненные	4 31 300 01 52 5	5	Замена износившихся воздухопроводов на мягких соединениях
32. Резиновые перчатки, утратившие потребительские свойства, незагрязненные практически неопасные	4 31 141 11 20 5	5	Использование при лабораторных и производственных работах
 Отходы бумаги и картона от канцелярской деятель- ности и делопроизводства 	4 05 122 02 60 5	5	Канцелярская деятельность и делопро- изводство
34. Лом и отходы изделий из полиэтилена незагрязненные (кроме тары)	4 34 110 03 51 5	5	Прокладка трубопроводов
35. Лом и отходы изделий из полиэтилентерефталата незагрязненные	4 34 181 01 51 5	5	Жизнедеятельность работников, выполнение ими должностных обязанностей уборка помещений В процессе раздельного накопления ТКО образуются ПЭТ баллоны
36. Лом изделий из стекла	4 51 101 00 20 5	5	Жизнедеятельность работников, выполнение ими должностных обязанностей уборка помещений. В процессе раздельного накопления ТКО образуются лом стекла.

МУП «НВК» разработан проект нормативов образования отходов и лимитов на их размещение (ПНООЛР) и масса образовываемых и размещаемых отходов включена в декларацию о воздействии на окружающую среду № 01-02/207 от 08.02.2021 года (вх. № 331-РД от 12.02.2021 года).

На предприятии разработаны и представлены в Управление Росприроднадзора по РБ паспорта отходов на I-IV классы опасности.

Размещение отходов производства и потребления производится на полигон ТКО г. Нефтекамск ООО «БЭС СОЮЗ». Полигон ТКО г. Нефтекамск

10

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. Инв. №

Подп. и дата

Инв. № подл.

МУП «Нефтекамскводоканал»	Программа производственного экологического контроля Производственной территории № 1
	(Биологические очистные сооружения г. Нефтекамск,
	КНС-2 и КНС-4)

включен в ГРОРО (02-00039-3-00592-250914). Лицензия на размещение отходов 02 №00488 от 26.04.2017 года.

5. Сведения о подразделениях и (или) должностных лицах, отвечающих за осуществление производственного экологического контроля

5.1. Подразделения, отвечающие за осуществление производственного контроля

В соответствии с Приказом МУП «Нефтекамскводоканал» от 31.09.2018г № 328 (Приложение 8), ответственным руководителем (специалистом), координирующим действия в области охраны окружающей среды и экологической безопасности предприятия является главный технолог Голушко А.Н., имеющий удостоверение о повышении квалификации по программе "Обеспечение экологической безопасности руководителями (специалистами) общехозяйственных систем управления" №22-5123-01 от 26.08.2022 года.

5.2. Должностные лица, отвечающие за осуществление производственного контроля

Приказом по МУП «Нефтекамскводоканал» № 739 от 03.09.2021 (Приложение 9) назначены лица, ответственные за осуществление деятельности по обращению с отходами, а так же за производственный экологический контроль в соответствующих подразделениях.

№ п/п	Должность	Полномочия						
1	2	4						
1.	Директор	Общее руководство и координация работ по организации и функционированию ПЭК.						
2.	Главный инженер	Организация деятельности предприятия в области охраны окружающей среды и ПЭК в целом по предприятию.						
3.	Главный технолог	Осуществление ПЭК, координация деятельности всех подразделений предприятия в области охраны окружающей среды.						
4.	Руководи- тели под- разделений	Осуществление ПЭК в структурном подразделении, выполнение требований природоохранного законодательства, соблюдение экологических нормативов допустимого воздействия на окружающую среду, требований по эксплуатации технологического и природоохранительного оборудования.						
5.	Инженер по	Контроль соблюдения требований охраны окружающей						

11

						ſ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам.

Подп. и дата

№ подл.

МУП «Нефтекамскводоканал»	Программа производственного экологического контроля Производственной территории № 1
	(Биологические очистные сооружения г. Нефтекамск, КНС-2 и КНС-4)

	охране ок-	среды;
	ружающей среды	Контроль состояния окружающей среды в районе расположения предприятия;
		Инвентаризация выбросов загрязняющих веществ в атмосферный воздух и их источников;
		Инвентаризация сбросов загрязняющих веществ в окружающую среду и их источников;
		Инвентаризация отходов производства и потребления и объектов их размещения;
		Составление графиков проведения производственного экологического контроля;
		Подготовка экологической документации и отчетности
		по результатам производственного экологического контроля, данным экологического мониторинга;

5.3. Сведения о правах и обязанностях руководителей, сотрудников подразделений

5.3.1. Главный инженер обязан:

- обеспечивать организацию производственного экологического контроля на предприятии;
- осуществлять общее техническое руководство природоохранной деятельностью на предприятии и в структурных подразделениях;
- обеспечивать организацию проведения работ по разработке и планированию природоохранных мероприятий;
- контролировать выполнение плана природоохранных мероприятий;
- организовывать контроль за соблюдением экологических требований при разработке регламентов технологических процессов и технологических карт;
- обеспечивать внедрение Наилучших Доступных Технологий (НДТ);
- контролировать соблюдение структурными подразделениями предприятия установленных технологических регламентов работы оборудования, в том числе и природоохранных установок;
- организовывать контроль за выбросами и сбросами загрязняющих веществ и отходами производства и потребления, а также соблюдения установленных для предприятия нормативов выбросов (НДВ), сбросов (НДС) и лимитов на размещение отходов;
- осуществлять контроль за выполнением предписаний уполномоченных органов экологического контроля и приказов Директора по охране окружаю-

12

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам.

Подп. и дата

Инв. № подл.

МУП «Нефтекамскводоканал»	Программа производственного экологического контроля Производственной территории № 1 (Биологические очистные сооружения г. Нефтекамск,
	КНС-2 и КНС-4)

щей среды, рациональному использованию природных и энергетических ресурсов.

5.3.2. Главный технолог обязан:

- разрабатывать и экономически обосновать природоохранные мероприятия, согласовывать их со структурными подразделениями, органами государственного экологического контроля, утверждать их у руководства и включать в планы природоохранных мероприятий;
- своевременно организовать разработку и получение разрешительной экологической документации проекта допустимых выбросов (НДВ), разрешений на выбросы и сбросы, проекта нормативно-допустимого сброса (НДС), разрешений на сбросы, нормативов образования отходов производства и лимитов на их размещение (НООЛР), в т. ч. планов-графиков производственного контроля в составе проектов;
- осуществлять контроль за соблюдением установленных нормативов на выбросы и сбросы, лимитов на размещение отходов;
- анализировать причины превышения установленных нормативов и лимитов и разрабатывать предложения по их снижению;
- организовывать выполнение расчета размера платы за негативное воздействие на окружающую среду (НВОС);
- организовывать инвентаризацию (корректировку инвентаризации) выбросов и сбросов загрязняющих веществ и их источников, а также инвентаризацию отходов;
- организовывать своевременную подготовку и сдачу статистической отчетности по установленным формам;
- обеспечивать ведение учета в области обращения с отходами;
- обеспечивать ведение журналов первичного учета водопотребления, водоотведения и качества сточных вод;
- контролировать временное накопление отходов производства и потребления на предприятии, а также передачу их на утилизацию, обезвреживание или размещение в специализированные организации, имеющие на данный вид деятельности лицензию;
- организовывать подготовку и заключение договоров на передачу отходов производства и потребления, с оформлением необходимой документации;
- участвовать в качестве представителя предприятия в проверках, осуществляемых уполномоченными органами экологического контроля;
- осуществлять контроль за соблюдением требований действующего законодательства, нормативно-технических документов, приказов, постановлений и распоряжений по охране окружающей среды, а также за своевременным

12

						_
						Γ
						ı
						ı
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

ZHB.

Взам.

Подп. и дата

№ подл.

МУП «Нефтекамскводоканал»	Программа производственного экологического контроля Производственной территории № 1
	(Биологические очистные сооружения г. Нефтекамск, КНС-2 и КНС-4)

- выполнением предписаний органов государственного экологического контроля;
- анализировать действующее законодательство в области охраны окружающей среды, информировать руководство о происходящих изменениях;
- готовить справки, отчеты, проекты приказов, распоряжений по вопросам, связанным с охраной окружающей среды;
- Организовать обучение по получению дополнительного профессионального образования, необходимого для работы с производственными отходами.

Главный технолог имеет право:

- осуществлять контроль над местами накопления отходов, выполнением мероприятий, правил и норм, соблюдением нормативной документации в области охраны окружающей среды.
- Получать от структурных подразделений материалы, необходимые для проведения проверок в области охраны окружающей среды
- Информировать руководство предприятия об имеющихся нарушениях, выявленных в результате проверки
- требовать от руководителей структурных подразделений предприятия своевременного выполнения запланированных мероприятий по охране окружающей среды, соблюдения нормативов допустимых выбросов (НДВ), нормативно-допустимого сброса (НДС), лимитов на размещение отходов, а также представления необходимой информации по вопросам охраны окружающей среды;
- давать руководителям структурных подразделений предприятия обязательные для выполнения предписания по вопросам охраны окружающей среды;
- готовить докладные записки, предложения для директора о поощрении отдельных работников за достижения в работе по охране окружающей среды, а также предложения о наложении дисциплинарных взысканий на лиц, не выполняющих требования природоохранного законодательства;
- привлекать в установленном порядке специалистов структурных подразделений предприятия для решения вопросов по охране окружающей среды, а также для консультаций и подготовки необходимых материалов для осуществления природоохранной деятельности, в т. ч. при проведении обследования источников загрязнения;
- участвовать в работе комиссии предприятия по вопросам контроля выполнения природоохранных мероприятий, соблюдения нормативов качества окружающей среды;

1/

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам.

Подп. и дата

№ подл

МУП «Нефтекамскводоканал»	Программа производственного экологического контроля Производственной территории № 1			
	(Биологические очистные сооружения г. Нефтекамск, КНС-2 и КНС-4)			

- организовать проверку технического состояния природоохранных сооружений и оборудования;
- организовать выполнение мероприятий по временному снижению выбросов загрязняющих веществ в атмосферу, при получении сигнала предупреждения о неблагоприятных метеорологических условиях.

5.3.3. Сотрудники отдела главного технолога обязаны:

- своевременно выполнять расчет платы за негативное воздействие на окружающую среду (НВОС), подготавливать Декларацию о плате за негативное воздействие на окружающую среду и осуществлять ее сдачу в электронном виде;
- формировать экологическую статистическую отчетность и осуществлять ее сдачу в электронном виде в установленные нормативными актами сроки;
- осуществлять ведение учета в области обращения с отходами в бумажном виде;
- подготовка и сдача ежеквартальной отчетности по водопотреблению, водоотведению и качеству сточных вод;
- проводить инвентаризацию (корректировку инвентаризации) выбросов и сбросов загрязняющих веществ и их источников, а также инвентаризацию отходов;
- контролировать временное накопление отходов производства и потребления на предприятии, а также площадки для их накопления;
- контролировать своевременный вывоз и передачу отходов производства и потребления специализированным организациям; · ·
- подготовку договоров на передачу отходов производства и потребления, с оформлением необходимой документации;
- отслеживать действующее законодательство в области охраны окружающей среды, информировать руководство о происходящих изменениях.

5.3.4. Руководители подразделений обязаны:

- знать и соблюдать требования действующего природоохранительного законодательства, норм, правил, инструкций, приказов и распоряжений руководства предприятия в части относящейся к деятельности структурного подразделения и его влияния на окружающую среду;
- обеспечивать соблюдение установленных технологических регламентов работы природоохранных сооружений и правил эксплуатации;
- осуществлять контроль за соблюдением технологических процессов в части вредного воздействия производства на окружающую среду;

15

						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам.

Подп. и дата

읟

МУП «Нефтекамскводоканал»	Программа производственного экологического контроля Производственной территории № 1			
	(Биологические очистные сооружения г. Нефтекамск, КНС-2 и КНС-4)			

- организовывать контроль за проведением работ по инвентаризации выбросов загрязняющих веществ, при отборе проб воздуха в выбросах в атмосферу от оборудования, размещенного в подразделениях;
- обеспечивать выполнение работ по ремонту и обслуживанию природоохранных сооружений в соответствии с планом - графиком проведения планово - предупредительных ремонтов;
- способствовать внедрению новых наилучших доступных технологий в области охраны окружающей среды;
- организовывать своевременное представление отчетности о работе природоохранных сооружений, неисправностях на них, неплановых остановках, аварийных и залповых выбросах и сбросах (отчетность представлять главному инженеру);
- принимать меры при нарушении установленного режима работы, повреждения или аварии природоохранного сооружения по восстановлению его работоспособности, ликвидации аварийного режима;
- организовывать выполнение мероприятий по охране окружающей среды, своевременно принимать меры по выполнению предписаний руководства предприятия и органов государственного экологического контроля;
- обеспечивать работу комиссий предприятия по приемке в эксплуатацию природоохранных сооружений после ремонта, реконструкции, строительства;
- принимать участие в подготовке персонала, обслуживающего природоохранные сооружения, проверке их технических и специальных знаний;
- соблюдать экологические нормативы допустимого воздействия на окружающую среду;
- обеспечивать накопление и хранение отходов производства и потребления в соответствии с экологическими требованиями, а также правильную эксплуатацию объектов временного накопления отходов на закрепленных участках;

5.3.5. Главный бухгалтер обязан:

- обеспечивать своевременную подготовку данных для проведения расчетов о расходе сырья, объемах выпуска продукции, продаже или сдаче на утилизацию отходов производства и другую необходимую информацию;
- обеспечивать учет средств, расходуемых на проведение природоохранных мероприятий;
- обеспечивать перечисление, в установленные сроки, авансовых и фактических платежей за негативное воздействие на окружающую среду на основании расчетов платежей, подготовленных уполномоченными на это лицами, а

16

					_
Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам.

Подп. и дата

№ подл.

МУП «Нефтекамскводоканал»	Программа производственного экологического контроля Производственной территории № 1
	(Биологические очистные сооружения г. Нефтекамск,
	КНС-2 и КНС-4)

	мероприятий	го периода		стерства природопользования и экологии РБ
13.	Отчет о выполнении плана снижения сбросов загрязняющих веществ	До 31 января после отчетно- го периода	Главный технолог	Отдел водных ресурсов по РБ Камского БВУ
13.	в поверхностные водные объекты			Южно-Уральское межре- гиональное Управление Росприроднадзора
14.	Информация о состоянии водного объекта, его загрязнении в ЧС техногенного характера	Незамедли- тельно (в соот-вии с приказом МПР №35 от 24.01.2022г.)	Главный технолог	ФГБУ «Башкирское УГМС»

При организации и осуществлении производственного экологического контроля МУП «Нефтекамскводоканал» руководствуется федеральными законами, постановлениями и распоряжениями Правительства Российской Федерации, приказами органов государственной власти, приказами и распоряжениями предприятия, проектной документацией, иными нормативными правовыми актами и инструктивно - методическими документами в области охраны окружающей среды.

Взам. Инв. №	
Подп. и дата	
нв. № подл.	

Изм.	Кол.уч	Лист	№док	Подп.	Дата

МУП «Нефтекамскводоканал»	Программа производственного экологического контроля
1	Производственной территории № 1
	(Биологические очистные сооружения г. Нефтекамск,
	КНС-2 и КНС-4)

приложения

Перечень и количество загрязняющих веществ, выбрасываемых в атмосферу

	Загрязняющее вещество	Выброс	ПДВ/ВСВ	
код	наименование	г/с	т/год	ПДВ/ВСІ
1	2	3	. 4	. 5
0101	диАлюминий триоксид (в пересчете на	0,0041667	0,000600	ПДВ
0100	диЖелезо триоксид (Железа оксид) (в пересчете	7.000000	0,00000	пдв
0123	на железо)	0,0745857	0,065278	ПДВ
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид)	0,0024510	0,001047	пдв
0150	Натр едкий	0,0000152	0,000024	ПДВ
0152	Натрий хлорид (Поваренная соль)	0,0006288	0,023814	ПДВ
0155	диНатрий карбонат (Натрия карбонат, Сода кальцинированная)	0,0000448	0,000080	пдв
0203	Хром (Хром шестивалентный) (в пересчете на хрома (VI) оксид)	0,0000224	0,000040	пдв
0301	Азота диоксид (Азот (IV) оксид)	0,0557499	0,310451	ПДВ
0302	Азотная кислота (по молекуле HNO3)	0,0001336	0,000232	ПДВ
0303	Аммиак	0,3904110	7,878511	- ПДВ
0304	Азот (II) оксид (Азота оксид)	0,1200570	2,309317	ПДВ
0316	Соляная кислота	0,0002928	0,000512	ПДВ
0322	Серная кислота (по молекуле H2SO4)	0,0000112	.'0,000016	ПДВ
0328	Углерод (Сажа)	0,0007409	0,000974	ПДВ
0330	Сера диоксид (Ангидрид сернистый)	0,0010449	0,001545	ПДВ
0333	Дигидросульфид (Сероводород)	0,0558040	1,052626	• пдв
0337	Углерод оксид	0,1224552	0,423927	ПДВ
0342	Фтористые газообразные соединения	0,0011617	0,000345	ПДВ
0344	Фториды плохо растворимые	0,0006611	0,000187	ПДВ
0403	Гексан	0,0002687	0,000005	ПДВ
0410	Метан	3,6611247	68,777130	ПДВ
0616	Диметилбензол (Ксилол) (смесь изомеров о-, м-,	0,0370028	0,408942	ПДВ
0621	Метилбензол (Толуол)	0,0115741	0,100000	• ПДВ
0703	Бенз/а/пирен (3,4-Бензпирен)	7,97e-10	2,70e-09	ПДВ
0898	Трихлорметан (Хлороформ)	0,0142916	0,019209	ПДВ
0906	Тетрахлорметан (Углерод четыреххлористый)	0,0053324	0,007232	ПДВ
1042	Бутан-1-ол (Спирт н-бутиловый)	0,0034722	0,036754	ПДВ
1061	Этанол (Спирт этиловый)	0,0037958	0,022477	ПДВ
1071	Гидроксибензол (Фенол)	0,0413057	0,840290	ПДВ
1119	2-Этоксиэтанол (Этилцеллозольв, Этиловый эфир этиленгликоля)	0,0018519		пдв
1210	Бутилацетат	0,0023148	0,020000	• пдв
1325	Формальдегид	0,0306599	0,620208	ПДВ
1401	Пропан-2-он (Ацетон)	0,0016204	0,014000	ПДВ
1513	Аскорбиновая кислота (Витамин С)	1,97e-21	· 4,00e-25	ПДВ
1555	Этановая кислота (Уксусная кислота) .	0,0007220	0;001232	ПДВ
1580	2-Гидрокси-1,2,3-пропантрикарбоновая кислота(Лимонная кислота)	1,64e-19	4,59e-23	пдв
1715	Метантиол (Метилмеркаптан)	0,0018922	0,039100	ПДВ
1716	Одорант СПМ	0,0000001	0,000012	ПДВ
2732	Керосин	0,0030533	0,004012	ПДВ
2750	Сольвент нафта	0,0086787	0,043746	ПДВ
2752	Уайт-спирит	0,0317419	0,204603	ПДВ
2754	Углеводороды предельные С12-С19	0,0027000	0,748000	ПДВ
2908	Пыль неорганическая: 70-20% SiO2	0,0029944	0,000288	ПДВ
2930	Пыль абразивная (Корунд белый, Монокорунд)	0,0080000	0,012534	ПДВ
3337	2-Гидроксибензойная кислота (Кислота	6,28e-12	8,01e-15	ПДВ
Итого:		4,7048355	84,005756	пдв -
		0,0000000	0,0000000	BCB

Взам. Инв. №	
Подп. и дата	
1нв. № подл.	

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Kod	Наименование вещества	Выброс вещест	в сущ.	Выброс веществ		ПДВ		Год	
		положение на 2	019 z.	на 2026 г.		z/c	т/год	ПДВ	
		z/c	пугод	z/c	т/год				
1	2	3	4	19	20	21	22	23	
0101	ди Алюминий триоксид (в пересчете на алюминий)	0,0041667	0,000600	0,0041667	0,000600	0,0041667	0,000600	2019	
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид)	0,0024510	0,001047	0,0024510	0,001047	0,0024510	0,001047	2019	
0155	диНатрий карбонат (Натрия карбонат, Сода кальцинированная)	0,0000448	0,000080	0,0000448	0,000080	0,0000448	0,000080	2019	
0203	Хром (Хром шестивалентный) (в пересчете на хрома (VI) оксид)	0,0000224	0,000040	0,0000224	0,000040	0,0000224	0,000040	2019	
0301	Азота диоксид (Азот (IV) оксид)	0,0557499	0,310451	0,0557499	0,310451	0,0557499	0,310451	2019	
0302	Азотная кислота (по молекуле HNO3)	0,0001336	0,000232	0,0001336	0,000232	0,0001336	0,000232	2019	
0303	Аммиак	0,3904110	7,878511	0,3904110	7,878511	0,3904110	7,878511	2019	
0304	Азот (II) оксид (Азота оксид)	0,1200570	2,309317	0,1200570	2,309317	0,1200570	2,309317	2019	
0316	Соляная кислота	0,0002928	0,000512		0,000512	0,0002928	0,000512	2019	
0322	Серная кислота (по молекуле H2SO4)	0,0000112	0,000016		0,000016	0,0000112	0,000016		
	Углерод (Сажа)	0,0007409	0,000974	0,0007409	0,000974	0,0007409	0,000974	2019	
0330	Сера диоксид (Ангидрид сернистый)	0,0010449	0,001545		0,001545	0,0010449	0,001545	2019	
0333	Дигидросульфид (Сероводород)	0,0558040	1,052626		1,052626	0,0558040	1,052626	2019	
	Углерод оксид	0,1224552	0,423927	0,1224552	0,423927	0,1224552	0,423927	2019	
	Фтористые газообразные соединения	0,0011617	0,000345		0,000345	0,0011617	0,000345	2019	
	Фториды плохо растворимые	0,0006611	0,000187		0,000187	0,0006611	0,000187	2019	
	Гексан	0,0002687	0,000005		0,000005	0,0002687	0,000005		
	Метан	3,6611247	68,777130		68,777130	3,6611247	68,777130		
	Диметилбензол (Ксилол) (смесь изомеров о-, м-, п-)		0,408942	Bellevel.	0,408942	0,0370028	0,408942		
0621	100000000000000000000000000000000000000	0,0115741	0,100000		0,100000	0,0115741	0,100000		
_	Бенз/а/пирен (3,4-Бензпирен)	7,97E-10	2,70E-09		2,70E-09	7,97E-10	2,70E-09		
	Трихлорметан (Хлороформ)	0,0142916	0,019209		0,019209	0,0142916	0,019209		
0906	Тетрахлорметан (Углерод четыреххлористый)	0,0053324	0,007232	5 - 0.00	0,007232	0,0053324	0,007232		
1042	Бутан-1-ол (Спирт н-бутиловый)	0,0034722	0,036754		0,036754	0,0034722	0,036754		
1061		0,0037958	0,022477		0,022477	0,0037958	0,022477		
	Гидроксибензол (Фенол)	0,0413057	0,840290		0,840290	0,0413057	0,840290		
	Бутилацетат	0,0023148	0,020000		0,020000	0,0023148	0,020000		
1325	TO THE REAL PROPERTY OF THE PR	0,0306599	0,620208		0,620208	0,0306599	0,620208		
	Пропан-2-он (Ацетон)	0,0016204	0,014000	-	0,014000		0,014000		
	5 Этановая кислота (Уксусная кислота)	0,0007220	0,001232		0,001232	0,0007220	0,001232	_	
	Метантиол (Метилмеркаптан)	0,0018922	0,039100		0,039100		0,039100		
	Одорант СПМ	0,0000001	0,000012		0,000012	0,0000001	0,000012		
	2 Керосин	0,0030533	0,004012		0,004012	0,0030533	0,004012		
2750	О Сольвент нафта	0,0086787	0,043746		0,043746		0,043746		
275	2 Уайт-спирит	0,0317419	0,204603	0,0317419	0,204603	0,0317419	0,204603		
275	4 Углеводороды предельные С12-С19	0,0027000	0,748000	0,0027000	0,748000	0,0027000	0,748000	2019	
290	8 Пыль неорганическая: 70-20% SiO2	0,0029944	0,00028	0,0029944	0,000288		0,000288		
Scero E	веществ :	4,6197539	83,88765	4,6197539	83,887651	4,6197539	83,887651		
З том	нисле твердых :	0,0110366	0,003136	0,0110366	0,003136	0,0110366	0,003136	5	
	х/газообразных :	4,6087173	83,884513	4,6087173	83,884515	4,6087173	83,884515	5	

Примечание:

Взам. Инв. №

В таблицу включены загрязняющие вещества, подлежащие нормированию

Подп. и дата		-						
. № подл.							04/2022-151-00000-OBOC-TY	Лист
Инв.	Изм.	Кол.уч	Лист	№док	Подп.	Дата	04/2022-151-00000-OBOC-19	59
Ž	Изм.	Кол.уч	Лист	№док	Подп.	Дата		,

Таблина 21. Выблосы загрязняющих веществ на СП и спок постижения ПЛВ

Площ	Цех	Название	Источ	Выброс вещест		Выброс веществ		ПДВ		Год
		цеха	ник	положение на		на 2026 г.		2/c	m/zod	ПДВ
1	2		-	z/c	m/zod	z/c	m/zoò			1.7
		3	4	5	6	21	22	23	24	25
		диАлюминий триок источники:	сид (в пересч	ете на алюмини	и)					
урганизс	_	Гараж	0004	0,0041667	0,000600	0,0041667	0,000600	0,0041667	0,000600	2019
Всего по		зованным:	0004	0,0041667	0,000600	0,0041667	0,000600	0,0041667	0,000600	
Ітого по				0,0041667	0,000600	0,0041667	0,000600		0,000600	
		Марганец и его соед	пипения (в пе				0,000000	0,0041007	0,000000	2019
		источники:	инения (в пер	оссчете на марта	inita (IV) OKCHZ	0				
7pi annse 1	_	Гараж	0004	0,0004167	0,000248	0,0004167	0,000248	0,0004167	0,000248	2019
- 1	-	т араж	0004		0,000248	0,0004167	0,000248	0,0004167		2019
Scern no	ODESTIN	зованным:	1 0003	0,0013980	0,000632		0,000632		0,000383	
	-	ые источники:		0,0020147	0,000032	0,0020147	0,000032	0,0020147	0,000632	2019
3		Насосная	6013	0,0004363	0,000416	0,0004363	0.000416	0,0004363	0,000416	2010
_		низованным:	0013	0,0004363	0,000416		0,000416		0,000416	
Ітого по				0,0024510	0,001047	0,0024510	0,000410	0,0004510	0,001047	2019
		диНатрий карбонат	(Harnug vann				0,001047	0,0024510	0,001047	2019
		источники:	(патрия каро	онат, сода калы	цинированная)					
1	_	Лаборатория	0020	0,0000112	0,000020	0,0000112	0,000020	0,0000112	0,000020	2019
-	-	- Lacoparopina	0020	0,0000112	0,000020		0,000030		. 0,000030	
			0022	0,0000168	0,000030		0,000030		0,000030	2019
Всего по	органи	зованным;	0022	0,0000108	0,000080	0,0000108	0,000080	0,0000448	0,000080	2019
Итого по				0,0000448	0,000080		0,000080	0,0000448	0,000080	2019
		Хром (Хром шестив	алентыта)/ъ	THE RESERVE AND ADDRESS.			0,000000	0,0000448	0,000000	2019
		с источники:		грес того на хр	(11) OKENA	v				_
1		Лаборатория	0020	0,0000056	0,000010	0,0000056	0,000010	0,0000056	0,000010	2019
-		- acoparopus	0021	0,0000036	0,000010	0,0000038	0,000010		0,000010	2019
			0021	0,0000084	0,000015		0,000015		0,000015	2019
Всего по	Органи	Зованным:	0022	0,0000224	0,000013		0,000013		0,000040	2019
Итого по				0,0000224	0,000040		0,000040			
		Азота диоксид (Азот	r (TV) okcun)	0,000022	0,000010	0,0000221	0,000010	0,0000221	0,000010	2017
		источники:	(IV) ORCHA)							
Opi annist	T	Гараж	0001	0,0055037	0,033940	0,0055037	0,033940	0,0055037	0,033940	2019
-	-	цираж	0004		0,017648		0,033940		0,017648	2019
	1		0005		0,000367	0,0015300	0,000367	0,0015300	0,000367	2019
1	2	ABK	0003		0,052843	0,0013300	0,000367	0,0013300	0,052843	2019
1		Насосная	0014		0,017678		0,032843		0,032843	2019
2	_	Насосная	0014		0,017078		0,008329		0,008329	2019
2		КНС мини	0025		0,000663	0,0002631	0,000663	0,0002631	0,000663	2019
3	-	Насосная	0023		0,000663	0,000310	0,000663	0,000310	0,000663	2019
3	-	Пасосная	0028		0,000477	0,000170	0,000477	0,000170	0,000477	2019
Reero no	Oprann	зованным:	0028	0,0361812	0,149747	0,0361812	0,149747	0,0361812	0,149747	2019
		ые источники:		0,0301612	0,149747	0,0501812	0,143747	0,0301812	0,143747	2019
1		БОС	6005	0,0001589	0,003195	0,0001589	0,003195	0,0001589	0,003195	2019
- 1	-	/ BOC	6006		0,000961	0,0001383	0,000961	0,0001389	0,000961	- 2019
			6007		0,005402		0,005402		0,005402	
			6008		0,005402		0,005128	0,0002536	0,005128	2019
			6009		0,003128		0,003128		0,003128	2019
-			6010		0,017477		0,002260		0,002260	-
			6011		0,002280		0,113238		0,002280	2019
3	1	Насосная	6013		0,013043		0,013043	0,0123322	0,013043	2019
		низованным:	0013	0,0125522	0,160704	190 00000000000000000000000000000000000	0,160704	0,0125522	0,160704	2019
		сиятию :		0,0557499	0,310451	0,0557499	0,310451	0,0557499	0,310451	2019
		Азотная кислота (по	молекуле Ц		5,510.51	9,000,100	0,010.101	0,000,1700	0,510451	2017
		е источники;)						
Организ	_	Лаборатория	0019	1,97E-10	9,11E-13	1,97E-10	9,11E-13	1,97E-10	9,11E-13	2019
- 1	-		0020				0,000058		0,000058	
			0021		0,000038		0,000038		0,000038	
-			0022		0,000087		0,000087		0,000087	
Beero no	ODLana	зованным:	0022	0,0001336	0,000232		0,000232		0,000232	2019
	_	зованным.		0,0001336			0,000232		0,000232	
	_	Аммиак	_	0,0001550	5,000232	0,0001330	0,000232	0,0001000	0,000232	2019
		е источники:								
∪рганиз 1			0019	0,0000007	0.000014	0.0000007	0.000014	0.000007	0,000014	2019
1	1	Лаборатория			The second second		0,000014			
-			0020	The second secon			0,001560		0,001560	
	-		0021		0,002340		0,002340		0,002340	
			0022				0,002340		0,002340	
	1	Насосная	0023				0,051822		0,051822	
2				0.0002112	0,004045	0,0003112	0,004045	0,0003112	0,004045	-2019
2 2 3		2 КНС мини Насосная	0025		0,109575		0,109575		0,109575	

Инв. № подл. Подп. и дата

Взам. Инв. №

Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

		0028	0,0001409	0,003944	0,0001409	0,003944	0,0001409	0,003944	2019
		0028	0,0138949	0,175641	0,0138949	0,175641	0,0138949	0,175641	2019
о по органи			0,01211					0.010402	2019
	ные источники:	6005	0,0009686	0,019483	0,0009686	0,019483	0,0009686	0,019483	2019
1 6	6 BOC	6006	0,0006108	0,012280	0,0006108	0,012280	0,0006108	0,132669	2019
		6007	0,0065697	0,132669	0,0065697	0,132669	0,0065697	0,132009	2019
_		6008	0,0060232	0,121787	0,0060232	0,121787	0,0060232	0,121787	2019
-		6009	0,0058616	0,118370	0,0058616	0,118370	0,0058616	0,018703	2019
-		6010	0,0009299	0,018703	0,0009299	0,018703	0,0009299	7,279579	2019
_		6011	0,3555523	7,279579	0,3555523	7,279579	0,3555523	7,702871	2019
го по неорга	анизованным:		0,3765161	7,702871	0,3765161	7,702871	0,3765161	7,878511	2019
го по предп			0,3904110	7,878511	0,3904110	7,878511	0,3904110	1,010511	
	4 Азот (II) оксид (Азота	оксид)							
	ые источники:					2.005515	0,0008944	0,005515	2019
	1 Гараж	0001	0,0008944	0,005515	0,0008944	0,005515	0,0008944	0,002868	2019
-		0004	0,0031530	0,002868	0,0031530	0,002868	0,0002486	0,000060	2019
-		0005	0,0002486	0,000060	0,0002486	0,000060	0,0002400	0,008587	2019
1	2 АБК	0008	0,0010440	0,008587	0,0010440	0,008587	0,0002667	0,002873	2019
1	4 Насосная	0014	0,0002667	0,002873	0,0002667	0,002873	0,0002607	0,014376	2019
2	1 Насосная	0023	0,0004582	0,014376	0,0004582	0,014376	0,0000871	0,001132	2019
2	2 КНС мини	0025	0,0000871	0,001132	0,0000871	0,001132	0,0000871	0,030547	2019
3	1 Насосная	0026	0,0023013	0,030547	0,0023013	0,030547	0,0023013	0,000970	2019
		0028	0,0000346	0,000970	0,0000346	0,000970	0,0000340	0,066928	2019
его по орган	низованным:		0,0084879	0,066928	0,0084879	0,066928	0,0004072	4122224	
	нные источники;				0.0000000	0.005455	0,0002712	. 0,005455	2019
1	6 BOC	6005	0,0002712	0,005455	0,0002712	0,005455	0,0002712	0,003898	2019
-		6006	0,0001939	0,003898	0,0001939	0,003898	0,0001939	0,057993	2019
-		6007	0,0028718	0,057993	0,0028718	0,057993	0,0028718	0,089737	2019
		6008	0,0044381	0,089737	0,0044381	0,089737	0,0027970	0,056484	:2019
		6009	0,0027970	0,056484	0,0027970	0,056484	0,0027970	0,004598	2019
		6010	0,0002286	0,004598	0,0002286	0,004598 , 2,022105	0,0987645	2,022105	. 2019
		6011	0,0987645	2,022105	0,0987645		0,0020040	0,002120 ;	2019
3	1 Насосная	6013	0,0020040	0,002120	0,0020040	0,002120	0,1115691	2,242390	- 2019-
сего по неог	рганизованным:		0,1115691	2,242390	0,1115691	-	0,1200570	2,309317	2019
того по пре			0,1200570	2,309317	0,1200570	2,309317	0,1200570	2,000	
	316 Соляная кислота								
							2 2222240	0,000008	2019
рганизован	ные источники:	0019	0,0000040	0,000008	0,0000040		0,0000040	0,000126	2019
- 1	7 Лаборатория	0020	0,0000722	0,000126	0,0000722	0,000126	0,0000722	0,000120	2019
		0021	0,0001083	0,000189	0,0001083	0,000189	0,0001083		2019
		0022	0,0001083	0,000189	0,0001083		0,0001083	0,000189	2019
			0,0002928	0,000512	0,0002928		0,0002928	0,000512	2019
	анизованным:		0,0002928		0,0002928	0,000512	0,0002928	. 0,000312	2015
того по пре	едприятию: 322 Серная кислота (по	молекуле Н23	(04)						*
		monenty see	,					0.000004	- 2019
Эрганизован	нные источники:	0020	0,0000028	0,000004			: 0,0000028	0,000004	2019
1	7 Лаборатория	002			0,0000042		0,0000042	0,000006	2019
-		002					0,0000042		2019
			0,0000113				0,0000112	0,000016	2019
	ганизованным:		0,000011		0,0000112	0,000016	0,0000112	0,000010	201.
	редприятию:		1						_
	0328 Углерод (Сажа)						L.		201
	нные источники:	000	4 0,000740	9 0,000974	0,000740	9 0,000974	0,0007409		201
1	1 Гараж	000	0,000740				0,0007409		201
	ганизованным:		0,000740			9 0,000974	0,0007409	0,000974	201
Итого по пр	редприятию:						46	w Vig	
Вещество	0330 Сера диоксид (Ан	гидрид сернис	ininj					2	12.5
	анные источники:		0.000011	0,00006	8 0,000011	0,000068	0,0000110		
Организова	1 Гараж	- 000			-		0,0010179		201
Организова 1	Later Control of the	000					0,0000127		
Организова									-
Организова 1	2 АБК	000		0,00003				0,001545	
Организова 1 1 1	4 Насосная	00		0.00154	5 0.001044	0.001545	0,0010449	0,001545	20
Организова 1 1 1			0,00104					0,001343	
1 1 1 1 Всего по о	4 Насосная рганизованным: предприятию:	00	0,00104			10.		0,001343	
1 1 1 1 Всего по о	4 Насосная рганизованным: предприятию:	00	0,00104			10.		0,001343	
1 1 1 1 Всего по о Итого по п	4 Насосная рганизованным: предприятию: 0333 Дигидросульфид	00	0,00104 0,00104	49 0,00154	0,00104	49 0,001545	0,0010449	7/2	20
1 1 1 Всего по о Итого по п	4 Насосная рганизованным: предприятию:	(Сероводород	0,00104 0,00104) 23 0,00303	0,00154 0,0058	0,00104	58 0,09581	0,0010449	8 0,095813	- 20
1 1 1 Всего по о Итого по п	4 Насосная рганизованным: предприятию : 0333 Дигидросульфид занные источники:	(Сероводород 00	0,00104 0,00104) 23 0,00303 25 0,00061	0,00154 0,00154 0,0058 0,0058	0,00104 0,00303 0,00303 0,00061	58 0,09581 00 0,00792	0,0010449 3 0,003035 7 0,000610	8 0,095813 0 0,007927	20
Организова 1 1 1 Всего по от Итого по п Вещество Организов 2	4 Насосная рганизованным: предприятию: 0333 Дигидросульфид ванные источники: 1 Насосная	00	0,00104 0,00104)) 23 0,00303 25 0,00061 26 0,01593	0,00154 0,00154 0,0058 0,0058 0,0079 0,0079 0,2090	13 0,00303 27 0,00061 09 0,01593	58 0,09581 00 0,00792 71 0,20900	3 0,003035 7 0,000610 9 0,015937	8 0,095813 0 0,007927 1 0,209009	20
1 1 1 1 Всего по от Итого по п Вещество Организов 2 2 2	4 Насосная рганизованным: предприятию: 0333 Дигидросульфид ванные источники: 1 Насосная 2 КНС мини	00	0,00104 0,00104) 23 0,00303 25 0,00061 26 0,01593 28 0,00007	0,00154 0,00154 0,0058 0,00792 0,00792 0,00192	13 0,00104 13 0,00303 27 0,00061 19 0,01593 172 0,00007	58 0,09581 00 0,00792 71 0,20900 704 0,00197	3 0,003035 7 0,000610 9 0,015937 2 0,000070	8 0,095813 0 0,007927 1 0,209009 04 0,001972	20 20 20 20
Организова 1 1 1 Всего по о Итого по п Вещество Организов 2 3	4 Насосная грганизованным: 10333 Дигидросульфид занные источники: 1 Насосная 2 КНС мини 1 Насосная	00	0,00104 0,00104)) 23 0,00303 25 0,00061 26 0,01593	0,00154 0,00154 0,0058 0,00792 0,00792 0,00192	13 0,00104 13 0,00303 27 0,00061 19 0,01593 172 0,00007	58 0,09581 00 0,00792 71 0,20900 704 0,00197	3 0,003035 7 0,000610 9 0,015937 2 0,000070	8 0,095813 0 0,007927 1 0,209009 04 0,001972	20 20 20 20
1	4 Насосная ртанизованным: 0333 Дигидросульфид занные источники: 1 Насосная 2 КНС мини 1 Насосная	00	0,00104 0,00104) 23 0,00303 25 0,00061 26 0,01593 28 0,00007 0,01965	0,00154 0,00154 0,00581 0,00792 0,00792 0,00192 0,00192 0,00192 0,00192	13 0,00104 13 0,00303 27 0,00061 09 0,01593 72 0,00007 21 0,01965	58 0,09581 00 0,00792 171 0,20900 170 0,00197 173 0,31472	3 0,003035 7 0,000610 9 0,015937 2 0,000070 1 0,019653	8 0,095813 0 0,007927 1 0,209005 14 0,001972 13 0,314721	20 20 20 20 20 20 20 20 20
1	4 Насосная ртанизованным: тредприятию: 0333 Дигидросульфид ванные источники: 1 Насосная 2 КНС мини 1 Насосная организованным: зованные источники:	00	0,00104 0,00104) 23 0,00303 25 0,00061 26 0,01593 28 0,00007	49 0,00154 558 0,09581 500 0,00792 571 0,20900 704 0,0019 533 0,31472 985 0,0381	0,00104 0,00303 0,00303 0,00503 0,00503 0,01593 0,00007 0,00007 0,01965 86 0,00189	58 0,09581 50 0,00792 771 0,20900 704 0,00197 333 0,31472 985 0,03818	3 0,0010449 3 0,003035 7 0,000610 9 0,015937 2 0,000070 1 0,019653	8 0,095813 0 0,007927 1 0,209005 04 0,001972 13 0,314721	20 20 20 20 20 20 20 20 20 20 20 20 20 2
1	4 Насосная ртанизованным: 0333 Дигидросульфид занные источники: 1 Насосная 2 КНС мини 1 Насосная	00 00 00 00 00 00 00 00 00 00 00 00 00	0,00104 0,00104)) 23 0,00303 25 0,00061 26 0,01593 28 0,00007 0,01965	49 0,00154 558 0,09581 00 0,0079 771 0,2090 704 0,0019 705 0,0381 707 0,0017	13 0,00104 13 0,00303 27 0,00061 09 0,01593 72 0,0007 21 0,01965 86 0,0189 62 0,00008	58 0,09581 00 0,00792 171 0,20900 104 0,00197 133 0,31472 185 0,03818 1876 0,00176	3 0,0010449 3 0,003035 7 0,000610 9 0,015937 2 0,000070 1 0,019653 36 0,001898 52 0,000087	8 0,095813 0 0,007927 1 0,209009 04 0,001972 33 0,314721 35 0,038186 76 0,001762	20 20 20 20 20 20 20 20 20 20 20 20 20 2
1	4 Насосная ртанизованным: тредприятию: 0333 Дигидросульфид ванные источники: 1 Насосная 2 КНС мини 1 Насосная организованным: зованные источники:	00 (Сероводороллого 00 00 00 00	0,00104 0,00104 0,00104 0,00104 0,00104 0,00001 225 0,00061 226 0,01593 228 0,00007 0,01965	49 0,00154 558 0,09581 000 0,0079; 771 0,2090; 704 0,0019; 533 0,3147; 985 0,0381 876 0,0017	13 0,00104 13 0,00303 27 0,00061 109 0,01593 72 0,0007 21 0,01965 86 0,0018 66 0,0008 65 0,00007	58 0,09581 00 0,00792 771 0,20900 704 0,00197 333 0,31472 785 0,03818 7876 0,00176 7899 0,03495	3	8 0,095813 0 0,007927 1 0,209009 4 0,001972 33 0,314721 35 0,03818 76 0,00176 59 0,03495	20 20 20 20 20 20 20 20 20 20 20 20 20 2
1	4 Насосная ртанизованным: тредприятию: 0333 Дигидросульфид ванные источники: 1 Насосная 2 КНС мини 1 Насосная организованным: зованные источники:	00 (Сероводорол 00 00 00 00 66 66 66	0,00104 0,00104 0,00104 0,00104 0,00104 0,00104 0,00006 0,0	49 0,00154 558 0,0958: 000 0,0079; 771 0,2090; 704 0,0019; 533 0,3147; 585 0,0381 676 0,0017 6309 0,0349	13 0,00104 13 0,00303 27 0,00061 109 0,01593 72 0,0007 21 0,01965 86 0,0018 66 0,0008 65 0,00007	58 0,09581 00 0,00792 771 0,20900 704 0,00197 333 0,31472 785 0,03818 7876 0,00176 7899 0,03495	3 0,003035 7 0,000610 9 0,015937 2 0,00070 1 0,019653 6 0,001898 52 0,00088 55 0,001730 23 0,00202	8 0,095813 0 0,007927 1 0,209009 4 0,001972 33 0,314721 35 0,03818 76 0,00176 59 0,03495	20 20 20 20 20 20 20 20 20 20 20 20 20 2
1	4 Насосная ртанизованным: тредприятию: 0333 Дигидросульфид ванные источники: 1 Насосная 2 КНС мини 1 Насосная организованным: зованные источники:	00 (Сероводорол 00 00 00 00 66 66 66	0,00104 0,00104 0,00104 0,00104 0,00104 0,00104 0,00006 0,01593 0,01962 0,01963 0,0105 0,00189 0,00007 0,00189	49 0,00154 558 0,0958: 000 0,0079; 771 0,2090; 704 0,0019; 533 0,3147; 585 0,0381 676 0,0017 6309 0,0349	13 0,00104 13 0,00303 27 0,00061 109 0,01593 72 0,0007 21 0,01965 86 0,0018 66 0,0008 65 0,00007	58 0,09581 00 0,00792 771 0,20900 704 0,00197 333 0,31472 785 0,03818 7876 0,00176 7899 0,03495	3	8 0,095813 0 0,007927 1 0,209009 4 0,001972 33 0,314721 35 0,03818 76 0,00176 59 0,03495	20 20 20 20 20 20 20 20 20 20 20 20 20 2
1	4 Насосная ртанизованным: тредприятию: 0333 Дигидросульфид ванные источники: 1 Насосная 2 КНС мини 1 Насосная организованным: зованные источники:	00 (Сероводорол 00 00 00 00 66 66 66	0,00104 0,00104 0,00104 0,00104 0,00104 0,00104 0,00006 0,0	49 0,00154 558 0,0958: 000 0,0079; 771 0,2090; 704 0,0019; 533 0,3147; 585 0,0381 676 0,0017 6309 0,0349	13 0,00104 13 0,00303 27 0,00061 109 0,01593 72 0,0007 21 0,01965 86 0,0018 66 0,0008 65 0,00007	58 0,09581 00 0,00792 771 0,20900 704 0,00197 333 0,31472 785 0,03818 7876 0,00176 7899 0,03495	3 0,003035 7 0,000610 9 0,015937 2 0,00070 1 0,019653 6 0,001898 52 0,00088 55 0,001730 23 0,00202	8 0,095813 0 0,007927 1 0,209009 4 0,001972 33 0,314721 35 0,03818 76 0,00176 59 0,03495	20 20 20 20 20 20 20 20 20 20 20 20 20 2
1	4 Насосная ртанизованным: тредприятию: 0333 Дигидросульфид ванные источники: 1 Насосная 2 КНС мини 1 Насосная организованным: зованные источники:	00 (Сероводорол 00 00 00 00 66 66 66	0,00104 0,00104 0,00104 0,00104 0,00104 0,00104 0,00006 0,00006 0,00006 0,00006 0,00006 0,00006 0,00007 0,0017	49 0,00154 558 0,0958: 000 0,0079; 771 0,2090; 704 0,0019; 533 0,3147; 585 0,0381 676 0,0017 6309 0,0349	13 0,00104 13 0,00303 27 0,00061 109 0,01593 72 0,0007 21 0,01965 86 0,0018 66 0,0008 65 0,00007	58 0,09581 00 0,00792 771 0,20900 704 0,00197 333 0,31472 785 0,03818 7876 0,00176 7899 0,03495	3 0,003035 7 0,000610 9 0,015937 2 0,00070 1 0,019653 6 0,001898 52 0,00088 55 0,001730 23 0,00202	8 0,095813 0 0,007927 1 0,209009 4 0,001972 33 0,314721 35 0,03818 76 0,00176 59 0,03495	20 20 20 20 20 20 20 20 20 20 20 20 20 2

Изм. Кол.уч Лист №док

Подп.

Взам. Инв. №

04/2022-151-00000-OBOC-TY

		6009	0,0012982	0,026216	0,0012982	0,026216	0,0012982	0,026216	20
		6010	0,0004649	0,009352	0,0004649	0,009352	0,0004649	0,009352	20
		6011	0,0286417	0,586411	0,0286417	0,586411	0,0286417	0,586411	20
	рганизованным: едприятию :		0,0361507	0,737905 1,052626	0,0361507	0,737905 1,052626	0,0361507	0,737905 1,052626	20
	337 Углерод оксид								
-1	ные источники;	1 0001	0.0100044	0.115155	0.0100044	0.115199	0.0100044	0.115177	20
1	1 Гараж	0001	0,0186944	0,115177	0,0186944	0,115177	0,0186944	0,115177	20
		0004	0,0094208	0,002261	0,0094208	0,002261	0,0094208	0,047190	20
1	2 АБК	0008	0,0216384	0,176677	0,0216384	0,176677	0,0216384	0,176677	20
1	4 Насосная	0014	0,0057040	0,061427	0,0057040	0,061427	0,0057040	0,061427	20
	ганизованным:		0,1012594	0,402731	0,1012594	0,402731	0,1012594	0,402731	20
Неорганизон 3	1 Насосная	6013	0,0211958	0,021196	0,0211958	0,021196	0,0211958	0,021196	20
	рганизованным:	0015	0,0211958	0,021196	0,0211958	0,021196	0,0211958	0,021196	20
	едприятию:		0,1224552	0,423927	0,1224552	0,423927	0,1224552	0,423927	20
Вещество 0	342 Фтористые газообра	зные соединени	RI						
Организован	ные источники:	1						- I	
1	1 Гараж	0005	0,0009421	0,000226	0,0009421	0,000226	0,0009421	0,000226	20
	анизованным: ванные источники:		0,0009421	0,000226	0,0009421	0,000226	0,0009421	0,000226	20
3	1 Насосная	6013	0,0002196	0,000119	0,0002196	0,000119	0,0002196	0,000119	20
Всего по нес	рганизованным:		0,0002196	0,000119	0,0002196	0,000119	0,0002196	0,000119	20
	едприятию :		0,0011617	0,000345	0,0011617	0,000345	0,0011617	0,000345	20
	344 Фториды плохо рас	воримые							10.
Организовая 1	ные источники:	0005	0.0005667	0,000136	0,0005667	0,000136	0,0005667	0,000136	20
	1 Гараж ганизованным:	0005	0,0005667	0,000136	0,0005667	0,000136	0,0005667	0,000136	20
	ванные источники:		-,	-,,,,,,,,,,,	-,	2,200,00	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,000,100	20
3	1 Насосная	6013	0,0000944	0,000051	0,0000944	0,000051	0,0000944	0,000051	20
	организованным:		0,0000944	0,000051	0,0000944	0,000051	0,0000944	0,000051	20
	едприятию:		0,0006611	0,000187	0,0006611	0,000187	0,0006611	0,000187	20
	403 Гексан								
Организован	нные источники: 7 Лаборатория	0019	0,0002687	0,000005	0,0002687	0,000005	0,0002687	0,000005	20
Всего по орг	ганизованным:	1 0013	0,0002687	0,000005	0,0002687	0,000005	0,0002687	0,000005	.20
	едприятию:		0,0002687	0,000005	0,0002687	0,000005	0,0002687	0,000005	20
Вещество 0	410 Метан							700 -	_
Организован	нные источники:					- Addison		- C	
1	1 Гараж	0002	0,0067398	0,212547	0,0067398	0,212547	0,0067398	0,212547	20
	0 100	0003	0,0000466	5,95E-08	0,0000466	5,95E-08	0,0000466	5,95E-08	20
1	2 ABK	0009	0,0067398	0,212547	0,0067398	0,212547	0,0067398	0,212547 5,95E-08	20
1	3 ITPT	0010	0,0000466	5,95E-08 0,212547	0,0000466	5,95E-08 0,212547	0,0000466	0,212547	20
1		0011	0,0007398	0,000003	0,0007398	0,000003	0,0024820	0,000003	20
		0013	0,0000466	5,95E-08	0,0000466	5,95E-08	0,0000466	5,95E-08	20
1	4 Насосная	0015	0,0067398	0,212547	0,0067398	0,212547	0,0067398	0,212547	20
		0016	0,0000466	5,95E-08	0,0000466	5,95E-08	0,0000466	5,95E-08	20
2	1 Насосная	0023	0,2174508	6,865127	0,2174508	6,865127 .	0,2174508	0,569482	20
3	2 КНС мини 1 Насосная	0025	1,1442400	0,569482 14,996780	0,0438175 1,1442400	0,569482 14,996780	0,0438175	14,996780	20
	Пасосная	0028	0,0044261	0,123899	0,0044261	0,123899	0,0044261	0,123899	20
Всего по орг	ганизованным:		1,4395621	23,405479	1,4395621	23,405479	1,4395621	23,405479	. 20
	ванные источники:								
1	1 Гараж	6001	0,0016910	0,053327	0,0016910	0,053327	0,0016910	0,053327	20
1	2 ABK	6002	0,0016910	0,053327	0,0016910	0,053327	0,0016910	0,053327	20
1	3 ПРГ 4 Насосная	6003	0,0016910	0,053327	0,0016910 0,0016910	0,053327	0,0016910	0,053327	20
1	6 БОС	6004	0,1363816	2,743161	0,1363816	2,743161	0,1363816	2,743161	20
		6006	0,0078337	0,157503	0,0078337	0,157503	0,0078337	0,157503	- 20
		6007	0,2195150	4,432899	0,2195150	4,432899	0,2195150	4,432899	. 20
		6008	0,1629431	3,294647	0,1629431	3,294647	0,1629431	3,294647	20
		6009	0,0786792	1,588853	0,0786792	1,588853	0,0786792	1,588853	20
		6010	0,0292136	0,587597	0,0292136	0,587597 32,353683	0,0292136 1,5802324	0,587597 32,353683	20
Roero wa wa	ODESHISOBSHIS IS	6011	1,5802324 2,2215626	32,353683 45,371651	1,5802324 2,2215626	45,371651	2,2215626	45,371651	20
and the	организованным:		3,6611247	68,777130	3,6611247	68,777130	3,6611247	68,777130	20
	0616 Диметилбензол (Ко	илоп) (смесь изс			-,,				
	нные источники:	and Camero Hot	,	,					
i i		0004	0,0284091	0,404442	0,0284091	0,404442	0,0284091		20
1	1 Гараж	0028	0,0042969	0,002250	0,0042969	0,002250	0,0042969	0,002250	2
3	1 Насосная	0028	0,0327060	2 2 2 2 2	0,0327060	0,406692	0,0327060	0,406692	
Всего по	организованным:		0,0521000				0,004296	9 0,002250	10
TI-appears	изованные источники:		3 0,0042969	0,002250	0,0042969	0,002250	0,004290		
Heobran	Hachania	601	3 0,004290	1 3,3,4			*	*	
1							192	·	-
N.							15.		- 3
							0.0	1	

Инв. № подл. Подп. и дата

Взам. Инв. №

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

	организованным:		0,0042969	0,002250	0,0042969	0,002250	0,0042969	0,002250	2019
Ітого по пре	едприятию:	18	0,0370028	0,408942	0,0370028	0,408942	0,0370028	0,408942	2019
ещество 06	621 Метилбензол (Толу	ол)		13.7		90		- 950	
рганизован	нные источники:	No. L. Lin						- 3	
1	1 Гараж	0004	0,0115741	0,100000	0,0115741	0,100000	0,0115741	0,100000	2019
сего по орг	ганизованным:		0,0115741	0,100000	0,0115741	0,100000	0,0115741	0,100000	2019
Ітого по пре	едприятию :		0,0115741	0,100000	0,0115741	0,100000	0,0115741	0,100000	2019
ещество 07	703 Бенз/а/пирен (3,4-Б	ензпирен)							
рганизован	нные источники:								
1	1 Гараж	0001	3,28E-10	1,28E-09	3,28E-10	1,28E-09	3,28E-10	1,28E-09	2019
1	2 ABK	0008	4,45E-10	1,16E-09	4,45E-10	1,16E-09	4,45E-10	1,16E-09	2019
1	4 Насосная	0014	2,35E-11	2,52E-10	2,35E-11	2,52E-10	2,35E-11	2,52E-10	2019
сего по орг	ганизованным:	-	7,97E-10	2,70E-09	7,97E-10	2,70E-09	7,97E-10	2,70E-09	2019
	едприятию:		7.97E-10	2,70E-09	7,97E-10	2,70E-09	7,97E-10	2,70E-09	2019
	898 Трихлорметан (Хло	nodony)							_
	нные источники:	роформу							_
1	7 Лаборатория	0019	0,0009556	0,000009	0,0009556	0,000009	0,0009556	0,000009	2019
- 1	7 Лаобратория	0020	0,0033340	0,004800	0,0033340	0,004800	0,0033340	0,004800	2019
	-	0020	0,0053340	0,004800	0,0053340	0,004800	0,0053340	0,007200	2019
-		0021	0,0050010	0,007200	0,0050010	0,007200	0,0050010	0,007200	2019
2000 52 2	FORWARD POWER TO AT	0022		0,007200	0,0050010	0,007200	0,0050010	0,007200	2019
	ганизованным:		0,0142916				0,0142916	0,019209	2019
	едприятию:		0,0142916	0,019209	0,0142916	0,019209	0,0142910	0,019209	2019
	906 Тетрахлорметан (У	глерод четырехх	лористый)						
рганизован	нные источники:							0.0000001	
1	7 Лаборатория	0019	0,0012204	0,000008	0,0012204	0,000008	0,0012204	0,000008	2019
		0020	0,0010280	0,001806	0,0010280	0,001806	0,0010280	0,001806	2019
		0021	0,0015420	0,002709	0,0015420	0,002709	0,0015420	0,002709	2019
		0022	0,0015420	0,002709	0,0015420	0,002709	0,0015420	0,002709	2019
сего по орг	ганизованным:		0,0053324	0,007232	0,0053324	0,007232	0,0053324	0,007232	2019
того по пре	едприятию :	- 10	0,0053324	0,007232	0,0053324	0,007232 :	0,0053324	0,007232	2019
ещество 10	042 Бутан-1-ол (Спирт	н-бутиловый)					K A		2000
рганизован	нные источники:					A 7	- i	r	(°
1	1 Гараж	0004	0,0034722	0,036754	0,0034722	0,036754	0,0034722	. 0,036754	2019
	ганизованным:		0,0034722	0,036754	0,0034722	0,036754	0,0034722 -	0,036754	2019
	едприятию:		0,0034722	0,036754	0,0034722	0,036754	0,0034722	0,036754	2019
	061 Этанол (Спирт этил	повый)		775.56					
	нные источники:					12			
рі анизован	I Гараж	0004	0,0023148	0,020000	0,0023148	0,020000	0,0023148	0,020000	2019
1		0004	0,0000730	0,000005	0,0000730	0,000005	0,0000730	0,000005	2019
- 1	7 Лаборатория	0019	0,0003520	0,000618	0,0003520	0,000618	0,0003520	0,000618	2019
-				0,000927		0,000927	0,0005280	0,000927	2019
		0021	0,0005280		0,0005280	0,000927		0,000927	2019
		0022	0,0005280	0,000927	0,0005280		0,0005280	0,000927	2019
сего по орг	ганизованным:		0,0037958	0,022477	0,0037958	0,022477	0,0037958	0,022477	2019
			0,0037958	0,022477	0,0037958	0,022477	0,0037958	0,022477	2019
Ітого по пр									
того по пре ещество 1	1071 Гидроксибензол (Ф	ренол)							
того по пре ещество 1	1071 Гидроксибензол (Ф иные источники:								
того по пре ещество 1	1071 Гидроксибензол (Ф	0023	0,0001726	0,005406	0,0001726	0,005406	0,0001726	0,005406	
того по пре ещество 1 рганизован	1071 Гидроксибензол (Ф иные источники:		0,0000324	0,005406 0,000421	0,0000324	0,000421	0,0000324	0,000421	2019
того по пре вещество 1 рганизован 2	1071 Гидроксибензол (Ф иные источники: 1 Насосная	0023			0,0000324 0,0008572			0,000421	2019 2019
того по про вещество 1 рганизован 2 2	1071 Гидроксибензол (Ф нные источники: 1 Насосная 2 КНС мини	0023 0025	0,0000324	0,000421	0,0000324	0,000421	0,0000324 0,0008572 * 0,0000153	0,000421	2019 2019 2019
того по пре ещество 1 рганизован 2 2 3	1071 Гидроксибензол (Ф нные источники: 1 Насосная 2 КНС мини	0023 0025 0026	0,0000324 0,0008572	0,000421 0,011413	0,0000324 0,0008572	0,000421	0,0000324 0,0008572	0,000421 0,011413 0,000427	2019 2019 2019
Гого по при вещество 1 Организован 2 2 2 3	1071 Гидроксибензол (Финые источники: 1 Насосная 2 КНС мини 1 Насосная	0023 0025 0026	0,0000324 0,0008572 0,0000153	0,000421 0,011413 0,000427	0,0000324 0,0008572 0,0000153	0,000421 0,011413 0,000427	0,0000324 0,0008572 0,0000153 0,0010775	0,000421 0,011413 0,000427	2019 2019 2019 - 2019
Гого по при вещество 1 Организован 2 2 2 3	1071 Гидроксибензол (Финые источники: 1 Насосная 2 КНС мини 1 Насосная	0023 0025 0026	0,0000324 0,0008572 0,0000153	0,000421 0,011413 0,000427	0,0000324 0,0008572 0,0000153	0,000421 0,011413 0,000427	0,0000324 0,0008572 * 0,0000153	0,000421 0,011413 0,000427	2019 2019 2019
того по при ещество 1 рганизован 2 2 2 3	1071 Гидроксибензол (Ф нные источники: 1 Насосная 2 КНС мини 1 Насосная оганизованным: ванные источники:	0023 0025 0026 0028	0,0000324 0,0008572 0,0000153 0,0010775	0,000421 0,011413 0,000427 0,017667	0,0000324 0,0008572 0,0000153 0,0010775	0,000421 0,011413 0,000427 0,017667	0,0000324 0,0008572 0,0000153 0,0010775	0,000421 0,011413 0,000427 0,017667	2019 2019 2019 - 2019 - 2019
Гого по при вещество 1 Организован 2 2 2 3	1071 Гидроксибензол (Ф нные источники: 1 Насосная 2 КНС мини 1 Насосная оганизованным: ванные источники:	0023 0025 0026 0028	0,0000324 0,0008572 0,0000153 0,0010775	0,000421 0,011413 0,000427 0,017667	0,0000324 0,0008572 0,0000153 0,0010775	0,000421 0,011413 0,000427 0,017667	0,0000324 0,0008572 0,0000153 0,0010775	0,000421 0,011413 0,000427 0,017667	2019 2019 2019 - 2019
того по при ещество 1 рганизован 2 2 2 3	1071 Гидроксибензол (Ф нные источники: 1 Насосная 2 КНС мини 1 Насосная оганизованным: ванные источники:	0023 0025 0026 0028 6005 6006	0,0000324 0,0008572 0,0000153 0,0010775 0,0001007 0,0000451	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908	0,0000324 0,0008572 0,0000153 0,0010775 0,0001007 0,000451 0,0008419	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908	0,0000324 0,0008572 0,0000153 0,0010775 0,0001007 0,0000451	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908	2019 2019 2019 2019 2019 2019 2019
того по при ещество 1 рганизован 2 2 2 3	1071 Гидроксибензол (Ф нные источники: 1 Насосная 2 КНС мини 1 Насосная оганизованным: ванные источники:	0023 0025 0026 0028 6005 6006 6007	0,0000324 0,0008572 0,0000153 0,0010775 0,0001007 0,0000451 0,0008419	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001	0,0000324 0,0008572 0,0000153 0,0010775 0,0001007 0,0000451	0,000421 0,011413 0,000427 0,017667 0,002026 0,00908 0,017001	0,0000324 0,0008572 0,0000153 0,0010775 0,0001007 0,0000451 0,0008419	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001	2019 2019 2019 2019 2019 2019 2019
того по при ещество 1 рганизован 2 2 2 3	1071 Гидроксибензол (Ф нные источники: 1 Насосная 2 КНС мини 1 Насосная оганизованным: ванные источники:	0023 0025 0026 0028 0028 6005 6006 6007 6008 6009	0,0000324 0,0008572 0,0000153 0,0010775 0,0001007 0,0000451 0,0008419 0,0015977 0,0009992	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305	0,0000324 0,0008572 0,0000153 0,0010775 0,0001007 0,0000451 0,0008419 0,0015977 0,0009992	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305	0,0000324 0,0008572 0,0000153 0,0010775 0,0001007 0,0000451 0,0008419 0,0015977	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305	2019 2019 2019 2019 2019 2019 2019 2019
того по при ещество 1 рганизован 2 2 2 3	1071 Гидроксибензол (Ф нные источники: 1 Насосная 2 КНС мини 1 Насосная оганизованным: ванные источники:	0023 0025 0026 0028 0028 6005 6006 6007 6008 6009 6010	0,0000324 0,0008572 0,0000153 0,0010775 0,0001007 0,0000451 0,0008419 0,0015977 0,0009992 0,0001007	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026	0,0000324 0,0008572 0,0000153 0,0010775 0,0001007 0,0000451 0,0008419 0,0015977 0,0009992 0,0001007	0,000421 0,011413 0,000427 0,017667 0,002026 0,009098 0,017001 0,032305 0,020178	0,0000324 0,0008572 0,0000153 0,0010775 0,0001007 0,0000451 0,0008419 0,0015977 0,0009992 0,0001007	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026	2019 2019 2019 2019 2019 2019 2019 2019
того по прещество 1 правизован 2 2 2 3 3 может по организован 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1071 Гидроксибензол (Финьке источники: 1 Насосная 2 КНС мини 1 Насосная отанизованным: ванные источники: 6 БОС	0023 0025 0026 0028 0028 6005 6006 6007 6008 6009	0,000324 0,0008572 0,0000153 0,0010775 0,0000451 0,0008419 0,0015977 0,000992 0,0001007 0,0365429	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179	0,0000324 0,0008572 0,0000153 0,0010775 0,0001007 0,0000451 0,0008419 0,0015977 0,000992 0,0001007 0,0365429	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,02026	0,000324 0,0008572 0,0000153 0,0010775 0,0000451 0,0008419 0,0015977 0,000992 0,0001007 0,0365429 0,0365429	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,0748179	2019 2019 2019 2019 2019 2019 2019 2019
стого по прещество 1 ррганизован 2 2 3 3 ссего по оррефиясов 1 1 5 ссего по оррефиясов 1 1 5 ссего по несего по нес	1071 Гидроксибензол (Финые источники: 1 Насосная 2 КНС мини 1 Насосная эганизованным: ванные источники: 6 БОС	0023 0025 0026 0028 0028 6005 6006 6007 6008 6009 6010	0,000324 0,0008572 0,000153 0,001077 0,0000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,002026 0,0020178	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623	0,0000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623	2019 2019 2019 2019 2019 2019 2019 2019
гого по прещество 1 грганизоват 2 грганизоват 2 грганизоват 2 грганизоват 2 грганизоват 1 грг	1071 Гидроксибензол (Финые источники: 1 Насосная 2 КНС мини 1 Насосная 1 Насосная 1 Насосная 6 БОС сорганизованным:	0023 0025 0026 0028 0028 6005 6006 6007 6008 6009 6010	0,000324 0,0008572 0,0000153 0,0010775 0,0000451 0,0008419 0,0015977 0,000992 0,0001007 0,0365429	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179	0,0000324 0,0008572 0,0000153 0,0010775 0,0001007 0,0000451 0,0008419 0,0015977 0,000992 0,0001007 0,0365429	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,02026	0,000324 0,0008572 0,0000153 0,0010775 0,0000451 0,0008419 0,0015977 0,000992 0,0001007 0,0365429 0,0365429	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,0748179	2019 2019 2019 2019 2019 2019 2019 2019
того по прещество 1 грганизоват 2 грганизоват 2 грганизоват 2 грганизоват 1 грганизова	1071 Гидроксибензол (Финые источники: 1 Насосная 2 КНС мини 1 Насосная 1 Насосная Баснизованным: 6 БОС роганизованным: редприятию: 1210 Бутилацетат	0023 0025 0026 0028 0028 6005 6006 6007 6008 6009 6010	0,000324 0,0008572 0,000153 0,001077 0,0000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,002026 0,0020178	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623	0,0000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623	2019 2019 2019 2019 2019 2019 2019 2019
стого по прещество 1 грганизован 2 2 2 3 3 грганизован 1	1071 Гидроксибензол (Финьке источники: 1 Насосная 2 КНС мини 1 Насосная отанизованным: ванные источники: 6 БОС сорганизованным: редприятию: 1210 Бугилацетат	0023 0025 0026 0028 0028 6005 6006 6007 6008 6009 6010	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,0000451 0,0008419 0,0015977 0,0009992 0,001007 0,0365429 0,041282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,0000451 0,0015977 0,0009992 0,001007 0,0365429 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,0000451 0,0008419 0,0015977 0,0009992 0,001007 0,0365429 0,0402282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290	2019 2019 2019 2019 2019 2019 2019 2019
того по прещество 1 организован 2 2 2 2 3 3 стоят по организован 1 1 стоят по транизован 1 1 стоят по транизован 1 стоят по транизован 1 организован 1 организован 1 1 стоят по транизован 1 организован 1 1 стоят по транизован 1 стоя	1071 Гидроксибензол (Финьые источники: 1 Насосная 2 КНС мини 1 Насосная 1 Насосная 1 Насосная 6 БОС сорганизованным: ведприятию: 1 сорганизованным: 1 дедприятию: 1 Гараж	0023 0025 0026 0028 0028 6005 6006 6007 6008 6009 6010	0,0000324 0,0008572 0,0000153 0,001077 0,0000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,041282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290	0,000324 0,0008572 0,0001573 0,0010775 0,0001007 0,0000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290	0,0000324 0,0008572 0,000153 0,0010775 0,0001007 0,0000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290	2019 2019 2019 2019 2019 2019 2019 2019
гого по прещество 1 организоват 2 2 2 3 3 осего по организоват 1 1 осего по неи битого по прещество 1 организоват 1 организоват 1 организоват 1 осего по осег	1071 Гидроксибензол (Финые источники: 1 Насосная 2 КНС мини 1 Насосная 1 Насосная 1 Насосная 1 Насосная 1 БОС 2 БОС 2 БОС 2 БОС 3 БОС 4 БОС 4 БОС 4 БОС 4 БОС 4 БОС 4 БОС 5 БОС 5 БОС 5 БОС 6 БОС 6 БОС	0023 0025 0026 0028 0028 6005 6006 6007 6008 6009 6010	0,000324 0,0008572 0,000153 0,001077 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290 0,020000 0,020000	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290	0,0000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0462282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,02026 0,748179 0,822623 0,840290	2019 2019 2019 2019 2019 2019 2019 2019
гого по прещество 1 организоват 2 2 2 3 3 осего по организоват 1 1 осего по неи битого по прещество 1 организоват 1 организоват 1 организоват 1 осего по осег	1071 Гидроксибензол (Финьые источники: 1 Насосная 2 КНС мини 1 Насосная 1 Насосная 1 Насосная 6 БОС сорганизованным: ведприятию: 1 сорганизованным: 1 дедприятию: 1 Гараж	0023 0025 0026 0028 0028 6005 6006 6007 6008 6009 6010	0,0000324 0,0008572 0,0000153 0,001077 0,0000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,041282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290	0,000324 0,0008572 0,0001573 0,0010775 0,0001007 0,0000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290	0,0000324 0,0008572 0,000153 0,0010775 0,0001007 0,0000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290	2019 2019 2019 2019 2019 2019 2019 2019
гого по прещество 1 грганизоват 2 грганизоват 2 грганизоват 2 грганизоват 2 грганизоват 1 грганизов	1071 Гидроксибензол (Финые источники: 1 Насосная 2 КНС мини 1 Насосная 1 Насосная 1 Насосная 1 Насосная 1 БОС 2 БОС 2 БОС 2 БОС 3 БОС 4 БОС 4 БОС 4 БОС 4 БОС 4 БОС 4 БОС 5 БОС 5 БОС 5 БОС 6 БОС 6 БОС	0023 0025 0026 0028 0028 6005 6006 6007 6008 6009 6010	0,000324 0,0008572 0,000153 0,001077 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290 0,020000 0,020000	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290	0,0000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0462282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,02026 0,748179 0,822623 0,840290	2019 2019 2019 2019 2019 2019 2019 2019
того по прещество 1: рганизова: 2 2 2 3 3	1071 Гидроксибензол (Финые источники: 1 Насосная 2 КНС мини 1 Насосная 1 Насосная ганизованным: ванные источники: 6 БОС сорганизованным: редприятию: 1 Гараж ганизованным: редприятию:	0023 0025 0026 0028 0028 6005 6006 6007 6008 6009 6010	0,000324 0,0008572 0,000153 0,001077 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290 0,020000 0,020000	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290	0,0000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0462282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,02026 0,748179 0,822623 0,840290	2019 2019 2019 2019 2019 2019 2019 2019
гого по прещество 1: франизован 2 2 3 Всего по организован 1 Всего по нее гого по пре всего по нее гого по пре всего по организован 1 Всего по организован 1 Всего по организован Все	1071 Гидроксибензол (Финьке источники: 1 Насосная 2 КНС мини 1 Насосная 1 Насосная ганизованным: вванные источники: 6 БОС сорганизованным: редприятию: 1 Гараж горизованным: редприятию: 1 Гараж горизованным: редприятию:	0023 0025 0026 0028 0028 6005 6006 6007 6008 6009 6010	0,000324 0,0008572 0,000153 0,001077 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290 0,020000 0,020000	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290	0,0000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0462282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,02026 0,748179 0,822623 0,840290	2019 2019 2019 2019 2019 2019 2019 2019
стого по прещество 1 грганизован 2 2 2 3 3 грганизован 1 грганизован 1 грганизован 1 грганизован 2 грганизован 2 грганизован 1 грганизован 2	1071 Гидроксибензол (Финьке источники: 1 Насосная 2 КНС мини 1 Насосная отанизованным: ванные источники: 6 БОС сорганизованным: редприятию: 1210 Бутилацетат виные источники: 1 Гараж реандоранным: редприятию: 1325 Формальдегид виные источники:	0023 0025 0026 0028 0028 6005 6006 6007 6008 6009 6010	0,0000324 0,0008572 0,0000153 0,0010775 0,0001007 0,0000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290 0,020000 0,020000 0,020000	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,0000451 0,0005419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290 0,020000 0,020000 0,020000 0,020000	0,0000324 0,0008572 0,000153 0,0010775 0,0000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057 0,0023148 0,0023148	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290 0,020000 0,020000 0,020000 0,020000	2019 2019 2019 2019 2019 2019 2019 2019
Пото по прещество 1 организоват 2 2 2 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1071 Гидроксибензол (Финые источники: 1 Насосная 2 КНС мини 1 Насосная 2 КНС мини 1 Насосная 6 БОС 2 БОС 2 БОС 2 БОС 3 БОС 4 БОС 4 БОС 4 БОС 4 БОС 4 БОС 5 БОС 5 БОС 5 БОС 6	0023 0025 0026 0028 0028 6005 6006 6007 6008 6009 6010	0,000324 0,0008572 0,000153 0,001077 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,041282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290 0,020000 0,020000 0,020000 0,020000	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0412282 0,0413057 0,0023148 0,0023148 0,0023148	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,000026 0,748179 0,822623 0,840290 0,020000 0,020000 0,020000 0,020000	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0412282 0,0413057	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290 0,020000 0,020000 0,020000	2019 2019 2019 2019 2019 2019 2019 2019
Гого по прещество 1 организоват 2 2 2 3 3 месето по организоват 1 1 месето по организоват 1 1 месето по прещество 1 организоват 1 1 месето по прещество 1 организоват 1 месето по прещество 1 организоват 2 2 2 2 2	1071 Гидроксибензол (Финые источники: 1 Насосная 2 КНС мини 1 Насосная 1 Насосная 1 Насосная 1 Насосная 1 Насосная 6 БОС	0023 0025 0026 0028 0028 6005 6006 6007 6008 6010 6011	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,365429 0,0413057 0,0023148 0,0023148 0,0023148	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,3055429 0,0413057 0,0023148 0,0023148 0,0023148	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,00015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057 0,0023148 0,0023148 0,0023148 0,0023148	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000	2019 2019 2019 2019 2019 2019 2019 2019
всего по преведения образования образован	1071 Гидроксибензол (Финьке источники: 1 Насосная 2 КНС мини 1 Насосная 2 КНС мини 1 Насосная отанизованным: ванные источники: 6 БОС сорганизованным: редприятию: 1 Гараж редприятию: 1 Гараж редприятию: 1 Гараж редприятию: 1 Насосная 2 КНС мини 1 Насосная	0023 0025 0026 0028 0028 6005 6006 6007 6008 6009 6010 6011	0,000324 0,0008572 0,000153 0,0010775 0,0000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057 0,0023148 0,0023148 0,0023148 0,0023148	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,0000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057 0,0023148 0,0023148 0,0023148 0,0023148 0,0002302 0,0000448 0,0011780 0,00001780	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,000419 0,0015977 0,0009992 0,0001007 0,3055429 0,0402282 0,0413057 0,0023148 0,0023148 0,0023148 0,0023148	0,000421 0,011413 0,000427 0,017667 0,002026 0,00908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000	2019 2019 2019 2019 2019 2019 2019 2019
пото по прещество 1 организоват 2 2 2 3 3 м м м м м м м м м м м м м м м	1071 Гидроксибензол (Финые источники: 1 Насосная 2 КНС мини 1 Насосная 1 Насосная 1 Насосная 1 Насосная 1 Насосная 6 БОС 2 БОС 2 БОС 2 БОС 3 БОС 3 БОС 4 БОС 4 БОС 4 БОС 4 БОС 4 БОС 5 БОС 5 БОС 5 БОС 6 БОС	0023 0025 0026 0028 0028 6005 6006 6007 6008 6010 6011	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,365429 0,0413057 0,0023148 0,0023148 0,0023148	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,0008419 0,0015977 0,0009992 0,0001007 0,3055429 0,0413057 0,0023148 0,0023148 0,0023148	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,000451 0,000449 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057 0,0023148 0,0023148 0,0023148 0,0023148 0,0002302 0,000048	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,02026 0,748179 0,822623 0,840290 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000	2019 2019 2019 2019 2019 2019 2019 2019
пото по прещество 1 организоват 2 2 2 3 3 м м м м м м м м м м м м м м м	1071 Гидроксибензол (Финьке источники: 1 Насосная 2 КНС мини 1 Насосная 2 КНС мини 1 Насосная отанизованным: ванные источники: 6 БОС сорганизованным: редприятию: 1 Гараж редприятию: 1 Гараж редприятию: 1 Гараж редприятию: 1 Насосная 2 КНС мини 1 Насосная	0023 0025 0026 0028 0028 6005 6006 6007 6008 6010 6011	0,000324 0,0008572 0,000153 0,0010775 0,0000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057 0,0023148 0,0023148 0,0023148 0,0023148	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,0000451 0,0008419 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057 0,0023148 0,0023148 0,0023148 0,0023148 0,0002302 0,0000448 0,0011780 0,00001780	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,002026 0,748179 0,822623 0,840290 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000	0,000324 0,0008572 0,000153 0,0010775 0,0001007 0,000451 0,000451 0,000449 0,0015977 0,0009992 0,0001007 0,0365429 0,0402282 0,0413057 0,0023148 0,0023148 0,0023148 0,0023148 0,0002302 0,000048	0,000421 0,011413 0,000427 0,017667 0,002026 0,000908 0,017001 0,032305 0,020178 0,02026 0,748179 0,822623 0,840290 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000 0,020000	2019 2019 2019 2019 2019 2019 2019 2019

Изм. Кол.уч Лист №док Подп. Дата

Взам. Инв. №

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

						+40	1.2	* 1 1 2	
1	6 BOC	6005	0,0001395	0,002806	0,0001395	0,002806	0,0001395	0,002806	2019
		6006	0,0000770	0,001548	0,0000770	0,001548	0,0000770	0,001548	2019
		6007	0,0011015	0,022244	0,0011015	0,022244	0,0011015	0,022244	2019
		6008	0,0016485	0,033331	0,0016485	0,033331	0,0016485	0,033331	2019
		6009	0,0014556	0,029394	0,0014556	0,029394	0,0014556	0,029394	2019
- 1		6010	0,0000814	0,001637	0,0000814	0,001637	0,0000814	0,001637	2019
		6011	0,0246911	0,505526	0,0246911	0,505526	0,0246911	0,505526	2019
сего по н	неорганизованным:		0,0291946	0,596486	0,0291946	0,596486	0,0291946	0,596486	2019
	предприятию:		0,0306599	0,620208	0,0306599	0,620208	0,0306599	0,620208	2019
	о 1401 Пропан-2-он (Ацето	он)							
рганизо	ванные источники:	1 0004	0.001/201	0.014000	0.001/204	0.014000	0.001(004	0.014000	2010
- 1	1 Гараж	0004	0,0016204	0,014000	0,0016204	0,014000	0,0016204	0,014000	2019
	организованным:		0,0016204	0,014000	0,0016204	0,014000	0,0016204	0,014000	2019
	предприятию:	(r	0,0016204	0,014000	0,0016204	0,014000	0,0016204	0,014000	2019
	1555 Этановая кислота (уксусная кислот	a)						
	ванные источники;	1 0010	0.0000104	4 mm 00	0.0000106	< 440 vol	0.0000104	C 775 00	2010
1	7 Лаборатория	0019	0,0000196	6,77E-09	0,0000196	6,77E-09	0,0000196	6,77E-09	2019
_		0020	0,0001756	0,000308	0,0001756	0,000308	0,0001756	0,000308	2019
		0021	0,0002634	0,000462	0,0002634	0,000462	0,0002634	0,000462	2019
		0022	0,0002634	0,000462	0,0002634	0,000462	0,0002634	0,000462	2019
	организованным:		0,0007220	0,001232	0,0007220	0,001232	0,0007220	0,001232	2019
	предприятию:		0,0007220	0,001232	0,0007220	0,001232	0,0007220	0,001232	2019
	1715 Метантиол (Метил	меркаптан)							
	ванные источники:	00001	0.00004991	0.001264	0.00004721	0.001264	0.00004771	0.001264	-2010
2	1 Насосная	0023	0,0000473	0,001364	0,0000473	0,001364	0,0000473	0,001364	2019
2	2 КНС мини	0025	0,0000022	0,000029	0,0000022	0,000029	0,0000022	0,000029	2019
3	1 Насосная	0026	0,0000947	0,001780	0,0000947	0,001780	0,0000947	0,001780	2019
		0028	0,0000364	0,001019	0,0000364	0,001019	0,0000364 :	0,001019	2019
	организованным:		0,0001806	0,004192	0,0001806	0,004192	0,0001806	0,004192	2019
еоргани:	зованные источники:	700-1	0.00000000	0.0001 tol	0.00000001	0.000140	0.00000000	. 0.000130	2012
1	6 EOC	6005	0,0000070	0,000140	0,0000070	0,000140	0,0000070	0,000140	2019
		6006	0,0000037	0,000075	0,0000037	0,000075	0,0000037	0,000075	2019
		6007	0,0000433	0,000874	0,0000433	0,000874	0,0000433	0,000874	2019
		6008	0,0000824	0,001667	0,0000824	0,001667	0,0000824 :	0,001667	2019
		6009	0,0000511	0,001033	0,0000511	0,001033	0,0000511	0,001033	2019
		6010	0,0002402	0,004832	0,0002402	0,004832	0,0002402	0,004832	2019
		6011	0,0012839	0,026287	0,0012839	0,026287	0,0012839	0,026287	2019
	неорганизованным: предприятию;		0,0017116	0,034908	0,0017116	0,034908	0,0017116	0,034908	2019
1	званные источники: 1 Гараж	0002	1,00E-08	0,000003	1,00E-08	0,000003	1,00E-08	0,000003	2019
	4 / 1992	0003	1,17E-10	1,40E-13	1,17E-10	1,40E-13	1,17E-10	1,40E-13	2019
1	2 АБК	0009	1,00E-08	0,000003	1,00E-08	0,000003	1,00E-08	0,000003	2019
		0010	1,17E-10	1,40E-13	1,17E-10	1,40E-13	1,17E-10	1,40E-13	2019
1	3 ПРГ	0011	1,00E-08	0,000003	1,00E-08	0,000003	1,00E-08	0,000003	2019
		0012	6,20E-09	7,45E-12	6,20E-09	7,45E-12	6,20E-09	7,45E-12	2019
	4 77	0013	1,17E-10	1,40E-13	1,17E-10	1,40E-13	1,17E-10	1,40E-13	2019
1	4 Насосная	0015	1,00E-08	0,000003	1,00E-08	0,000003	1,00E-08	0,000003	2019
		0016	1,17E-10	1,40E-13	1,17E-10 4,67E-08	1,40E-13 0,000012	1,17E-10 4,67E-08	1,40E-13 0,000012	2019
	организованным:		4,67E-08	0,000012	4,07E-08	0,000012	4,07E-06	0,000012	2015
- Г	изованные источники:	6001	2,60E-09	8,00E-08	2,60E-09	8,00E-08	2,60E-09	8,00E-08	2019
1	1 Гараж	6001	2,60E-09	8,00E-08	2,60E-09	8,00E-08	2,60E-09	8,00E-08	2019
1	2 ABK	6002	2,60E-09	8,00E-08	2,60E-09	8,00E-08	2,60E-09	8,00E-08	2019
1	3 IIPF	6004	2,60E-09	8,00E-08	2,60E-09	8,00E-08	2,60E-09	8,00E-08	2019
-		6004			1,04E-08	3,20E-07	1,04E-08	3,20E-07	
	неорганизованным:		1,04E-08 0,0000001	3,20E-07 0,000012	0,0000001	0,000012	0,0000001	0,000012	2019
	предприятию: о 2732 Керосин		0,000001	0,000012	0,000001	0,000012	5,000001		2017
						- 1		-0.2	
рганизо	ованные источники:	0004	0,0030533	0,004012	0,0030533	0,004012	0,0030533	0,004012	2019
1	7 P. P. P. P.	0004	0,0030533	0,004012	0,0030533	0,004012	0,0030533	0,004012	2019
care ==	организованным:		0,0030533	0,004012	0,0030533	0,004012	0,0030533	0,004012	2019
	memmurano.		0,0000000	0,004012	0,0000033	5,507512	2,3030333	-,20 (414)	201
того по	предприятию:					-			
того по ещество	о 2750 Сольвент нафта			0.043746	0,0086787	0,043746	0,0086787	0,043746	2019
того по ещество	о 2750 Сольвент нафта ованные источники:	0004	0.0006707			0,043746	0,0086787	0,043746	2019
того по вещество рганизо	о 2750 Сольвент нафта ованные источники: 1 Гараж	0004	0,0086787					0,043/40	2019
того по ещество рганизо 1 сего по	о 2750 Сольвент нафта ованные источники: 1 Гараж организованным:	0004	0,0086787	0,043746	0,0086787		-	0.042746	
того по ещество рганизо 1 сего по того по	о 2750 Сольвент нафта ованные источники:	0004			0,0086787	0,043746	0,0086787	0,043746	201
Итого по Вещество Организо 1 Всего по Итого по Вещество	0 2750 Сольвент нафта ованные источники:	0004	0,0086787	0,043746		0,043746	0,0086787	0,043746	201
того по Вещество Организо 1 Всего по Йтого по Вещество Организо			0,0086787 0,0086787	0,043746 0,043746	0,0086787	0,043746	0,0086787		35 10°
того по Вещество Организо 1 Всего по Ттого по Вещество Организо 1		0004	0,0086787 0,0086787 0,0231481	0,043746 0,043746 0,200103	0,0086787	0,043746	0,0086787	0,200103	2019
того по Вещество Организо 1 Всего по того по Вещество Организо 1 3			0,0086787 0,0086787 0,0231481 0,0042969	0,043746 0,043746 0,200103 0,002250	0,0086787 0,0231481 0,0042969	0,043746 0,200103 0,002250	0,0086787 0,0231481 0,0042969	0,200103 0,002250	2019
Того по Вещество Организо 1 Всего по Того по Вещество Организо 1 3 Всего по		0004	0,0086787 0,0086787 0,0231481	0,043746 0,043746 0,200103	0,0086787	0,043746	0,0086787	0,200103	2019
Итого по Вещество Организо 1 Всего по Итого по Вещество Организо 1 3		0004	0,0086787 0,0086787 0,0231481 0,0042969	0,043746 0,043746 0,200103 0,002250	0,0086787 0,0231481 0,0042969	0,043746 0,200103 0,002250	0,0086787 0,0231481 0,0042969	0,0	200103

Инв. № подл. Подп. и дата

Взам. Инв. №

							*		
		6013	0,0042969	0,002250	0,0042969	0,002250	0,0042969	0,002250	2019
Всего по нео	рганизованным:		0,0042969	0,002250	0,0042969	0,002250	0,0042969	0,002250	2019
Итого по предприятию:			0,0317419	0,204603	0,0317419	0,204603	0,0317419	0,204603	2019
Вещество 27	754 Углеводороды предель	ные С12-С19							
Организован	ные источники:								
1	4 Насосная	0017	0,0004500	0,216000	0,0004500	0,216000	0,0004500	0,216000	2019
1	5 Высоковольтный узел	0018	0,0004500	0,500000	0,0004500	0,500000	0,0004500	0,500000	2019
2	1 Насосная	0024	0,0004500	0,012000	0,0004500	0,012000	0,0004500	0,012000	2019
3	1 Насосная	0028	0,0004500	0,010000	0,0004500	0,010000	0,0004500	0,010000	2019
Всего по орга	анизованным:		0,0018000	0,738000	0,0018000	0,738000	0,0018000	0,738000	2019
Неорганизов	анные источники:								
2	2 КНС мини	6012	0,0004500	0,005000	0,0004500	0,005000	0,0004500	0,005000	2019
3	1 Насосная	6014	0,0004500	0,005000	0,0004500	0,005000	0,0004500	0,005000	2019
Всего по нео	рганизованным:		0,0009000	0,010000	0,0009000	0,010000	0,0009000	0,010000	2019
Итого по пре	едприятию :		0,0027000	0,748000	0,0027000	0,748000	0,0027000	0,748000	2019
Вещество 29	908 Пыль неорганическая:	70-20% SiO2							-
Организован	ные источники:								
1	1 Гараж	0004	0,0023333	0,000101	0,0023333	0,000101	0,0023333	0,000101	2019
		0005	0,0005667	0,000136	0,0005667	0,000136	0,0005667	0,000136	2019
Всего по орга	анизованным:		0,0029000	0,000237	0,0029000	0,000237	0,0029000	0,000237	2019
Неорганизов	анные источники:								
3	1 Насосная	6013	0,0000944	0,000051	0,0000944	0,000051	0,0000944	0,000051	2019
Всего по нео	рганизованным:		0,0000944	0,000051	0,0000944	0,000051	0,0000944	0,000051	2019
Итого по пре	едприятию:		0,0029944	0,000288	0,0029944	0,000288	0,0029944	0,000288	2019
Всего вещест			4,6197539	83,887651	4,6197539	83,887651	4,6197539	83,887651	(4)
В том числе	твердых :		0,0110366	0,003136	0,0110366	0,003136	0,0110366	0,003136	9
Жидких/газо	образных :		4,6087173	83,884515	4,6087173	83,884515	4,6087173	83,884515	
	100000000000000000000000000000000000000			400 000 000				N CONTRACTOR	

Примечание

В таблицу включены источники выбросов и загрязняющие вещества, подлежащие нормированию

Взам. Инв. №	
Подп. и дата	
Інв. № подл.	
Инв	l

						Г
						ı
						ı
						ı
Изм	Коп уч	Пист	Nолок	Полп	Пата	ı

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОДНЫХ РЕСУРСОВ

Камское бассейновое водное управление Отдел водных ресурсов по Республике Башкортостан 450006, г. Уфа, ул. Ленина, 86, телефон/факс (347) 273-95-65

РЕШЕНИЕ

о предоставлении водного объекта в пользование

OT « 5 » niapmin 20/9 r. No 02-10.01.014-X-PCBX-T-2019-04574/00

1. Сведения о водопользователе

Муниципальное унитарное предприятие «Нефтекамскводоканал» (МУП «ПВК»), полное и сокращению наименование - для юридического лица и индивидуального предпринимателя е указанием ОГРН, для физического ОГРН — 1020201883481, ИНН 0264014479.

лица - Ф.И.О. с указанием данных документа, удостоверяющего его личность)

Юридический адрес: 452684. РБ, г.Нефтекамск, ул. Чапаева, 5.

(почтовый и юридический адреса водопользователя)

2. Цель, виды и условия использования водного объекта или его части

2.1. Цель использования водного объекта или его части:

сброс сточных вод.

(исли использования водного объекта или его части указываются в соответствии с частью 2 статьи 11 Водного кодекса Российской Федерации)

- 2.2. Виды использования водного объекта или его части: совместное водопользование с забором (изъятием) водных ресурсов из водного объекта (указывается вид и способ использования водного объекта или его части в соответствии со статьей 38 Водного кодекса Российской Федерации) при условин возврата воды в водный объект.
 - 2.3. Условия использования водного объекта или его части:

Использование части Нижнекамского водохранилища на р.Кама, указанного в пункте 3.1 настоящего Решения, может производиться Водопользователем в соответствии с требованиями действующего законодательства и при выполнении им следующих условий:

 недопущение нарушения прав других водопользователей, а также причинения вреда окружающей среде;

2) содержание в исправном состоянии расположенных на водном объекте и эксплуатируемых Водопользователем гидротехнических и иных сооружений, связанных с использованием водного объекта;

- 3) оперативное информирование Отдела водных ресурсов по Республике Башкортостан Камского бассейнового водного управления (далее ОВР по РБ), администрации Краснокамского района Республики Башкортостан об авариях и иных чрезвычайных ситуациях на водном объекте, возникших в связи с использованием водного объекта в соответствии с настоящим Решением;
- 4) своевременное осуществление мероприятий по предупреждению и ликвидации чрезвычайных ситуаций на водном объекте;

Инв. № подл. Подп. и дата Взам. Инв. №

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

04/2022-151-00000-OBOC-TY

Лист

Взам.

Подп.

읟

Изм. Кол.уч Лист №док

Подп.

- г. водородный показатель (рН)**: должен соответствовать фоновому значению показателя для воды водного объекта рыбохозяйственного значения;
- растворенный кислород**: содержание растворенного кислорода не должно опускаться ниже 6.0 мг/дм3 под влиянием хозяйственной деятельности (при сбросе сточных вод): в зимний (подледный) период должен быть не менее 6.0 мг/дм³ (высшая и первая категория водного объекта) и не менее 4 мг/дм3 (вторая категория водного объекта): в летний (открытый) период во всех водных объектах должен быть не менее 6 мг/дм3;
- с. токсичность воды**: вода водных объектов рыбохозяйственного значения в местах сброса сточных вод не должна оказывать острого токсического действия на тестобъекты. Вода водного объекта в контрольном створе не должна оказывать хропического токсического действия на тест-объекты;

- определяется исходя из установленных нормативов допустимого воздействия по бассейну р.Кама, утвержденных Федеральным агентством водных ресурсов от 18.01.2013;

- определяется в соответствии с приказом Минсельхоза России от 13.12.2016 N 552 "Об утверждении нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предслъно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения";
- 12) ведение (с помощью аттестованных средств измерений) учета объема сброса сточных вод в используемый водный объект и контроля их качества в соответствии с приказом Минприроды России от 08.07.2009 № 205;
- 13) ежеквартальное представление в ОВР по РБ в срок до 10 числа месяца, следующего за отчетным кваргалом, сведений по утвержденным приказом МПР России от 08.07.2009 № 205 формам;
 - 14) своевременное осуществление мероприятий по охране и восстановлению Нижнекамского водохранилища на р.Кама

(указывается наименование водного объекта)

- а также ведение мониторинга состояния указанного водного объекта в соответствии с приказом МПР России от 06.02.2008 № 30;
- 15) ежегодное предоставление в ОВР по РБ сведений, получаемых в результате наблюдений за водным объектом (их морфометрических особенностей) и его водоохраной зоной на первый день месяца, следующего за отчетным годом по формам, утвержденным приказом МПР России от 06.02.2008 № 30, в срок до 15 марта текущего года;
- 16) сжеквартальное, не позднее 10 числа месяца, следующего за отчетным кварталом, представление бесплатно в ОВР по РБ (указывается орган, принявший решение о предоставлении водного объекта в пользование) отчета о выполнении условий использования водного объекта с приложением подтверждающих документов, включая результаты учета объема сброса сточных вод и их качества, а также качества поверхностных вод в местах сброса, выше и ниже мест сброса;
- 17) своевременное ежегодное до 22 января представление в установлениом порядке в ОВР по РБ форм федерального статистического наблюдения 2 - тп (водхоз);
- 18) обработка осадков, образующихся на очистных сооружениях при очистке сточных вод, в строгом соответствии с установленными технологическими режимами.

ZHB. Взам. дата Подп. . 10 10 10 10 읟

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

Утилизация (захоронение) осадков сточных вод из очистных сооружений должна осуществляться в соответствии с требованиями, установленными законодательством Российской Федерации по обращению с отходами производства;

- 19) содержание в исправном состоянии эксплуатируемых водопользователем очистных сооружений;
- 20) соблюдение специального режима хозяйственной деятельности в пределах границ водоохраной зоны Нижнекамского водохранилища на р.Кама 200 м в границах пользования;
- 21) выполнение в установленные сроки намечаемых водохозяйственных мероприятий и мероприятий по охранс водных объсктов на 2019-2024 гг., ежеквартальное, не позднее 10 числа месяца, следующего за отчетным кварталом, представление в ОВР по РБ отчета о выполнении мероприятий с указанием размера и источников средств освоения;

22) недопущение ухудшения качества воды водного объекта. предоставляемого в пользование, среды обитания биоресурсов, а также нанесения ущерба биоресурсам;

- 23) в случае причинения вреда водным биологическим ресурсам в результате нарушения закоподательства в области рыболовства и сохранения биоресурсов, возмещать вред в полном объеме в соответствии со ст. 77 Федерального закона от 10.01.2002 № 7-ФЗ «Об охране окружающей среды»;
- 24) соблюдение п.1 ст.9 Кодекса внутреннего водного транспорта от 07.03.2001 № 24-ФЗ;
- 25) обеспечение представителям органов государственного надзора за использованием и охраной водных объектов по их требованию беспрепятственного доступа к водному объекту в месте осуществления водопользования и в границах предоставленной в пользование части водного объекта с целью проверки выполнения Водопользователем условий настоящего Решения;
- 26) предоставление по запросу OBP по PБ дополнительных материалов и документов, необходимых для проверки выполнения условий водопользования;
- 27) осуществление платы за негативное воздействие (сброс загрязняющих веществ в водные объекты) в размерах и порядке, установленных законодательными нормативными правовыми актами Российской Федерации;
- 28) выполнение в полном объеме и установленные сроки всех условий и требований, установленных в настоящем Решении;
- 29) при досрочном прекращении прав пользования водным объектом в связи с отказом от дальнейшего использования Нижнекамского водохранилища на р.Кама необходимо обратиться в ОВР по РБ с заявлением для получения Решения о прекращении действия Решения о прекращении действия Решения о прекращении водного объекта в пользование.

Приостановление или ограничение водопользования осуществляется в соответствии со ст. 41 Водного кодекса Российской Федерации.

3. Сведения о водном объекте

3.1. Нижнекамское водохранилище на р.Кама. КАС/ВОЛГА/1804. Республика (наименование водного объекта согласно данным государственного водного ресетра и местоноложение водного объекта Башкортостан. Краснокамский район; код и наименование водохозяйственного участка: или его части: речной бассейи, субъект Российской Федерации, муниципальное образование)
10.01.01.014. Кама от Воткинского г/у до Нижнекамского г/у без рек рр.Буй (от истока до Кармановского г/у), Иж, Ик и Белая.

3.2. Морфометрические характеристики Нижнекамского водохранилища на р.Кама (в соответствии с Правилами использования водных ресурсов Нижнекамского

Подп. и дата		-			
Инв. № подл.					
흳					
<u> </u>					
Z	Изм.	Кол.уч	Лист	№док	Под

водохранилища на р.Кама, утвержденными приказом Федерального агентства водных ресурсов от 28.10.2014 № 270):

отметки уровня воды: НПУ - 63,3 мБС, УМО - 62,7 мБС, форсированные уровни при (длина реки или ес участка, км; расстояние от устья до места водопользования, км; объем водохранилища, озера, пруда, обводненного

пропуске максимальных расходов вероятностью превышения 0,1 % и 1 % - 66,93 мБС карьера, тыс. м³; площадь зеркала воды в водоеме, км²; средняя, максимальная и минимальная глубина в водном объекте в месте

и 65.4 мБС соответственно: площадь зеркала при НПУ - 1370,0 км²: полный объем при водопользования, м и др.)

<u>НПУ - 4.21 м^3 </u>: полезный объем при НПУ - 0.77 км^3 .

Расстояние до места водопользования: 213 км от устья р.Кама.

3.3. Гидрологические характеристики водного объекта в месте водопользования в створе Нижнекамского гидроузла (в соответствии с Правилами использования водных ресурсов Нижнекамского водохранилища на р.Кама, утвержденными приказом Федерального агентства водных ресурсов от 28.10.2014 № 270):

средний многолетний расход воды - $2940 \text{ m}^3/\text{c}$: среднегодовой расход воды 95 % (среднемноголетний расход воды в створе наблюдения, ближайшем к месту водопользования, скорости течения в периоды максимального обеспеченности — $1940 \text{ m}^3/\text{c}$: максимальный среднедекадный расход — $19810 \text{ m}^3/\text{c}$.

и минимального стока; колебания уровия и длительность неблагоприятных по водности периодов; температура воды (среднегодовая

и по сезонам) и др.)

3.4. Качество воды Нижнекамского водохранилища на р.Кама, с.Саклово, 213 км от устья р.Кама (по данным приложения 15 «Информационного бюллетень о состоянии водных объектов, дна, берегов водных объектов, их морфометрических особенностей, водоохранных зон водных объектов, количественных и качественных показателей состояния водных ресурсов, состояния водохозяйственных систем, в том числе гидротехнических сооружений по Камскому бассейновому округу, относящемуся к зоне деятельности Отдела водных ресурсов по РБ Камского БВУ за 2017 год», ФГУ МВО БУ):

величина УКИЗВ - 2.64:

(качество воды в водном объекте в месте водопользования характеризуется индексом загрязнения вод и соответствующим ему КЛАСС КАЧССТВА - 3 «а» «Загрязненная».

классом качества воды: «чистая», «относительно чистая», «умеренно загрязненная», «загрязненная», «грязная», «очень грязная»,

жения и в нельжовноодов отовотьбе-онителейском и отовотьбется и потемента и и петамовым потемента и и принегом

рекреации качество воды указывается по санитарно-эпидемнологическому заключению)

3.5. Перечень гидротехнических и иных сооружений, расположенных на водном объекте, обеспечивающих возможность использования водного объекта или его части для нужд Водопользователя:

выпуск сточных вод рассеивающий, расстояние от берега до оголовка 123 м. длина (приводится перечень гидротехнических и иных сооружений и их основные параметры)

оголовка 70 м с 7 рассеивающими патрубками (диаметром 0,325 м) с рассеивающими насадками, расстояние между которыми 10.5 м.

3.6. Наличие зон с особыми условиями их использования:

ОТСУТСТВУЮТ ИСТОЧНИКИ ПИТЬСВОГО И ХОЗЯЙСТВЕННО-бытового водоснабжения в районе (зон и округов санитарной охраны источников питьевого и хозяйственно-бытового водоснабжения, рыбохозяйственных и

сброса сточных вод.

рыбоохранных зон и др.)

Материалы в графической форме, включающие схемы размещения гидротехнических и иных сооружений, расположенных на водном объекте, и зон с особыми условиями их использования, а также пояснительная записка к ним прилагаются к настоящему Решению.

. Изм. Кол.уч Лист № док Подп. Изм. Кол.уч Лист № док Подп.

Взам.

4. Срок водопользования

	по	
-	Отделом водных ресурсов по Республике Башкортостан Камского БВУ.	
	(паименование исполнительного органа государственной власти, принявшего и выдавшего настоящее по	шение)
_	4.2. Настоящее Решение о предоставлении водного объекта	(его части) в
	пользование вступает в силу с момента его регистрации в государств ресстре.	гином водном
	President Control of the Control of	
_	5. Приложения	
	5.1. Схема размещения гидротехнических сооружений на водн	ом объекте с
_	указанием места выпуска очищенных сточных вод на 2 л. в 1 экз.	
	5.2. Пояснительная записка к материалам в графической форме на 2	л. в 1 экз.
-	And the same of th	
_	Заместитель руководителя- начальник отдела В.С.Гор	
	B.C.I Op	ячев
_		
	«01» _ Изрто_ 20 19 г.	
	(10) 1 20 10 1.	
		X1 - XXX
-		·
-	ФЕДЕРАЛЬНОЕ ИГЕНТ СТВО ВОДНЫХ РЕСУРСОВ	
	(POCBOLPECYPCH) KAMCKOE GAGGLÜRDGUNG YNPABREHHE	
_	OTAER BORKHIN PEOPPEOR OF LUIN BARKE BALLHOPTORYAK	4
	Зерегистрировано	
- 1	в госудь. Водном реестре	
	32 N 02-10.01.014-X-PCBX-T-2019-04574/00	
		,
	<u> Гл. специалист - эксперт Асесва Н.Н.</u> : (Далиность, фемилия и.в. лиць всуществивного регистрацию)	
	TODONION SHAU	
		*
		4 0
0		
-		
	E.	
		1

04/2022-151-00000-OBOC-TY

Взам. Инв. №


Подп. и дата

Инв. № подл.

Изм. Кол.уч Лист №док

Подп.

Дата

Камское бассейновое водное управление Федерального агентства водных ресурсов (Камское БВУ)

ПРИКАЗ

17.10.2019

г. Пермь

212

Об утверждении нормативов допустимых сбросов веществ и микроорганизмов в водные объекты

В соответствии с постановлением Правительства Российской Федерации от 23.07.2007 № 469 «О порядке утверждения нормативов допустимых сбросов веществ и микроорганизмов в водные объекты для водопользователей», Административным регламентом Федерального агентства водных ресурсов по предоставлению государственной услуги по утверждению допустимых сбросов веществ (за исключением радиоактивных веществ) и микроорганизмов в водные объекты для водопользователей по согласованию с Федеральной службой по гидрометеорологии и мониторингу окружающей среды, Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека, Федеральным агентством по рыболовству и Федеральной службой по надзору в сфере природопользования», утвержденным приказом Минприроды России от 02.06.2014 № 246, приказом Федерального агентства водных ресурсов от 08.05.2008 № 87 «О реализации полномочий по утверждению нормативов допустимых сбросов веществ и микроорганизмов в водные объекты для водопользователей в Федеральном агентстве водных ресурсов» приказываю:

1. Утвердить нормативы допустимых сбросов веществ и микроорганизмов в Нижнекамское водохранилище на 213 км от устья р. Кама для Муниципального унитарного предприятия «Нефтекамскводоканал», г. Нефтекамск, Республика Башкортостан на срок до 17.10.2024 согласно приложению к настоящему приказу.

2. Контроль исполнения настоящего приказа возлагаю на и.о. заместителя руководителя - начальника отдела водных ресурсов по Республике Башкортостан М. А. Макарову.

Руководитель

Лист №док

Подп.

Кол.уч

- files

А.В. Михайлов

Взам. Инв. №	
Подп. и дата	
1нв. № подл.	

04/2022-151-00000-OBOC-TY

Наименование водопользователя (юридического лица, физического лица, или индивидуального предпринимателя): <u>Муниципальное унитарное</u> Ф.И.О. и телефон должностного лица, ответственного за водопользование, его должность: директор Давлетбаев Рамиль Равилович, тел: 7 3. Место сброса сточных, в том числе дренажных вод (географические координаты и расстояние от устья (для водотоков): Ниэкпекамское 6. Утвержденный расход сточных вод, в том числе дренажных вод для установления НДС — 1233,3 м³/час (тах); 1-905 790 м³/мес., II-872 100 M^3/Mec ., III-917 610 M^3/Mec ., IV-885 020 M^3/Mec ., V- 854 280 M^3/Mec ., VI-870 200 M^3/Mec ., VII-803 890 M^3/Mec ., VIII-789 110 M^3/Mec ., IX-848 400 M^3/Mec ., Камского БВУ об утверждении НДС Приложение к приказу водохранилище на р.Кама, 213 км от устья р.Кама, РБ, Краснокамский район, координаты сброса: 56°00′28″ с. ш. 53°58′00′′ в.д. в Нижнекамское водохранилище на р. Кама, 10.01.01.014, Кама от Воткинского г/у до Нижнекамского г/у 1. Реквизиты водопользователя (юридического лица, физического лица или индивидуального предпринимателя): без рек рр.Буй (от истока до Кармановского г/у), Иж, Ик, и Белая (наименование водного объекта и водохозяйственного участка) 5. Категория сточных вод, в том числе дренажных вод; хозяйственно-бытовые, производственные Нормативы допустимого сброса Адрес юридический: 452684, Республика Башкортостан, г.Нефтекамск, ул. Чапаева, 5. Адрес фактический: <u>452684, Республика Башкортостап, г.Нефтекамск, ул. Чапаева, 5.</u> 4. Тип оголовка выпуска сточных вод, в том числе дренажных вод: рассепвающий. $X-859\ 280\ \text{M}^3/\text{Mec.}$, $XI-870\ 190\ \text{M}^3/\text{Mec.}$, $XII-914\ 590\ \text{M}^3/\text{Mec.}$; $10\ 390,46\ \text{mb.c.}$ $M^3/\text{200}$. 7. Утвержденный нормагив допустимого сброса веществ и мигроорганизмов 7.1. Утвержденный норматив допустимого сброса в водный объект предприятие «Нефтекамскводоканая», (MУП «НВК») Сброс веществ не указанных ниже - запрещен Цели водопользования: <u>сброс сточных вод</u> Наименование выпуска: <u>выпуск №</u> 171019212 OFPH 1020201883481; ИНН 0264014479 (34783) 2-28-30. Per. No Лист 04/2022-151-00000-OBOC-TY Кол.у Лист **№**док Подп.

Взам. Инв. №

Подп. и дата

Инв. № подл.

Kaace or inpution infl Alteraph. α chappain. 3 4 5 6 7 8 4 5,5 66783,15 469486 344804362 469486 31,979691 4 5,5 6783,15 469486 344804362 469486 31,979691 - 380,667 469486 344804362 469486 31,3790 - 30 36999 2,717370 36999 2,61630 - 30 36999 2,717370 36999 2,61630 4 0,5 616,65 0,452895 616,65 0,43605 4 0,6 36,999 27,17370 36999 2,61630 4 0,6 36,664 0,02463 26,1630 2,61630 4 0,0 36,999 27,17370 36,999 2,61630 4 0,0 36,664 0,024643 36,2166 0,17442 4 0,0 36,666 0,02466 0,02466 0,02666	Kaace or input or input or input or incorporations or of process If the partition of	Kaace or implantins or compounts infil or of compounts friend partition	Krance	Kriacc Hopamina Coffice Coff		No.) u	-	-	2	3	4	+	1		7	€ ∞	X 6	10 C)	11 AC	12	TIC	13 Оке ый	нефт 14 рас Эмул	15	91	A 71	80	10
Chance Inchine Trial Affinish Prince Inchine Trial Affinish Prince Inchine Trial Affinish Prince Inchine Trial Trial Trial	Chance Inchine arity of Chance Tity and Chance Inchine Tity and Chance Inchine Tity and Chance Inchine CTI and CH	CRIACC INCRIGATION TO CONTRIBE ATHRISTIDE TO CONTRIBE OPERPRAIR 3 4 5 6 7 8 - 0 c G pocca NATIMA 5 6 7 8 - 380,667 4691%61 344,804362 4691661 331,979691 - 380,667 4691%61 344,804362 4691661 331,979691 - 360,667 46917%61 344,804362 46917661 331,979691 - 36,5 618,653 6,783,15 4,796550 2,61630 - 30 36999 27,17370 36999 26,1630 4 0,5 616,65 0,432895 616,65 0,43905 4 0,0 36999 27,17370 36999 26,1630 4 0,0 49332 36,23160 49332 34,3840 4 0,0 88,644 0,072463 98,664 0,06496 0,11472 4 0,0 11,2333 10,00096 1,2333 0,00096 <td>Khaece numbers influence numbers Trivace numbers Trivace</td> <td> Charles</td> <td></td> <td>11</td> <td>Наименование веществ</td> <td>2</td> <td>Сухой остаток</td> <td>Взвешенные</td> <td>БПКполн</td> <td>ХПК</td> <td>Аммоний-пон</td> <td>Jumor-ound</td> <td>пират-апион</td> <td>титрит-анион</td> <td>осфат-ион (Р)</td> <td>слорид-апион</td> <td>Сульфат-анион</td> <td>АСПАВ(алкилсу льфонат натича)</td> <td>Фенол</td> <td>ПСПАВ (неонол</td> <td>Оксиэтилированн ый нонилфенол)</td> <td>Нефть и нефтепродукты в растворенном и эмультированном состоянии</td> <td>Железо</td> <td>Xpom 6+</td> <td>Алюминий</td> <td>Калмий</td> <td>Кобальт</td>	Khaece numbers influence numbers Trivace	Charles		11	Наименование веществ	2	Сухой остаток	Взвешенные	БПКполн	ХПК	Аммоний-пон	Jumor-ound	пират-апион	титрит-анион	осфат-ион (Р)	слорид-апион	Сульфат-анион	АСПАВ(алкилсу льфонат натича)	Фенол	ПСПАВ (неонол	Оксиэтилированн ый нонилфенол)	Нефть и нефтепродукты в растворенном и эмультированном состоянии	Железо	Xpom 6+	Алюминий	Калмий	Кобальт
Harman	Harman	Hittings	Harman	History Hist		Knace	опасно-	3			,			đ	4	4	4	4		4	3		4	8	4	3	4	2	1
Filtraliphs Openpanh 1741 TÁNGC 1744 TÁNGC 5 6 7 8 46917661 344,804362 46917661 331,979691 6783,15 4,981845 6783,15 4,796550 3699,9 2,717370 3699,9 2,61630 3699,9 2,717370 3699,9 26,1630 8,664 0,072463 98,664 0,069768 246,66 0,181158 246,66 0,17442 13730,2 133730,42 98,664 0,069768 246,66 0,181158 246,66 0,17442 13730,2 133730,42 94,56419 101220,63 74,340903 101220,63 71,57863 77,69 0,057065 77,69 0,054942 1,2333 0,000906 1,2333 0,0034942 160,329 0,117753 160,329 0,113373 160,329 0,027174 36,999 0,026163 16,333 0,000908 123,333 0,0034884<	This This	Яницрь Фенраль г/ч т/мес г/ч т/мес 5 6 7 8 469ГКб1 344,804362 469ГКб1 331,979691 6783,15 4,981845 6783,15 4,796550 3699,9 2,717370 3699,9 2,61630 3699,9 2,717370 3699,9 2,61630 36,23160 49332 34,8840 98,664 0,069768 98,664 0,069768 246,66 0,181158 246,66 0,17442 13730,2 133730,2 34,56419 101220,63 74,340903 101220,63 71,57863 77,69 0,017142 13373,4 0,005492 1,2333 0,000906 1,2333 0,0054942 1,2333 0,000906 1,2333 0,0034942 1,2333 0,000906 1,2333 0,0034942 1,2333 0,000906 1,2333 0,0034942 1,2333 0,0021174 36,999 0,021633 <td< td=""><td> This This </td><td> This apparate This act This</td><td>54Ñ</td><td>The state of the s</td><td>пормати допустимс о сброса всшеств мг/дм³</td><td>4</td><td>380.667</td><td>5.5</td><td></td><td></td><td>30</td><td>0,5</td><td>40</td><td>80,0</td><td>0,2</td><td>108,433</td><td>82,073</td><td>0,063</td><td>0,001</td><td></td><td>0,13</td><td>0,03</td><td>1,0</td><td>10'0</td><td>0,04</td><td>0,0001</td><td></td></td<>	This	This apparate This act This	54Ñ	The state of the s	пормати допустимс о сброса всшеств мг/дм ³	4	380.667	5.5			30	0,5	40	80,0	0,2	108,433	82,073	0,063	0,001		0,13	0,03	1,0	10'0	0,04	0,0001	
Afteralphs Openpanh 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 344,804362 4694561 331,979691 4,981845 6783,15 4,796550 2,717370 3699,9 2,61630 27,17370 3699,9 2,61630 0,072463 98,664 0,069768 0,181158 246,66 0,17442 98,217527 13373942 94,564419 74,340903 10122063 71,575863 0,057065 77,69 0,054942 0,00906 1,2333 0,008721 0,009076 1,2333 0,0087210 0,090579 123,333 0,0048721 0,005032 40,3322 0,034884 - 0,0006091 0,12333 0,004887 -	Afteralphs Openpanh 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 344,804362 4694561 331,979691 4,981845 6783,15 4,796550 2,717370 3699,9 2,61630 27,17370 3699,9 2,61630 0,072463 98,664 0,069768 0,181158 246,66 0,17442 98,217527 13373942 94,564419 74,340903 10122063 71,575863 0,057065 77,69 0,054942 0,00906 1,2333 0,008721 0,009076 1,2333 0,0087210 0,090579 123,333 0,0048721 0,005032 40,3322 0,034884 - 0,0006091 0,12333 0,004887 -	Яницрь Февраль тАмес г/ч т/мес 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 9,4,804362 4694661 331,979691 4,981845 6783,15 4,796550 2,717370 3699,9 2,61630 27,17370 3699,9 26,1630 0,072463 98,664 0,069768 0,072463 98,664 0,069768 0,181138 246,66 0,17442 98,217527 13373942 94,564119 74,340903 10122063 71,57863 0,057065 77,69 0,054942 0,009066 1,2333 0,008721 0,000079 1,2333 0,0087210 0,00908 12,333 0,004871 0,006032 40,332 0,014884 0,000091 0,12333 0,0048087	Afriest patch Openpatch 6 7 8 6 7 8 6 7 8 344,804362 46947661 331,979691 4,981845 6783,15 4,796550 2,717370 36999 2,61630 27,717370 36999 2,61630 0,452895 616,65 0,43605 36,23160 49332 34,8840 0,072463 98,664 0,069768 0,181158 246,66 0,17442 98,217527 13373942 94,564419 74,340903 10122063 71,575863 0,057065 77,69 0,054942 0,009066 1,2333 0,008721 0,000079 1,2333 0,0087210 0,009058 12,333 0,0048721 0,005232 49,332 0,014884 0,005233 0,014884 - 0,000091 0,12333 0,004877	Timespace Tital				5	46917661	51 2829	00000	6,6606	36999	616,65	49332	98,664	246,66	133730,42	10122063	77,69	1,2333		160,329	36,999	123,33	12,333	49,332	0.12333	
Феврали. т/ч т/мес 7 8 7 8 46947661 331,979691 6783,15 4,796550 3699,9 2,61630 3699,9 2,61630 616,65 0,43668 49332 34,8840 98,664 0,069768 246,66 0,17442 13373,42 94,564119 101230,63 71,57863 77,69 0,054942 1,2333 0,00872 160,329 0,113373 160,329 0,026163 36,999 0,034884 4 49,332 0,000872 49,332 0,000887	Феврали. т/ч т/мес 7 8 7 8 46947661 331,979691 6783,15 4,796550 3699,9 2,61630 3699,9 2,61630 616,65 0,43668 49332 34,8840 98,664 0,069768 246,66 0,17442 13373,42 94,564119 101230,63 71,57863 77,69 0,054942 1,2333 0,00872 160,329 0,113373 160,329 0,026163 36,999 0,034884 4 49,332 0,000872 49,332 0,000887	Февраль. т/ч т/мес 7 8 7 8 46947661 331,979691 6783,15 4,796550 3699,9 2,61630 3699,9 2,61630 616,65 0,43608 98,664 0,069768 246,66 0,17442 133320,42 94,564419 101230,63 71,57863 77,69 0,054942 1,2333 0,00872 160,329 0,113373 160,329 0,026163 36,999 0,034884 49,332 0,0308721 49,332 0,034884 49,333 0,000877	т/ч т/мес 7 8 7 8 46947661 331,979691 6783,15 4,796550 3699,9 2,61630 3699,9 2,61630 616,65 0,43665 49332 34,8840 98,664 0,069768 246,66 0,17442 133730,42 94,564419 101230,63 71,57863 77,69 0,054942 1,2333 0,00872 160,329 0,113373 160,329 0,026163 36,999 0,034884 49,332 0,000872 12,333 0,000877	Third Thir	Gumes	инварь	тимес	9	+	+	+	2,11/3/0	27,17370	0,452895	36,23160	0,072463	0,181158	98,217527	74,340903	0.057065	9060000		0,117753	0,027174	0,090579	0,009058	0.036232	1000001	
8 8 8 979691 1630 1630 1630 1630 1630 1630 1630 163	8 8 8 979691 1630 1630 1630 1630 1630 1630 1630 163	8 8 8 979691 1630 1630 1630 1630 1630 1630 1630 163	8 8 8 979691 1630 1630 1630 1630 1630 1630 1630 163	Name		0		1	+	-	01,0010	3699,9	36999	616,65	49332	98,664	246,66	133730,42	10122063	77.69	1 2333	2004	160,329	36,999	123,33	12.333	40 332	50000	المسائل
9 46947661 6783,15 36999 616,65 49332 98,664 246,66 133730,42 10120,63 11,2333 12,333 12,333 12,333 12,333 49,332	7 TREEP MEET TARGE 9 10 9 10 469F661 349,303846 6783,15 5,046855 36999 2,752830 616,65 0,458805 49332 36,70440 98,664 0,073409 246,66 0,183522 13373,42 99,499205 10120,63 75,311006 77,69 0,057809 1,2333 0,0091761 123,33 0,0091761 123,33 0,009076 49,332 0,000092	The procede minding in positive in propertion of the procede in	У тимее ГРЧ ПРАМЕТИВ ДОПУСТИМОГО СОБОСЕВ ВЕСПИСО. 17/4 ПРАМЕ ТРАМЕ ТРАМ	Делимий порыятив допустимого сброса всписств Март Апрель 10 11 12 10 11 12 661 349,303846 46л7661 336,897908 1,5 5,046855 6783,15 4,867610 1,9 2,752830 3699,9 2,655060 2,9 2,752830 3699,9 2,655060 3,0 4,867610 35,04685 616,65 0,44251 2 36,70440 49332 35,40880 177004 4 0,073409 98,664 0,070802 1 6 0,183522 246,66 0,177004 1 6 0,183522 246,66 0,177004 1 6 0,183522 246,66 0,177004 1 6 0,183522 246,66 0,177004 1 5 36,7909 77,69 0,053526 1 6 0,000918 1,2333 0,0008550 12 90,027528 36,999		Эевраль	т/мес	0	0	1909/9,166	4,790330	2,61630	26,1630	0,43605	34,8840	0,069768	0,17442	94 564419	71 575853	0.054047	22.00000	7,000012	0,113373	0,026163	0.087210	10008721	0.034884	F000000	10000001
	10 10 10 349,303846 5,046855 2,752830 0,073409 0,073409 0,073409 0,073409 0,0037809 0,037809 0,037809 0,037809 0,0377040 0,037704	Март 10 11 10 11 349,303846 469,7661 5,046855 6,752830 6,073409 6,458805 6,16,65 36,70440 6,183522 246,66 99,499205 1337342 77,69 9,0073409 1,1333 9,119289 1,0333 9,0091761 1,23,33 0,036704 49,332	Transcriptor Copoca Bellion Transcriptor Tran		утвержден			•	6	46947661	0/83,13	3699,9	36999	616,65	49332	98,664	246.66	CPULLELI	COUCLOI	77.60	1 9999	1,4333	160,329	36,999	123 33	12 333	CC-12.	+	
	13 13 4694%61 6783,15 3699,9 3699,9 3699,9 13655 616,65 246,66 13373,42 98,664 1,2333 0,0 16,999 0,332 0,0 1,2333 0,0	13 13 4694%61 6783,15 3699,9 3699,9 3699,9 13655 616,65 246,66 13373,42 98,664 1,2333 0,0 16,999 0,332 0,0 1,2333 0,0	14 325,196205 4,698540 2,562840 2,562840 2,62840 2,62840 2,62840 2,62840 0,008342 0,170856 0,00085428 0,0085428 0,0085428 0,008543			-	b/2		15	469476,61	6783,15	3699,9	36999	616,65	40223	49332	98,664	246,66	133730,42	101220,63	69,77	1,2333	160,329	36,999		123,33	12,333	49,332	0,12333
### TYNEC T/14 15	### TYNEC T/14 15	### TYNEC T/14 15	14 15 14 15 14 15 14 15 14 15 14 15 1496205 4697661 1598340 6783,15 152840 3699,9 152840 3699,9 152840 3699,9 171120 49332 13322 10122063 13322 10122063 13322 10122063 135820 77,69 1056 160,329 1056 160,329 1056 160,333 1171 49,332	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			ионь т/мес		16	331,256423	4,78610	2,61060	26,1060	0.43510	2000 FC	34,8080	0,069616	0,174040	94,358397	71,419925	0,054823	0,0000870	0,113126	0,026106		0,08702	0,008702	0,034808	0,000087

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

Лист

595

91	0,013923	0,000870	0,007832	0,000870	0,003655	0,007832	Утвержаеин	ый норматив	сброса	т/год	31	3955,305237	57,14753	31,17138	311,71380	5,195230	415,61840	0,831236	2,078092	1126,668749	852,776223	0,654598	0,010390	1,350759
5	19,7328	1,2333	11,0997	1,2333	5,17986	11,0997				т/мес	30	348154232	5,030245	2,743770	27,43770	0,457295	36,58360	0,073167	0,182918	99,171738	75,063145	0,057619	0,000915	0.118897
4	0,013668	0,000854	0,007689	0,000854	0,003588	0,007689			Декаорь	/1				2,74	27,4	0,45	36,5	0,07	0,18			0,05	00'0	0.11
13	19,7328	1,2333	7660,11	1,2333	5.17986	11,0997				h/J	29	46947661	6783,15	3699,9	36999	616,65	49332	98,664	246,66	133730,42	10122063	77,69	1,2333	160,329
12	0,014160	0,000885	0,007965	0,000885	0,003717 5	1 596200,0			adop	T/Mec	28	331,252617	4,786045	2,610570	26,10570	0,435095	34,80760	0,069615	0,174038	94,357312	71,419104	0,054821	0,0000870	0,113124
=	19,7328 0,	1,2333 0,	0 2660,11	1,2333 0,	5,17986 0,	11,0997 0,		3	1100	h/J	27	469476,61	6783,15	3699,9	36999	616,65	49332	98,664	246,66	133730,42	101220,63	69,77	1,2333	160,329
10	0,014682 19	1,0000,0	0,008258	1,0000918	0,003854 5,1	0,008258 11	броса веществ		ade	T/Mec	26	327,099539	4,726040	2,577840	25,77840	0,429640	34,37120	0,068742	0,171856	93,174308	70,523687	0,054135	0,000859	0,111706
6	19,7328 0,	1,2333 0,	0 2660,11	1,2333 0,0	5,17986 0,0	11,0997	допустимого с		OKINO	1/4	25	469476,61	6783,15	3699,9	36999	616,65	49332	98,664	246,66	133730,42	10122063	69,77	1,2333	160,329
80	0,013954 1	0,000872	0,007849	0,000872	0,003663 5	0,007849	Утвержденный норматив допустимого сброса веществ		900	т/мес	24	322,957883	4,66620	2,54520	25,4520	0,42420	33,9360	0,067872	89691,0	91,994557	69,030735	0,053449	0,000848	0,110292
7	19,7328 0	1,2333 0	0 7660,11	1,2333 0	5,17986 0	0 2660,11	Утверждени	- Grante		14/1	23	469476,61	6783,15	3699,9	36999	616,65	49332	98,664	246,66	133730,42	101220,63	69,77	1,2333	160,329
9	0,014493	90600000	0,008152	90600000	0,003804	0,008152			5	т/мес	22	300,388136	4,340105	2,367330	23,67330	0,394555	31,5644	0,063129	0,157822	85,565565	64,764625	0,049714	0,000789	0,102584
S	19,7328	1,2333	11,0997	1,2333	5,17986	11,0997		V	r iav	ь/л	21	469476,61	6783,15	3699,9	36999	616,65	49332	98,664	246,66	133730,42	10122063	77,69	1,2333	160,329
4	0,016	100,0	600,0	0,001	0,0042	60000			4	т/мес	20	306,014395	4,421395	2,411670	24,11670	0,401945	32,1556	0,064311	0,160778	87,168204	65,977664	0,050645	0,000804	0,104506
3	3	3	4	3	2	3		Мол		ь/л	19	469476,61	6783,15	3699,9	36999	616,65	49332	98,664	246,66	133730,42	101220,63	77,69	1,2333	160,329
7	Хром 3+	Медь	Марганец	Никель	Свинец	Циж		Наименование	веществ		18	Сухой остаток (минерализация)	Взвещенные	БПКполн	ХПК	Аммоний-ион	Нитрат-анион	Нитрит-анион	Фосфат-ион (Р)	Хлорид-анион	Сульфат-анион	АСПАВ(алкилс ульфонат натрия)	фенол	НСПАВ (неонол АФ-12 Оксиэтилирова иный
-	20	21	22	23	24	25		2	n/n		17	-	2	3	4	2	9	7	∞	6	01	=	12	2

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

Лист

595

31	0,311713	1,039046	0,103905	0,415618	0,001039	0,010390	0,166247	0,010390	0,093514	0,010390	0,043639	0,093514
30	0,027437	0,091459	0,009146	0,036583	0,000091	0,000915	0,014633	0,000915	0,008231	0,000915	0,003841	0,008231
29	36,999	123,33	12,333	49,332	0,12333	1,2333	19,7328	1,2333	11,0997	1,2333	5,17986	11,0997
28	0,026105	610280,0	0,008702	0,034808	0,000087	0,000870	0,013923	0,0000870	0,007831	0,0000870	0,003655	0,007831
27	36,999	123,33	12,333	49,332	0,12333	1,2333	19,7328	1,2333	11,0997	1,2333	5,17986	11,0997
26	0,025778	0,085928	0,008593	0,034371	0,000086	0,000859	0,013749	0,000859	0,007734	0,000859	0,003609	0,007734
25	36,999	123,33	12,333	49,332	0,12333	1,2333	19,7328	1,2333	11,0997	1,2333	5,17986	11,0997
24	0,025452	0,084840	0,008484	0,033936	0,000085	0,000848	0,013574	0,000848	0,007636	0,000848	0,003563	0,007636
23	36,999	123,33	12,333	49,332	0,12333	1,2333	19,7328	1,2333	11,0997	1,2333	5,17986	11,0997
22	0,023674	0,078911	168200,0	0,031564	0,000079	0,000789	0,012626	0,000789	0,007102	0,000789	0,003314	0,007102
21	36,999	123,33	12,333	49,332	0,12333	1,2333	19,7328	1,2333	11,0997	1,2333	5,17986	11,0997
20	0,024117	0,080389	0,008039	0.032156	0.000080	0,000804	0.012862	0.000804	0.007235	0,000804	0,003376	0,007235
61	36,999	123,33	12,333	49.332	012333	1.2333	19.7328	1,2333	11.0997	1,2333	5,17986	11,0997
81	Нефть и нефтепродукты в растворенном и эмульгированно м состоянии	Железо	Xpow 6+	Алюминий	Кадмий	Кобальт	Xpom 3+	Медь	Марганец	Никель	Свинеп	Цинк
17	47	115	16	17	18	10	20	21	33	23	24	25

Примечание: * - расчет в т/год производится суммированием т/мес

7.2. Утвержденный норматив допустимого сброса микроорганизмов в водный объект. Наименование выпуска: $\underline{g_{LII}y_{CK}}\underline{N_2}\underline{I}$.

Nº ⊓/⊓	Показатели по видам микроорганизмов	Размерность	Допустимое содержание	допустимый норматив сброса микроорганизмог
-	2	3	4	5
-	Общие колиформные бактерии	КОЕ/100 мл	не более 500	51,9•1012
2	Колифаги	БОЕ/100 мл	не более 100	10,3•1012
3.	Термотолерантные колиформные бактерии	КОЕ/100 мл	не более 100	10,3•1012
4	Возбудители инфекционных заболеваний		отс.	OTC.
5.	Жизнеспособные яйца гельминтов	1	orc.	orc.
.9	Жизнеспособные цисты патогенных кишечных простейших		OTC.	orc.

Изм. Кол.уч Лист №док Подп. Дата

Взам. Инв. №

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

-	иствия почных чем до венного	венной саться гтрого еского					
-	The condense of $\frac{1}{2}$	to onyca game oc mokcuy					
-	102енно. 2, при сі 11 гри сі 12 гри од 2 13 гри од 2 14 гри од 2	е долже в оказь а оказь					
-	г антрон темперс более ч й более й более	под вли става н г должен гь хрони	2				
~	ия в зоис вы зимо оти (в та ото (в та	мг/ дм ³ юд ледо мг/дм ³ ; х вод не казыват	20 924 F.				
-	eŭi. nestenoc. ne nosten r u cuzoe mypy 60	а в пери менее б сточны	0				
-	твенного х примес ной деян с общи пемпера	ться ни ислород быть не сброса пре не до		1		* 4	
~	охозяйсь ия други яйствен на 5 °C выбы (и вышать (а	істворенного кислорода не должно опускаться ниже 6,0 мг/ дм³ под влияпием хозяйственной почных вод). Содержание растворенного кислорода в период ледостава не должно опускаться пдения льда до периода ледостава должен быть не менее 6 мг/дм³. ов рыбохозяйственного значения в местах сброса сточных вод не должна оказывать острого Вода водного объекта в контрольном створе не должна оказывать хронического токсического	(17)				
-	T: mos pыб cкоплен: niem xoз oбивые л mcx nos	должнор эстава с жения в нтрольь	20 / 9 г. на срок до				
~	кных во) их объек ксиров и год влия колодоли апрещае	рода не года лед года лед года знс	Г. на				
-	е дреная масел, э аться п пого обт итают.	го кисло 1. Содер 1. до пери яйствен 20. объег	2016			-	
-	ом числь сети вод дуктов, и повыш рой вод п, где об типищ н	зоренног ных вод) ныбохоз выбохоз	9				٠
12	 Согласованные общие свойства сточных, в том числе дренажных вод: Плавающие примеси (вещества): <u>иа поверхности воды водыьх объектов рыбохозяйственного значения в зоне антропогенного воздействия не должных перимература воды не должно и объектов, масел, жиле должных примесей;</u> Температура: <u>температура воды не должна повышаться под влиянием хозяйственной деятельности (в том числе, при сбросе сточных вод) по сравнению с естественной температуры не более чем до 20 °С летом и 5 °С зимой для водных объектов, где общинот холодолюбивые рыбы (пососевые и сиговые) и не более чем до 28 °С летом и 8 °С зимой для водных объектов, где община запрещается повышать температуру воды зимой более чем на 2 °С;</u> В водородный показатель (рП): <u>должен соответствовать фоновому значению показателя для воды водного объекта рыбохозяйственного мущет.</u> 		(7)				
1	тва сточ пенки не воды не иной те. годных о В мест): долже)	Deporcant bu cópoc uod om 1 667 M2/ Mbix of m-ofrek	жден «Э				
-	ие свойс и (вещес итвестве и и и и и и и и и и и и и и и и и и и	энстепия, 4) растворенный кислород: <u>содержание расп</u> деятельности (в том числе, при сбросе сточ ниже 6,0 мг/дм ³ . В летний период от распаде 5) минерализация: <u>не более 380,667 мг/дм³.</u> 6) токсичность воды: <u>вода водных объектов</u> токсического действия на тест-объекты. Во	НДС утвержден «Э				
2	пые общ примеси пружим к. темпе нию с ес 5 °С зил показат	4) растворенный кислород: деятельности (в том числи ниже 6,0 мг/дм ³ . В петний. 5) минерализация: <u>ще более.</u> 6) токсичность воды: <u>вода </u> токсического действия на 1 действия на тест-объекты действия на тест-объекты	Щ				
-	тасованн вагопие осно образатопие образатопие образатоване образатова	эпстепал. 4) растворенный деятельности (1 пиэсе 6,0 мг/дм ³ 5) минерализаци 6) токсического де действия на тес			¥ .	,	Ą
-	8. Corr 1) плав 10 боле 2) теми 20 °С / 20 °С / °С зими 3) воде	4) раствона, деятельного боли иллее бол 5) минера 6) токсически моксически действия					
(4)							
-				-	4		
					1	1.5	

Изм. Кол.уч Лист №док

Дата

Подп.

СОГЛАСОВАНО

Заместитель руководителя КБВУ

Начальник ОВР по РБ

В.С.Горячев

2019 год

УТВЕРЖДАЮ

Директор

МУП «Нефтекамскводоканал»

В.Ю. Трусов

2019 год

ПОКВАРТАЛЬНЫЙ ГРАФИ

выпуска (сброса) сточных вод

МУП «НЕФТЕКАМСКВОДОКАНАЛ»

в Нижнекамское водохранилище на р. Кама,

137 км от створа Нижнекамского гидроузла, 213 км от устья р. Кама

Республика Башкортостан, МР Краснокамский район

No	Период	Количество сточных вод,
п/п		Tыс. м ³
1	2	3
1.	Январь	905,79
2.	Февраль	872,10
3.	Март	917,61
	Всего за I квартал	2 695,50
4.	Апрель	885,02
5.	Май	854,28
6.	Июнь	870,20
•	Всего за II квартал	2 609,50
7.	- Июль	803,89
8.	Август	789,11
9.	Сентябрь	848,40
	Всего за III квартал	2 441,40
10.	Октябрь .	859,28
11.	Ноябрь	870,19
12.	Декабрь	914,59
	Всего за IV квартал	2 644,06
	Итого за год:	10 390,46

Начальник ПЭО

SHarf

Л.С.Набиев

Инв. № подл. Подп. и дата Взам. Инв. №

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

N300 DUC \$1,870

ПАСПОРТ СРЕДСТВА ИЗМЕРЕНИЯ

Наименование	СИ:
--------------	-----

Датчик расхода ЭРИС.В

Тип СИ:

ЭРИС.ВЛТ - 800

Гос. реестр

№ 12326-03

Заводской номер:

Диапазон измерений:

№ 500 $(200 - 800) \text{ M}^3/\text{q}$

Пределы допускаемой

относительной погрешности: ПГ± 1,5 %

Принадлежность:

Филиал "МУП "Нефтекамскводоканал"

инн:

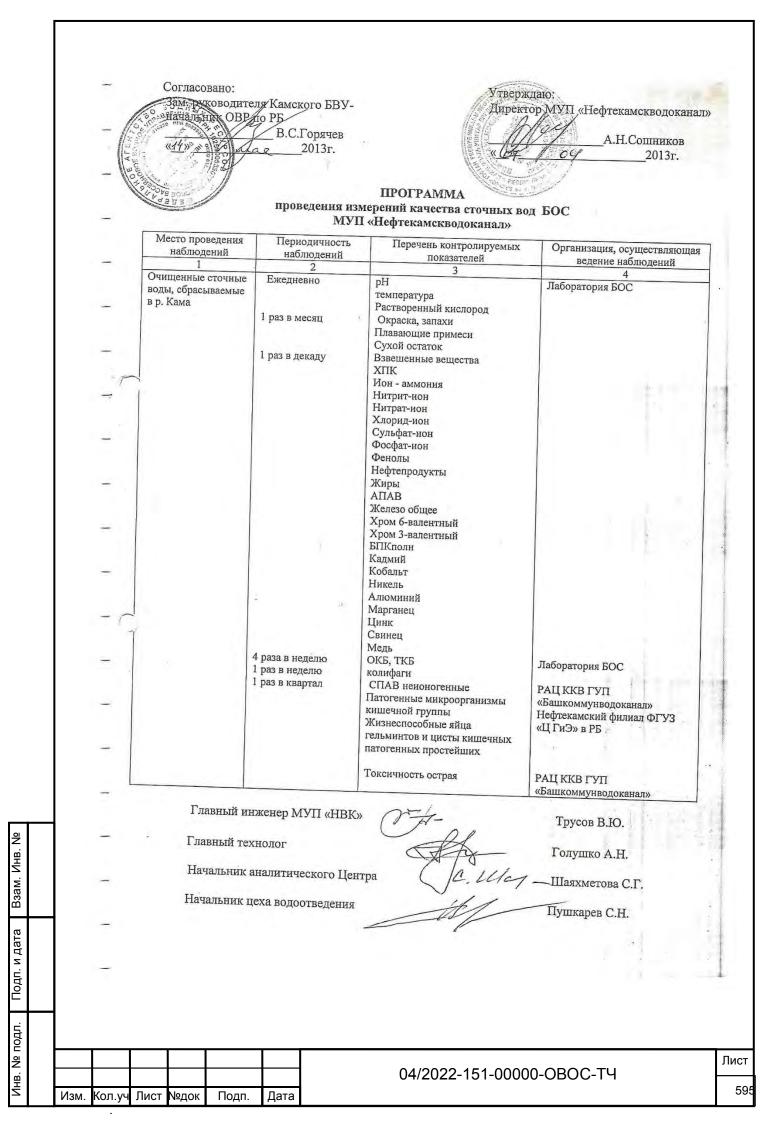
0264014479

Интервал между поверками: 2 года

Перечень составных частей комплекта

РЕЗУЛЬТАТЫ ПОВЕРКИ

Дата поверки	Заключение (годен-негоден)	Подпись поверителя	Расшифровка подписи	Место оттиска клейма
10.03.2021 г.	Поверка выполнена	Will	Шушков Д.А.	3 © 2 M 1 BK3


Поверено в соответствии с 230.00.00.000 ТО. Расходомеры электромагнитные ЭРИС.В. Техническое описание и инструкция по эксплуатации. Пункт 10. Поверка

Поверено в соотн	ветствии с	
*		
Поверено в соот	ветствии с	· · · · · · · · · · · · · · · · · · ·
Поверено в соот	зетствии с	
Hanaparia p agam	DOMOTRIAL O	

Взам. Подп. и дата Инв. № подл.

Лист №док Изм. Кол.уч Подп. Дата

04/2022-151-00000-OBOC-TY

МУНИЦИПАЛЬНОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ «НЕФТЕКАМСКВОДОКАНАЛ»

ПРИКАЗ

№ 328

от «<u>31 » вевусло,</u> 2018 г.

«О назначении руководителя в области охраны окружающей среды и экологической безопасности предприятия»

Во исполнение Федерального закона от 10.01.2002г № 7-ФЗ «Об охране окружающей среды»,

ПРИКАЗЫВАЮ:

- 1. Назначить ответственного руководителя (специалиста), координирующего действия в области охраны окружающей среды и экологической безопасности:
- Голушко А.Н. главного технолога.
 - 2. Контроль за исполнением приказа оставляю за собой.

Директор В.Ю.Трусов

Исп. Голушко А.Н.

Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам.

Подп. и дата

04/2022-151-00000-OBOC-TY

МУНИЦИПАЛЬНОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ «НЕФТЕКАМСКВОДОКАНАЛ» (МУП «НВК»)

Отдел главного технолога

ПРИКАЗ

от « 03 » сентября 2021г.

№ 739

«О порядке раздельного накопления твердых коммунальных и промышленных отходов»

Во исполнение Федерального закона от 24.06.1998г № 89-ФЗ «Об отходах производства и потребления» и «Правил обращения с твердыми коммунальными отходами», утвержденными Постановлением Правительства Российской Федерации от 12.11.2016г. №1156, Приказа Минприроды России от 08.12.2020 N 1028 "Об утверждении Порядка учета в области обращения с отходами",

ПРИКАЗЫВАЮ:

- 1. Всем работникам предприятия производить раздельное складирование твердых коммунальных отходов (ТКО) и промышленных отходов. В целях рационального обращения с отходами дополнительно производить сортировку и складирование отходов, используемых в качестве вторичного сырья:
- отходов бумаги и картона от канцелярской деятельности и делопроизводства;
 - отходов изделий из стекла незагрязнённых;
- отходов из полиэтилентерефталата (ПЭТ) незагрязнённых (производить сжатие баллонов с целью уменьшения объема).
- 2. Назначить ответственными за осуществление деятельности по обращению с отходами I-V класса опасности (в части организации сбора, первичного учета, временного накопления и размещения, транспортирование), а также за производственно-экологический контроль в соответствующих подразделениях:
- цех подъема, очистки и подачи вод (ВОС, ОВЗ, КВЗ, Зв/п)- Чучева И.П., начальника цеха;
- цех водопроводные сети (АПБ, Чапаева 5) Султанова Б.К., начальника цеха:
- цех водоотведения (БОС г.Нефтекамск, БОС с.Амзя, КНС-1, КНС-2, КНС-4, КНС-5, КНС-66, КНС-7, КНС-8, КНС-1 с.Амзя, КНС-3 с.Амзя, КНС-5 с.Амзя, КНС-30 с.Энергетик, Станция с приемными резервуарами с.Энергетик) -Шарифьянова В.Н., начальника цеха;

Взам. Подп. и дата 읟

Лист №док Изм. Кол.уч Подп. Дата

04/2022-151-00000-OBOC-TY

- отдел главного энергетика – Муллазанова Ф.Н., главного энергетика;

- отдел главного технолога – Голушко А.Н., главного технолога.

- 3. Ответственным за транспортировку промышленных отходов назначить Калашникова С.Д., начальника ТМЦ.
- 4. Ответственным за транспортировку вторичного сырья в соответствующие пункты приема назначить Талипова Р.Р., старшего инженера отдела материально-технического снабжения.
- 5. Ответственными за транспортирование ила стабилизированного БОС назначить Шарифьянова В.Н., начальника цеха ВО и Калашникова С.Д., начальника ТМЦ.
- 6. Отделу главного технолога организовывать обучение ответственных лиц согласно действующему экологическому законодательству в области обращения с отходами.
- 7. Ответственным лицам за осуществление деятельности по обращению с отходами организовать на своих подконтрольных промплощадках раздельное (по видам) складирование промышленных отходов и твердых коммунальных отходов (ТКО). При складировании твердых коммунальных отходов предусмотреть дополнительные места для селективного накопления отходов по фракциям:
- контейнер для макулатуры с письменным обозначением «Бумага»;
- контейнер для отходов изделий из стекла с письменным обозначением «Стекло»;
- контейнер для отходов изделий из ПЭТ-баллонов с письменным обозначением «Пластик».

В организации работ руководствоваться «Порядком накопления твердых коммунальных отходов (в том числе их раздельного накопления) на территории Республики Башкортостан», утвержденным Постановлением правительства Республики Башкортостан от 22.01.2018 № 25 и рабочими инструкциями по обращению с отходами.

С территории производственной базы по ул. Чапаева, 5 накопление и вывоз образующейся в подразделениях макулатуры осуществлять каждым отделом или структурным подразделением самостоятельно на закрепленным за подразделением транспортом. Вывоз производить на первой и третьей неделе месяца на Центральный склад МУП «НВК» (на территории ТМЦ) в связанном, удобном для транспортировки виде или упакованной в коробки. По мере накопления (формирования) объемной партии сдачу вторичного сырья осуществлять со склада ответственными лицами согласно п.4 данного приказа.

8. Учет количества образованных, накопленных и переданных на переработку отходов возложить на ответственных лиц за осуществление деятельности по обращению с отходами соответствующих подразделений по прилагаемым к настоящему приказу формам (Приложения 1, 2, 3). Формы учета заполнять ежемесячно и предоставлять в отдел главного технолога для формирования сводного отчета до 5-го числа месяца, следующим за отчетным.

Лнв. № подл. Подп. и дата Взам. Инв. №

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

Отделу главного технолога формировать сводный отчет до 10-го числа следующим за отчетным. 9. Начальнику отдела кадров Ахмадишиной И.С. ознакомить с настоящим приказом ответственных лиц под роспись. 10. Контроль за исполнением данного приказа возложить на Юсупова Д.Х., главного инженера.

11. Приказ от 12.03.2020 №162 «О порядке раздельного накопления твердых коммунальных и промышленных отходов» считать утратившим силу.

Директор

А.В.Ременников

Исполнитель Голушко Александр Николаевич Главный технолог

В дело 02-02

Взам. І Подп. и дата Инв. № подл.

Изм. Кол.уч Лист №док Подп.

04/2022-151-00000-OBOC-TY

Изм. Кол.уч Лист №	-	- 回 22 72 72 73 74 74 74 74 74 74 74 74 74 74 74 74 74	-		- -	-	-	-	-	-	-	
2док Подп. Дата		OBJACT NCINITATED	Ъ АККРЕ ІБНАЯ ЛАБОР	回答证: ОБЛАСТЬ АККРЕДИТАЦИИ ИСПЫТАТЕЛЬНАЯ ЛАБОРАТОРИЯ (ГОСТ ISO/IEC 17025-2019)	r ISO/IEC 17025	-2019)						
-		Аналитический центр наименование испытател РОСС RU.0001.512257	Аналитический центр Муниципальнов наименование испытательной лаборатории РОСС RU.0001.512257	Аналитический центр Муниципального унитарного предприятия "Нефтекамскводоканал" наименование испытательной паборатории РОСС RU.0001.512257	едприятия "Нефтек	амскводокан	ал".					
04/2022-15		Номер в реестре ак 1. 452684, РОССИ здание 5.	Номер в реестре аккредитованных лиц 1. 452684, РОССИЯ, Башкортостан здание 5.	Номер в реестре авкредитованных лиц 1. 452684, РОССИЯ, Башкортостан республика, город Нефтекамск, улица Чапаева, здание 5.	Нефтекамск, улица	Чапаева,						
51-00000		адреса мест осущея улица Башкири адреса мест осуще	адреса мест осуществления деятельности 2. 452696, РОССИЯ, Башкортостан респуулица Башкирская, домовладение 1Бадреса мест осуществления деятельности	адреса мест осуществления деятельности 2. 452696, РОССИЯ, Башкортостан республика, город Нефтекамск, село Ташкиново, улица Башкирская, домовладение 1Б. адреса мест осуществления деятельности	Нефтекамск, село Т	ашкиново,						
-OBOC-	* 1		*	00 2 4 1								
-TY		5-	iri	<i>*</i> . <i>!</i>	-							
Лис	- 1) *)									į.	ł	
СТ 595												

452684, Ро	452684, РОССИЯ, Башкортостан республика, город адреса мест осуществления деятельности		ртекамск, улица	Нефтекамск, улица Чапаева, здание 5.		
E/ü v	ДОКУМЕНТЫ, УСТАНАВЛИВАЮЩИЕ ПРАВИЛА И МЕТОДЫ ИССПЕДОВАНИЙ (ИСПЫТАНИЙ) И ИЗМЕРЕНИЙ	НАИМЕНОВАНИЕ ОБЪЕКТА	код октд 2	код тн вэд ЕАЭС	ОПРЕДЕЛЯЕМАЯ ХАРАКТЕРИСТИКА (ПОКАЗАТЕЛЬ)	ДИАПАЗОН ОПРЕДЕЛЕНИЯ
3. Испытан	Испытания (исследования) объектов окружающей среды	стов окружающей среды				_
3.1.	ГОСТ Р 57164, п.5.8.1;Органолептические (сенсорые) испытания	Питьевая вода;Природные		1	Интенсивность запаха при температуре 20°С	от 0 до 5 (балл)
	Органолептический (сенсорный)				Интенсивность запаха при температуре 60°C	от 0 до 5 (балл)
3.2.	ГОСТ Р 57164, п.5.8.2:Органолептические (сенсорные) испытания	Питъевая вода;Природные			Интенсивность вкуса	от 0 до 5 (балл)
	Органопептический (сенсорный)				Интенсивность привкуса	от 0 до 5 (балл)
Б. Е. 8	ГОСТ Р 57164, п.б.Химические испытания, физіксо-химические	Питъевая вода:Природные воды			Мутность	от 1 до 15 (ЕМФ)
Z Z	испытания;Фотометрическ ий		N.		Мутность	от 0,58 до 8,7 (мг/дм[3*])

-	КИ		o.	дм[3*])	(_E M ₃)	
-	диапазон определения		от 1 до 300 (Градус цветности)	ог 0,010 до 5,0 (мг/дм[3*])	от 0,10 до 2,0 (мг/дм²)	
-	ОПРЕДЕЛЯЕМАЯ ХАРАКТЕРИСТИКА (ПОКАЗАТЕЛЬ)		Цветность	Марганец	Железо (Fe) (общее)	
1 1 1	код тн вэд едэс		T .			
-	код окпд 2			7		
-	НАИМЕНОВАНИЕ ОБЪЕКТА		Питьевая вода;Природные воды	Питьевая вода;Подземные воды;Вода поверхностных водоисточников, используемых для централизованного водоснабжения населения	Питьевая вода	
-	документы, устанавливающие правила и методы исследований (испытаний) и измерений		ГОСТ 31868, п.5 метод Б;Химические испытания, физико-химические испытания;Фотометрическ ий	ГОСТ 4974, п.б.5 вариант 3;Химические испытания, физико-химические испытания;Фотометрическ ий	ГОСТ 4011, п.2:Химические испытания, физико-химические испытания;Фотометрическ ий	
~	N FILL	3.3.	4.6	3.5	3.6.	Automotive control of the control of
-						

1 1	диапазон	or 0,040 до 0,56 (мг/дм[3*])	от 0,10 до 300 (мг/дм[3*])	- от 0,003 до 30,0 (мг/дм[3*])	от 0,10 до 200,0 (мг/дм[3*])
-	ОПРЕДЕЛЯЕМАЯ ХАРАКТЕРИСТИКА (ПОКАЗАТЕЛЬ)	Алюминий	Аммиак и ионы аммония (суммарно)	нитриты	Нитраты
-	код тн вэд ЕАЭС				
-	код октд 2				POCC RU.0001.512257
-	НАИМЕНОВАНИЕ ОБЪЕКТА	Питьевая вода;Природные воды	Питьевая вода;Природные воды	Питьевая вода;Природные воды	Питъевая вода;Природные воды
	ДОКУМЕНТЫ, УСТАНАВЛИВАЮЩИЕ ПРАВИЛА И МЕТОДЫ ИССЛЕДОВАНИЙ (ИСПЫТАНИЙ) И ИЗМЕРЕНИЙ	ГОСТ 18165, п.6 метод Б;Химические испытания, физико-химические испытания;Фотометрическ ий	ГОСТ 33045, п.5 метод А;Химические испытания, физико-химические испытания;Фотометрическ ий	ГОСТ 33045, п.6 метод Б,Химические испытания, физико-химические испытания;Фотометрическ ий	ГОСТ 33045, п.9 метод Д;Химические испытания, физико-химические испытания;Фотометрическ ий
-	L/U N	3.7.	8. 8.	6	3.10.

-	диапазон определения		40,0	от 2,0 до 50,0 (мг/дм[3*])	от 0,08 до 1,0 (мг/дм[3*])	NKRT 5
-	диа		от 0,010 до 40,0 (мг/дм[3*])	от 2,0 до 50	от 0,08 до 1	на 22 листах, пист 5
-	опРеделяемая характеристика (показатель)		Фосфаты (фосфат-ионы)	Сульфаты	Фториды	Ξ.
-	код тн вэд ЕАЭС		·			.512257
-	код окпд 2				1	POCC RU.0001,512257
-	НАИМЕНОВАНИЕ ОБЪЕКТА		Питьевая вода;Природные воды	Питьевая вода	Питьевая вода	
-	документы, устанавливающие правила и методы исследований (испытаний) и измерений		ГОСТ 18309, п.5 метод А;Химические испытания, физико-химические испытания;Фотометрическ ий	ГОСТ 31940, п.6 метод 3:Химические испытания, физико-химические испытания;Фотометрическ ий	ГОСТ 4386, п.1 метод А;Химические испытания, физико-химические испытания;Фотометрическ ий	
_	E/E z	3.10.	3.7	3.12.	3.13.	
-		e				

-	_ £			т/дм3)	/дм[3*]) 6
-	диапазон	от 0,1 до 20,0 (°Ж)	от 0,1 до 100 (ммоль/дм[3*])	от 1,0 до 100 (мг/дм3)	от 100 до 5000 (мг/дм[3*]) на 22 листах, пист 6
-	опРеделяемая характеристика (показатель)	Жесткость общая	Щелочность	Хлориды (хлор-ионы)	Оухой остаток
	код тн вэд ЕАЭС				512257
-	код окпд 2				POCG RU.0001.512257
-	НАИМЕНОВАНИЕ ОБЪЕКТА	Питьевая вода;Природные воды	Питьевая вода;Природные воды	Питьевая вода	Питьевая вода
-	ДОКУМЕНТЫ, УСТАНАВЛИВАЮЩИЕ ПРАВИЛА И МЕТОДЫ ИСПЕДОВАНИЙ (ИСПЫТАНИЙ) И ИЗМЕРЕНИЙ	ГОСТ 31954, п.4 метод А;Химические испытания, физико-химические испытания;Титриметрическ ий (объемный)	ГОСТ 31957, п.5 метод А;Химические испытания, физико-химические испытания;Титриметрическ ий (объемный)	ГОСТ 4245, п.3.Химические испытания, физико-химические испытания;Титриметрическ ий (объемный)	ГОСТ 18164;Химические испытания, физико-жумические испытания;
-	E/E z	3.14.	3.15.	3.16.	3.17.
-				. .	

-	диапазон определения		от 0,1 до 1,2 (мг/дм[3*])	от 0,25 до 100 (мг/дм[3*])	от 1 до 12 (ед. рН) на 22 листах, лист 7
-	。 ОПРЕДЕЛЯЕМАЯ ХАРАКТЕРИСТИКА (ПОКАЗАТЕЛЬ)		остаточный активный хлор	Окисляемость перманганатная от (Водородный показатель от I
-	код тн вэд ЕАЭС		1-		512257
1	код октд 2				POCC RU.0001.512257
-	НАИМЕНОВАНИЕ ОБЪЕКТА		Питьевая вода	Питьевая вода;Природные воды	Питьевая вода;Природные воды
-	ДОКУМЕНТЫ, УСТАНАВЛИВАЮЩИЕ ПРАВИЛА И МЕТОДЫ ИССЛЕДОВАНИЙ (ИСПЫТАНИЙ) И ИЗМЕРЕНИЙ	Гравиметрический (весовой)	ГОСТ 18190, п.2;Химические испытания, физико-химические испытания;Титриметрическ ий (объемный)	ПНД Ф 14.1.2.4.154;Химические испытания, физико-химические испытания;Титриметрический (объемный)	ПНД ф 14.1:2:3:4.121;Химичёские испытания, физико- химические испытания;прочие методы физико-химических и химических исследований
-	E/L N	3.17.	3.18	9.19	3.20.
-					

-	ОН		/дм[3*])	/дм[3*])					(мг/пм	эт 8
-	диапазон		от 10 до 200 (мг/дм[3*])	- от 10 до 200 (мг/дм[3*])	от 0,0001 до 0,01 (мг/дм[3*])	от 0,001 до 0,05 (мг/дм[3*])	от 0,001 до 0,05 (мг/дм[3*])	от 0,001 до 0,05 (мг/дм[3*])	от 0,001 до 0,05 (мг/дм	на 22 листах, пист 8
-	опРЕДЕЛЯЕМАЯ ХАРАКТЕРИСТИКА (ПОКАЗАТЕЛЬ)		Кальций (Са)	Магний (Mg)	Кадмий (Сd)	Кобальт (Со)	Meдь (Cu)	Молибден (Мо)	Марганец (Мп)	
~~	код тн вэд ЕАЭС		1							1.512257
-	код октд 2						,			POCC RU.0001.512257
-	наименование объекта		Питьевая вода;Природные воды		Питьевая вода;Природные	G		£ .		
-	документы, устанавливающие правила и методы исследований (испытаний) и измерений	«сухой химии»	МП УВК 1.38- 2013;Химические	испытания, физико- химические испытания;Титриметрическ ий (объемный)	ГОСТ 31870, п.4 метод 1;Химические испытания, физико-химические	испытания; Атомно- абсорбционный спектрометрический (AAC)				
_	E/L z	3.20.	3.21.		3.22.					
-	=						X	order to the second		

диапазон Определения	[3*])	от 0,001 до 0,05 (мг/дм[3*])	ог 0,001 до 0,05 (мг/дм[3*])	ог 0,001 до 0,05 (мг/дм[3*])	ог 0,001 до 0,05 (мг/дм[3*])	от 0,1 до 5,0 (мкг/дм[3*])	на 22 листах, пист 9
і і і І Определяємая характеристика (показатель)	Марганец (Мп)	Никель (Ni)	Свинец (Рb)	Цинк (Zn)	Xpom (Cr)	Ртуть (Нg)	
код тн вэд Елэс							512257
н н н код октд 2					ļ.		POCC RU 0001 512257
НАИМЕНОВАНИЕ ОБЪЕКТА				×		Питьевая вода.Природные воды	
документы, устанавливающие правила и методы исследований (испедований (испелтаний) и	измерении					ГОСТ 31950, п.3 метод 1;Химические испытания, физико-химические испытания;Атомно- абсорбционный спектрометрический (ААС).	
	3.22.			÷		3.23.	

-	диалазон определения	ог 0,5 до 200 (мг/дм[3*])	от 0,5 до 200 (мгО2/дм[3*])	- or 0,00001 до 10 (мг/дм[3*])	от 0,0002 до 5 (мг/дм[3*])	от 0,0001 до 100 (мг/дм[3*])	от 0,0002 до 25 (мг/дм[3*])	на 22 листах, пист 10
-	ОПРЕДЕЛЯЕМАЯ ХАРАКТЕРИСТИКА (ПОКАЗАТЕЛЬ)	Взвешенные вещества	Биохимическое потребление кислорода (БПК)	Кадмий (Сd)	Кобальт (Со)	Медь (Cu)	Никель (Ni)	I
-	код тн вэд ЕАЭС		1	1				512257
-	код окпд 2						8	POCC RU.0001.512257
-	НАИМЕНОВАНИЕ ОБЪЕКТА	Питъевая вода;Природные воды	Питьевая вода;Природные воды	Природные воды;Сточные воды	1 17			1.
-	ДОКУМЕНТЫ, УСТАНАВЛИВАЮЩИЕ ПРАВИЛА И МЕТОДЫ ИССЛЕДОВАНИЙ (ИСПЫТАНИЙ) И ИЗМЕРЕНИЙ	ПНД ф 14.1:2:4.254;Химические испытания, физико- химические испытания;Гравиметрическ ий (весовой)	ПНД Ф 14.1:2:3:4.123, п.10.2:Прочие исследования (испьтания);методы прочих исследований (испытаний) без уточнения	ПНД Ф 14.1:2:4.140, кроме п.9, п.11.2;Химические испытания, физико-	химические испытания; Атомно-абсорбционный	спектрометрическии (AAC.)		
-	L/L N	3.24.	3.25.	3.26.			1	
-						1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 d	٠

-	он Ения	And the state of t		г/дм³)	г/дм³)	E/cm³)	± 1
	диапазон	от 0,0002 до 15 (мг/дм[3*])	от 0,0002 до 100 (мг/дм[3*])	от 0,005 до 5 (мг/дм³)	от 0,01 до 15 (мг/дм³)	обнаружено/не обнаружено от 1 до 100 (КОЕ/см³) от 1 до 100 (КОЕ/мл)	на 22 листах, пист 11
-	определяемая ХАРАКТЕРИСТИКА (ПОКАЗАТЕЛЬ)	Свинец (Рb)	Xpom (Cr)	Марганец (Мп)	Цинк (Zn)	Общее микробное число (ОМЧ)	*
	код тн вэд ЕАЭС						512257
-	код окпд 2						POCC RU.0001.512257
-	НАИМЕНОВАНИЕ ОБЪЕКТА			Сточные воды		Питьевая вода	
-	ДОКУМЕНТЫ, УСТАНАВЛИВАЮЩИЕ ПРАВИЛА И МЕТОДЫ ИССЛЕДОВАНИЙ (ИСПЫТАНИЙ) И ИЗМЕРЕНИЙ			МП УВК 2.41-2014, кроме п.9 и Приложения А	Химические испытания, физико-химические испытания; Атомно-абсорбционный спектрометрический (AAC)	МУК 4.2.1018, п.8.1;Микробиологические/ бактериологические;прочи е методы микробиологических (бактериологических) исследований (испытаний)	
-	L/L N	3.26.		3.27.		3.28.	

	диапазон определения	обнаружено/не обнаружено от 1 до 10 (КОЕ/100см²) от 1 до 10 (КОЕ/100мл)	обнаружено/не обнаружено от 1 до 30 (КОЕ/100см²) от 1 до 30 (КОЕ/100мл)	обнаружено/не обнаружено от 1 до 1000 (КОЕ/100cm³) от 1 до 1000 (КОЕ/100мл)	обнаружено/не обнаружено от 1 до 1000 (КОЕ/100см²) от 1 до 1000 (КОЕ/100мл)	обнаружено/не обнаружено от 1 до 113,9 (БОЕ/100см²) от 1 до 113,9 (БОЕ/100мл)	на 22 листах, пист 12
	ОПРЕДЕЛЯЕМАЯ ХАРАКТЕРИСТИКА (ПОКАЗАТЕЛЬ)	Общие (обобщенные) колиформные бактерии (ОКБ)	Термотолерантные колиформные бактерии (ТКБ)	Общие (обобщенные) колиформные бактерии (ОКБ)	Термотолерантные колиформные бактерии (ТКБ)	Колифаги	
-	код тн вэд ЕАЭС				-		512257
-	код окпд 2			,			POCC RU,0001.512257
-	НАИМЕНОВАНИЕ ОБЪЕКТА	Подземные воды;Вода питьевая централизованного водоснабжения		Вода поверхностных водоисточников, используемых для централизованного	водоснабжения населения;Природные воды	Питьевая вода	
I I I I I I I I I I I I I I I I I I I	устанавливающие правила и методы исспедований (испытаний) и измерений	МУК 4.2.1018, п.8.2;Микробиологические/ бактериологические;метод мембранной филътрации		МУК 4.2.1884, п.2.7.Микробиологические/ бактериологические,метод мембранной фильтрации	(2)	МУК 4.2.1018, п.8.5.2;Микробиологически е/бактериологические;мето д тиграционный (бродильный)	
-	L/L z	3.29.		3.30.		3.31.	
-							w 1,1,

аэс споказатель) диапазон определения	Споры обнаружено/не сульфитредуцирующих обнаружено клостридий от 1 до 10 (КОЕ/20см³) от 1 до 10 (КОЕ/20мл)	- Отбор проб	Отбор проб	Отбор проб	Отбор проб
код октд 2 код тн вэд ЕАЭС	- 1	1	-		
НАИМЕНОВАНИЕ ОБЪЕКТА КОД О	Питьевая вода	Питьевая вода;Природные воды	Питьевая вода;Природные воды	Вода питьевая централизованного водоснабжения	Питьевая вода;Природные воды
ДОКУМЕНТЫ, УСТАНАВЛИВАЮЩИЕ ПРАВИЛА И МЕТОДЫ ИССПЕДОВАНИЙ (ИСПЕДОВАНИЙ ИЗМЕРЕНИЙ) И ИЗМЕРЕНИЙ	МУК 4.2.1018, п.8.4;Микробиологические/ бактериологические;метод мембранной фильтрации	ГОСТ 31861;Отбор проб,отбор проб	ГОСТ Р 59024;Отбор проб;отбор проб	ГОСТ Р 56237;Отбор проб;отбор проб	ГОСТ 31942;Отбор проб
- Fi x	3.32.	3.33.	3.34.	3.35.	3.36.

.

-	диапазон определения		от 0,05 до 150,0 (мг/дм³)	от 0,1 до 100,0 (мг/дм³)	от 0,02 до 3,0 (мг/дм²)	на 22 пистах, пист 14
-	ОПРЕДЕЛЯЕМАЯ ХАРАКТЕРИСТИКА (ПОКАЗАТЕЛЬ)		Ионы аммония	(суммарно)	Нитрит-ион	151
Ташкиново, улица	код тн вэд ЕАЭС		I	1		112257
текамск, село	код октд 2	,				POCC RU.0001.512257
452696, РОССИЯ, Башкортостан республика, город Нефтекамск, село Ташкиново, улица Башкирская, домовладение 1Б.	НАИМЕНОВАНИЕ ОБЪЕКТА	тов окружающей среды	Природные воды;Сточные воды	Природные воды;Сточные воды	Природные воды;Сточные воды	
1 1 1 452696, РОССИЯ, Башкортостан респ Башкирская, домовладение 1Б.	документы, устанавливающие правила и методы исследований (испытаний) и измерений	3. Испытания (исследования) объектов окружающей среды	ПНД Ф 14.1:2:3.1;Химические испытания, физико- химические испытания;Фотометрическ ий	¥	ПНД Ф 14.1.2:4.3;Химические испытания, физико- химические испытания;Фотометрическ ий	
452696, F Башкиро адреса м	LI/LI N	3. Испыта	3.1.	3.2.	33	
				/2022-151-000		

код тн вэд еаэс (показатель) диапазон (показатель)	Массовая концентрация от 0,1 до 100,0 (мг/дм²)	- от 0,05 до 10,0 (мг/дм²)	Алюминий (Al) от 0,04 до 0,56 (мг/дм ³)	Фосфаты (фосфат-ионы) - от 0,05 до 80 (мг/дм³)
код окпд 2			-	
НАИМЕНОВАНИЕ ОБЪЕКТА	Природные воды;Сточные воды	Природные воды;Сточные воды	Природные воды;Сточные воды	Природные воды;Сточные воды
ДОКУМЕНТЫ, УСТАНАВЛИВАЮЩИЕ ПРАВИЛА И МЕТОДЫ ИСПЕДОВАНИЙ (ИСПЫТАНИЙ) И ИЗМЕРЕНИЙ	ПНД Ф 14.1:2:4.4;Химические испытания, физико- химические испытания;Фотометрическ ий	ПНД Ф 14.1:2:4.50;Химические испытания, физико- химические испытания;Фотометрическ ий	ПНД Ф 14.1:2:4.166;Химические испытания, физико- химические испытания;Фотометрическ ий	ПНД Ф 14.1:2:4.112:Химические иопытания, физико- химические испытания;Фотометрическ ий
N FILE	3.4.		3.6.	3.7.

ОПРЕДЕЛЯЕМАЯ ДИАПАЗОН ХАРАКТЕРИСТИКА ОПРЕДЕЛЕНИЯ (ПОКАЗАТЕЛЬ)		Сульфаты (сульфат-ионы) от 10 до 1000 (мг/дм³)	- от 0,002 до 10,0 (мг/дм?)	массовая концентрация от 0,01 до 3,0 (мг/дм²)	
код тн вэд ЕАЭС		- Cyn	Oyu	ион	
код окпд 2					
наименование объекта	and the second	Природные воды;Сточные воды	Природные воды; Сточные воды	Природные воды;Сточные воды	
ДОКУМЕНТЫ, УСТАНАВЛИВАЮЩИЕ ПРАВИЛА И МЕТОДЫ ИСПЕДОВАНИЙ (ИСПЫТАНИЙ) И ИЗМЕРЕНИЙ	3	ПНД Ф 14.1.2.159;Химические испытания, физико- химические испытания;Турбидиметрич еский	ПНД Ф 14.1.2:4.178-02 (издание 2019 г.);Химические испытания, физико-химические испытания, Фотометрическ ий	ПНД Ф 14.1:2:4.52;Химические испытания, физико- химические испытания;Фотометрическ ий	
- E/L X	3.7.	8.	6. 6.	3.10.	

-	диалазон определения	от 5,0 до 1000 (мг/дм³)	от 0,05 до 1000 (мг/дм²)	от 50,0 до 1000 (мг/дм³)	от 1 до 14 (ед. рН)
-	ОПРЕДЕЛЯЕМАЯ ХАРАКТЕРИСТИКА (ПОКАЗАТЕЛЬ)	Массовая концентрация хлорид-ионов	Хлор общий	Сухой остаток	Водородный показатель (рН)
-	код тн вэд ЕАЭС				Cont. 2257
	код окпд 2				POCC RU.0001.512257
-	НАИМЕНОВАНИЕ ОБЪЕКТА	Природные воды;Сточные воды	Природные воды;Сточные воды	Природные воды;Сточные воды	Природные воды;Сточные воды
-	ДОКУМЕНТЫ, УСТАНАВЛИВАЮЩИЕ ПРАВИЛА И МЕТОДЫ ИССЛЕДОВНИЙ (ИСПЫТАНИЙ) И ИЗМЕРЕНИЙ	ПНД Ф 14.1:2:3:4.111:Химические испытания, физико- химические испытания;Титриметрическ ий (объемный)	ПНД Ф 14.1:2:4.113;Химические испытания, физико- химические испытания;Титриметрическ ий (объемный)	ПНД Ф 14.1:2.4.114;Химические испытания, физико- химические испытания;Гравиметрическ ий (весовой)	ПНД Ф 14.1:2:3:4.121;Химические испытания, физико-
-	П/П N	3.11.	3.12	3.13.	3.14.
-				×11.	

-	диапазон определения		от 1,0 до 15,0 (мг/дм³)	тот 0,05 до 300 (мгОз/дм³)	от 0,05 до 300 (мгОддм³)	от 0,5 до 5000 (мг/дм²)		на 22 листах, пист 18
-	ОПРЕДЕЛЯЕМАЯ ХАРАКТЕРИСТИКА (ПОКАЗАТЕЛЬ)		Растворенный кислород	Биохимическое потребление киспорода (БПК полное)	Биохимическое потребление кислорода (БПК5)	Взвешенные вещества	<u>_</u> ,	
-	код тн вэд ЕАЭС							1.512257
_	код окпд 2					- orfi		POCC RU.0001.512257
-	НАИМЕНОВАНИЕ ОБЪЕКТА		Природные воды;Сточные воды	Природные воды;Сточные воды		Природные воды;Сточные воды		
-	документы, устанавливающие правила и методы исследований (испытаний) и измерений	испытания;прочие методы физико-химических и химических исследований (испытаний), в том числе «сухой химии»	ПНД Ф 14.1:2:3.101;Химические испытания, физико- химические испытания;Титриметрическ ий (объемный)	ПНД Ф 14.1:2:3:4.123;Прочие исследования	(испытания);методы прочих исследований (испытаний) без уточнения	ПНД Ф 14.1.2.4.254-09 ;Химические испытания, физико-химические испытания;		
-	L/L N	3.14.	3.15.	3.16.		3.17.		

диапазон		от 5,0 до 800 (мгО2/дм²)	от 0,1 до 100 (мг/дм³)	от 1,0 до 30,0 (мят/дм²)	на 22 пистах. пист 19
		Химическое потребление кислорода (XTIK)	Массовая концентрация жиров	Массовая концентрация летучих фенолов (в сумме)	
код тн вэд Елэс		1			K-109K7
код октд 2					2000 Ell 0004 619967
НАИМЕНОВАНИЕ ОБЪЕКТА		Природные воды;Сточные воды	Природные воды;Сточные воды	Природные воды;Сточные	
документы, устанавливающие правила и методы испедований (испытаний) и измерений	Гравиметрический (весовой)	ПНД Ф 14.1:2:4.190;Химические испытания, физико- химические испытания;Фотометрическ ий	ПНД Ф 14.1.2.189;Химические испытания, физико- химические испытания;Инфракрасная спектроскопия (спектрофотометрический)	ПНД Ф 14.1:2.105;Химические испытания, физико- химические испытания;Фотометрическ ий	
_ E	3.17.	3.18.	3.19.	3.20.	
-) } •			

-		i de la		í		
-	диапазон ОПРЕДЕЛЕНИЯ	от 0,005 до 50,0 (мг/дм³)	от 0,01 до 10,0 (мг/дм³)			на 22 листах, пист 20
-	определяемая характеристика (показатель)	Нефтепродукты	Анионные поверхностно- активные вещества (АПАВ)	Пробоподготовка	Пробоподготовка	
-	КОД ТН ВЭД ЕАЭС		•			512257
-	код окпд 2			1		POCC RU.0001.512257
-	НАИМЕНОВАНИЕ ОБЪЕКТА	Питьевая вода;Природные воды;Сточные воды	Питьевая вода;Природные воды;Сточные воды	Сточные воды;Природные воды	Сточные воды	
-	ДОКУМЕНТЫ, УСТАНАВЛИВАЮЩИЕ ПРАВИЛА И МЕТОДЫ ИССЛЕДОВАНИЙ (ИСПЫТАНИЙ) И ИЗМЕРЕНИЙ	ПНД Ф 14.1:2:4.128;Химические испытания, физико- химические испытания;Флуориметриче ский	ПНД Ф 14.1:2:4.15;Химические испытания, физико- химические испытания;Фотометрическ ий	ПНД Ф 14.1:2:4.140, п.9,п.11.2;Пробоподготовка ;пробоподготовка	МП УВК 2.41-2014, п.9, приложение А;Пробоподготовка;пробоп одготовка	
_	L/L X	3.21.	3.22.	3.23.	3.24.	
-					N. A. S.	
			04/20	 022-151-00	0000-OBOC-T	гч

Воды сточные очищенные Общие (обобщенные) колиформные бактерии (ОКБ) (ОКБ	X L/L N	ДОКУМЕНТЫ, УСТАНАВЛИВАЮЩИЕ ПРАВИЛА И МЕТОДЫ ИССЛЕДОВАНИЙ (ИСПЕТАНИЙ)	НАИМЕНОВАНИЕ ОБЪЕКТА	код окпд 2	КОД ТН ВЭД ЕАЭС	ОПРЕДЕЛЯЕМАЯ ХАРАКТЕРИСТИКА (ПОКАЗАТЕЛЬ)	диапазон определения
3.26. МУ 2.1.5.800-99, Природные воды; Сточные очищенные воды; Сточные очищенные воды; Сточные очищенные проб; отбор проб Воды сточные очищенные подычае воды; Сточные воды	A) second make the form of the first	измерений .1.5.800-99, тожение 6, п.1-4, Иикробиопогические/ба лологические;метод	Воды сточные очищенные			Общие (обобщенные) колиформные бактерии (ОКБ)	обнаружено/не обнаружено от 1 до 500 (КОЕ/100см³) от 1 до 500 (КОЕ/100мл)
3.26. МУ 2.1.5.800-99, Приложение Воды сточные очищенные Колифаги - Колифаги Приложение 8:Микробиологические/бак териологические/бак териологические/бак териологические/метод прямого посева прямого посева Природные воды;Сточные Отбор проб воды воды воды воды воды воды - Отбор проб воды воды	MeMG	бранной фильтрации				Термотолерантные колиформные бактерии (ТКБ)	обнаружено/не обнаружено от 1 до 500 (КОЕ/100см³) от 1 до 500 (КОЕ/100мл)
3.27. ГОСТ 31861;Отбор проб Природные воды;Сточные проб;отбор проб - Отбор проб - 3.28. ГОСТ Р 59024;Отбор проб Природные воды;Сточные проб;отбор проб -		2.1.5.800-99, тожение ікробиологические/бак ологические;метод іого посева	Воды сточные очищенные			Колифаги	обнаружено/не обнаружено от 1 до 100 (БОЕ/100см³) от 1 до 100 (БОЕ/100мл)
ГОСТ Р 59024;Отбор Природные воды;Сточные Воды воды		Т 31861;Отбор ;отбор проб	одные воды;Сточные			Отбор проб	
		Т Р 59024;Отбор ;отбор проб	Природные воды;Сточные воды			Отбор проб	114 9 11

-					\frac{1}{2}	in the second se	m at	
-	диалазон определения	1.1		- U			полномоченного лица на 22 листах, пист 22	
-	определяємая характеристика (показатель)	Отбор проб		- Li		. null	рамилия у	
-	код тн вэд Елэс				And the second of	Подписано электронной подписью	моченного лица	
_	код окпд 2					Подписано элек	подпись уполномоченного лица РОСС RU.0001.512257	
-	НАИМЕНОВАНИЕ ОБЪЕКТА	Сточные воды					, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	
-	документы, устанавливающие правила и методы исследований (испытаний) и измерений	ПНД Ф 12.15.1;Отбор проб;отбор проб					должность уполномоченного лица	
	E Z	3.29.				- unil	должнос	
_								

(0,0001-0,01) мг/дм³ (0,025-2,0) MI/AM³ (0,01-0,25) MT/ДМ³ (0,1-0,5) MT/HM³ градус цветности (0,1-6,0) мкг/дм³ (0,1-6,0) MKI/ μ M³ (0,02-1,2) мкг/дм Диапазон определения (0,1-6,0) мкг/дм Республиканский аналитический центр контроля качества воды Акционерного общества «Башкоммунводоканал» наименование испътательной лаборатории (центра) Дихлордифенилтрихлорэтан (ДДТ) характеристика (показатель) Свободный остаточный хлор Определяемая 450006, Республика Башкортостан, г. Уфа, ул. бульвар Ибрагимова д.82 Гамма-ГХЦГ (линдан) Гексахолрбензол Область аккредитации испытательной лаборатории (центра) Цветность Гептахлор Цианиды ALIAB Селен Код ТН ВЭД ЕАЭС адрес места осуществления деятельности 2 Код ОКПД 2 Вода питьевая расфасованная в емкости, вода питьевая централизованных систем го водоснабжения, вода поверхностных и подземных источников централизованнония, вода централизованных систем горячего водоснабжения, вода плавательных го водоснабжения, вода поверхностных и подземных источников централизованно-Вода питьевая расфасованная в емкости, го водоснабжения, вода поверхностных и подземных источников централизованного водоснабжения, вода поверхностных и водоснабжения, вода нецентрализованного хозяйственно-питьевого водоснабже-Вода питьевая расфасованная в емкости, вода питьевая централизованных систем ния, вода централизованных систем горяния, вода централизованных систем горяводоснабжения, вода нецентрализованного хозяйственно-питьевого водоснабжевода питьевая централизованных систем водоснабжения, вода нецентрализованного хозяйственно-питьевого водоснабже-Вода питьевая расфасованная в емкости, вода питьевая централизованных систем водоснабжения, вода нецентрализованно-Наименование объекта чего водоснабжения чего водоснабжения бассейнов Документы, устанавливающие правила и методы исследований (испытаний), измерений, в том числе правила отбора 3 » aerycra 2021 F. икальный номер записи об аккредитации в реестре аккредитованных лиц ГОСТ 31868-2012 п.5 FOCT 31857-2012 n.3 ГОСТ 18190-72 п.3 90du FOCT 31858-2012 FOCT 31863-2012 **FOCT 19413-89** POCC RU.0001.510802 (Meroд 1) (Метод Б) OT « 13 » BBTYCTB .; N 11 5 s. 3 4. 9

04/2022-151-00000-OBOC-TY

Лист

595

Взам. Инв. №

Подп. и дата

Инв. № подл.

Изм.

Кол.уч

Лист

№док

Подп.

ICT 2			к.	(M ³ : KOH-		tm ³	W			3 4	m ·	
на <u>25 л</u> истах лист <u>2</u>	7		(10-2500) мг/дм³	(0,0002-0,01) мг/дм ³ (с предварительным кон- пентрированием) (0,01-0,05) мг/дм ³	(0,1-5,0) MI/IM ³	(0,0006-0,20) MT/µm³ (0,0006-0,025) MT/µm³ (0,0008-0,035) MT/µm³ (0,0008-0,035) MT/µm³	(0,1-40) °Ж	(1-1000) мг/дм³	(0,1-100) ммоль/дм	(6,1-6100) MINOJIS/AM (6,1-6100) MIV/AM	(6,0-6000) мг/дм ³	
	9		Сульфат-ион	2,4-Дихлорфеноксиуксусная кислота (2,4-Д)	Bop	Хлороформ Четыреххлористый углерод Бромдихлорметан Либпомх попметан	Жесткость общая	Кальций	Щепочность (общая) Пепочность (своболная)	Тидрокарбонаты	Карбонаты	
1 - 1	5			1			13.5			^	٨	
-	4			1		,	ı		1.0		1	***
-	3	подземных источников централизованно- го хозяйственно-питьевого водоснабже- ния, вода централизованных систем горя- чего водоснабжения, вода природная (поверхностная и подземная)	Вода питьевая расфасованная в емкости, вода питьевая централизованных систем водоснабжения, вода нецентрализованного водоснабжения, вода поверхностных и подземных источников централизованного хозяйственно-питьевого водоснабжения, вода централизованных систем горячего водоснабжения	Вода питьевая расфасованная в емкости, вода питьевая централизованных систем водоснабжения, вода нецентрализованного водоснабжения, вода поверхностных и подземных источников централизованного хозяйственно-питьевого водоснабжения, вода централизованных систем горячего водоснабжения, вода природная (поверхностная и подземная)	Domo remer and a conference of the		подземных источников централизованно- го хозяйственно-питьевого водоснабже-	ния, вода централизованных систем горя- чего водоснабжения	Вода питьевая расфасованная в емкости, вода питьевая централизованных систем	водоснабжения, вода нецентрализованно-	подземных источников централизованно- го хозяйственно-питьевого водоснабже- ния, вода централизованных систем горя- чего водоснабжения, вода природная	(поверхностная и подземная)
-	2		ГОСТ 31940-2012 п.5 (Метод 2)	ГОСТ 31941-2012 п.5	FOCT 31949-2012	ГОСТ 31951-2012 п.6	ГОСТ 31954-2012 п.4 (Метод А)	ГОСТ 31954-2012 п.5.1 (Метод Б)	ГОСТ 31957-2012 п.5 (Метод А)		ГОСТ 31957-2012 п.5.5.5 (Метод А)	
(e	1		.7	×.	.6	10.	-	: 1			12.	,
-							A R		0			10

на 25 листах лист 3 (с разбавлением пробы) (с разбавлением пробы) (с разбавлением пробы) (1,0*10⁻⁴-100*10⁻⁴) CM/M менее-более норматива менее-более норматива качества (0,08 мг/дм³) (0,078-234) мг/дм³ (0,003-30) MT/дм³ (0,003-0,3) мг/дм качества (1 млн-1) (0,1-300) мг/дм³ (0,1-200) Mr/дм³ (0,05-50) MIT/IIM³ $(0,1-3,0) \text{ MI}/\text{ILM}^3$ (0,01-0,1) мг/дм (0,1-2,0) MT/IM (0-5) балл (0-2) балл Аммиак и ион аммония (суммарно) Вещества, восстанавливающие КМпО₄ Остаток после выпаривания Удельная электрическая Запах при 20°С и 60°С Азот аммонийный (расчетный метод) Нефтепродукты Вкус и привкус проводимость Нитриты Нитраты Мышьяк 5 4 го водоснабжения, вода поверхностных и вода питьевая централизованных систем водоснабжения, вода нецентрализованноподземных источников централизованнония, вода централизованных систем горячего водоснабжения, вода природная (по-Вода питьевая расфасованная в емкости, го хозяйственно-питьевого водоснабжеверхностная и подземная), вода сточная (хозяйственно-бытовая, промышленная, Вода питьевая расфасованная в емкости, вода питьевая централизованных систем водоснабжения, вода нецентрализованного водоснабжения, вода поверхностных и подземных источников централизованного хозяйственно-питьевого водоснабжения, вода централизованных систем горя-Вода питьевая расфасованная в емкости, вода питьевая централизованных систем го водоснабжения, вода поверхностных и подземных источников централизованного хозяйственно-питьевого водоснабжечего водоснабжения, вода плавательных водоснабжения, вода нецентрализованнония, вода централизованных систем горяпивневая), вода сточная очищенная Вода лабораторная для анализа бассейнов, вода природная чего водоснабжения Инструкция (руководство) по эксплуатации кондуктометра ГОСТ Р 52501-05 п.6.2 ГОСТ Р 57164-2016 п.5 TOCT P 52501-05 n.6.1 TOCT P 52501-05 π.6.4 ΓΟCT 33045-2014 π.5 ГОСТ 33045-2014 п.6 ГОСТ 33045-2014 п.9 FOCT P 51797-01 FOCT 4152-89 (Метод А) (Метод Д) (Метод Б) 15. 13. 16. 14. 1 Лист 04/2022-151-00000-OBOC-TY

595

Взам. Инв. №

Подп. и дата

Инв. № подл.

Изм.

Кол.у

Лист

№док

Подп.

	TOCT 6709-72 n.3.3 4 5 Octavore toccing and advantage at montal advantage at montal and advantage at montal advantage at montal and advantage at montal advant	4		33	g C	a a	22	a (a (a C	et et	g _	es _	8	8 -		l ed			-	F	1			T	T	T
TOCT 6709-72 n.3.5 TOCT 6709-72 n.3.5 TOCT 6709-72 n.3.5	TOCT 6709-72 n.3.3 4 5 Octation from the image and	тах лист	7	е норматин (5 мг/дм³)	е норматину,02 мг/дм ³	е норматив	з норматив 0,5 мг/дм ³)	з норматив ,02 мг/дм ³	: норматив	: норматив	: норматив),8 мг/дм ³)	,02 мг/дм ³	,05 мг/дм ³	; норматив (),2 мг/дм ³)	: норматив, 08 мг/дм ³)) ед. рН	норматив	10 ⁻⁴ . CM/M)) MT/AM)) Mr/дм	2) MT/HM	O) MI/IM ³	0) мг/дм ³)) MГ/ДМ ³) Mr/µm	ME/TIM3	V .er./m.3
TOCT 6709-72 n.3.5 TOCT 6709-72 n.3.5	TOCT 6709-72 n.3.3 4 5 Corrive mode	на 25 лис		менее-боле качества	менее-боле качества ((менее-боле	менее-боле качества (менее-боле качества (С	менее-болек качества (0	менее-болек качества (0	менее-боле качества ((менее-более качества (0	менее-более качества (0	менее-более качества ((менее-более качества (0	(5,4-6,6	менее-более	качества (5	(0,01-10,0	(0,01-20,0	(0,0001-0,	(0,005-10,	(0,0001-5,	(0,002-5,0	(0,001-5,0	(0.005-5.0	0 0000 5
TOCT 6709-72 п.3.3 4 5	TOCT 6709-72 n.3.5 TOCT 6709-72 n.3.5 TOCT 6709-72 n.3.6 TOCT 6709-72 n.3.6 TOCT 6709-72 n.3.1 T	-																									
TOCT 6709-72 п.3.3 4 5	TOCT 6709-72 п.3.5 TOCT 6709-72 п.3.9.1 TOCT 6709-72 п.3.10 TOCT 6709-72 п.3.11 TOCT 6709-72 п.3.12 TOCT 6709-72 п.3.12 TOCT 6709-72 п.3.13 TOCT 6709-72 п.3.13 TOCT 6709-72 п.3.14 TOCT 6709-72 п.3.15 TO	-	9												тавливающ		иеская пр										
TOCT 6709-72 n.3.5 4	TOCT 6709-72 n.3.5 4 5	-		ток после ривания	иак и ионы эния	оаты	фаты	иды	миний	эзо общее	ций		іец	v	эства, восстан О4	родный затель (pH)	ьная электрі	CTS	миний	,	ший	YT	ий	TBT	блен	III	ьи.
TOCT 6709-72 n.3.3 4	TOCT 6709-72 п.3.3 4			ОСТВ	Амм	Нил	Суль	Хлор	Алю	Желе	Каль	Меди	Свин	Цинк	Beng KMn	Водо	Удел	ими	Алю	рари	Вана	Висм	Кадм	Ko6a	Мощ	Нике	Свин
TOCT 6709-72 п.3.3 TOCT 6709-72 п.3.5 TOCT 6709-72 п.3.6 TOCT 6709-72 п.3.6 TOCT 6709-72 п.3.1 TOCT 670-72 п	TOCT 6709-72 п.3.3 TOCT 6709-72 п.3.5 TOCT 6709-72 п.3.6 TOCT 6709-72 п.3.6 TOCT 6709-72 п.3.10 TOCT 6709-72 п.3.11 TOCT 6709-72 п.3.13 TOCT 6709-72 п.3.13 TOCT 6709-72 п.3.14 TOCT 6709-72 п.3.14 TOCT 6709-72 п.3.15 TOCT 6709-72 п.3.15 TOCT 6709-72 п.3.16 TOCT 6709-72 п.3.18 TOCT 6709-72 п.3.19 TOCT 6709-72 п.3.19 TOCT 6709-72 п.3.19 TOCT 6709-72 п.3.16 TOCT 6709-7		2	1													è	ii :	1		-		, P				,
2 FOCT 6709-72 n.3.3 FOCT 6709-72 n.3.5 FOCT 6709-72 n.3.6 FOCT 6709-72 n.3.7 FOCT 6709-72 n.3.11 FOCT 6709-72 n.3.11 FOCT 6709-72 n.3.12 FOCT 6709-72 n.3.13 FOCT 6709-72 n.3.14 FOCT 6709-72 n.3.15 FOCT 6709-72 n.3.15 FOCT 6709-72 n.3.15 FOCT 6709-72 n.3.15 FOCT 6709-72 n.3.16 Mecrpykuaa (руководство) по эксплуатациа рН-метра I FOCT 6709-72 n.3.17 Mecrpykuaa (руководство) по эксплуатациа кондуктометра I FOCT 6709-72 n.3.17 Mecrpykuaa (руководство) по эксплуатациа кондуктометра	2 FOCT 6709-72 n.3.3 FOCT 6709-72 n.3.5 FOCT 6709-72 n.3.6 FOCT 6709-72 n.3.7 FOCT 6709-72 n.3.11 FOCT 6709-72 n.3.12 FOCT 6709-72 n.3.12 FOCT 6709-72 n.3.13 FOCT 6709-72 n.3.14 FOCT 6709-72 n.3.15 FOCT 6709-72 n.3.16 MHCTDYKUM (PYKOBOJICTBO) IIIO SKELINYATIAIUM PH-METPA FOCT 6709-72 n.3.17 MHCTDYKUM (PYKOBOJICTBO) IIIO SKELINYATIAIUM KOHJIKTOMETPA FOCT 6709-72 n.3.17 MHCTDYKUM (PYKOBOJICTBO) IIIO SKELINYATIAIUM KOHJIKTOMETPA	-	4	1																		- 40-					
2 TOCT 6709-72 n.3.3 TOCT 6709-72 n.3.5 TOCT 6709-72 n.3.6 TOCT 6709-72 n.3.7 TOCT 6709-72 n.3.11 TOCT 6709-72 n.3.12 TOCT 6709-72 n.3.13 TOCT 6709-72 n.3.13 TOCT 6709-72 n.3.14 TOCT 6709-72 n.3.15 TOCT 6709-72 n.3.16 Macryykuja (руководство) по эксшуатация рН-метра 1 TOCT 6709-72 n.3.17 Macryykuja (руководство) по эксшуатация (руководство) по эксшуатация (руководство) по эксшуатация (руководство) по эксшуатация кондуктометра	2 TOCT 6709-72 n.3.3 TOCT 6709-72 n.3.5 TOCT 6709-72 n.3.6 TOCT 6709-72 n.3.7 TOCT 6709-72 n.3.11 TOCT 6709-72 n.3.12 TOCT 6709-72 n.3.13 TOCT 6709-72 n.3.13 TOCT 6709-72 n.3.15 TOCT 6709-72 n.3.16 Merpykuja (руководство) по эксплуатация рН-метра 1 TOCT 6709-72 n.3.17 Merpykuja (руководство) по эксплуатация кондуктометра	-																	емкости,	их систем	изованно-	изованно-	тоснабже-	тем горя-	а сточная	ппленная,	тая
2 FOCT 6709-72 п.3.3 FOCT 6709-72 п.3.5 FOCT 6709-72 п.3.6 FOCT 6709-72 п.3.7 FOCT 6709-72 п.3.11 FOCT 6709-72 п.3.11 FOCT 6709-72 п.3.12 FOCT 6709-72 п.3.13 FOCT 6709-72 п.3.13 FOCT 6709-72 п.3.15 FOCT 6709-72 п.3.16 Macтрукция (руководство) по эксплуатации рН-метра ГОСТ 6709-72 п.3.17 Macтрукция (руководство) по эксплуатации кондуктометра	2 FOCT 6709-72 п.3.3 FOCT 6709-72 п.3.5 FOCT 6709-72 п.3.6 FOCT 6709-72 п.3.7 FOCT 6709-72 п.3.11 FOCT 6709-72 п.3.11 FOCT 6709-72 п.3.12 FOCT 6709-72 п.3.13 FOCT 6709-72 п.3.14 FOCT 6709-72 п.3.15 FOCT 6709-72 п.3.15 FOCT 6709-72 п.3.16	~									Ж								ванная в	изованны	ецентрал	централ	вого вод	нных сис	ная), вода	, промы	почищени
2 FOCT 6709-72 п.3.3 FOCT 6709-72 п.3.5 FOCT 6709-72 п.3.6 FOCT 6709-72 п.3.7 FOCT 6709-72 п.3.11 FOCT 6709-72 п.3.11 FOCT 6709-72 п.3.12 FOCT 6709-72 п.3.13 FOCT 6709-72 п.3.13 FOCT 6709-72 п.3.15 FOCT 6709-72 п.3.16 Merpykuja (руководство) по эксплуатация рН-метра ГОСТ 6709-72 п.3.17 Merpykuja (руководство) по эксплуатация (руководство) по эксплуатация (руководство) по эксплуатация (руководство) по эксплуатация кондуктометра	2 FOCT 6709-72 п.3.3 FOCT 6709-72 п.3.5 FOCT 6709-72 п.3.6 FOCT 6709-72 п.3.7 FOCT 6709-72 п.3.11 FOCT 6709-72 п.3.11 FOCT 6709-72 п.3.12 FOCT 6709-72 п.3.13 FOCT 6709-72 п.3.14 FOCT 6709-72 п.3.15 FOCT 6709-72 п.3.15 FOCT 6709-72 п.3.16		5		7.						ированна								и расфасс	я централ	ия, вода н	сточников	нно-пить	трализова эжения в	и подзем	э-бытовая	ца сточная
2 TOCT 6709-72 n.3.3 TOCT 6709-72 n.3.5 TOCT 6709-72 n.3.6 TOCT 6709-72 n.3.7 TOCT 6709-72 n.3.10 TOCT 6709-72 n.3.11 TOCT 6709-72 n.3.12 TOCT 6709-72 n.3.13 TOCT 6709-72 n.3.14 TOCT 6709-72 n.3.15 TOCT 6709-72 n.3.16 Macryxkus (руководство) по эксшлуатация рН-метра 1 TOCT 6709-72 n.3.17 Macryxkus (руководство) по эксшлуатация кондуктометра 1 TOCT 6709-72 n.3.17 Macryxkus (руководство) по эксшлуатация кондуктометра 1 TOCT 6709-72 n.3.17 Macryxkus (руководство) по эксшлуатация кондуктометра 1 TOCT 6709-72 n.3.17	2 TOCT 6709-72 n.3.3 TOCT 6709-72 n.3.5 TOCT 6709-72 n.3.6 TOCT 6709-72 n.3.7 TOCT 6709-72 n.3.10 TOCT 6709-72 n.3.11 TOCT 6709-72 n.3.12 TOCT 6709-72 n.3.13 TOCT 6709-72 n.3.14 TOCT 6709-72 n.3.15 TOCT 6709-72 n.3.16 Macryxqua (руководство) по эксшуатациа рН-метра 1 TOCT 6709-72 n.3.17 Macryxqua (руководство) по эксшуатациа (руководство) по эксшуатациа (руководство) по эксшуатациа (руководство) по эксшуатациа кондуктометра	_		1							Вода дистилл								Вода питьева	вода питьева	водоснаожен	подземных и	го хозяйстве	ния, вода цен	верхностная	(хозяйственн	пивневая), во
		_			H											гво) по	гво) по	метра			-		1			2	1
			7		72 п.3.5	2 п.3.6	72 п.3.7	'2 п.3.8	2 п.3.9.1	2 п.3.10	2 п.3.11	2.п.3.12	2 п.3.13	2 п.3.14	2 п.3.15	2 п.3.16 руководс	2 п.3.17 руководс	г кондукт			·		2-2016				
				LOCT 6709-	LOCT 6709-2	COCT 6709-	COCT 6709-2	OCT 6709-7	COCT 6709-7	CCT 6709-7	COCT 6709-7	7-6075 TOO	OCT 6709-7	OCT 6709-7	OCT 6709-7	OCT 6709-7 Инструкция (Кеппуатапии	ОСТ 6709-7	ксплуатации				10	OCT P 5716				
			,					-1	-			-	-	- 1	-	T P C		. 6	Ī			7					
		-																				,					

Взам. Инв. №

Подп. и дата

на <u>25</u> листах лист <u>5</u>	7	(0,0005-5,0) MI/JIM ³ (0,005-10,0) MI/JIM ³ (0,002-10,0) MI/JIM ³	(0,01-1,0) мкг/дм ³	(0 003-0 03) Mr/IIM ³	(0,0005-0,05) MI/IM ³	(0,1-2,0) мт/дм³	(20-70) °C	(1-1000) мг/дм ³	(1-400) Mr/дм ³	(0-5) балл (1-30) см	(1,0-200) MT/IIM ³
	9	Серебро Сурьма Хром общий	Pryris	Бета-пиперметрин (кинмикс)	Лямбда-цигалотрин (каратэ)	Йодид-ион	Температура	Кальций	4.15	Запах Прозрачность	лемпература Азот общий
	5						,		10	,	
	4		i i	,				. 1		•	
	3		Вода питьевая расфасованная в емкости, вода питьевая централизованных систем водоснабжения, вода нецентрализованно- го водоснабжения, вода поверхностных и подземных источников централизованно- го хозяйственно-питьевого водоснабжения, вода природная (поверхностная и подземная), вода сточная (хозяйственно-бытовая, промышленная, лявневая), вода сточная очищенная		вода питьевая централизованных систем	водоснабжения, вода нецентрализованно- го водоснабжения, вода поверхностных и подземных источников централизованно- го хозяйственно-питьевого водоснабже- ния, вода централизованных систем горя- чего водоснабжения	Вода централизованных систем горячего водоснабжения	Вода питьевая расфасованная в емкости, вода питьевая централизованных систем водоснабжения, вода нецентрализованно- го водоснабжения, вода поверхностных и подземных источников централизованно- го хозяйственно-питьевого водоснабжения, вода централизованных систем горячего водоснабжения	Вода природная (поверхностная и подземная)	Вода природная (поверхностная и подземная)	Вода природная (поверхностная и под- земная), вода сточная (хозяйственно- бытовая, промышленная, ливневая), вода сточная очищенная
1	2	ГОСТ Р 57162-2016 (продолжение)	MI 2865-2004	MyK 4.1.1404-03	MYK 4.1.1430-03	MYK 4.1.747-99	MYK 4.3.2900-11	РД 52.24.403-07		РД 52.24.496-2018	ПНД Ф 14.1:2.206-04
	1		20.	21.	22.	23.	24.	. 25.≖		26.	27.

на 25 листах лист 6 (0,5-1000) мгО₂/дм³ (0,025-10,0) MI/ДМ³ (0,05-5,0) MT/IIM³ (1,0-12,0) ед.рН (4,0-10,0) ед.рН (1,0-1000) MI/ДМ³ (0,5-16,0) мг/дм³ (0,05-5,0) мг/дм (1,0-5000) мг/дм (1,0-14,0) ед.рН (0,1-100) Mr/дм³ (0,1-50) °Ж Биохимическое потребление ки-Водородный показатель (рН) слорода (БПК5, БПКполн) Взвешенные вещества («Остаточный хлор») Жесткость общая Активный хлор Кремний AIIAB Жиры Жиры Bop S 4 го водоснабжения, вода поверхностных и чего водоснабжения, вода плавательных Вода природная (поверхностная и подбытовая, промышленная, ливневая), вода вода питьевая централизованных систем водоснабжения, вода нецентрализованноподземных источников централизованнония, вода централизованных систем горябытовая, промышленная, ливневая), вода земная), вода сточная (хозяйственно-Вода питьевая расфасованная в емкости, го хозяйственно-питьевого водоснабжебассейнов, вода сточная (хозяйственного водоснабжения, вода поверхностных и Вода питьевая расфасованная в емкости, вода питьевая централизованных систем водоснабжения, вода нецентрализованноподземных источников централизованного хозяйственно-питьевого водоснабжения, вода централизованных систем горябытовая, промышленная, ливневая), вода Вода природная (поверхностная и подземная), вода сточная (хозяйственнобытовая, промышленная, ливневая), вода (хозяйственно-бытовая, Вода природная (поверхностная и под-Вода питьевая расфасованная в емкости, Вода природная (поверхностная и подземная), вода сточная (хозяйственновода питьевая централизованных систем водоснабжения, вода нецентрализованного водоснабжения, вода поверхностных и земная), вода сточная очищенная Вода плавательных бассейнов промышленная, ливневая чего водоснабжения сточная очищенная сточная очищенная сточная очищенная сточная очищенная Вода сточная ПНД Ф 14.1:2:4.158-2000 ПНД Ф 14.1:2:3:4.123-97 ПНД Ф 14.1:2:3:4.121-97 ПНД Ф 14.1:2:4.113-97 ПНД Ф 14.1:2:4.254-09 ПНД Ф 14.1:2:4.215-06 ПНД Ф 14.1:2:4.36-95 ПНД Ф 14.1:2:3.98-97 ПНД Ф 14.1:2.189-02 ПНД Ф 14.1.281-15 28. 31. 33. 37. 30. 32. 35. 34. 36. Лист 04/2022-151-00000-OBOC-TY 595 Изм. Кол.уч Лист №док Подп. Дата

Взам. Инв. №

Подп. и дата

на <u>25</u> листах лист <u>7</u>	L	(1,0-100) ЕМФ (по формазину)	(0,05-1000) Mr/дм ³	(0,02-50) MF/ДМ ³	(0,05-100) мг/дм³		(0,25-100) мгO ₂ /дм³	
	9	Мугность	Нефтепродукты	Нефтепродукты	нпав		Окисляемость перманганатная	
-	S		i	1.				1.
-	4				r		7 5	
	3 подземных источников централизованно-го хозяйственно-питьевого водоснабжения, вода централизованных систем горячего водоснабжения, вода сточная (хозяйственно-бытовая, промышленная, ливневая), вода сточная очипленная	Вода плавательных бассейнов, вода питьевая расфасованная в емкости, вода питьевая централизованных систем водоснабжения, вода нецентрализованного водостабжения, вода поверхностных и подземных источников централизованного хозяйственно-питьевого водоснабжения, вода централизованных систем горячего водоснабжения, вода природная (поверхностная и подземная)	Вода сточная (хозяйственно-бытовая, промышленная, ливневая)	Вода природная (поверхностная и под- земная), вода сточная очищенная	Вода природная (поверхностная и под- земная), вода сточная (хозяйственно- бытовая, промышленная, ливневая), вода сточная очищенная	Вода питьевая расфасованная в емкости, вода питьевая централизованных систем водоснабжения, вода нецентрализованного водоснабжения, вода поверхностных и	подземных источников централизованно- го хозяйственно-питьевого водоснабже- ния, вода централизованных систем горя- чего водоснабжения, вода плавательных бассейнов, вода природная (поверхност- ная и полземная)	
1 1 1	2 ПНД Ф 14.1:2:4.215-06 (продолжение)	ПНД Ф 14.1:2:4.213-05	ПНД Ф 14.1.272-2012	ПНД Ф 14.1:2:4.168-2000	ПНД Ф 14.1:2:4.256-09		ПНД Ф 14.1.2.4.154-99	
	1	38.	39.	40.	41.		42.	
-							Ř.	Š.

(0,05-100) мг/дм³ (в расчете на PO ₄)	(0,1-500) мг/дм³ (В расчете на РО ₄)	. (0,10-10) мг/дм³ (в расчете на РО ₄)	(0,1-100) мг/дм³ (в расчете на РО ₄)	$(0,10-10)$ мт/дм 3 (в расчете на ${ m PO}_4)$	(0,1-1500) Mr/µm³
3 Вода питьевая расфасованная в емкости, вода питьевая централизованных систем водоснабжения, вода нецентрализованното водоснабжения, вода поверхностных и подземных источников централизованното хозяйственно-питьевого водоснабжения, вода централизованных систем горячего водоснабжения, вода природная (поверхностная и подземная)	Вода сточная (хозяйственно-бытовая, промышленная, ливневая), вода сточная очищенная Вода питьевая расфасованная в емкости, вода питьевая централизованных систем волоснаймения в ла непределенная в менетрализованных систем	го водоснабжения, вода поверхностных и подземных источников централизованно-го хозяйственно-питьевого водоснабжения, вода централизованных систем горячего водоснабжения, вода природная (поверхностная и полземная)	Вода сточная (хозяйственно-бытовая, промышленная, ливневая), вода сточная очищенная	Вода питьевая расфасованная в емкости, вода питьевая централизованных систем водоснабжения, вода нецентрализованното водоснабжения, вода поверхностных и подземных источников централизованното хозяйственно-питьевого водоснабжения, вода пентрализованных систем горячего водоснабжения, вода природная (поверхностная и подземная)	Вода сточная (хозяйственно-бытовая, промышленная, ливневая), вода сточная
1 2		43. ПНД Ф 14.1:2:4.248-07			

на 25 листах лист 9 (0,002-10,0) MT/AM³ (0,1-10) мг $O_2/дм^3$ (0,002-0,2) MI/HM³ (0,002-1,0) мг/дм³ (10-10000) MT/IIM³ (50-10000) мг/дм³ Сероводород, сульфиды и гидросульфиды в расчете на сульфид-Растворенный кислород Сухой остаток Сульфат-ион 5 4 го водоснабжения, вода поверхностных и Вода питьевая расфасованная в емкости, чего водоснабжения, вода природная (повода питьевая централизованных систем водоснабжения, вода нецентрализованноподземных источников централизованного хозяйственно-питьевого водоснабжения, вода централизованных систем горяверхностная и подземная), вода сточная (хозяйственно-бытовая, промышленная, Вода питьевая расфасованная в емкости, вода питьевая централизованных систем водоснабжения, вода нецентрализованного водоснабжения, вода поверхностных и подземных источников централизованного хозяйственно-питьевого водоснабжения, вода централизованных систем горяго водоснабжения, вода поверхностных и Вода природная (поверхностная и подземная), вода сточная (хозяйственнобытовая, промышленная, ливневая), вода ния, вода централизованных систем горячего водоснабжения, вода природная Вода сточная (хозяйственно-бытовая, промышленная, ливневая), вода сточная Вода питьевая расфасованная в емкости, вода питьевая централизованных систем водоснабжения, вода нецентрализованноподземных источников централизованного хозяйственно-питьевого водоснабжеливневая), вода сточная очищенная (поверхностная и подземная) (поверхностная и подземная) чего водоснабжения сточная очищенная Вода природная очищенная ПНД Ф 14.1:2:3:4.123-97п.10.2 45. ПНД Ф 14.1:2:4.178-02 ПНД Ф 14.1:2.159-2000 ПНДФ 14.1:2:4.114-97 Лист 04/2022-151-00000-OBOC-TY 595 Кол.уч Лист №док Подп.

Взам. Инв. №

Подп. и дата

на 25 листах лист 10 (в расчете на фенол) (0,001-0,05) MF/AM³ (50-25000) мг/дм³ (0,002-1,0) мг/дм³ (0,002-0,5) MI/AM³ (10-30000) мг/дм³ (10-10000) мг/дм³ (0,01-3,0) MI/ДМ³ (4,0-2000) мг/дм³ $(0,1-5,0) \text{ MF/дм}^3$ Хром общий (Хром(6⁺)+Хром(3⁺)) Хром(3+) (расчетный метод) 9 Фенолы летучие Фенолы летучие Сухой остаток Фторид-ион Хлорид-ион Xpom(6)XIIK XIIK 4 го водоснабжения, вода поверхностных и промышленная, ливневая), вода сточная Вода питьевая расфасованная в емкости, вода питьевая централизованных систем подземных источников централизованновода питьевая централизованных систем водоснабжения, вода нецентрализованного водоснабжения, вода поверхностных и Вода природная (поверхностная и подбытовая, промышленная, ливневая), вода (хозяйственно-бытовая, водоснабжения, вода нецентрализованного хозяйственно-питьевого водоснабжения, вода централизованных систем горяпромышленная, ливневая), вода сточная Вода питьевая расфасованная в емкости, подземных источников централизованного хозяйственно-питьевого водоснабжения, вода централизованных систем горябассейнов (только для п.51), вода природная (поверхностная и подземная), вода чего водоснабжения, вода природная (по-(хозяйственно-бытовая, чего водоснабжения, вода плавательных сточная (хозяйственно-бытовая, промышземная), вода сточная (хозяйственноленная, ливневая), вода сточная очищен-(поверхностная и подземная) верхностная и подземная) сточная очищенная Вода сточная Вода природная Вода сточная очищенная ПНД Ф 14.1:2:3:4.179-2002 ПНД Ф 14.1:2:4.210-2005 ПНД Ф 14.1.2:4.114-97 ПНД Ф 14.1:2:4.111-97 ПНД Ф 14.1:2:3.100-97 ПНД Ф 14.1:2:4.52-96 ПНДФ 14.1:2.105-97 48. | IJB 1.04.04-91 «A» (продолжение) 49. 50. 53. 54. 52.

Лист

595

04/2022-151-00000-OBOC-TY

Взам. Инв. №

Подп. и дата

Инв. № подл.

Изм.

Кол.уч

Лист

№док

Подп.

на 25 листах лист 11 отсутствие-наличие (0,005-0,25) мг/дм³ (1-500) градус (1-500) MT/дм³ (1-200) MI/ДМ³ (1-100) MF/HM³ (1-30) cM (4,0-60) ⁰C (0-5) балл Окраска (цвет) Прозрачность Температура Цветность Цианиды Кальций Магний Запах промышленная, ливневая), вода сточная Вода природная (поверхностная и подбытовая, промышленная, ливневая), вода (хозяйственно-бытовая, промышленная, ливневая), вода сточная земная), вода сточная (хозяйственного водоснабжения, вода поверхностных и подземных источников централизованно-Вода природная (поверхностная и подбытовая, промышленная, ливневая), вода Вода питьевая расфасованная в емкости, го водоснабжения, вода поверхностных и верхностная и подземная), вода сточная Вода сточная (хозяйственно-бытовая, Вода питьевая расфасованная в емкости, вода питьевая централизованных систем водоснабжения, вода нецентрализованноземная), вода сточная (хозяйственновода питьевая централизованных систем водоснабжения, вода нецентрализованноподземных источников централизованного хозяйственно-питьевого водоснабжения, вода централизованных систем горячего водоснабжения, вода природная (по-(хозяйственно-бытовая, промышленная, го хозяйственно-питьевого водоснабжения, вода централизованных систем горяливневая), вода сточная очищенная чего водоснабжения сточная очищенная сточная очищенная Вода сточная очищенная очищенная ПНД Ф 14.1:2:4.207-04 ПНД Ф 14.1:2:4.137-98 ПНД Ф 14.1:2.56-96 ПНД Ф 12.16.1-10 57. 55. 56. 58. Лист 04/2022-151-00000-OBOC-TY 595 Кол.уч Лист №док Подп.

Взам. Инв. №

Подп. и дата

на <u>25 листах лист 12</u>	(1-100) мг/дм ³ (0,01-1,0) мг/дм ³	(1-200) мг/дм³	(1-1000) мг/дм³	(0,5-20,0) MIY/IM³	(0,2-20,0) мг/дм³	
-	Литий	Натрий	·x·	Стронций		
2						
	Вода питьевая расфасованная в емкости, вода питьевая централизованных систем водоснабжения, вода нецентрализованного водоснабжения, вода поверхностных и подземных источников централизованного хозяйственно-питьевого водоснабжения, вода централизованных систем горячего водоснабжения, вода природная (поверхностная и подземная), вода сточная (хозяйственно-бытовая, промышленная, ливневая), вода сточная	Вода питьевая расфасованная в емкости, вода питьевая централизованных систем водоснабжения, вода нецентрализованното водоснабжения, вода поверхностных и подземных источников централизованного хозяйственно-питьевого водоснабжения, вода централизованных систем горячего водоснабжения пия, вода централизованных систем горячего водоснабжения полиолизя (поверхностная и пол-	земная), вода сточная (хозяйственно- бытовая, промышленная, ливневая), вода сточная очищенная	Вода питьевая расфасованная в емкости, вода питьевая централизованных систем водоснабжения, вода нецентрализованното го водоснабжения, вода поверхностных и подземных источников централизованного хозяйственно-питьевого водоснабжения, вода централизованных систем горячего водоснабжения	Вода природная (поверхностная и под- земная), вода сточная (хозяйственно- бытовая, промышленная, ливневая), вода сточная очищенная	
2		59. ПНДФ 14.1:2:4.138-98				
		<i>V</i> 5		#	1000	

на <u>25 л</u> истах лист <u>13</u>	7	(0,1-15,0) MI/ДМ ³	(0,1-500) мг/дм³	(0,05-5,0) MI/ДМ ³	(0,2-20,0) мг/дм³	(0,2-5,0) MI/ДМ ³	(0,1-5,0) MIY/IDA ³	(0,01-20,0) мг/дм³	(0.1-10.0) ser/ma ³	white (co. 1. 10)
+	9	Железо		Кадмий	Кобальт		Марганец	3 % 10	Мет	
-	S	i								
-	4									
	8	расфасова пентрализ нептрализ нептрализ нептрализ нептрализ пих, вода п почников це по-питьевою ализованн нептра пих (поверхи поверхи), вода с я, промыш і очищенна	Вода сточная (хозяйственно-бытовая, промышленная, ливневая)	Вода сточная (хозяйственно-бытовая, промышленная, ливневая), вода сточная очищенная	Вода природная (поверхностная и подземная)	Вода питьевая расфасованная в емкости, вода питьевая централизованных систем водоснабжения, вода нецентрализованно-го водоснабжения, вода поверхностных и подземных источников централизованно-го хозяйственно-питьевого водоснабжения, вода централизованных систем горячего водоснабжения	Вода природная (поверхностная и под- земная), вода сточная (хозяйственно- бытовая, промышленная, ливневая), вода сточная очищенная	Вода питьевая расфасованная в емкости, вода питьевая централизованных систем водоснабжения, вода нецентрализованного водоснабжения, вода поверхностных и	подзамных источников централизованно- го хозяйственно-питьевого водоснабже- ния, вода централизованных систем горя- чего водоснабжения
	2						ПНД Ф 14.1:2:4,139-98		4 1	ì
-							.00	ing Fil		W.
-							9			8
H								1	÷	

на 25 листах лист 14 (0,0002-0,01) MI/ДМ³ (0,01-10,0) мг/дм³ (0,0001-10,0) MF/HM (0,001-10,0) мг/дм (0,2-20,0) мг/дм³ (0,04-5,0) MT/дм³ (0,1-100) MT/ДМ³ (0,2-1,0) MT/ДМ³ (0,2-500) мг/дм³ (0,2-1,0) MT/дм³ (0,005-5,0) мг/дм (0,001-100) MI/JIM (0,2-5,0) мг/дм³ 9 Бериллий Ванадий Никель Кобальт Свинец Кадмий Медь Цинк Мель 2 4 промышленная, ливневая), вода сточная водоснабжения, вода нецентрализованного водоснабжения, вода поверхностных и Вода природная (поверхностная и под-земная), вода сточная (хозяйственнобытовая, промышленная, ливневая), вода Вода сточная (хозяйственно-бытовая, Вода сточная (хозяйственно-бытовая, Вода питьевая расфасованная в емкости, вода питьевая централизованных систем бытовая, промышленная, ливневая), вода Вода природная (поверхностная и подземная), вода сточная (хозяйственно-(хозяйственно-бытовая, подземных источников централизованного хозяйственно-питьевого водоснабже-Вода природная (поверхностная и подния, вода централизованных систем горябытовая, промышленная, ливневая), вода земная), вода сточная (хозяйственно-(поверхностная и подземная) (поверхностная и подземная) (поверхностная и подземная) промышленная, ливневая) промышленная, ливневая) чего водоснабжения сточная очищенная сточная очищенная сточная очищенная Вода природная Вода природная Вода природная Вода сточная очищенная ПНД Ф 14.1:2:4.139-98 ПНД Ф 14.1:2:4.140-98 Лист 04/2022-151-00000-OBOC-TY 595 Лист Кол.уч №док Подп.

Взам. Инв. №

Подп. и дата

на 25 листах лист 15 (0,0025-0,01) MI/IM³ (0,0025-0,05) мг/дм³ (0,0002-0,03) MT/HM³ (0,0025-0,05) мг/дм³ (0,0025-0,05) мг/дм³ (0,001-5,0) мг/дм³ (0,001-0,1) Mr/дм³ (0,01-10,0) мг/дм³ (0,005-1,0) MIT/IM³ (0,005-0,25) мг/дм (0,005-0,5) мг/дм³ (0,001-5,0) мг/дм (0,005-20,0) мг/дм (0,005-0,5) мг/дм³ (0,002-0,2) мг/дм3 (0,02-0,5) MT/IM³ (0,02-10) MT/HM3 Тетрахлорметан (четыреххлори-Трихлорметан (хлороформ) 9 Формальдегид стый углерод) Этилбензол Молибден м-Ксилол п-Ксилол о-Ксилол Cepebo Свинец Сурьма Бензол Никель Толуол Стирол Хром 4 бытовая, промышленная, ливневая), вода Вода природная (поверхностная и подбытовая, промышленная, ливневая), вода го водоснабжения, вода поверхностных и го водоснабжения, вода поверхностных и земная), вода сточная (хозяйственно-бытовая, промышленная, ливневая), вода Вода природная (поверхностная и подпромышленная, ливневая), вода сточная Вода питьевая расфасованная в емкости, Вода сточная (хозяйственно-бытовая, промышленная, ливневая), вода сточная Вода природная (поверхностная и под-(хозяйственно-бытовая, земная), вода сточная (хозяйственновода питьевая централизованных систем подземных источников централизованного хозяйственно-питьевого водоснабжения, вода централизованных систем горяверхностная и подземная), вода сточная Вода питьевая расфасованная в емкости, вода питьевая централизованных систем подземных источников централизованноземная), вода сточная (хозяйственно водоснабжения, вода нецентрализованночего водоснабжения, вода природная (по-(хозяйственно-бытовая, промышленная, водоснабжения, вода нецентрализованного хозяйственно-питьевого водоснабжения, вода централизованных систем горяливневая), вода сточная очищенная чего водоснабжения сточная очищенная сточная очищенная сточная очищенная Вода сточная очищенная очищенная ПНД Ф 14.1:2:4.140-98 ПНД Ф 14.1:2:4.57-96 ПНД Ф 14.1:2:4.71-96 ПНД Ф 14.1:2:4.84-96 (продолжение) Взам. Инв. № 62. 63. Подп. и дата Инв. № подл.

Кол.уч

Лист

№док

Подп.

Дата

Лист

595

04/2022-151-00000-OBOC-TY

на 25 листах лист 16 (0,0005-0,5) мкг/дм³ (0,002-0,5) мкт/дм³ (0-106)KOE/100MII (0,05-500) мкг/дм³ (0,05-500) мкг/дм³ (0,05-100) мкт/дм³ (0,05-300) мкг/дм³ (0,05-5,0) мкг/дм³ (0-1000)KOE/1MJ (0-10)КОЕ/100мл (0-300)КОЕ/1мл (0-50)КОЕ/1мп Общее микробное число (ОМЧ) при 37°С Общие колиформные бактерии (OKB) Общие колиформные бактерии (OKB) 9 Бенз(а)пирен Прометрин Карбофос Метафос Симазин Атразин S 4 го водоснабжения, вода поверхностных и го водоснабжения, вода поверхностных и чего водоснабжения, вода природная (по-Вода питьевая расфасованная в емкости, Вода питьевая централизованных систем го водоснабжения, вода поверхностных и Вода питьевая расфасованная в емкости, вода питьевая централизованных систем подземных источников централизованного хозяйственно-питьевого водоснабже-Вода сточная (хозяйственно-бытовая, промышленная, ливневая), вода сточная водоснабжения, вода нецентрализованноподземных источников централизованного водоснабжения, вода поверхностных и подземных источников централизованного хозяйственно-питьевого водоснабжеводоснабжения, вода нецентрализованновода питьевая централизованных систем го хозяйственно-питьевого водоснабжеводоснабжения, вода нецентрализованноподземных источников централизованного хозяйственно-питьевого водоснабже-Вода питьевая централизованных систем ния, вода централизованных систем горя ния, вода централизованных систем горяния, вода централизованных систем горяводоснабжения, вода нецентрализованнония, вода централизованных систем горя-Вода питьевая расфасованная в емкости Вода плавательных бассейнов Вода плавательных бассейнов верхностная и подземная) чего водоснабжения чего водоснабжения чего водоснабжения очищенная MYK 4.2.1018-01 п.п.8.2, 8.3 ПНД Ф 14.1:2:4.186-02 ПНД Ф 14.1:2:4.205-04 МУК 4.2.1018-01 п.8.1 65. .99 67.

Лист

595

04/2022-151-00000-OBOC-TY

Взам. Инв. №

Подп. и дата

Инв. № подл.

Изм.

Кол.уч

Лист

№док

Подп.

на 25 листах лист 17 Отсутствие-наличие (0-106)КОЕ/100мл (0-100)БОЕ/100мл (0-10)КОЕ/100мл (0-10)КОЕ/100мл (0-10)КОЕ/100мл (0-10)БОЕ/100мл (0-10)КОЕ/20мл (0-100)КОЕ/1мл Термотолерантные колиформные бактерии (ТКБ) Общее микробное число (ОМЧ) Споры сульфитредуцирующих Общие колиформные бактерии Глюкозоположительные коли-Pseudomonas aeruginosa 9 формные бактерии клостридий Колифаги при 22°С (OKE) S 4 го водоснабжения, вода поверхностных и го водоснабжения, вода поверхностных и вода питьевая централизованных систем Вода питьевая расфасованная в емкости, вода питьевая централизованных систем Вода питьевая централизованных систем го водоснабжения, вода поверхностных и подземных источников централизованного хозяйственно-питьевого водоснабже-Вода питьевая расфасованная в емкости, водоснабжения, вода нецентрализованноводоснабжения, вода нецентрализованноводоснабжения, вода нецентрализованноподземных источников централизованного хозяйственно-питьевого водоснабжения, вода централизованных систем горяподземных источников централизованного хозяйственно-питьевого водоснабжения, вода централизованных систем горяния, вода централизованных систем горя-Вода питьевая расфасованная в емкости Вода плавательных бассейнов Вода плавательных бассейнов чего водоснабжения чего водоснабжения чего водоснабжения МУК 4.2.1018-01 п.п.8.2, 8.3 MYK 4.2.1018-01 n.8.5 МУК 4.2.1018-01 п.8.4 My 2.1.4.1184-03 MY 2.1.4.1184-03 MY 2.1.4.1184-03 (продолжение) Приложение 7 Приложение 8 Приложение 9

Лист

595

04/2022-151-00000-OBOC-TY

Взам. Инв. №

Подп. и дата

Инв. № подл.

Кол.уч

Изм.

Лист

№док

Подп.

на 25 листах лист 18 оказывает-не оказывает оказывает-не оказывает оказывает-не оказывает Отсутствие-наличие (0-1000) KOE/100мл (0-1000) EOE/100MJ (0-500) KOE/100мл (0-1000) КОЕ/1мл (0-100) КОЕ/20мл (0-100) БОЕ/100мл (0-106) КОЕ/100мл (0-106) КОЕ/100мл (0-106) КОЕ/100мл Токсичность острая водной вытяж-Гермотолерантные колиформные Токсичность острая с использоваки с использованием протококко-Термотолерантные колиформные нием зеленых протококковых вопользованием ракообразных даф-Общее микробное число (ОМЧ) (Scenedesmus quadricauda Breb.) (Scenedesmus quadricauda Breb.) Общие колиформные бактерии Общие колиформные бактерии (OKB) Споры сульфитредуцирующих Токсичность хроническая с ис-Pseudomonas aeruginosa (Daphnia magna Straus) бактерии (ТКБ) бактерии (ТКБ) вых водорослей Энтерококки клостридий Колифаги Колифаги при 37°С дорослей (OKE) Ė 3 4 Вода питьевая централизованных систем го водоснабжения, вода поверхностных и подземных источников централизованного хозяйственно-питьевого водоснабжечего водоснабжения, вода природная (пония, вода централизованных систем горя-Вода сточная (хозяйственно-бытовая, промышленная, ливневая), вода сточная Вода питьевая централизованных систем го водоснабжения, вода поверхностных и чего водоснабжения, вода природная (поводоснабжения, вода нецентрализованно водоснабжения, вода нецентрализованного хозяйственно-питьевого водоснабжения, вода централизованных систем горяподземных источников централизованно-Почвы, грунты, отходы производства (поверхностная и подземная) верхностная и подземная). верхностная и подземная) Вода сточная очищенная Вода природная потребления очищенная ция Pseudomonas Aeruginosa в Методические рекомендации. объектах окружающей среды Обнаружение и идентификасточных жидкостях) Приказ (пищевых продуктах, воде, ФР.1.39.2007.03222 п.8.2 MYK 4.2.1884-04 n.2.7 MYK 4.2.1884-04 n.2.9 Минздрава СССР от ФР.1.39.2007.03223 MYK 4.2.1884-04 MYK 4.2.1884-04 MYK 4.2.1884-04 МУ 2.1.5.800-99 Приложение 8 MY 2.1.5.800-99 Приложение 6 Приложение 1 Приложение 2 Приложение 5 24.05.1984 71. 72. 73. 69 70. 6 Лист 04/2022-151-00000-OBOC-TY 595

Взам. Инв. №

Подп. и дата

Инв. № подл.

Лист

№док

Подп.

Дата

Кол.уч

на 25 листах лист 19 оказывает-не оказывает оказывает-не оказывает (0,23-145) ммоль/100г (1,0-14,0) ед.рН (0.5-10.0) MM (0,1-20,0)% (0,1-100) % (10-95) % (0-100)% % (09-5,0) ки с использованием дафний Токсичность острая водной вытяжнием ракообразных дафний (Daph-Плотный остаток водной вытяжки Токсичность острая с использова-Водородный показатель (рН) вод-Гранулометрический (зерновой) Гидролигическая кислотность Фосфор (валовое содержание) Органическое вещество (Daphnia magna Straus) nia magna Straus) ной вытяжки Отбор проб Отбор проб Отбор проб Отбор проб Отбор проб Общий азот COCTAB 5 4 Почвы, грунты, отходы производства и го водоснабжения, вода поверхностных и го водоснабжения, вода поверхностных и Вода питьевая расфасованная в емкости, вода питьевая централизованных систем подземных источников централизованнония, вода централизованных систем горячего водоснабжения, вода плавательных бассейнов, вода природная (поверхност-Вода лабораторная для анализа, вода дис-Вода питьевая централизованных систем подземных источников централизованного хозяйственно-питьевого водоснабжеливневая), вода сточная водоснабжения, вода нецентрализованного хозяйственно-питьевого водоснабженая и подземная), вода сточная (хозяйственно-бытовая, промышленная, ливневодоснабжения, вода нецентрализованно-(хозяйственно-бытовая, ния, вода централизованных систем горявая), вода сточная очищенная Вода сточная очищенная чего водоснабжения Вода сточная промышленная, Почвы, грунты тиллированная потребления очищенная ФР.1.39.2007.03222 п.8.1 ΓΟCT 12536-2014 п.4.2 ГОСТ 26261-84 п.4.4 **FOCT P 56237-2014 FOCT P 58596-2019** ПНД Ф 12.15.1-08 74. FOCT 31861-2012 **FOCT 31942-2012** TOCT 26423-85 FOCT 26213-91 81. | FOCT 26212-91 FOCT 3885-73 .92 75. 77. 78. 80. 83. .61 82. 84.

04/2022-151-00000-OBOC-TY

Лист

595

Взам. Инв. №

Подп. и дата

Инв. № подл.

Кол.уч

Изм.

Лист

№док

Подп.

452751, Республика Башкортостан, город Туймазы, улица Лесовода Морозова, дом 1, офис 1 452684, Республика Башкоргостан, город Нефтекамск, улица Социалистическая, дом 10 452455, Республика Башкортостан, город Бирск, улица Калинина, дом18 наименование органа инспекции 4 1.5.6.4.3.5.8 Взам. Инв. № Подп. и дата Инв. № подл. Лист 04/2022-151-00000-OBOC-TY Кол.уч Лист Подп. Изм. №док Дата

ОБЛАСТЬ АККРЕДИТАЦИИ ОРГАНА ИНСПЕКЦИИ

«Центр гигиены и эпидемиологии в Республике Башкортостан» Федеральное бюджетное учреждение здравоохранения

Уникальный номер записи об аккредитации в реестре аккредитованных лиц №RA.RU.710014

- 450054, Республика Башкортостан, город Уфа, улица Шафиева, дом 7
- 453500, Республика Башкортостан, город Белорецк, улица Пушкина, дом 61/1
- 453300, Республика Башкортостан, город Кумертау, улица Гафури, дом 29
- 453107, Республика Башкоргостан, город Стерлитамак, улица Революционная, дом 2а
- 450015, Республика Башкортостан, город Уфа, улица Карла Маркса, дом 69 (архив Органа инспекции)

адреса мест осуществления деятельности

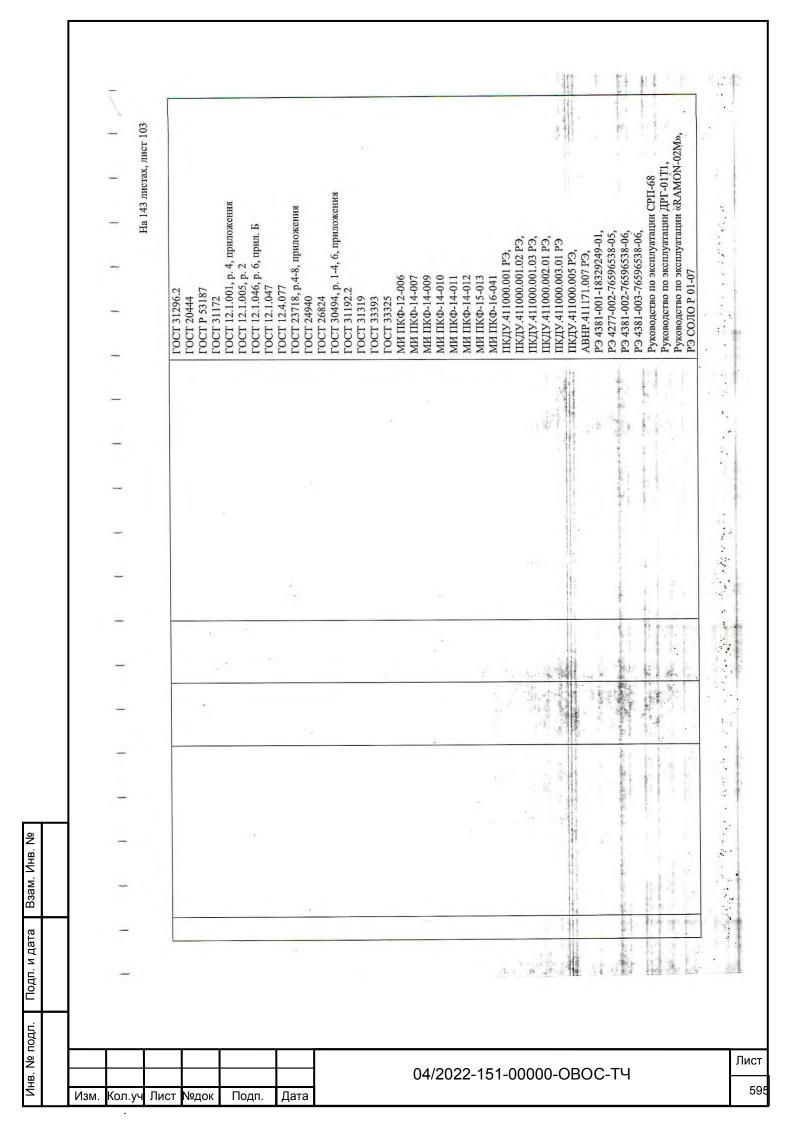
. =	N Наименование объекта п/п	Код ОК	Код ТН ВЭД ТС	Вид или тип инспекции и документы, устанавливающие требования к объектам инспекции	ы,	Документы, устанавливающие методы инспекции, документы в области стандартизации
	1 2	3	4	5		9
				Орган инспекции тип «А»		
		1.	450054, Pecn	450054, Республика Башкоргостан, город Уфа, улица Шафиева, дом 7	Іафиева,	7 MOJ
_	Качество и безопасность	01.11	0101-0106	0101-0106 Санитарно-эпидемиологическая экспертиза	38	TP TC 021/2011 (ст. 7-9, ст. 39, Приложение 1-10);
	пищевой (продовольственной)	01.12	0201-2010	TP TC 015/2011		TP TC 022/2011 (ст. 2, ст. 4, ст. 5, Приложение 1-5);
	продукции и сырья.	01.13	0301-0308	TP TC 021/2011	*	TP TC 023/2011 (ст 5-6, Приложение 1);
411	Пищевые продукты, пищевые	01:14	-0401-0410	TP TC 022/2011		TP TC 024/2011 (глава 2, ст. 5, Глава 4, Приложение
	добавки, продовольственное	01.15	0501-0511	TP TC 023/2011		1-5);
	сырье, а также контактирующие с	01.16	0601-0604	TP TC 024/2011		TP TC 027/2012 (статьи 6,11, Приложения 1-3);
	ними материалы и изделия в	01.19	0701-0714	TP TC 027/2012		TP TC 029/2012 (статья 9, Приложение 1-29);
1	процессе их производства,	01.21-01.28 0801-0814	0801-0814	-TP TC 029/2012	- 1	TP TC 033/2013 (раздел V 14-18, раздел X п. 48-59,
	хранения, транспортировки и	01.30	0901-0910	TP TC 033/2013		разделы XI, XII);
-	реализации, в том числе	01,41-01.44 -1001-1008	-1001-1008	TP TC 034/2013	7	ТР ТС 034/2013 (раздел I, V, XI, приложение 1-5);
1	Мясо и мясопродукты; Птица,	01.45	1101-1109	TP TC 035/2014		Федеральный закон от 02.01.2000 № 29-ФЗ;
	яйцо и продукты их переработки.	-01.46	1201-1214	TP EA3C 040/2016		Федеральный закон от 30.03.1999 № 52-ФЗ (ст. 2, 15,
	Молоко и молочные продукты.	- 01.47	1301-1302	TP EA3C 044/2017	-	17, 41, 43);
7	Рыба, нерыбные объекты	01.49	1501-1522	TP EA3C 047/2018		Приказ Роспотребнадзора от 19.07.2007 № 224

*

	CП 52.13330 ГОСТ 30494 TOCT 20444 MV 3.2.1756-03 MV 2.6.1.1868-04 MV 4.3.2320-08 MV 2.6.1.2398-08 MV 3.1.2.412-08 (разделы 1-11, приложение 2,4) MV 3.1.3.114/1-13 MV 4.3.221-14 MP 4.3.3221-14 MP 4.3.5.2.2487-09 MV 3.5.3.2949-11 (раздел 7, прил. 1, прил. 3)	му му 10 МР МЗ РСФСР № 17 РС-4/5735 от 17.08.1990 МУ от 22.10.1969 № 824-69 МУ 3.2.1756-03 ГОСТ 8285-91 раздел 2 МУ 4.2.2723-10 раздел 9 МУ 4.2.2723-10 раздел 4 ГОСТ 18321 раздел 4 ГОСТ 1831 раздел 4 ГОСТ 33303 раздел 4, 5, 6, 7, 8 ГОСТ 33303 раздел 4 ГОСТ 33307 раздел 4 ГОСТ 951447 раздел 5 ГОСТ 951447 раздел 4 ГОСТ 951467 раздел 4 ГОСТ 951467 раздел 4 ГОСТ 951467 раздел 4 ГОСТ 951467 раздел 2 ГОСТ 95361 раздел 2 ГОСТ 1892 раздел 2 ГОСТ 26809.1 раздел 4 ГОСТ 26809.1 раздел 5 ГОСТ 95361 раздел 5 ГОСТ 95361 раздел 5 ГОСТ 95361 раздел 5 ГОСТ 95361 раздел 5 ГОСТ 9600 2 раздел 5 ГОСТ 9600 2 раздел 5 ГОСТ 1928 раздел 5	
-	CII 52.13330 FOCT 30494 FOCT 20444 MV 3.2.1756-03 MV 2.6.1.1868-04 MV 2.6.1.2398-08 MV 2.6.1.2398-08 MV 3.1.2.2412-08 MV 3.1.2.2412-08 MV 3.1.3.114/1-13 MV 4.3.2321-14 MPK 4.3.212-20 P 3.5.2.2487-09 MV 3.5.22487-09	МР МЗ РСФСР № 171 МУ от 22.10.1969 № 8 МУ от 22.10.1969 № 8 МУ 3.2.1756-03 ГОСТ МУ 4.2.2723-10 разде МУ 4.2.2723-10 разде МУ 4.2.2723-10 разде МУ 4.2.2723-10 разде ГОСТ 18321 раздел 4 ГОСТ 33303 раздел 4 ГОСТ 33303 раздел 4 ГОСТ 33303 раздел 4 ГОСТ 180 13307 раздел 5 ГОСТ 7269 раздел 5 ГОСТ 1928 раздел 5 ГОСТ 9 54349 раздел 2, 3 ГОСТ 9 54349 раздел 2, 3 ГОСТ 1928 раздел 2, 3 ГОСТ 1928 раздел 2, 3 ГОСТ 1928 раздел 2, 3 ГОСТ 26809.1 раздел 4 ГОСТ 16809.2 раздел 2, 3 ГОСТ 26809.1 раздел 2, 3 ГОСТ 26809.1 раздел 2, 3 ГОСТ 7 55361 раздел 2, 7 ГОСТ 7 55361 раздел 1 ГОСТ 7 55063 раздел 2, 3 ГОСТ 7 55063 раздел 3, 7 ГОСТ 7 5007 раздел 1 ГОСТ 3 11339 раздел 5	
	Федерации от 28.01.2006 № 47 Постановление Правительства РФ от 03.03.2018 №222 СП 2.1.3678-20 СанПиН 2.1.3684-21 СанПиН 1.2.3685-21 СанПиН 1.2.3685-21 СанПиН 2.1.8/2.2.4.1190-03 СанПиН 2.1.8/2.2.4.1190-03 СанПиН 2.1.8/2.2.4.1383-03 СанПиН 2.1.8/2.2.4.1383-03 СанПиН 2.6.1.2523-09 (НРБ-99\2009) СанПиН 2.6.1.2523-09 (НРБ-99\2009) Свод правил СП 54.13330	шткортостан, город Нефтекамск, улица Социалистическая, дом 10 Отбор для исследований проб и образцов МР МЗ РСФС продукции МР МЗ РСФС МР МЗ РСФС му от 22.10.1969 № 824-69 МУ от 22.10.1 му от 22.10.1969 № 824-69 МУ 4.2.2723- му 4.2.273-10 МУ 4.2.273- му 4.2.273-10 МУ 4.2.2661- му 4.2.273-10 МУ 4.2.2661- му 4.2.2661-10 ГОСТ 18321 гОСТ 18321 ГОСТ 33303 гОСТ 7269 ГОСТ 7269 раз гост 130-13 гОСТ 7269 ГОСТ 1860-13 гОСТ 7269 ГОСТ 1867-1 гОСТ 33303 ГОСТ 1867-1 гОСТ 33303 ГОСТ 95447 гОСТ 3447 ГОСТ 95436 гОСТ 95449 ГОСТ 95436 гОСТ 95449 ГОСТ 95436 гОСТ 9792 ГОСТ 13928 гОСТ 9782 ГОСТ 13928 гОСТ 13928 ГОСТ 13928 гОСТ 26809.1 ГОСТ 95404 гОСТ 95361 ГОСТ 95506 гОСТ 95362 ГОСТ 95506	
-		452684, Pecny6nmea Bi	4
~		5. 452684, P. 01.11 01.12 01.13 01.14 01.15 01.15 01.16 01.19 01.28 01.28 01.28 01.44 01.45 01.4	
		Качество и безопасность пищевой (продовольственной) продукции. Пищевые продукты, пищевые добавки, продовольственное сырье, а также контажтирующие с ними материалы и изделия в процессе их проязводства, хранения, транспортировки и реализации, в том числе Мясо и мясопродукты; Птица, яйцо и продукты их переработки. Молоко и молочные продукты. Рыба, нерыбные объекты промысла и продукты, вырабатываемые из них. Зерно (семена), мукомольнокрупяные и хлебобулочные изделия. Плодоовощная продукция. Грибы. Масличное сырье и жировые продукты. Грибы. Налитки.	
Ē	, ,		

1	., лист 95	809-2-2014
J J J	На 143 листах, лист 95	ГОСТ 8756.0 раздел 2, 3 ГОСТ 26313 раздел 6 ГОСТ 26312.1 раздел 5 ГОСТ 26312.1 раздел 2 ГОСТ 21964 раздел 2 ГОСТ 31964 раздел 2 ГОСТ 31964 раздел 2 ГОСТ 31749 раздел 5 ГОСТ 31749 раздел 5 ГОСТ 31749 раздел 5 ГОСТ 32189 раздел 3 ГОСТ 31762 раздел 3 ГОСТ 17584 раздел 4 ГОСТ 31762 раздел 4 ГОСТ 31762 раздел 5 ГОСТ 32080 раздел 5 ГОСТ 32035 раздел 4 ГОСТ 32035 раздел 5 ГОСТ 32035 раздел 5 ГОСТ 32035 раздел 5 ГОСТ 32035 раздел 5 ГОСТ 32036 раздел 5 ГОСТ 32012-2014 раздел 6 ГОСТ 28012-2014 раздел 6) ГОСТ 28142 (раздел 4) ГОСТ 28666.1(раздел 4) ГОСТ 28245 (раздел 4) ГОСТ 28245 (раздел 5) ГОСТ 2629-98 (раздел 5) ГОСТ 2629-98 (раздел 1) ГОСТ 26235.0(раздел 1) ГОСТ 26235.0(раздел 5) ГОСТ 26809-12014 (раздел 5)
1		
-		FOCT P NCO 707
		3201-3215
		Пищевые, крахмалы, патока и продукты их переработки, позд желатин, дрожжи, соль поваренная, полуфабрикаты, кулинарные изделия). 10.42 Биологические добавки к пище. 10.51 питания. 10.52 питания. 10.52 питания. 10.71 Вода минеральная. 10.71 Вода минеральная. 10.71 Вода минеральная. 10.71 вода иптьевая, расфасованная в 10.89 п. 10.92
	-	
		04/2022-151-00000-OBOC-TY

	ГОСТ 1936 (Раздел 2 п.2.3) ГОСТ 32170 (раздел 4) ГОСТ Р 52062(раздел 6) ГОСТ 12569(раздел 4) ГОСТ 9225(раздел 1) ГОСТ 9225 (раздел 1)	СТЬ 1036-97 (раздел 5) ГОСТ 32097 (раздел 6) ГОСТ 26312.1(раздел 2) ГОСТ 31467 (раздел 4) ГОСТ 13341(раздел 2)	ГОСТ 1750(раздел 2) ГОСТ 6828(раздел 3 п.3.1) ГОСТ 6830(раздел 3 п.3.1) ГОСТ 13928(раздел 2)	ГОСТ 3622(раздел 2) ГОСТ Р 55361(раздел 5) ГОСТ Р 55063(раздел 5)	1 OCT 33957(раздел 5) ГОСТ 4288(раздел 2,п.2.1) ГОСТ 9792(раздел 2) ГОСТ 31720 (раздел 4)	ГОСТ 31413(раздел 5) ГОСТ Р 55326(раздел 5) ГОСТ Р ИСО 7516(раздел 3)	ГОСТ ISO 4072(раздел 4) ГОСТ ISO 6670(раздел 4) ГОСТ ISO 2522(раздел 3) ГОСТ ISO 2522(раздел 3)	TOCT 127/00(paster 2) FOCT 31730(paster 5) FOCT 23268.0 (paster 2) FOCT 6687 0 money 2	ГОСТ 12569 раздел 6,7 ГОСТ 32190 раздел 6	ГОСТ 10852 раздел 2 ГОСТ 28876 раздел 6,7
ГОСТ 13586.3(раздел 5) ГОСТ 32124(раздел 8) ГОСТ 26313(раздел 6) ГОСТ 1750(раздел 2) ГОСТ 7194 раздел 2) ГОСТ 7164 раздел 2)	1 ОСТ 1936 (Раздел 2 п.2.3) ГОСТ 32170 (раздел 4) ГОСТ Р 52062(раздел 6) ГОСТ 12569(раздел 4) ГОСТ 9225(раздел 1) ГОСТ 31814 (раздел 1)	СТБ 1036-97 (раздел 5) ГОСТ 32097 (раздел 6) ГОСТ 26312.1(раздел 2) ГОСТ 31467 (раздел 4) ГОСТ 13341(раздел 2)	ГОСТ 1750(раздел 2) ГОСТ 6828(раздел 3 п.3.1) ГОСТ 6830(раздел 3 п.3.1) ГОСТ 13928(раздел 2)	ГОСТ 3622(раздел 2) ГОСТ Р 55361(раздел 5) ГОСТ Р 55063(раздел 5)	1 OCT 33957(раздел 5) ГОСТ 4288(раздел 2,п.2.1) ГОСТ 9792(раздел 2) ГОСТ 31720 (раздел 4)	ГОСТ 31413(раздел 5) ГОСТ Р 55326(раздел 5) ГОСТ Р ИСО 7516(раздел 3)	ГОСТ ISO 4072(раздел 4) ГОСТ ISO 6670(раздел 4) ГОСТ ISO 2292(раздел 3)	TOCT 127.60(pashen 2) FOCT 31730(pashen 5) FOCT 23268,0 (pashen 2) FOCT 6587 0, units 2	TOCT 12569 paagen 6,7 FOCT 32190 paagen 6	ГОСТ 10852 раздел 2 ГОСТ 28876 раздел 6,7
ГОСТ 13586.3(раздел 5) ГОСТ 32124(раздел 8) ГОСТ 26313(раздел 6) ГОСТ 1750(раздел 2) ГОСТ 7194 раздел 2) ГОСТ 7164 раздел 2)	ТОСТ 1936 (Раздел 2 п.2.3)	СТБ 1036-97 (раздел 5) ГОСТ 32097 (раздел 6) ГОСТ 26312.1(раздел 2) ГОСТ 31467 (раздел 4) ГОСТ 13341 (раздел 2)	ГОСТ 1750(раздел 2) ГОСТ 6828(раздел 3 п.3.1) ГОСТ 6830(раздел 3 п.3.1) ГОСТ 13928(раздел 2)	ГОСТ 3622(раздел 2) ГОСТ Р 55361(раздел 5) ГОСТ Р 55063(раздел 5)	1 OCT 33957(раздел 5) ГОСТ 4288(раздел 2,п.2.1) ГОСТ 9792(раздел 2) ГОСТ 31720 (раздел 4)	ГОСТ 31413(раздел 5) ГОСТ Р 55326(раздел 5) ГОСТ Р ИСО 7516(раздел 3)	ГОСТ ISO 4072(раздел 4) ГОСТ ISO 6670(раздел 4) ГОСТ ISO 2292(раздел 3)	1 OCT 12700(pasten 2)	ГОСТ 12569 раздел 6,7 ГОСТ 32190 раздел 6	ГОСТ 28876 раздел 6,7
	1 ОСТ 1936 (Разде) ГОСТ 32170 (разде) ГОСТ 92062(разде) ГОСТ 12569(разде) ГОСТ 9225(раздел) ГОСТ 31814 (раздел)	СТБ 1036-97 (разд ГОСТ 32097 (разд ГОСТ 26312.1(разд ГОСТ 31467 (разде ГОСТ 13341 (разде	ГОСТ 1750(раздел ГОСТ 6828(раздел ГОСТ 6830(раздел ГОСТ 6830(раздел ГОСТ 13928(раздел ГОСТ 13928(раздел ГОСТ 13928(раздел ГОСТ 13928(раздел ГОСТ 13928(раздел ГОСТ 13928)	TOCT 3622(pasgen TOCT P 55361(pasy TOCT P 55063(pasy	1 OCT 33957(разде, ГОСТ 4288(раздел ГОСТ 9792(раздел ГОСТ 31720 (разде	ГОСТ 31413(разде ГОСТ Р 55326(разде ГОСТ Р ИСО 7516	TOCT ISO 4072(pa TOCT ISO 6670(pa FOCT ISO 6292(pa	TOCT 12/00(paster) TOCT 31730(paster) TOCT 23268.0 (paster) TOCT 6687.0 memory	FOCT 12569 pasque FOCT 32190 pasque	ГОСТ 10852 раздел ГОСТ 28876 разде
	10CT 19 10CT 32 10CT P. 10CT P. 10CT 12 10CT 92 10CT 93	C15 1036 100T 32 100T 26 100T 31 100T 31	TOCT 17 FOCT 68 FOCT 68 FOCT 13	TOCT PS FOCT PS	10CI 33 10CI 42 10CI 97 10CI 31	FOCT 31 FOCT P.	TOCT ISO TOCT ISO TOCT ISO	10CT 12 10CT 31 10CT 23	TOCT 12 TOCT 32	FOCT 10
12014 , 22014 , 3							1			
12014, 22014,		-					Ť	b		
.12014 , .22014 ,									1	
.12014, 22014,							4	1	1	
1. 2. 6		3					516			
F 26809. F 31413 F 13586. F 32124 F 26313	F 1750 F 7194 F 26671 F 1936 F 32170 T P 52062	F 12569 F 9225 F 31814 1036-97 F 32097	Γ 26312.1 Γ 31467 Γ 13341 Γ 1750	F 6828 F 6830 F 13928	TP 55361 TP 55063 T33957	7 4288 7 9792 7 31720	FOCT 31413 FOCT P 55326 FOCT P MCO 7516	FOCT ISO 6670 FOCT ISO 2292 FOCT 12786	731730	FOCT 6687.0
1001 1001 1001 1001	201 2001 2001 2001 2001 2001	2000	2001 2001 2001 2001	5000	2000	201 201 201	5000	5555	100	
2	*					i i				
						- 4				
										1
						. 1	17 17 14			- 1
()			ī		u fac					
								χ' . Kà		
								1		
									*	Į.
				04/	04/2022-	04/2022-151-00	04/2022-151-00000-C	04/2022-151-00000-OBOC	04/2022-151-00000-OBOC-TY	04/2022-151-00000-OBOC-TY


-	На 143 листах, лист 97	ГОСТ 33770 раздел 3 ГОСТ 7702.2.0 раздел 9 ГОСТ 1702.2.0 раздел 9 ГОСТ 19792 раздел 7 ГОСТ 19792 раздел 7 ГОСТ 19792 раздел 7 ГОСТ 19792 раздел 7 ГОСТ 13979.0 раздел 5 ГОСТ 13979.0 раздел 5 ГОСТ 26668 раздел 5 ГОСТ 34129 раздел 5 ГОСТ 34129 раздел 5 ГОСТ 34110 раздел 6 ГОСТ 34110 раздел 6 ГОСТ 34110 раздел 5 ГОСТ 31814 раздел 3 Минторга СССР от 11.11.1991 № 1-40/3805) раздел 1 ГОСТ 31814 раздел 3,4 ГОСТ 31904 раздел 3 МУСТ 2.3.1917-04 приложение 1 МУК 42.3016-12 раздел 3 МУ 2.3.2.1917-04 приложение 1 МУК 2.6.1.1194-03 раздел 4 МУ от 04.07.1989 №5048-89 разд 1.1, 1.2, 1.3	
_	На 143 лис	ТОСТ 33770 раздел 3 ГОСТ 7702.2.0 раздел 9 ГОСТ 19702 раздел 5,6 ГОСТ 19792 раздел 7 ГОСТ 19792 раздел 7 ГОСТ 19792 раздел 5 ГОСТ 19792 раздел 5 ГОСТ 19792 раздел 5 ГОСТ 26668 раздел 2,3 ГОСТ 34120 раздел 5 ГОСТ 34120 раздел 5 ГОСТ 34110 раздел 6 ГОСТ 7 58340 раздел 5 ГОСТ 3841 раздел 8 Методические указания Минздрава СССР от 23.11.1991 № 1-40/3805) раз ГОСТ 31814 раздел 3,4 ГОСТ 31904 раздел 5 ГОСТ 31904 раздел 5 ГОСТ 31904 раздел 5 МИ СТ 32.2.1917-04 приложение 1 МУ 2.3.2.1917-04 приложение 1 МУ ОТ 04.07.1989 №5048-89 разд 1.1, 1.2, 1.3	ел 3 эл 6 эжение А, Г
-		ТОСТ 33770 раздел 3 ГОСТ 7702.2.0 раздел 9 ГОСТ 19792 раздел 5,6 ГОСТ 19792 раздел 7 ГОСТ 34125 раздел 7 ГОСТ 13979.0 раздел 5 ГОСТ 13979.0 раздел 5 ГОСТ 24129 раздел 5 ГОСТ 24129 раздел 5 ГОСТ 34120 раздел 5 ГОСТ 3410 раздел 5 ГОСТ 31191 № 122-5/72 (Методи Минторга СССР от 11.11.1991) ГОСТ 31904 раздел 5 ГОСТ 31904 раздел 3 МУ 2.3.2.1917-04 приложение 1 МУК 2.6.1.194-03 раздел 4 МУ от 04.07.1989 №5048-89 раз	ГОСТ 29188.0, раздел 4 ГОСТ 20566, раздел 7 ГОСТ 8844, раздел 2 ГОСТ 13587, раздел 2 ГОСТ 16218.0, раздел 2 ГОСТ 26666.0, раздел 7 ГОСТ 2517, раздел 4 ГОСТ 2517, раздел 6 ГОСТ 51068 раздел 5 ГОСТ 9289 п. 6 ГОСТ 19917 раздел 6 ГОСТ 19917 раздел 6 ГОСТ 19917 раздел 6 ГОСТ 143.1,485-03 раздел 6 МУ 6026В-91, раздел 6 МУ 41./4.3.1485-03 раздел 6 МУ 41./4.3.2038-05, раздел 6 МУ 41./4.3.1485-03 раздел 6
_		ТОСТ 33770 раздел 3 ГОСТ 7702.2.0 раздел 9 ГОСТ 19702 раздел 5,6 ГОСТ 19792 раздел 5,6 ГОСТ 34125 раздел 5 ГОСТ 34125 раздел 5 ГОСТ 34129 раздел 2,3 ГОСТ 34129 раздел 5 ГОСТ 34129 раздел 5 ГОСТ 34129 раздел 5 ГОСТ 34110 раздел 6 ГОСТ 73410 раздел 6 ГОСТ 73410 раздел 5 ГОСТ 7311 1991 № 122-5/72 (Минторга СССР от 11.11 ГОСТ 31814 раздел 3,4 ГОСТ 31814 раздел 5 ГОСТ 31814 раздел 3 ГОСТ	ГОСТ 29188.0, раздел 4 ГОСТ 20566, раздел 7 ГОСТ 8844, раздел 2 ГОСТ 13587, раздел 2 ГОСТ 16218.0, раздел 2 ГОСТ 16218.0, раздел 2 ГОСТ 2616, раздел 4 ГОСТ 31677, раздел 4 ГОСТ 30255, раздел 4 ГОСТ 30255, раздел 4 ГОСТ 51068 раздел 5 ГОСТ 1908 раздел 5 ГОСТ 1908 раздел 5 ГОСТ 16371 раздел 6
-		100 100	00000000000000000000000000000000000000
-			элов
-		ГОСТ 32190 ГОСТ 10852 ГОСТ 28876 ГОСТ 33770 ГОСТ 31654, ГОСТ 31654, ГОСТ 34125 ГОСТ 19792 ГОСТ 34125 ГОСТ 34129 ГОСТ 34124 ГОСТ 34129 ГОСТ 341	родукции ОСТ 22188.0, ОСТ 22188.0, ОСТ 22188.0, ОСТ 13587, ОСТ 13587, ОСТ 16218.0, ОСТ 3666.0, ОСТ 31677, ОСТ 3645, ОСТ 30255, ОСТ 51068 ОСТ 9289 ОСТ 16371 ОСТ 16371 ОСТ 19917 IV 60268-91, IVK 4.1/4.3.1485-03
=		вания Мин 1.11.1.199	ований пр
		ГОСТ 32190 ГОСТ 10852 ГОСТ 28876 ГОСТ 33770 ГОСТ 31654, ГОСТ 31654, ГОСТ 31654, ГОСТ 19792 ГОСТ 34125 ГОСТ 34129 ГОСТ 34129 ГОСТ 34110 Миторга СССР от 11.11.19 ГОСТ 31814 ГОСТ	родукции ОСТ 29188.0, ОСТ 29188.0, ОСТ 29188.0, ОСТ 20566, ОСТ 13587, ОСТ 13287, ОСТ 16218.0, ОСТ 2666.0, ОСТ 2517, ОСТ 30255, ОСТ 16371
		ГОСТ 32190 ГОСТ 10852 ГОСТ 28876 ГОСТ 33770 ГОСТ 31654, ГОСТ 19792 ГОСТ 13792 ГОСТ 13792 ГОСТ 13792 ГОСТ 34129 ГОСТ 3412	Отбор для исс продукции ГОСТ 29188.0, ГОСТ 20566, ГОСТ 8844, ГОСТ 13837, ГОСТ 1666.0, ГОСТ 2617, ГОСТ 2517, ГОСТ 2517, ГОСТ 2517, ГОСТ 30255, ГОСТ 30255, ГОСТ 9289 ГОСТ 19371 ГОСТ 19371
_			1401-1404 2502-2530 2601-2621 2701-2716 2801-2853 2901-2942 3001-3105 3101-3105 3201-3115 3201-3215 3301-3307 3401-3407 3501-3507 3501-3507 3601-3607 3701-3707 3401-3407 3401-3407 3401-3507 3401-3507 3401-3507 3401-3507
-			3.20 3.26 3.96 4.14 4-20 5.12 7.12 7.12 8.14 8.14
-			
~			твенная) рда за детьми е, соски- дда, столовые арно- а галантерейі зубные и десен); гей и подрост я из текстиль ки и меха, ажные и гото ильные изделі материалы и тирующие с кцией;
_			ая укл. па дели па укл. па ук
-			Непищевая (иепродово продукция: Изделия для Изделия для пустышки, пробры, са гитеническей для изделия для Игрушки; Одежда, изделия три штучные тея Оборудован изделия, кон пищевой про
-			.2
-			30 - 41-51

38-05,	ГОСТ 29104.0, раздел 2 ГОСТ 32546, раздел 4 ГОСТ 32077, раздел 4 ГОСТ 32077, раздел 4 ГОСТ 938.0, раздел 2 ГОСТ 34446, раздел 4 МР 1.2.0134-18, раздел 4	ГОСТ 32675, раздел 3 ГОСТ 9980.2, раздел 6 ГОСТ 22046, раздел 6									1000年間	7		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									4		The college			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									- Jii		F-1			
1.3.2038-05,									1		1	No.		
13.2038-05,									i i		į.	1		
13.2	0,	.83		=	•0						1	1		12,
ly 4.1./4	MY 2.1.674-97 FOCT 30108 FOCT 29104.0, FOCT 32546, FOCT 32077, FOCT 32077, FOCT 32077,	OCT 34446, AP 1.2.0134-18 OCT 32675, OCT 9980.2,	OCT 22046		Ī	 					1.			
	ZHHHHH	нинн	5501-5516 F 5601-5609 5701-5705 5801-5811	5901-5911 6001-6006 6101-6117	6201-6217 6301-3610 6401-6406	6501-6507 6601-6603 6701-6704	6801-6815 6901-6914	7101-7020 7101-7118 7201-7229	7401-7419 7501-7508	7601-7616 7801-7806	7901-7907 8001-8007	8101-8113 8201-8215	8301-8311 8401-8487 8501-8548	
	20.30	22.23	23.20 23.32 23.44	23.52	24.20	The Decide Au	25.12	05.	25.71-25.73 740 25.71-25.73 740 25.91-25.94 750	26.12	*	26.52		
20.16	100 05 100010 1000 07	22.19 22.21- 22.29 23.11-		23.51	23.91 23.99	10.000	25.11	25.29-22	25.71 25.71 25.91	25.99	61.	-	26.60	
. Обувь и кожгалантерейные	изделия; Коляски детские и велосипеды; Издательская книжная и журнальная продукция, школьно- письменные принадлежности; Парфюмерно-косметическая продукция;	Средства гигиены полости рта; Средства личной гигиены; Продукция легкой промышленности;	Материалы, реагенты, оборудование, используемое для водоочистки и водоподготовки; Попимение и	толимерсидержащие строительные материалы, мебель:	постину, Пестициды и агрохимикаты; Оборудование и материалы для	воздуховчистки и фильтрации; Воздуховчистки и фильтрации; Печатные книги и другие изделия попитрафической	поли рафи госкон промышленности; Химическая и нефтехимическая	продукция производственного назначения; Товары бытовой химии;	лакокрасочные магериалы; Дезинфекционные, дезинсекционные.	дератизационные средства, Стерилизующие средства;	Упаковка и упаковочные материалы,	Лом черных и цветных металлов; Отходы производства и	потребления; Материалы для изделий (изпепия) контактивания с	The state of the s
	# X Z X E E E	CCE F	N 00 E	. CT.	ĬĬŎ Ŝ	8 11 8	1 日文 1	ир На То	AL AL	# 5		Ä O	O W	
9								(d) #	The state of the s	į	direction.	The second		

Introduction and accordance of the control of the	На 143 листах, лист 99	
T. 1. 27.11 8601-8609 27.31-27.12 8601-8609 27.31-27.33 8801-8805 27.40 8901-8908 27.51-27.52 9001-9033 27.90 9101-9114 28.11-28.15 9201-9209 28.49 9501-9209 28.49 9601-9620 28.49 9601-9620 28.49 9601-9620 28.49 9601-9620 28.49 9601-9706 38.29-28.30 9401-9706 30.11-30.12 30.11-30.12 30.11-30.12 30.30.99 31.09 32.10 32.30 32.30 32.91 32.91 32.91 32.91 32.91 32.90		
27.11-27.12 27.20 27.31-27.33 27.40 27.31-27.33 27.40 27.31-27.33 27.40 27.31-27.33 27.40 28.11-28.15 28.49 28.11-28.25 28.49 30.20 30.20 30.20 30.30		
а а а а а а а а а а а а а а а а а а а	8601-8609 8701-8716 8801-8805 8901-8908 9001-9033 9101-9114 9201-9209 9301-9307 9401-9406 9501-9620	
кожей чеповека, одежда, обувь Полимерные, синтетические и иные материалы, предназначенные для применения в строительстве, на гранспорте, а также для изготовления мебели и других предметов домашнего обихода; Мебель; Текстильные, швейные и тристажные волокна и текстильные вспомогательные вещества; Искусственные и синтетические кожи и текстильные материалы для изготовления одежды и обуви; Продукция машиностроения и приборостроения, электрогежники продукция машиностроения и продуктами; Строительные материалы из прирадных материалы из прирадных материалы из прирадных материалы из прирадных материалы из прирадния из натурального сырья, подвертающегося в производства и дл.) Изделия из древесины; Удобрения, Минеральное сырье; Кожмехевре; Средства индивидуальной.	27.11-27.12 27.20 27.31-27.33 27.40 27.51-27.52 27.51-27.52 27.51-28.15 28.11-28.15 28.21-28.25 28.29-28.30	
	кожей человека, одежда, обувь Полимерные, синтетические и иные материалы, предназначенные для применения в строительстве, на транспорте, а также для иредметов домашнего обихода; Мебель; Текстильные, швейные и тримстажные материалы.	содержащие химические волокна и текстильные вспомогательные вещества; Искусственные и синтетические кожи и текстильные материалы для изготовления одежды и обуви; Продукция машиностроения и приборостроения, электротехники продуктами; строительные материалы из продуктами; Строительные материалы из продуктами; Строительные материалы из природных материалы средеранические; Материалы строительные неорганические; Изделия из натурального сыры, подвергающегося в процессе произже и т.д.) Изделия из древесины; Удобрения; Минеральное сырье; Кожмехсырье; Средства индивидуальной защиты; Упаковка;
	_	

	Оборудование, материалы для воздухоподготовки,			
	+			
	Факторы среды обитания: атмосферный воздух городских и сельских поселений, на	r.	Отбор для исследований проб, в том числе воздуха, воды и почвы Приказ Роспотребнадзора от 19.07.2007 № 224	Приказ Роспотребнадзора от 19.07.2007 № 224 СП 2.1.3678-20 СП 2.1.7.1386-03
	территориях промышленных организаций, воздух в рабочих		CII 2.1.36/8-20 CII 2.1.1.1386-03	10CT P 56226, pashen 6
	зонах производственных помещений, жилых и других		TOCT 29183,	ПНД Ф 12.1:2:2.2:3.3:2-03, раздел 4 ГОСТ 17.1.5.01, раздел 4
-	помещениях; химические и биологические		ПНД Ф 12.1:2:2.2:2.3:3.2-03, ГОСТ 17.1.5.01	ГОСТ 27753.1, раздел 2,3 ГОСТ 7392 раздел 6
	факторы производственной		FOCT 27753.1	FOCT 33048, pasten 6
	факторы трудового и учебного		10CI /392, 10CT 33048,	1 OCT 32728, pasgen 5,6
	процесса;		FOCT 530	ГОСТ 30108 п. 1; приложение А, Г
1	качество и оезопасность воды; почва населенных мест и	7	TOCT 30108	1 ОСТ 17.1.5.05, раздел 1,2,3 ГОСТ 17.4.3.01, раздел 6
	сельскохозяйственных угодий;		FOCT 17.1.5.05,	ГОСТ 17.4.02 раздел 5
	канцерогенные факторы	E	FOCT 17.4.4.02	ГОСТ 51001, раздел 4,5 ГОСТ Р 59024 раздел 4
			FOCT 31861, FOCT P 59024	FOCT 31942, pasgen 5,6
			FOCT 31942,	МУ 15/6-5 от 28.02.1991, раздел 4
	-		IOCI F 5623', MY 15/6-5 or 28.02.1991,	МУ 5.1.5.2600-10, раздел 6 МУК 4.2.1035-01 раздел 3
			MY 3.1.3.2600-10, MVK 4.2.1035-01	MYK 4.2.2217-07 раздел 6
			MyK 4.2.2217-07	MYK 4.2.2661-10, pasgen 4
-		1. Marie	MYK 4.2.2314-08, MYK 4.2.2661-10.	ПНД Ф 12.15.1-08,раздел 7 МУ 2.1.7.730-99 п.5.3 разлен 5
	The second secon		ПНД Ф 12.15.1-08, МУ 2 1 7 730-09	MY 1975-79 pasqua 5
	The second second		MY 1975-79	МУ 1939-78 раздел 2,п.2.5
1	The second of th		MY 4260-8/ MY 1939-78,	MY K 4.2.2942-11 раздел 3,4,5 MY 3182-84 раздел 2
			MVK 4.2.2942-11 MV 3182-84	MP 4.2.0220-20 раздел 2 МУК 4 2 2661-10
-			MP 4.2.020-20	МР 2.3.2.2327-08 раздел 5
			Myk 4.2.2661-10 Mp 2 3 2 2377-08	МУ 3.2.1756-03 таблица 1 раздел 2, 3.2.2 :
,			MV 3 2 1756-03	MAY 2.0.1.1961-03 II.9./

101	MP 4.3.0177-20 МУК 4.2.734-99 раздел 6 МР 3.1.0196-20 раздел 3 МУК 4.2.2029-05 раздел 4 МУК 4.2.218-07 раздел 4 МУК 4.2.218-07 раздел 4 МУК 4.2.218-07 раздел 6 МУК 4.2.218-07 раздел 4 МУК 4.2.218-07 раздел 6 МУК 4.2.218-07 раздел 6 МУК 4.2.218-07 раздел 7 Приказ Роспотребнадзора от 19.07.2007 №224 СП 52.13330.2016, пл. 7.5.1.1, 7.5.1.2 СП 275.1325800.2016, р. 6-9 ГОСТ Р 56769-2015, р. 4-11 ГОСТ Р Б6769-2015, р. 4-1 ГОСТ Р ИСО 3382-2-2013, р. 4-9 ГОСТ 27296-2012, р. 4-11 ГОСТ Р ИСО 3382-2-2013, р. 4-9 ГОСТ 33885-2016, р. 6 ГОСТ 33885-2016, р. 6 ГОСТ 33887-2016, р. 6 ГОСТ 33887-2016, р. 6 ГОСТ 33887-2016, р. 6 ГОСТ 33463.1-2015, р. 4, 5, 8, 9, прил. Б, В. ГОСТ 33463.1-2015, р. 4, 5, 6 ГОСТ 33463.1-2015, р. 4, 5, 8, 9, прил. В, В. ГОСТ 33463.1-2015, р. 4, 5, 6 ГОСТ 33463.1-2016, р. 6 ГОСТ 33463.1-2016, р. 5-7, прил. А МУК 4.3.011-16, р. 2-14 МИ «Методика измерений средней за время экспозиции объемной активности радона в воздухе «методика измерений источности погока радона с поверхности земли и строительных конструкций» НТЦ «Нитон», 1993 г; Руководство по эксплуатации ДРГ-01Т1 МИ ПКФ-15-023 МИ ПКФ-15-024 ПКДУ-41100.0010РЭ. «Руководство по эксплуатации ДРГ-01111, пи ДРГ-1111»; ПКДУ-411100.001.046ПС ПКДУ-411100.001.046ПС ПКДУ-411532.004РЭ Всенаправленный источник звука (додекаэдр) ОЕD-8Р360. Паспорт. Руководство пользователя. Персональный навигатор еТгехН GARMIN
	МР 4.3.0177-20 МУК 4.2.734-99 раздел 3 МУК 4.2.2029-05 раздел 3 МУК 4.2.2029-05 раздел 4 МУК 4.2.2029-05 раздел 4 МУК 4.2.218-07 раздел 5 Инструкция № 1400/1751 п.3.2 Приказ Роспотребвадзора от 19.07.2007 №224 СП 52.13330.2016, пл. 7.5.11, 7.5.1.2 СП 52.132800.2015, р. 6-9 ГОСТ Р 56769-2015 (ИСО 717-1:2013), р. 4, 5 ГОСТ Р 56769-2012, р. 4-11 ГОСТ Р ИСО 3382-1-2013, р. 4-9 ГОСТ Р ИСО 3382-2-2013, р. 4-9 ГОСТ Р ИСО 3382-3-2013, р. 4-9 ГОСТ 32463.1-2015, р. 4, 5, 8, 9, прил. Б, В, Е, И ГОСТ 33463.4-2015, р. 4, 5, 6 ГОСТ 3463.1-2015, р. 4, 5, 6 ГОСТ 3463.5-2016, р. 5-7, прил. А МУК 4.3.011-16, р. 2-14 МИ «Методика измерений потности потока радоноверхности замли и строительных конструки иметоверхности замли и строительных конструки иметоверхности замли и строительных конструки ПКДУ-411000.010РЭ, «Руководство по эксплуата портатив ОКТАВА-111»; ПКДУ-41100.001.046ПС ПКДУ-411532.004РЭ Всенаправленный источник звука (додекаэдр) С SP360. Паспорт. Руководство пользователя. Персональный навигететет СТСКН GARMIN
— Ha	МР 4.3.0177-20 МУК 4.2.734-99 раздел 6 МР 3.1.0196-20 раздел 3 МУК 4.2.2029-05 раздел 3 МУК 4.2.2029-05 раздел 4 МУК 4.2.2029-05 раздел 4 МУК 4.2.2018-07 раздел 5 Инструкция № 1400/1751 п.3.2 Приказ Роспотребнадзора от 19.07.200 СП 52.13330.2016, пл. 7.5.1.1, 7.5.1.2 СП 27.13330.2016, пл. 7.5.1.1, 7.5.1.2 СП 27.13330.2016, р. 6-9 ГОСТ Р 56769-2015 (ИСО 717-1.2013), ГОСТ Р 57900-2017 (ИСО 12999:2014) ГОСТ 27296-2012, р. 4-11 ГОСТ 3382-2-2013, р. 4-9 ГОСТ 3382-2-2013, р. 4-9 ГОСТ 3383-2-2016, р. 6, 10, 12, 14-18, ГОСТ 3385-2016, р. 6, 10, 12, 14-18, ГОСТ 33463.1-2015, р. 4, 5, 6 ГОСТ 33463.1-2015, р. 4, 5, 8, 9, прил. В ГОСТ 33463.5-2016, р. 5-7, прил. А МУК 4.3.011-16, р. 2-14 МИ «Методика измерений средни эксплуатации ДРГ-01Г МИ ПКФ-15-023 МИ ПКФ-15-023 МИ ПКФ-15-024 ПКДУ-41100.01.046ПС ПКДУ-41100.01.046ПС ПКДУ-41110.001.046ПС ГРЕЖН GARMIN Бегнаправленный источник звука (до) SP360 Паспорт. Руководство пользователя. Персональ еГтехН GARMIN
_	МР 4.3.0177-20 МУК 4.2.734-99 раздел 6 МР 3.1.0196-20 раздел 3 МУК 4.2.2029-05 раздел 3 МУК 4.2.2029-05 раздел 5 МУК 4.2.2218-07 раздел 5 Инструкция № 1400/1751 Приказ Роспотребнадзора СП 52.13330.2016, пл. 7.5. СП 75.1325800.2016, р. 6-10 ГОСТ 75.00-2015 (ИСО ГОСТ Р 56769-2012, р. 4-11 ГОСТ Р 56769-2012, р. 4-11 ГОСТ Р 700-2013 (В. 4. 6-1) ГОСТ 73382-2016, р. 4, 6-1 ГОСТ 3385-2016, р. 4, 6-1 ГОСТ 3385-2016, р. 4, 5-1 ГОСТ 33863-2016, р. 4, 5-1 ГОСТ 33863-2016, р. 4, 5-1 ГОСТ 33463-2015, р. 4, 5-1 ГОСТ 33463-2016, р. 4, 5-1 МУК 4.3.011-16, р. 2-14 МИ «Методика измерения измережения истражения источия убучения истражения истражения истражения истражения истражения источия убучения истражения ист
-	
-	IY 2.6.1.1981-05 IYK 4.2.734-99 IP 3.1.0196-20 IYK 4.2.2029-05 IYK 4.2.218-07 HCTPYKIUIS № 1400/1751 Измерения факторов среды обитания в целях установления соответствия (инструментальное обследование)
9	У 2.6.1.1981-05 УК 4.2.734-99 Р 3.1.0196-20 УК 4.2.2029-05 УК 4.2.2218-07 эструкция № 1400/1751 Измерения факторов среды обитания в целях установления соответствия (инструментально обследование)
e.	торов среды об ответствия (ин обследование)
	МУ 2.6.1.1981-05 МУК 4.2.734-99 МР 3.1.0196-20 МУК 4.2.2029-05 МУК 4.2.218-07 Инструкция № 1400/1751 Измерения факторов установления соответс обслее
-	МУ 2.6.1.1981-05 МУК 4.2.734-99 МР 3.1.0196-20 МУК 4.2.2029-05 МУК 4.2.218-07 Инструкция № 14 Измерения фа установления с
-	
-	
-	
2	
= .	
-	
_	
+	04/2022-151-00000-ОВОС-ТЧ Лист №док Подп. Дата

На 143 листах, лист 104	МР 2946-83 МУ 1844-78 МУ 2.6.1.1982-05 МУУ 2.6.1.1982-05 МУУ 2.6.1.1982-05 МУУ 2.6.1.1982-05 МУУ 2.6.1.1982-05 МУУ 2.6.1.1982-05 МУУ 2.6.1.1982-05 МУК 43.3221-14, р. 1-6, приложения Руководство по эксплуатации РЭ 4277-002-76596538-05. Измеритель общей и локальной вибрации портативный ОК-ТАВА-110ВМ Р 50.2.053-2006 ГОСТ Р 50948, р. 8 Паспорт ИДНМ 3.004.0003.004.000.0 ПС. Рацюметр энергетической освещенности переносной РАТ-2П-«Квари.41» Р АТ-2П-«Квари.41» Р РУКОВОДСТВО по эксплуатации. Прибор комбинированный ТКА-ПКМ (модель 24), измеритель индекса тепловой нагрузки (ТНС-индекса) Руководство по эксплуатации. Прибор комбинированный Люкометр + Термогигриметр + Анемометр ТКА-ПКМ" модель 63 Руководство по эксплуатации Прибор-комбинированный ТКА-ПКМ" модель 63 Руководство по эксплуатации Прибор-комбинированный ТКА-ПКМ (модель 08) Руководство по эксплуатации Прибор-комбинированный ТКА-ПКМ (модель 08) Руководство по эксплуатации СФАТ-412125.002 РЭ Люкометр + Яркомер + Пульсметр "Эколайт" модель 01 Руководство по эксплуатации СФАТ-412125.002 РЭ Люкометр + Яркомер + Пульсметр "Эколайт" модель 01 Руководство по эксплуатации СФАТ-412125.002 РЭ Люкометр + Яркомер + Пульсметр "Эколайт" модель 01 Руководство по эксплуатации СФАТ-412125.002 РЭ Люкометр + Яркомер + Пульсметр "Эколайт" модель 01 Руководство по эксплуатации СФАТ-412125.002 РЭ Люкометр + Яркомер + Пульсметр "Эколайт" модель 01 Руководство по эксплуатации СФАТ-412125.002 РЭ Люкометр + Яркомер + Пульсметр "Эколайт" модель 01 Руководство по эксплуатации СФАТ-412125.002 РЭ Люкометр + Яркомер + Пульсметр "Эколайт" модель 01
-	
-	
1	
1	
_	
_	
_	
-	
-	
_	
=	
	04/2022-151-00000-OBOC-TY

	На 143 листах, лист 105	комовинарованный ТКА-ШКМ модель 13 ГОСТ 12.1.002 МУК 4.3.167-02 МУК 4.3.167-03 Руководство по эксплуатации МГФК.510000.001 РЭ. Счетчик аэрононов малогабаритный МАС-01 Измеритель напряженности поля про-мышленной частоты ПЗ-50. Паспорт Руководство по эксплуатации ВВЕК43 1441.09.03 РЭ Измеритель параметров электрического и матнитного полей ВЕ-МЕТР-АТ-004 Руководство по эксплуатации МГФК.411173.004 РЭ Измеритель пара-метров электрических и матнитных полей ВВ-МЕТР-АТ-003 Руководство по эксплуатации ПКДУ.411100.001 РЭ Измеритель напряженности электрических и матнитных полей ПЗ-80 Измеритель напряженности электрических и матнитных полей ПЗ-80 Измеритель напряженности электрических и матнитных полей ПЗ-80 Измеритель напряженности электрического ПЗ-01 Паспорт Руководство по эксплуатации ПТМБ.411153.003 РЭ Измеритель напряженности электростатического поля СТ-01 Паспорт ЦЕКВ.411171.001.010ПС Миллитесламетр портативный универсальный ТПУ ГОСТ Р 51724 СапПиН 2.1.82.2.4.2489-09, р. IV, прил. 2 ГОСТ 12.1.040, р. 4 ГОСТ 31581, р. 11 Руководство по эксплуатации Дозиметр автоматизированный для измерения уровней импульсного и непрерывного излучения «ЛАДИН», МУ 5309-90 ГОСТ Р 12.1.031
-		
-		
-		
1/2/		
_		
3		
-		
-		
_		
÷		
-		
3		

Общественные здания, строения, сооружения, помещения, оборудование, устройства, предметы, материалы и иное имущество. Технологические процессы, результаты деятельности, результаты деятельности, результаты деятельности, их мести условиям отдыха и оздоровления детей, их выполнение работ и предоставление услуг предоставление услуг услуг в области культуры, спортя, организации досуга, развлечений, продаже товаров производствения для личных и бытовых нужд.	На 143 листах, лист 106	Руководство по эксплуатации БВЕК 570000,001 Магнитометр трехкомпонентный мало-габаритный МТМ-01 Руководство по эксплуатации. Дальномер лазерный Leica DISTO A2 МР 4.3.0008-10	Санитарно-эпицение обследование Фоспедование обследование о
Общественные здания, строения, сооружения, помещения, оборудование, устройства, предметы, материалы и иное имущество. Технологические процессы, результаты деятельности, в том числе условиям отдыха и оздоровления детей, их воспитания и обучения, организации питания населения, выполнение работ и предоставление услуг, гостиничных, медицинских, бытовых, социальных услуг, услуг в области культуры, спорта, организации досуга, развлечений, продаже товаров производственно-технического назначения для личных и бытовых нужд	7 7		
	-		Общественные здания, строения, сооружения, помещения, оборудование, устройства, предметы, материалы и иное имущество. Технологические процессы, результаты деятельности, в том числе условиям отдыха и оздоровления детей, их воспитания и обучения, организации питания населения, выполнение работ и предоставление услуг гостиничных, медицинских, бытовых, социальных услуг, услуг в области культуры, спорта, организации досуга, развлечений, продаже товаров производственно-технического назначения для личных и бытовых нужд
4.	-		4

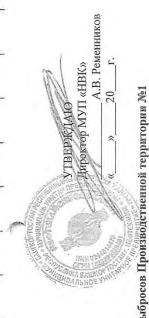
Взам. Инв. №

Подп. и дата

TV.		МУ 2.6.1.2712-10 МУ 2.1.5.800-99 Инструкция №5319-91	МУ 2.6.1.2838-11 (раздел 6) МУ 3.1.2943-11 (раздель 1-2,4-6) МУ 3.1.2943-11 (раздель 1-2,4-6) МУ 3.1.1.2969-11 МУ 3.1.3163-14 МУ 3.1.3163-14 МУ 3.2.3463-17 (раздел 6.2) МУ 3.2.3463-17 (разделы 5-12) МУ 3.2.3470-17 (разделы 5-12) МУК 4.2.1035-01 МУК 4.3.2194-07 (разделы 1-4) МУК 4.3.221-14 (разделы 1-7) МУК 3.1.3402-16 (разделы 1-7) МУК 3.1.3402-16 (разделы 1-7) МУК 3.1.3402-16 (разделы 1-7) МР 4.3.0212-20 (раздел 1-7) МР 4.2.0220-20 МР 5.1.0096-14 (разделы 1-5) Руководство Р 3.5.1904-04 Инструкция №1400/1751 (раздел 1-3) Инструкция №5319-91 (раздел 1) Постановление Правительства РФ от 21.09.2020 №155 «Об утверждении Правил оказания услугобщественного питания»
	5. Водные объекты, участки, используемые в целях питьевого и хозяйственно-бытового водоснабжения, а также в лечебных оздоровительных и рекреационных целях, в том числе водные объекты, расположенные в границах городских и сельских населенных пунктов	Санитарно-эпидемиологическое обследование Федеральный закон от 30.03.1999 № 52-Ф3 Федеральный закон от 07.12.2011 № 416-Ф3 Технический регламент «О безопасности объектов внутреннего водного транспорта» Федеральный закон от 23.02.1995 № 26-Ф3 Постановление Правительства РФ от 07.12.1996 № 1425 СанПиН 2.1.3684-21 СанПиН 3.3686-21 СанПиН 3.3686-21 СП 11.1058-0.0000	Г. 3.5.2.487-09 МУ 3.5.3.2949-11 (раздел 7, прил. 1, прил. 3) Приказ Роспотребнадзора от 19.07.2007 № 224 Постановление Главного государственного санитарного врача РФ от 04.02.2016 №11 ГОСТ 2761 (раздел 1, 2, 3) МУ 2.1.5.1183-03 (раздел 3, 4, 5) МУ 3.2.1.56-03 (раздел 2, 3) МУ 2.6.1.1868-04 (раздел 4) МУ 2.6.1.1868-105 (раздел 1, 4, 6, 7, 8, 9) Р 3.5.2.2487-09

Confider 2 i.e. 1100-050	108	Зенного	
Промышленные, производственные здания, строения, цеха, участия, помещения, сооружения, устроения, цеха, участия, помещения, сооружения, устройства, предметь, матераалы, условия труда, производственные с тумного условия работы с машинами, механизмами, установками, устройствами, установками, устройствами, установками, устройствами, установками, устройствами, установками, механизмами, установками, устройствами, установками, механизмами, установками, устройствами, устройствами, устройствами, установками, устовия работы с боблоого учасное оздействам на человке (шума, вибрации, учасное оздействам на учасное учасное и издупителя и учасное учасное и издупителя и издупителя выбращия и их токсинами и издупительный правительный правительны		Приказ Роспотребнадзора от 19.07.2007 № 22- Постановление Главного государст сангитарного врача РФ от 04.02.2016 №11 Сангин 2.6.1.2523-09 (НРБ-99\2009) СП 52.13330 СП 60.13330 СП 60.13330 ГОСТ БО 11201 ГОСТ ISO 11204 ГОСТ P 50948 ГОСТ P 50948 ГОСТ P 50949 ГОСТ I 2.1.001 ГОСТ I 2.1.002 ГОСТ I 2.1.003 ГОСТ I 2.1.004 ГОСТ I 2.1.005 ГОСТ I 2.1.005 ГОСТ I 2.1.006 ГОСТ I 2.1.006 ГОСТ I 2.1.006 ГОСТ I 2.1.040 ГОСТ I 2.1.047 ГОСТ I 2.1.040 ГОСТ	
		СанПиН 2.1.4.1110-02 СанПиН 2.2.1/2.1.1.1200-03 СанПиН 2.6.1.2523-09 (HPБ-99/2009) СанПиН 2.6.1.2800-10 СанПиН 2.6.1.2800-10 ТР ТС 00/2011 ТР ТС 00/2011 ТР ТС 021/2011 ТР ТС 021/2011 ТР ТС 021/2011 ТР ТС 023/2011 ТР ТС 023/2011 ТР ТС 023/2011 ТР ТС 023/2012 ТР ТС 023/2013 ТР ТС 023/2013 ТР ТС 033/2013 ТР ТО 03-2010 СанПиН 2.1.3684-21 СанПиН 2.1.3685-21 СанПиН 2.1.37.3-4.1190-03 СанПиН 2.1.2.1.1.1200-03 СанПиН 2.1.2.1.1.1.200-03 СанПиН 2.6.1.253-09 (HPБ-99/2009) СП 2.1.263-07 СанПиН 2.6.1.253-09 СанПиН 2.6.1.253-10 СанПиН 2.6.1.253-10 СанПиН 2.6.1.253-10 СанПиН 2.6.1.253-10	
	-		, , , , , , , , , , , , , , , , , , ,
9		Промышленные, производственные здания, строения, цеха, участки, помещения, сооружения, технологическое оборудование, устройства, предметы, материалы, условия труда, рабочее место, трудовой, производственный процесс, режим труда, отдыха и бытового обслуживанию работников и другие объекты. Производственные, технологические процессы и результаты деятельности, в том числе условия работы с машинами, механизмами, установками, установками, установками, установками, установка (шума, вибрации, ульгразвуковых, инфразвуковых воздействий, тешового, ионизирующего, непонизирующего и иного излучения) и условия работы с бабологическими и микробиологическими и микробиологическими и микробиологическими и токсинами	
		9	*

Подп. и дата


Инв. № подл.

	приложение 2,4) приложение 2,4) 1, прил. 3)	7.2007 Ng 224 rrsethoro 16 Ne11 09)
Ha 143 s	МУ 2.6.1.044-08 МУ 2.6.1.2398-08 МУ 3.1.2.2412-08 (разделы 1-11, приложение 2,4) МУ 3.1.2.2412-08 (разделы 1-11, приложение 2,4) МУ 2.2.9.2493-09 МУ 2.6.1.2500-09 МУ 2.6.1.2500-09 МУ 2.6.1.2712-10 МУ 4.3.2320-08 МУ 2.6.1.288-11 МУ 2.6.1.2811-12 МУ 3.1.3114/1-13 МУК 4.3.2194-07 МУК 3.3.2327-08 МР 3.3.2327-08 МУЗ 3.3.32949-11 (раздел 7, прил. 1, прил. 3)	Приказ Роспотребнадзора от 19.07.2007 № 224 Постановление Главного государственного сангинарного врача РФ от 04.02.2016 № 11 СанТин 2.6.1.2523-09 (НРБ-99/2009) СП 2.1.3678-20 СП 2.5.3650-20 СП 2.4.3648-20 ГОСТ 12.1.046 ГОСТ 12.1.047 ГОСТ 22283 ГОСТ 22283 ГОСТ 22283 ГОСТ 22620 МУ 1939-78 МУ 1939-78 МУ 1939-78 МУ 1975-79 МУ 4260-87 МУ 3.2.1756-03
-		ческое обследование 3.1999 № 52-Ф3 2.2011 № 416-Ф3 ства РФ от 03.03.2018 порта»
-	СанПиН 2.6.1.2819-10 СанПиН 2.6.1.2749-10 СанПиН 2.6.1.2749-10 СанПиН 2.6.1.2800-10 СанПиН 2.6.1.3106-13 СП 2.6.1.3164-14 СП 2.6.1.3241-14 СП 2.6.1.3241-14 СП 2.6.1.3241-14 СП 2.6.1.3247-15 СанПиН 2.6.1.3287-15 СанПиН 2.6.1.3289-15 Руководство Р 2.2.2006-05 Р 2.2.4/2.2.9.2266-07 МУ 2.6.1.1892-04 МУ 2.6.1.2500-09 МУ 2.6.1.2500-09 МУ 2.6.1.2500-09 МУ 2.6.1.2500-09	Санитарно-эпидемнологическое обследование Федеральный закон от 30,03,1999 № 52-Ф3 Федеральный закон от 70,12.2011 № 416-Ф3 ТР ТС 005/2011 Постановление Правительства РФ от 03,03,2 №22 Технический регламент «О безопасности объев внутреннего водного транспорта» СП 2.3,650-20 СП 2.1,3678-20 СанПиН 2.1,3684-21 СанПиН 2.1,3685-21 Си 1.1,1058-01 СанПиН 2.1,8,2,2,4,1190-03 СанПиН 2.2,1/2,1,1,1200-03 СанПиН 2.6,1,1281-03 СанПиН 2.6,1,1281-03
-		
		Объекты транспорта и транспортной инфраструктуры, в том числе водный транспорт и объекты. Технологические процессы
-		7. Объ гран гом объе прои
		-151-00000-OBOC-TY

СанПиН 2.6.1.2323-09 (НРБ-99/2009) СанПиН 2.6.1.2800-10 СанПиН 2.6.1.3106-13 МУ 1939-78 МУ 2426-87 МУ 426-87 МУ 3.5.3.2949-11 Потановление Правительства РФ от 03.03.1999 Кара СанПиН 3.686-21 СанПиН 3.686-21 СанПиН 3.586-21 СанПиН 1.3.686-21 СанПиН 2.1.2.1.1.1.200-03 СанПиН 2.1.822-4.1183-03 СанПиН 2.1.822-4.1183-03 СанПиН 2.1.822-4.1183-03 СанПиН 2.1.822-4.1183-03 СанПиН 2.1.822-4.1183-03 СанПиН 2.1.822-4.1183-03 СанПиН 2.1.2.1.1.1.1.100-03 СанПиН 2.1.2.1.1.1.1.100-03 СанПиН 2.1.2.1.1.1.100-03 СанПиН 2.1.2.1.1.1.100-03 СанПиН 2.6.1.0006-1 МР 2.6.1.0006-1 Постановление Правительстве Рессийской	На 143 листах, лист 1.10	MY 4.3.2320-08 MY 3.1.2.2412-08 (разделы 1-11, приложение 2,4) MY 3.1.3114/1-13 MYK 4.3.2194-07 MYK 4.3.2212-14 MYK 4.3.3212-14 MYK 4.3.3214-14 MP 4.3.0212-20 Pywobogicrao P 3.5.1904-04 MP 2.5.0245-21 MY 3.5.3.2949-11 (раздел 7. прил. 1. прил. 3)	Приказ Роспотребнадзора от 19.07.2007 № 224 Постановление Главного государственного санитарного врача РФ от 04.02.2016 №11 СанПиН 2.6.1.2523-09 (НРБ-99/2009) СП 52.13330 ГОСТ 17.2.3.01 ГОСТ 17.2.3.01 ГОСТ 22283 ГОСТ 9 53187 (разделя 4, 5, 7, 8) МУ 3.1.128-02 (разделы 1-2, 4-5) МУ 3.1.128-04 МУ 3.1.2313-08 (разделя 3,4, 5, 6, 7, 8) МУ 4.3.2320-08 МУ 3.1.2318-08 (раздел 3,4, 5, 6, 7, 8) МУ 3.1.3.2488-09 МУ 3.1.3.248-09 МУ 3.2.248-09 МУ 3.5.3.2949-11 (раздел 7, прил. 1, прил. 3) Приказ Роспотребнадзора от 19.07.2007 № 224 Постановление Главного государственного санитарного врача РФ от 04.02.2016 №11 СанПиН 2.6.1.2523-09 (НРБ-99/2009)
сельских	1 1 3 3 1 1	(HPБ-99/2009)	<u>.</u>
			KUK

6. 45 Качество и безопасность пищевой (продовольственной) пищевые продукты, пищевые добавки, продовольственное сырье, а также контактирующие с ними материалы и изделия в процессе их производства, кранения, транспортяровки и оп. 23 Мясо и мясопродукты, птище, и мясопродукты, птище, оп. 13 мино и продукты их перерабстки, от 445 от	3107, Pecnyójnika Eg 0101-0106 0201-2010 0301-0308 0401-0410 0501-0511 0601-0604 0701-0714 0801-0910 1101-1109 1201-1307	Федерации от 28.01.2006 № 47 СП 52.13336 Постановление Правительства РФ от 03.03.2018 ГОСТ 30494 №222 МУ 32.1756 СП 2.1.3678-20 МУ 2.6.1.18 СанПиН 2.1.3684-21 МУ 2.6.1.23 СанПиН 2.1.3685-21 МУ 2.2.4.1190-03 СанПиН 2.1.8/ 2.2.4.1190-03 МУ 3.1.2.24 СанПиН 2.1.8/2.2.4.1383-03 МУ 3.1.3114 СанПиН 2.1.8/2.2.4.1383-0 МУ 3.1.3114 СанПиН 2.1.8/2.2.4.13330 МУ 4.3.22 СанПиН 2.1.8/2.2.4.13330 МУ 4.3.22 Свод правил СП 54.13330 МР 4.3.021 Отбор для исследований проб и образиов МР 3.5.22487 МР 3.1.756-03 МУ 2.2.1756 МУ 2.2.1756 МУ 2.2.223 МР 2.3.2327-08 МУ 2.2.723 Инструкция № 1400/1751 МУ 4.2.2039 МУ 2.2.723-10 раздел 8 МУ 4.2.2039 МУ 4.2.2039-05 ГОСТ 18321 МУ 4.2.2039-05 ГОСТ 18321 ПОСТ 18321 ГОСТ 1832164	CП 52.13330
	1501-1522 1601-1605 1701-1704 1701-1704 1801-1806 1901-1905 2001-2009 2201-2209	FOCT 18521 FOCT 7264 FOCT 7269 FOCT 3370 FOCT ISO 13307 FOCT P 51447 FOCT P 54356	TOCT 33303 pas,fest 4-8 FOCT 33770 pas,fest 3-8 FOCT 18O 13307 pas,fest 4-10 FOCT P 51447 pas,fest 4-10 FOCT P 5455 in 4-4, 4.6 FOCT P 7702.2.0 pas,fest 8-9 FOCT P 54349 in 4-4, 4.6
ie ::	2301-2309 2401-2403 2501 3000-3006 3101-3105	TOCT P 7702.2.0 FOCT P 54349 FOCT 9792 FOCT 4288	ГОСТ 9792 раздел 2-3 ГОСТ 4288 п.2.1 ГОСТ 31720 раздел 4 ГОСТ 13928 раздел 2

Sycuroneeure.

План -график контроля стационарных источников выбросов Производственной территории №1

	Цех	Номер		Загрязняющее вещество	Периодичность	Нормаги	Норматив выброса	Кем осуществляется	Методика
номер	наименование	источника	код	наименование	контроля	1/0	Mr/M³	контроль	проведения контроля
1	2	3	4	\$	9	7	8	6	01
				Площадка:	1 БОС Староуразаево				
1	Гараж	1000	0301	Азота диоксид (Азот (IV) оксид)	1 раз в 5 лет	0,0027974	12,92543	MVII «HBK»	Расчетным методом
			0304	Азот (II) оқсид (Азота оксид)	1 раз в 5 лет	0,0004546	2,10049	МУП «НВК»	Расчетным методом
			0330	Сера диоксид (Ангидрид сернистый)	1 раз в 5 лет	0,0000056	0,02587	МУП «НВК»	Расчетным методом
			0337	Углерод оксид	1 раз в 5 лет	0,0094944	43,86901	MyII «HBK»	Расчетным методом
			0703	Бенз/а/пирен (3,4-Бензпирен)	1 раз в 5 лет	1,81e-10	8,38e-07	МУП «НВК»	Расчетным методом
1	Гараж	0005	0410	Метан	1 раз в 5 лет	0,0067398	921,00524	MVII «HBK»	Расчетным методом
			1716	Одорант СПМ	1 раз в 5 лет	1,00e-08	0,00137	MYII «HBK»	Расчетным методом
1	Гараж	0003	0410	Метан	1 раз в 5 лет	0,0000466	22,65498	MVII «HBK»	Расчетным методом
			1716	Одорант СПМ	1 раз в 5 лет	1,17e-10	9000000	МУП «НВК»	Расчетным методом
1	Гараж	0004	0101	диАлюминий триоксид (в пересчете наалюминий)	1 раз в 5 лет	0,0041667	1171,57759	МУП «НВК»	Расчетным методом
			0143	Марганец и его соединения (в пересчетена марганца (IV) оксид)	1 раз в 5 лет	0,0004167	117,16619	МУП «НВК»	Расчетным методом
			0301	Азота диоксид (Азот (IV) оксид)	1 раз в 5 лет	0,0194036	5455,83385	MVII «HBK»	Расчетным методом
			0304	Азот (II) оксид (Азота оксид)	1 раз в 5 лет	0,0031530	886,54910	MYII «HBK»	Расчетным методом
			0328	Углерод (Сажа)	1 раз в 5 лет	0,0007409	208,32357	MYII «HBK»	Расчетным методом
			0330	Сера диоксид (Ангидрид сернистый)	1 раз в 5 лет	0,0010179	286,20943	MYII «HBK»	Расчетным методом
			0337	Углерод оксид	1 раз в 5 лег	0,0458018	12878,38395	MYII «HBK»	Расчетным метолом

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

Подп. и дата

Инв. № подл.

			0616	Диметилбензол (Ксилол) (смесь изомерово-, м-, п-)	1 раз в 5 лет	0,0284091	7987,96766	MYII «HBK»	Расчетным методом
			0621	Метилбензол (Толуол)	1 раз в 5 лет	0,0115741	3254,36345	MYII «HBK»	Расчетным методом
			1042	Бутан-1-ол (Спирт н-бутиловый)	1 раз в 5 лет	0,0034722	976,30060	МУП «НВК»	Расчетным методом
			1901	Этанол (Спирт этиловый)	1 раз в 5 лет	0,0023148	650,86707	МУП «НВК»	Расчетным методом
			1210	Бугилацетат	1 раз в 5 лег	0,0023148	650,86707	MYII «HBK»	Расчетным методом
			1401	Пропан-2-он (Ацетон)	1 раз в 5 лет	0,0016204	455,61819	МУП «НВК»	Расчетным методом
			2732	Керосин	1 раз в 5 лет	0,0030533	858,51582	MYII «HBK»	Расчетным метолом
			2750	Сольвент нафта	1 раз в 5 лет	0,0086787	2440,24538	MYII «HBK»	Расчетным методом
			2752	Уайт-спирит	1 раз в 5 лет	0,0231481	6508,69877	MYII «HBK»	Расчетным методом
			2908	Пыль неорганическая: 70-20% SiO2	1 раз в 5 лет	0,0023333	656,06883	МУП «НВК»	Расчетным методом
-	Гараж	9000	0143	Марганец и его соединения (в пересчете на марганца (IV) оксид)	I раз в 5 лет	0,0015980	17,06011	МУП «НВК»	Расчетным методом
			0301	Азота диоксид (Азот (IV) оксид)	1 раз в 5 лет	0,0015300	16,33415	MYII «HBK»	Расчетным метолом
			0304	Азот (II) оксид (Азота оксид)	1 раз в 5 лет	0,0002486	2,65403	MYII «HBK»	Расчетным методом
			0337	Углерод оксид	1 раз в 5 лет	0,0094208	100,57566	МУП «НВК»	Расчетным методом
			0342	Фтористые газообразные соединения /в пересчете на фтор/	1 раз в 5 лет	0,0009421	10,05778	МУП «НВК»	Расчетным методом
			0344	Фториды неорганические плохо растворимые	1 раз в 5 лет	0,0005667	6,05004	МУП «НВК»	Расчетным методом
			2908	Пыль неорганическая: 70-20% SiO2	1 раз в 5 лет	0,0005667	6,05004	MyII «HBK»	Расчетным методом
-	Гараж	6001	0410	Метан	1 раз в 5 лет	0,0016910	0,00000	МУП «НВК»	Расчетным методом
			1716	Одорант СПМ	1 раз в 5 лет	2,60e-09	0,00000	MyII «HBK»	Расчетным метолом
2	ABK	8000	0301	Азота диоксид (Азот (IV) оксид)	1 раз в 5 лет	0,0036617	8,09699	MyII «HBK»	Расчетным методом
			0304	Азот (II) оксид (Азота оксид)	1 раз в 5 лет	0,0005950	1,31570	МУП «НВК»	Расчетным методом
			0330	Сера диоксид (Ангидрид сернистый)	1 раз в 5 лет	0,0000072	0,01592	MyII «HBK»	Расчетным методом
			0337	Углерод оксид	1 раз в 5 лет	0,0122544	27,09772	МУП «НВК»	Расчетным методом
			0203	Бенз/а/пирен (3,4-Бензпирен)	1 раз в 5 лет	2,98e-10	6,59e-07	MVII «HBK»	Расчетным методом
2	ABK	6000	0410	Метан	1 раз в 5 лет	0,0067398	921,00524	MVII «HBK»	Расчетили метопом

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Подп. и дата

Инв. № подл.

04/2022-151-00000-OBOC-TY

			1716	Одорант СПМ	1 раз в 5 лет	1,00e-08	0,00137	MYII «HBK»	Расчетным методом
2	ABK	0010	0410	Метан	1 раз в 5 лет	0,0000466	22,65498	MYII «HBK»	Расчетным методом
			1716	Одорант СПМ	1 раз в 5 лет	1,17e-10	9000000	MYII «HBK»	Расчетным методом
2	ABK	6002	0410	Метан	1 раз в 5 лет	0,0016910	0,00000	МУП «НВК»	Расчетным методом
			1716	Одорант СПМ	1 раз в 5 лет	2,60e-09	0,00000	MyII «HBK»	Расчетным методом
3	IIPL	0011	0410	Метан	1 раз в 5 лет	0,0067398	921,00524	MYII «HBK»	Расчетным методом
			1716	Одорант СПМ	1 раз в 5 лет	1,00e-08	0,00137	MYII «HBK»	Расчетным методом
3	IIPL	0012	0410	Метан	1 раз в 5 лет	0,0024820	301,48405	МУП «НВК»	Расчетным методом
			1716	Одорант СПМ	1 раз в 5 лет	6,20e-09	0,00075	MYII «HBK»	Расчетным методом
3	IIPL	0013	0410	Метан	1 раз в 5 лет	0,0000466	22,64167	МУП «НВК»	Расчетным методом
			1716	Одорант СПМ	1 раз в 5 лет	1,17e-10	9000000	МУП «НВК»	Расчетным методом
3	IIPL	6003	0410	Метан	1 раз в 5 лет	0,0016910	0,00000	MyII «HBK»	Расчетным методом
			1716	Одорант СПМ	1 раз в 5 лет	2,60e-09	0,00000	MYII «HBK»	Расчетным методом
4	Насосная	0014	0301	Азота диоксид (Азот (IV) оксид)	1 раз в 5 лет	0,0016413	18,70574	MYII «HBK»	Расчетным методом
			0304	Азот (II) оксид (Азота оксид)	1 раз в 5 лет	0,0002667	3,03955	MVII «HBK»	Расчетным методом
			0330	Сера диоксид (Ангидрид сернистый)	1 раз в 5 лет	0,0000033	0,03761	MyII «HBK»	Расчетным методом
			0337	Углерод оксид	1 раз в 5 лет	0,0057040	65,00793	МУП «НВК»	Расчетным методом
			0703	Бенз/а/пирен (3,4-Бензпирен)	1 раз в 5 лет	2,35e-11	2,68e-07	MVII «HBK»	Расчетным методом
4	Насосная	0015	0410	Метан	1 раз в 5 лет	0,0067398	921,00524	MYII «HBK»	Расчетным методом
			1716	Одорант СПМ	1 раз в 5 лет	1,00e-08	0,00137	MYII «HBK»	Расчетным методом
4	Насосная	9100	0410	Метан	1 раз в 5 лет	0,0000466	22,64167	MVII «HBK»	Расчетным методом
	Į.		1716	Одорант СПМ	1 раз в 5 лет	1,17e-10	9000000	MYII «HBK»	Расчетным методом
4	Насосная	2100	2754	Углеводороды предельные С12-С19	1 раз в 5 лет	0,0004500	0,87848	МУП «НВК»	Расчетным методом
4	Насосная	6004	0410	Метан	1 раз в 5 лет	0,0016910	0,00000	MYII «HBK»	Расчетным методом
			1716	Одорант СПМ	1 раз в 5 лет	2,60e-09	0,00000	MYII «HBK»	Расчетным методом
5	Высоковольтный узел	0018	2754	Углеводороды предельные С12-С19	1 раз в 5 лет	0,0004500	1,42346	МУП «НВК»	Расчетным методом
9	BOC	9009	0301	Азота диоксид (Азот (IV) оксид)	1 nas a 5 ner	0,0001589	0,00000	MyII «HBK»	Расчетным метолом

Изм.	Кол.уч	Лист	№док	Подп.	Дата

			0303	Аммиак	1 раз в 5 лет	0,0009686	0,00000	MYII «HBK»	Расчетным методом
			0304	Азот (II) оксид (Азота оксид)	1 раз в 5 лет	0,0002712	0,00000	МУП «НВК»	Расчетным методом
			0333	Дигидросульфид (Сероводород)	1 раз в 5 лет	0,0018985	0,00000	MYII «HBK»	Расчетным методом
			0410	Метан	1 раз в 5 лет	0,1363816	0,00000	МУП «НВК»	Расчетным методом
			1071	Гидроксибензол (Фенол)	1 раз в 5 лет	0,0001007	0,00000	МУП «НВК»	Расчетным методом
			1325	Формальдегид	1 раз в 5 лет	0,0001395	0,00000	МУП «НВК»	Расчетным методом
			1715	Метантиол (Метилмеркаптан)	1 раз в 5 лет	0,0000070	0,00000	MYII «HBK»	Расчетным методом
9	BOC	9009	0301	Азота диоксид (Азот (IV) оксид)	1 раз в 5 лет	0,0000478	0,00000	MVII «HBK»	Расчетным методом
			0303	Аммиак	1 раз в 5 лет	0,0006108	0,00000	MYII «HBK»	Расчетным методом
			0304	Азот (II) оксид (Азота оксид)	1 раз в 5 лет	0,0001939	0,00000	МУП «НВК»	Расчетным методом
	2		0333	Дигидросульфид (Сероводород)	1 раз в 5 лет	0,0000876	0,00000	MYII «HBK»	Расчетным методом
			0410	Метан	1 раз в 5 лет	0,0078337	0,00000	MYII «HBK»	Расчетным методом
			1071	Гидроксибензол (Фенол)	1 раз в 5 лет	0,0000451	0,00000	MyII «HBK»	Расчетным методом
			1325	Формальдегид	1 раз в 5 лет	0,0000770	0,00000	MYII «HBK»	Расчетным методом
			1715	Метантиол (Метилмеркаптан)	1 раз в 5 лет	0,0000037	0,00000	МУП «НВК»	Расчетным методом
9	BOC	2009	0301	Азота диоксид (Азот (IV) оксид)	1 раз в 5 лет	0,0002675	0,00000	MVII «HBK»	Расчетным методом
			0303	Аммиак ·	1 раз в 5 лет	0,0065697	0,00000	MYII «HBK»	Расчетным методом
			0304	Азот (II) оксид (Азота оксид)	1 раз в 5 лет	0,0028718	0,00000	МУП «НВК»	Расчетным методом
			0333	Дигидросульфид (Сероводород)	1 раз в 5 лет	0,0017309	0,00000	MYII «HBK»	Расчетным методом
	-3		0410	Метан	1 раз в 5 лет	0,2195150	0,00000	MVII «HBK»	Расчетным методом
		Y	1071	Гидроксибензол (Фенол)	1 раз в 5 лет	0,0008419	0,00000	MYII «HBK»	Расчетным методом
			1325	Формальдегид	1 раз в 5 лет	0,0011015	0,00000	МУП «НВК»	Расчетным методом
			1715	Метантиол (Метилмеркаптан)	1 раз в 5 лет	0,0000433	0,00000	MyII «HBK»	Расчетным методом
9	. DOC .	8009	0301	Азота диоксид (Азот (IV) оксид)	1 раз в 5 лет	0,0002536	0,00000	MYII «HBK»	Расчетным методом
0			0303	Аммиак	1 раз в 5 лет	0,0060232	0,00000	МУП «НВК»	Расчетным методом
			0304	Азот (II) оксид (Азота оксид)	1 раз в 5 лет	0,0044381	0,00000	MYII «HBK»	Расчетным методом

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	MyII «HBK»	MYII «HBK»	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	MyII «HBK»	MYII «HBK»	МУП «НВК» Расчетным методом	MYII «HBK»	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	MYII «HBK»	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	MyII «HBK» PacyerHbin Merodom		-
0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	6
0,0020289	0,1629431	0,0015977	0,0016485	0,0000824	0,0008655	0,0058616	0,0027970	0,0012982	0,0786792	0,0009992	0,0014556	0,0000511	0,0001124	0,0009299	0,0002286	0,0004649	0,0292136	0,0001007	0,0000814	0,0002402	0,0055308	0,3555523	0,0987645	0,0286417	
1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	1 раз в 5 лет	
Дигидросульфид (Сероводород)	Метан	Гидроксибензол (Фенол)	Формальдегид	Метантиол (Метилмеркаптан)	Азота диоксид (Азот (IV) оксид)	Аммиак	Азот (II) оксид (Азота оксид)	Дигидросульфид (Сероводород)	Метан	Гидроксибензол (Фенол)	Формальдегид	Метантиол (Метилмеркаптан)	Азота диоксид (Азот (IV) оксид)	Аммиак	Азот (II) оксид (Азота оксид)	Дигидросульфид (Сероводород)	Метан	Гидроксибензол (Фенол)	Формальдегид	Метантиол (Метилмеркаптан)	Азота диоксид (Азот (IV) оксид)	Аммиак	Азот (II) оксид (Азота оксид)	Дигидросульфид (Сероводород)	,,
0333	0410	1071	1325	1715	0301	0303	0304	0333	0410	1071	1325	1715	0301	0303	0304	0333		1071	1325	1715	0301	0303	0304	0333	0110
					6009								0109		4						.6011		10 A		
					BOC								BOC								BOC				×
					9								9						1		9				

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

Расчетным методом Расчетным м	MYII «HBK» MYII «HBK»	0,00000 0,00000 2,83e-06 0,01003 0,05731 3,85009 13,69240 17,48661 1,04599 0,28084 0,07202 0,03601 0,46429 0,46429 0,46429 0,46429 0,46429 0,21478 5,71043 6,61073			Формальдегид Метантиол (Метилмеркаптан) Азотная кислота (по молекуле НNО3) Аммиак Соляная кислота Трихлорметан (Улороформ) Тотрахлористый) Этановая кислота (Уксусная кислота) Динатрий карбонат (Натрия карбонат, Сода кальцинированная) Хром (Хром шестивалентный) (в пересчете на хрома (VI) оксил) Азотная кислота (по молекуле HNО3) Аммиак Соляная кислота (по молекуле HSO4). Трихлорметан (Улороформ) Теграхлорметан (Улороформ) Теграхлорметан (Улерод четыреххлористый) Этанол (Спирт этиловый) Этанол (Спирт этиловый)	1325 1715 0302 0303 0303 0898 0906 0155 0155 0103 0303 0303 0306 0906	0000	Лаборатория	
гасчетным методом Расчетным методом	MyII «HBK»	0,10804	891000000		диНатрий карбонат (Натрия карбонат, Сода кальцинированная)	and the	0021	Лаборатория	9
Расчетным методом	МУП «НВК»	1,12923	0,0001756	1 раз в 5 лет	Этановая кислота (Уксусная кислота)	1555			
Расчетным методом	МУП «НВК»	2,26360	- 11	1	Этанол (Спирт этиловый)	1901	3	3 /	
Расчетным методом	MYII «HBK»	6,61073	-		Тетрахлюрметан (Углерод четыреххлюристый)	9060			
Расчетным методом	МУП «НВК»	21,43985	0,0033340	1 раз в 5 лет	Трихлорметан (Хлороформ)	8680			
Расчетным методом	МУП «НВК»	0,01801	0,0000028		Серная кислота (по молекуле H2SO4).	0322	1		
Расчетным методом	MVII «HBK»	0,46429			Соляная кислота	0316			
Расчетным методом	МУП «НВК»	5,71043	0,0008880	1 раз в 5 лет	Аммиак	0303			
Расчетным методом	МУП «НВК»	0,21478	0,0000334	I раз в 5 лет	Азотная кислота (по молекуле HNO3)	0302			
Расчетным методом	MYII «HBK»	0,03601	0,0000056	1 раз в 5 лет	Хром (Хром шестивалентный) (в пересчете на хрома (VI) оксид)	0203			
Расчетным методом	МУП «НВК»	0,07202	0,0000112	1 раз в 5 лет	диНатрий карбонат (Натрия карбонат, Сода кальцинированная)	0155	0000	Лаборатория	
Расчетным методом	МУП «НВК»	0,28084	0,0000196	1 раз в 5 лет	Этановая кислота (Уксусная кислота)	1555		-	
Расчетным методом	МУП «НВК»	1,04599	0,0000730	1 раз в 5 лет	Этанол (Спирт этиловый)	1001			
Расчетным методом	МУП «НВК»	17,48661	0,0012204	1 раз в 5 лет	Тетрахлорметан (Углерод четыреххлористый)	9060			
Расчетным методом	МУП «НВК»	13,69240	0,0009556	1 раз в 5 лет	Трихлорметан (Хлороформ)	8680			
Расчетным методом	MyII «HBK»	3,85009	0,0002687	1 раз в 5 лет	Гексан	0403			
Расчетным методом	МУП «НВК»	0,05731	0,0000040	1 раз в 5 лет	Соляная кислота	0316			
Расчетным методом	МУП «НВК»	0,01003	0,0000007	1 раз в 5 лет	Аммиак	0303			
Расчетным методом	МУП «НВК»	2,83e-06	1,97e-10	1 раз в 5 лет	Азотная кислота (по молекуле HNO3)	0302	6100	Лаборатория	
Расчетным методом	МУП «НВК»	0,00000	0,0012839	1 раз в 5 лет	Метантиол (Метилмеркаптан)	1715			
Расчетным методом	МУП «НВК»	0,00000	0,0246911	1 раз в 5 лег	Формальдегид	1325			
гасчетным методом	MyII «HBK»	0,00000	0,0365429	1 раз в 5 лет	Гидроксибензол (Фенол)	1071			

Подп. и дата

Инв. № подл.

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

Лист

9

0322 Серная кислота (по молекуле H2SO4) 1 раз в 5 лет 0,000	0,0001083 0,69644	MYII «HBK» MYII «HBK» MYII «HBK»	Расчетным методом Расчетным методом Расчетным методом
	0,0000042 0,02701	MyII «HBK»	Расчетным методом
0898 Трихлорметан (Хлороформ) 1 раз в 5 лет 0,003		MyII «HBK» MyII «HBK»	Расчетным методом
Тетрахлюрметан (Углерод 1 раз в 5 лет четыреххлористый)	He Hi	MVII «HBK»	Расчетным методом
1 раз в 5 лет	0,0005280 3,39539	МУП «НВК»	Расчетным методом
1555 Этановая кислота (Уксусная кислота) 1 раз в 5 лет 0,000	0,0002634 1,69384	MYII «HBK»	Расчетным методом
Площадка: 2 КНС-2			
в пять лет	0,0002651 146,141125	MVII «HBK»	Расчетным методом
0303 Аммиак Раз в пять лет 0,001	0,0016539 911,742007	MVII «HBK»	Расчетным методом
0304 Aзот (II) оксид (Азота оксид) Paз в пять лет 0,000	0,0004582 252,590959	МУП «НВК»	Расчетным методом

Изм. Кол.уч Лист №док Подп. Дата

04/2022-151-00000-OBOC-TY

Лист

595

Расчетным методом Расчетным методом Расчетным методом	MYII «HBK» MYII «HBK» MYII «HBK»	0,041266 0,026275 0,217774	0,0000947 0,0000170 0,0001409	Раз в пять лет Раз в пять лет Раз в пять лет	Метантиол (Метилмеркаптан) Азота диоксид (Азот (IV) оксид) Аммиак	1715 0301 0303	A 10	0028
Расчетным методом	МУП «НВК»	0,041266	0,0000947	11	етангиол (Метилмеркаптан)	Σ	-	1715
Расчетным методом	МУП «НВК»	0,513315	0,0011780	Раз в пять лет	Формальдегид	Ф	1325 Фо	7 - 1
Расчетным методом	MYII «HBK»	0,373526	0,0008572	Раз в пять лет	Гидроксибензол (Фенол)	Гид	1071 Гид	
Расчетным методом	MyII «HBK»	498,604465	1,1442400	Раз в пять лет	ган	Метан		
Расчетным методом	МУП «НВК»	6,944618	0,0159371	Раз в пять лет	Дигилросульфид (Сероводород)	Диг	0333 Диг	-
Расчетным методом	MyII «HBK»	1,002795	0,0023013	Раз в пять лет	Азот (П) оксид (Азота оксид)	A30	0304 A30	
Расчетным методом	МУП «НВК»	3,588938	0,0082362	Раз в пять лет	иак	Аммиак	0303 AMM	
Расчетным методом	MyII «HBK»	0,585912	0,0013446	Раз в пять лет	диоксид (Азот (IV) оксид)	Азота	0301 Азота	
				адка: 3 КНС-4	Площадка:			
Расчетным методом	MYII «HBK»	9,354413	0,0004500	Раз в пять лет	Углеводороды предельные С12-С19	Углевод	2754 Углевод	
Расчетным методом	MYII «HBK»	0,062247	0,0000022	Раз в пять лет	Метантиол (Метилмеркаптан)	Метант	1715 Метант	
Расчетным методом	МУП «НВК»	1,267581	0,0000448	Раз в пять лет	Формальдегид	Форма	1325 Форма	
Расчетным методом	МУП «НВК»	0,916732	0,0000324	Раз в пять лет	Гидроксибензол (Фенол)	Гидро	1071 Гидро	
Расчетным методом	МУП «НВК»	1239,781639	0,0438175	Раз в пять лет		Метан	0410 Метан	
Расчетным методом	МУП «НВК»	17,259469	0,0006100	Раз в пять лет	Дигидросульфид (Сероводород)	Дигидр	0333 Дигидр	
Расчетным методом	МУП «НВК»	2,464426	0,0000871	Раз в пять лет	II) оксид (Азота оксид)	Азот (П	0304 A3or (II	Азот (
Расчетным методом	MYII «HBK»	8,805159	0,0003112	Раз в пять лет		Аммиак	0303 Аммиан	
Расчетным методом	МУП «НВК»	1,443005	0,0000510	Раз в пять лет	диоксид (Азот (IV) оксид)	Азота д	0301 Азота д	Asora
Расчетным методом	МУП «НВК»	9,354413	0,0004500	Раз в пять лет	Углеводороды предельные C12-C19	Углевод	2754 Углевод	
Расчетным методом	МУП «НВК»	26,074972	0,0000473	Раз в пять лет	Метантиол (Метилмеркаптан)	Метант	1715 Метант	
Расчетным методом	МУП «НВК»	126,901874	0,0002302	Раз в пять лет	ьдегид	Формальдегид	1325 Формал	
Расчетным методом	МУП «НВК»	95,148842	0,0001726	Раз в пять лет	Гидроксибензол (Фенол)	Гидрок	1071 Гидрок	
Расчетным методом	МУП «НВК»	119873,64939	0,2174508	Раз в пять лег		Метан	0410 Метан	
Расчетным методом	MYII «HBK»	1673,539140	0,0030358	Раз в пять лет	Дигидросульфид (Сероводород)	Диги	0333 Диги	

Изм. Кол.уч Лист №док Подп. Дата

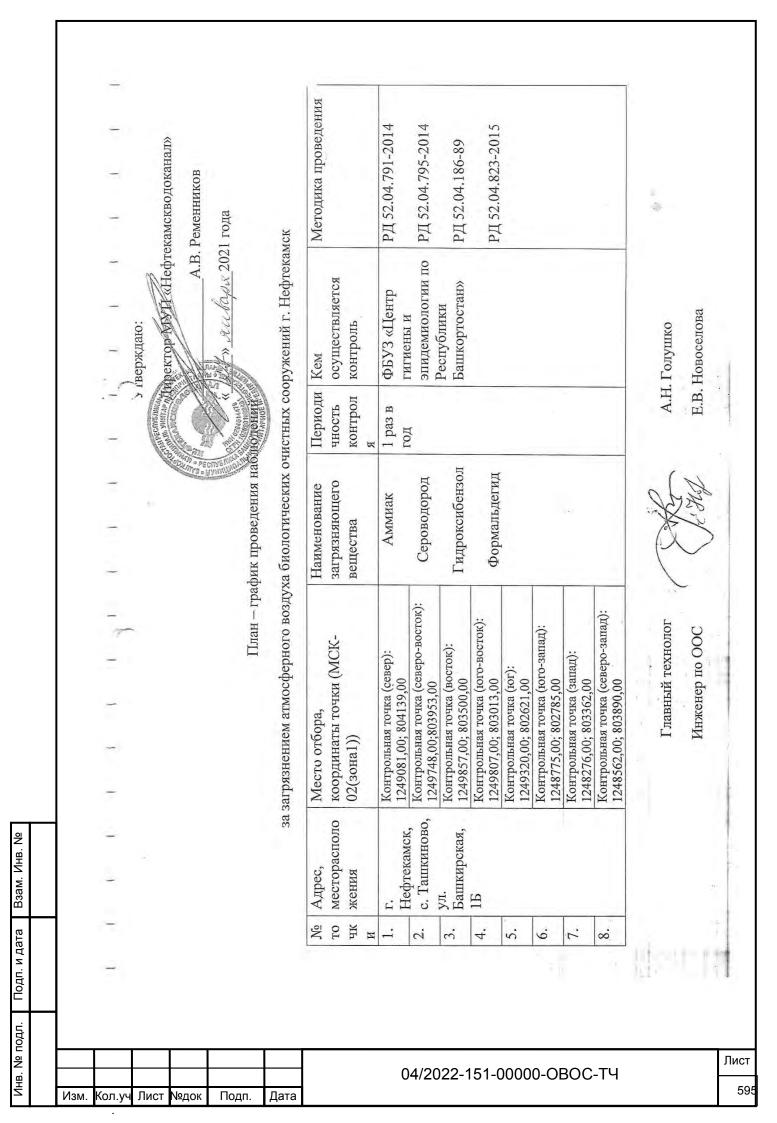
04/2022-151-00000-OBOC-TY

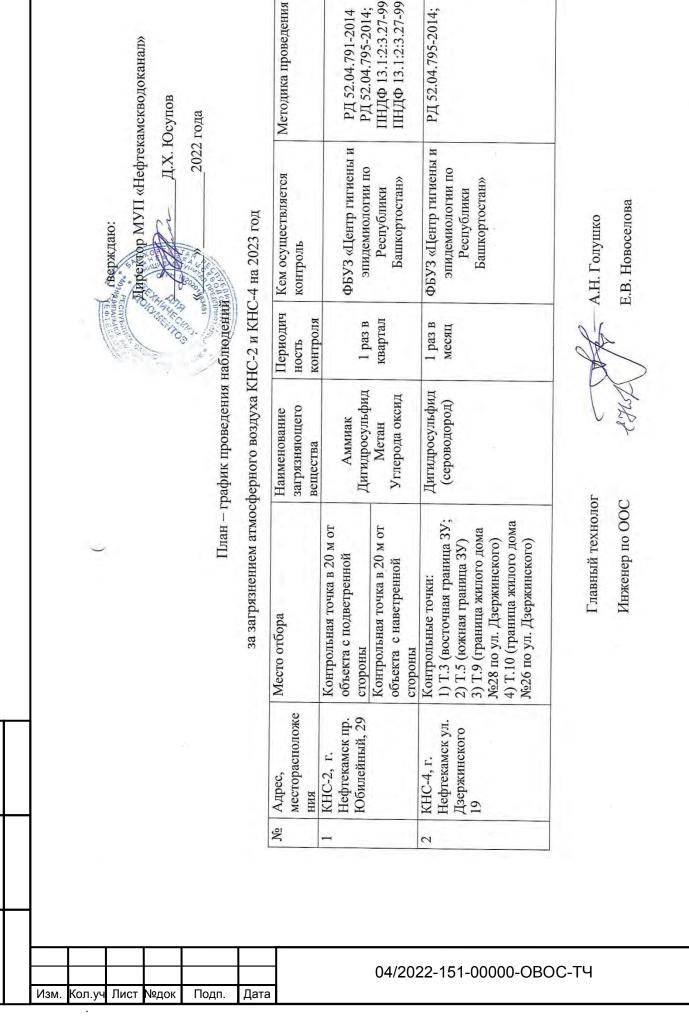
МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом	МУП «НВК» Расчетным методом
0,053478	0,108810	6,840951	6,641222	0,023648	0,019011	0,056260	6,641222	0,695517	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000	0,0000000	0,000000	000000
0,0000346	0,0000704	0,0044261	0,0042969	0,0000153	0,0000123	0,0000364	0,0042969	0,0004500	0,0004685	0,0155194	0,0025219	0,0254618	0,0005490	0,0002361	0,0042969	0,0042969	0,0002361	0.0004500
Раз в пять лет	Раз в пять лет	Раз в пять лет	Раз в пять лег	Раз в пять лет	Раз в пять лет	Раз в пять лет	Раз в пять лет	Раз в пять лет	Раз в пять лет	Раз в пять лет	Раз в пять лет	Раз в пять лет	Раз в пять лег	Раз в пете пет				
Азот (II) оксид (Азота оксид)	Дигидросульфид (Сероводород)	Метан	Диметилбензол (Ксилол) (смесь изомеров о-, м-, п-)	Гидроксибензол (Фенол)	Формальдегид	Метантиол (Метилмеркаптан)	Уайт-спирит	Углеводороды предельные С12-С19	Марганец и его соединения (в пересчете на марганца (IV) оксид)	Азота диоксид (Азот (IV) оксид)	Азот (II) оксид (Азота оксид)	Углерод оксид	Фтористые газообразные соединения	Фториды плохо растворимые	Диметилбензол (Ксилол) (смесь изомеров 0-, м-, п-)	Уайт-спирит	Пыль неорганическая; 70-20% SiO2	Vгиевопороды предециие C12_C16
0304	0333	0410	0616	1071	1325	1715	2752	2754	0143	0301	0304	0337	0342	0344	9190	2752	2908	2754
									6013									6014
									Насосная									Насосная
									1							V		

Подп. и дата

Инв. № подл.

Подп.


Лист №док


А.Н. Голушко

Е.В. Новоселова

Инженер по охране окружающей среды

Главный технолог

Подп. и дата

Инв. № подл.

РД 52.04.791-2014 РД 52.04.795-2014; РД 52.04.795-2014;

График Правораторно-производственного контроля биологических очистных проб троб 1. Сточная вода. Дастота отбора проб троб Частота отбора проб троб Частота отбора проб троб Намиенования проб троб троб Поправляющия камера Поправляющия проб троб троб Определяет проб троб троб троб Поправляющия проб троб троб троб троб троб троб троб т	ых сооружений ж. Нефтекамска	Определяемые ингредиенты	5	Температура Лаборатория БОС pH БПК5 БПКлол Сухой остаток XIIК Взвешенные вещества Ион аммония Натрат-ион Натрат-ион Сульфат-ион Фосфат-ион Фенолы Жары Нефтепродукты АСПАВ (алкилсульфонат натрия) Дентральная лаборатория Кобальт Неткральная паборатория Кобальт Нанк, медь Марганец Цинк, медь Судинец Судинец	
	()			Температура рН БПК,5 БПК,6 БПК,6 БПК,6 БПКлол Сухой остаток ХПК Взвешенные веш Ион аммония Нитрат-ион Фосфат-ион Фенолы Жиры Нефтепродукты АСПАВ (алкилс Железо общее Хром 6+ Алюминий Кобальт Никель Марганец Цинк, медь Свинец	whoo wody
	График роля биологич на 2022-2024	Характеристи проб	4	Разовая Разовая Разовая Разовая	
	() () () () () () () () () ()	Частота отбора	3	Ежедневно 1 раз в месяц 1 раз в декаду 1 раз в декаду 1 раз в декаду	
	в абораторно-произ	Место отбора проб	2	Приемная камера	
	T T	Наименование проб			
	. Кол.уч Лист №док По		Да	04/2022-151-00000-OBOC-TY	

АО «Башкоммунводоканал»	Лаборатория БОС	Лаборатория БОС	
HITAB	Температура, pH БПК ₅ БПКполн Взвешенные вещества Ион аммония фосфат-ион Хлорид-ион Сульфат-ион	Температура рН Растворенный кислород БПК, БПКлолн Сухой остаток Взвешенные вещества ХПК Ион аммония Нитрат-ион Хлорид-ион Сульфат-ион Фосфат-ион Фенолы Нефтепродукты Жиры АСПАВ (алкилсульфонат натрия) Железо общее Хром 6+	
Разовая	Разовая Разовая Разовая	Разовая Разовая Разовая	
1 раз в квартал	Ежедневно 1 раз в месяц 1 раз в декаду	Ежедневно 1 раз в месяц 1 раз в декаду	
Приемная камера	После 1-х отстойников	Напорный коллектор очищенных сточных вод (насосы №1,№2,№3)	
1. Сточная вода, поступление	2.Осветленная сточная вода	3.Очищенная сточная вода	

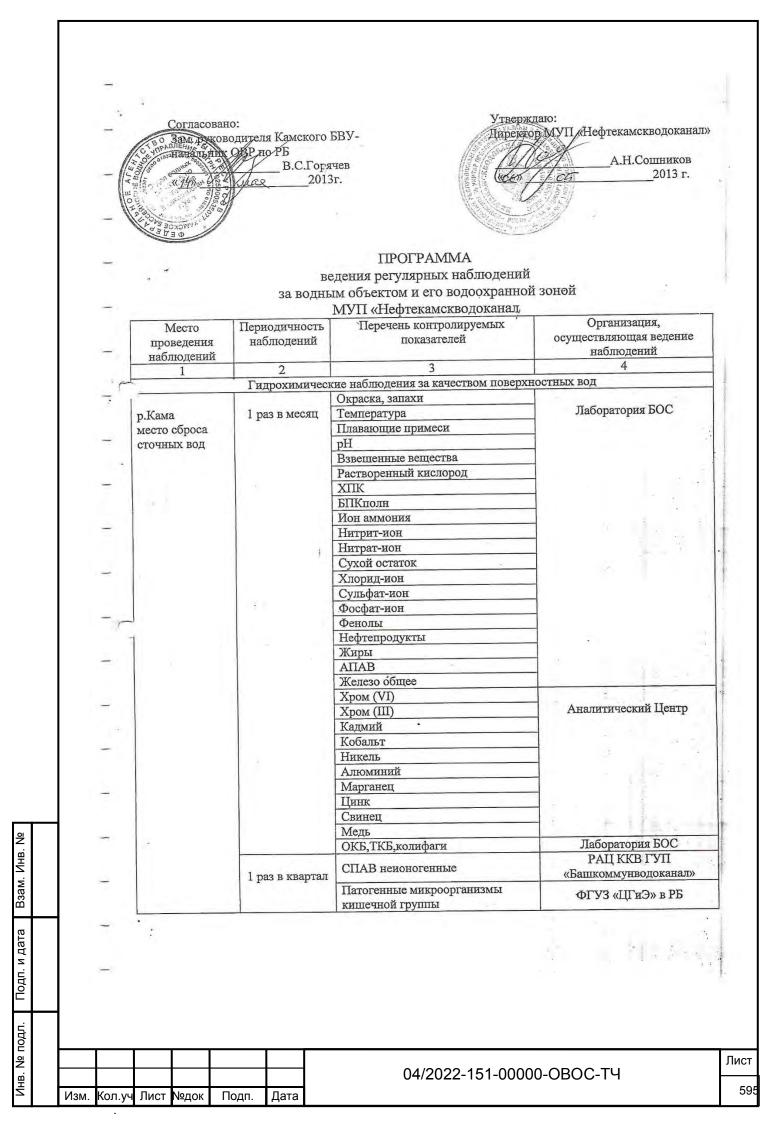
Инв. № подл. Подп. и дата

. 19 1 1	Центральная лаборатория	Лаборатория БОС	Нефтекамский филиал ФБУЗ «ЦГиЭ» в РБ	АО «Башкоммунводоканал» АО «Башкоммунводоканал»	Лаборатория БОС	Лаборатория БОС	Лаборагория БОС	Лаборатория БОС
	Кадмий Кобалът Никель Марганец Цинк Свинец Медь Хром общий	Хлор общий OKБ Escherichia coli Энтерококки Колифаги	Цисты и ооцисты патогенных простейших, яйца и личинки гельминтов Возбудители кишечных инфекций бактериальной природы	НПАВ Токсичность острая	Растворенный кислород	Доза ила по объему Микроскопирование Ил по сухому веществу Иловый индекс Влажность ила	Доза ила по объему	Влажность песка
14	Разовая	Разовая Разовая разовая	Разовая	Разовая Разовая	Разовая	Разовая Разовая Разовая	Разовая	Разовая
3,	1 раз в декад,	 раз в сутки раза в неделю раз в неделю 	1 раз в квартал	1 раз в квартал 1 раз в квартал	1 раз в сутки	3 раза в сутки 1 раз в сутки 1 раз в декаду 1 раз в месяц	1 раз в сутки	По необходимости
2	Напорный коллектор очищенных сточных вод (насосы № 1,,№2,,№3)			После вторичных отстойников	Аэротенки	Азротенки	Коллектор возвратного ила	Бункер песка
Γ-	3.Очищенная сточная вода				4.Иловая вода	5.Активный ил	6.Возвратный ил	7.Осадок

Подп. и дата

Инв. № подл.

Изм. Кол.уч Лист №док


Подп.

Лист

595

	Лаборатория БОС	Нефтекамский филиал ФБУЗ «ЦГиЭ» в РБ	АО «Башкоммунводоканал»
	Растворенный кислород Прозрачность рН Температура Взвешенные вещества ХПК БПКлолн Кон аммоная Нитрат-ион Сухой остаток Хлорид-ион Фосфат-ион Фосфат-ион Фенолы Жиры Нефтепродукты АСПАВ (алкилсульфонат натрия) Железо общее Хром 6+ Алюминий ОКБ, езсhепісніа соці, энтерококки колифати Кадмий Кобальт Никель Марганец Цинк Свинец Медь	Цисты и ооцисты патогенных простейших, яйца и личинки «Л	нпав
		Разовая	
	1 раз в месяц	1 раз в квартал	
	Т.1 – 1000 м выше сброса сточных вод: Нижнекамское водохранилище на реке Кама (214км от устья р.Кама) Т.2 - место сброса сточных вод: Нижнекамское водохранилище на реке Кама (213 км от устья р.Кама) Т.3 – 500 м ниже сброса сточных вод: Нижнекамское водохранилище на реке Кама (212,5км от устья р.Кама)		
	вода вода		
- 	04/2022-151-00000-OBOC-T ^Q		

АО «Башкоммунводоканал»	Лаборатория БОС	Центральная лаборатория	
Токсичность хроническая	Взвешенные вещества ХПК, БПКполн Ион аммония Нитрат-ион Нитрат-ион Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион Фенолы, жиры Нефтепродукты АСПАВ (алкилсульфонат натрия) Железо общее Хром 6+	Кадмий Кобальт Никель Мартанец Цинк Свинец Медь Хром общий	аварийных ситуациях (залповые сбросы) анализы производить по всей технологической цепочке в разовой пробе. Главный инженер МУП «НВК» Главный технолог Главный технолог
разовая	Разовая		ъ по всей технолог
2 раза в год (паводок, межень)	1 раз в месяц		ле сбросы) анализы производить Главный инженер МУП «НВК»
Т.3 – 500 м ниже сброса сточных вод: Нижнекамское водохранилище на реке Кама (212,5км от устъя и Кама)	Нижнекамское водохранилище на реке Кама (224 км от устья р. Кама)		ситуациях (залповые сбр Главн
8.Природная вода	9.Природная вода		При аварийных с

р.Кама выше сброса егочных вод (фоговый створ) 1 раз в месяц Вывешенные вещества Растворенный кислород ХПК БПКлоли Иом авмовия Неграт-нов Неграт-нов Неграт-нов Оскоба-г-нов Оскоба-г-нов Неграт-нов Оскоба-г-нов Оскоба-г-нов Неграт-нов Оскоба-г-нов Неграт-нов Оскоба-г-нов Оскоба-г-нов Оскоба-г-нов Оскоба-г-нов Неграт-нов Оскоба-г-нов Ос	1	2	3	4
р.Кама р.Камий р.К	-			
рн Взвешенные вещества Растворенный кислород КПК ВПКполн Ион аммония Нитрит-нон Нитрит-нон Осужб остаток Клорид-нон Сумб остаток Кларид-нон Сумб остаток Кларид-нон Сумб остаток Кларид-нон Осужб остаток Патогенные микроорганизмы Кинеспособные яйца гельминтов и цисты кипечных патогенных простейлики Окраска, запахи Растворенный кислород КПК БПКлолн Ион аммония Нитрит-нон Нитрат-нон Осужб остаток Клорид-нон Осужб остаток		1 раз в месяц	Температура	Лаборатория БОС
Вавешенные вещества Растворенный кислород ХТК		14	Плавающие примеси	
Растворенный кислород XIIК БПКполн Иом аммония Нитрит-ион Нитрит-ион Сукой остаток Хлорид-ион Сукой остаток Хлорид-ион Осукой остаток Мира АПАВ Железо общее Хром (VI) Хром (III) Кадмий Кобальт Никель Алюминий Марганец Циик Свинец Медь ОКБ,ТКБ,колифаги Лаборатория БОС РАЦ (ККВ ГУИ) Кизнечной группы Жизнечной группы Жизнечной группы Жизнеспособные яйца гельмингов и цисты квинечных пагогенных простейших Окраска, запахи Окраска, запахи Окраска, запахи Патогольный Створ) 1 раз в месяц Температура Плавающие примеси рН Вавешенные вещества Растворенный кислород ХПК БПКлолн Иом аммония Нитрит-мон Нитрит-мон Нитрит-мон Нитрит-мон Нитрит-мон Нитрит-мон Сукой остаток Хлорид-июн Сукой остаток			pH	
ВПКполн Иол аммония Нитрит-ион Нитрит-ион Нитрит-ион Нитрит-ион Сукой остаток Хлорид-ион Фосфат-ион Ф	(фоновый створ)			
БПКлоли Ион аммония Нитрят-ное Нитрят-ное Сузой остаток Хлорид-нон Сульфат-кон Фенолы Нефтепродукты Жиры АПАВ Железо общее Хром (ИП) Калмий Кобальт Никель Альоминий Мартанец Цилк Свинец Медь ОКБ,ТКБ,колифати Лаборатория БОС РАЦ ККВ ГУП «Башкоммуньодокавах простейных илогенных протегных простейных простейны				
Исм аммония Нитрит-ион Нитрит-ион Нитрит-ион Сухой остаток Хлорид-ион Осудафат-ион Фенолы Нефтепродукты Жиры АПАВ Железо общее Хром (VI) Хром (III) Кадмий Кобальт Никель Алкоминий Мартанец Цинк Свинец Медь ОКБ, ТКБ, колифати Лаборатория БОС РАЦ ККВ ГУП «Башкомаунводокана Патогенные микроорганизмы кишечной группы Жизнеспособные яйца гельминтов и цисты кишечных патогенных простейших Окраска, запахи Температура Плаважощие примеси рН Ввешенные вещества Раствореный киспород ХПК БПКлолн Исм аммония Натрит-ион Натрит-ион Натрит-ион Натрит-ион Сухой остаток Хлорид-ион Сухой остаток Хлорид-ио				
Нитрит-ион Нитрит-ион Нитрит-ион Сукой согтаток Жлоряд-ион Суньфат-ион Фенолы Нефтепродукты Жиры АПАВ Железо общее Хром (VI) Хром (III) Кадмий Кобальт Никель Алюминий Марганец Цинк Свинец Медь ОКБ,ТКБ,колифаги Лаборатория БОС РАЦ ККВ ГУП «Башкоммунводоканат Патогенные микроорганизмы кишечной группы Жизнестособные яйца гельминтов и цисты кишечных патогенных простейших Окраска, запахи Пемпература ниже сброса сточных вод (контрольный створ) Плавающие примеси рН Вавешенные вещества Растворенный кислород ХПК БПКполн Ион аммония Нитрит-ион Нитрат-ион Сукой остаток Хлорид-ион Сухой остаток Хлорид-ион Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион				
Нитрат-ион Сухой остаток Хлорид-ион Сульфат-ион Фенолы Нефтепродукты Жиры АПАВ Железо общее Хром (VI) Хром (III) Кадмай Кобальт Никель Алюминий Марганец Цинк Свинец Медь ОКБ,ТКБ,колифаги Лаборатория БОС РАЦККВ ГУИ «Башкоммунводокаяза Патогенные микроорганизмы кишечкой группы Казнеспособые яйца гельминтов и цисты кипечных патогенных простейшкх Окраска, запахи Температура Плавающие примеси рН Вавешенные вещества Растворенный кислород ХПК БПКполн Ион аммония Нитрат-ион Сухой остаток Хлорид-ион Сульфат-ион Осульфат-ион Осульфат-ион Осульфат-ион				-
Сухой остаток Хлорид-ион Ософат-ион	*			-
Длорид-ион Сульфат-ион Фенолы Нефтепродукты Жиры АПАВ Железо общее Хром (VI) Хром (III) Калмий Кобальт Никель Алюминий Мартанец Пинк Сашец Медь ОКБ,ТКБ,колифаги Лаборатория БОС ГПАВ неионогенные Патогенные микроорганизмы кишечной группы Жизнеспособные яйца гельминтов и цисты кищечных патогенных простейших Ограска, запахи Температура Плавающие примеси рН Взвешенные вещества Раствореный кислород ХПК ПКПолт Ион авмония Нитрат-ион Нутрат-ион Сухой остаток Хлорид-ион Сухой остаток Хлорид-ион Сухой остаток Хлорид-ион Сукой остаток Хлорид-ион				-
Сульфат-ион Фосфат-ион Фосфат-ион Фенолы Нефтепролукты Жиры АПЛАВ Железо общее Хром (VI) Хром (III) Калмий Кобальт Никель Алюминий Мартанец Пинк Свинец Медь ОКБ,ТКБ,колифаги Лаборатория БОС РАЦ ККВ ГУП «Башкоммунводокана: Патогенные микроорганизмы кишечной группы Жизнеспособные яйца гельмингов и цисты кишечных патогенных простейпих Окрасжа запаки Температура Плавающие примеси рН Вавешенные вещества Растворенный кислород ХПК БПКлолн Ион аамония Нитрат-ион Сухой остаток Хлорид-ион Сурьфат-ион Фосфат-ион Фосфат-ион	r			
Фосфат-ион Фенолы Нефтепродукты Жиры АПАВ Железо общее Хром (VI) Хром (III) Калмий Кобальт Никель Алюминий Марганец Цинк Свинец Медь ОКБ,ТКБ,колифаги Патогенные микроорганизмы кишечной группы Жизнеспособные яйца гельмингов и цисты кишечных патогенных простейших Окраска, запаки Температура ниже сброса сточных вод (контрольный створ) 1 раз в месяц Плавающие примеси рН Взвешенные вещества Растворенный кислород ЖПК БПКполн Ион аммония Нитрит-ион Сухой остаток Хлорид-ион Сухой остаток Хлорид-ион Осусфат-ион Осусфат-ион Осусфат-ион Осусфат-ион Осусфат-ион				
Фенолы Нефтепродукты Жиры АПАВ Железо общее Хром (VI) Хром (III) Кадмий Кобальт Никель Алюминий Марганец Цинк Свинец Медь ОКБ,ТКБ,колифаги Лаборатория БОС РАЦ ККВ ГУП «Башкоммунводоканал Патогенные микроорганизмы кишечной грушпы Жизнеспособные яйда гельминтов и цисты кишечных патогенных простейших Окраска, запахи Температура Плавающие примеси рН Взвешенные вещества Растворенный кислород ХПК БПКлолн Ион аммония Нитрит-нон Нитрит-нон Нитрит-нон Сухой остаток Хлорид-нон Сухой остаток Хлорид-нон Сухой остаток Хлорид-нон Ососфат-нон Фосфат-нон				
Нефтепродукты Жиры АПАВ Железо общее Хром (VI) Хром (III) Хром (III) Кадмий Кобальт Никель Алюминий Марганец Цинк Свинец Медь ОКБ,ТКБ,колифаги Лаборатория БОС СПАВ неионогенные СПАВ неионогенные Патогенные микроорганизмы кишечной группы Жизнеспособные яйца гельминтов и цисты кишечных патогенных простейтикх Окраска, запахи р.Кама ниже сброса сточных вод (контрольный створ) 1 раз в месяц Плавающие примеси рН Взвешенные вещества Растворенный кислород ХПК БПКполн Ион аммония Нитрит-ион Нитрат-ион Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион Фосфат-ион	4	2		
Динк Кобальт Никель Алюминй Марганец Цинк Сымец Медь ОКБ,ТКБ,колифаги Лаборатория БОС РАЦ ККВ ГУП (Башкоммунводокана) Патогенные микроорганизмы кишечной группы Кизвеспособые яйца гельминтов и цисты кишечных патогенных простейших Обраска, запахи Температура Плавающие примеси рН Взвешенные вещества Растворенный кислород ХПК БПКлолн Ион аммония Нитрит-вон Нитрат-вон Сухой остаток Хлорид-вон Сульфат-ион Ософат-ион Ософат-ион				
AПАВ Железо общее Кром (VI) Карми (III) Кадмий Кобальт Никель Алюминий Марганец Цинк Свинец Медь ОКБ,ТКБ,колифаги Лаборатория БОС РАЦ ККВ ГУП «Башкоммунводоканал Патогенные микроорганизмы кишечной группы Жизнеспособные яйца гельмингов и цисты кишечных патогенных простейтих Окраска, запахи Температура Лаборатория БОС Плавающе примеси р Н Взвешенные вещества Растворенный створ) Взвешенные вещества Растворенный кислород КЛІК БПКполн Ион аммония Нитрит-ион Нитрат-ион Сукой остаток Хлорид-нон Сукой остаток Хлорид-нон Сукой астаток	* ,==	-	Жиры	
Железо общее Хром (VI) Хром (III) Кадмий Кобальт Никель Алкоминий Марганец Цинк Свинец Медь ОКБ,ТКБ,колифаги Лаборатория БОС РАЦ ККВ ГУП «Башкоммунводоканал Патогенные микроорганизмы кишечной группы Жизнеспособные яйца гельминтов и цисты кишечных патогенных простейших Окраска, запахи Р.Кама ниже сброса сточных вод (контрольный створ) 1 раз в месяц Паванопцие примеси рН Взвешенные вещества Растворенный кислород ХПК БПКполн Ион аммония Нитрит-нон Нитрит-нон Нитрит-нон Нитрит-нон Сукой остаток Хлорид-нон Сукой остаток Хлорид-нон Сукой астаток Окраска, запахи Лаборатория БОС				
Хром (III) Денту Кадмий Кобальт Никель Алюминий Мартанец Цинк Свинец Медь ОКБ, ТКБ, колифати Лаборатория БОС РАЦ ККВ ГУП «Башкоммунводоканат Патогенные микроорганизмы кишечной группы Жизнеспособные яйца гельминтов и цисты кишечных патогенных простейших простейших Температура Лаборатория БОС Плавающие примеси РН Взвещенные вещества Растворенный кислород ХПК БПКполн Ион аммония Нитрит-нон Нитрит-нон Нитрит-нон Нитрит-нон Нитрит-нон Сухой остаток Хлорид-нон Сухой остаток Хлорид-нон Сухой остаток Хлорид-нон Сухой остаток Хлорид-нон Сухофат-ион Фосфат-нон Фосфат-нон Фосфат-нон Делем Деле	in the second			
Хром (III) Кадмий Кобальт Никель Алюминий Марганец Цинк Свинец Медь ОКБ,ТКБ,колифаги Лаборатория БОС СПАВ неионогенные РАЦ ККВ ГУП «Башкоммунводоканат Патогенные микроорганизмы кишечной группы Жизнеспособные яйца гельмингов и цисты кишечных патогенных простейних Окраска, запахи Температура Павающие примеси рН Взвешенные вещества Растворенный кислород ХПК БПКполн Ион авмония Нитрат-ион Нитрат-ион Сукой остаток Хлорад-нон Сукой остаток Хлорад-нон Сукофат-ион Фосфат-ион Фосфат-ион Фосфат-ион Фосфат-ион Фосфат-ион	1			
Кадмий Кобальт Никель Алюминий Марганец Цинк Свинец Медь ОКБ,ТКБ,колифаги Лаборатория БОС РАЦ ККВ ГУП «Башкоммунводоканат Патогенные микроорганизмы Кишечной группы Жизнеспособные яйца гельминтов и цисты кишечной группы Жизнеспособные яйца гельминтов и цисты кишечной группы Жизнеспособные яйца гельминтов и цисты кишечных патогенных простейших Окраска, запахи Температура Паборатория БОС Плавающие примеси рН Взвешенные вещества Растворенный кислород ХПК БПКполн Ион аммония Нитрит-ион Натрат-ион Сухой остаток Хлорд-ион Сульфат-ион Фосфат-ион Фосфат-ион Фосфат-ион Фосфат-ион				Аналитический Центт
Кобальт Никель Алюминий Марганец Цинк Свинец Медь ОКБ,ТКБ,колифаги Лаборатория БОС РАЦ ККВ ГУП «Башкоммунводоканал Патогенные микроорганизмы жишечной группы Жизнеспособные яйца гельминтов и цисты кишечных патогенных простейпих Окраска, запахи Температура Плавающие примеси рН Взвешенные вещества Растворенный кислород ХПК БПКполн Ион аммония Нитрат-ион Нитрат-ион Сульфаг-ион Фосфат-ион Фосфат-ион	. \		Кадмий	
Алюминий Марганец Цинк Свинец Медь ОКБ,ТКБ,колифаги Лаборатория БОС РАЦ ККВ ГУП «Башкоммунводоканал Патогенные микроорганизмы кишечной группы Жизнеспособные яйца гельминтов и цисты кишечных патогенных простейлих Окраска, запахи Температура Ниже сброса сточных вод (контрольный створ) Павакощие примеси рН Взвешенные вещества Растворенный кислород ХПК БПКполн Ион аммония Нитрит-ион Нитрит-ион Нитрит-ион Нитрат-ион Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион	14		Кобальт	
Марганец Пинк Свинец Медь ОКБ,ТКБ,колифаги Лаборатория БОС СПАВ неионогенные Патогенные мироорганизмы кишечной группы жизнеспособные яйца гельминтов и цисты кишечных патогенных простейних Окраска, запахи Температура Плавающие примеси рН Взвешенные вещества Растворенный кислород ХПК БПКполн Ион аммония Нитрит-ион Нитрат-ион Сульфат-ион Сульфат-ион Фосфат-ион		17	The Section And the Section Control of the Se	
Цинк Свинец Медь ОКБ,ТКБ,колифаги Лаборатория БОС РАЦ ККВ ГУП «Башкоммунводоканал Патогенные микроорганизмы кишечной группы Жизнеспособные яйца гельминтов и цисты кишечных патогенных простейтиих Окраска, запахи Температура Плавающие примеси рН Взвешенные вещества Растворенный кислород ХПК БПКполн Ион аммония Нитрят-ион Нитрят-ион Нитрат-ион Нитрат-ион Сульфат-ион Сульфат-ион Фосфат-ион Фосфат-ион Фосфат-ион				
Свинец Медь ОКБ,ТКБ,колифаги Лаборатория БОС РАЦ ККВ ГУП «Башкоммунводоканал Патогенные микроорганизмы кишечной группы Жизнеспособные яйца гельминтов и цисты кишечных патогенных простейних Окраска, запахи Температура Лаборатория БОС Плавающие примеси рН Взвешенные вещества Растворенный кислород ХПК БПКполн Ион аммония Нитрит-ион Нитрит-ион Нитрит-ион Нитрит-ион Сукой остаток Хлорид-ион Сукофат-ион Фосфат-ион				
Медь ОКБ,ТКБ,колифаги Лаборатория БОС РАЦ ККВ ГУП «Башкоммунводоканал Патогенные микроорганизмы кишечной группы Жизнеспособные яйца гельминтов и цисты кипценных патогенных простейтих Окраска, запахи Температура ниже сброса сточных вод (контрольный створ) Плавающие примеси рН Взвешенные вещества Растворенный кислород ХПК БПКполн Ион аммония Нитрит-ион Нитрит-ион Нитрат-ион Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион		_ 1		
ОКБ,ТКБ,колифаги 1 раз в квартал Патогенные микроорганизмы кишечной группы Жизнеспособные яйца гельминтов и цисты кишечных патогенных простейших Окраска, запахи Температура Плавающие примеси рН Взвешенные вещества Растворенный кислород ХПК БПКполн Ион аммония Нитрит-ион Нитрат-ион Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион		1		
Патогенные микроорганизмы кишечной группы Жизнеспособные яйца гельминтов и цисты кишечных патогенных простейших р.Кама ниже сброса сточных вод (контрольный створ) Тампература Паборатория БОС Плавающие примеси рН Взвешенные вещества Растворенный кислород ХПК БПКполн Ион аммония Нитрит-ион Нитрит-ион Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион		7 3.		
1 раз в квартал Патогенные микроорганизмы кишечной группы Жизнеспособные яйца гельминтов и цисты кишечных патогенных простейтиих р.Кама ниже сброса сточных вод (контрольный створ) 1 раз в месяц НВ взвешенные вещества Растворенный кислород ХПК БПКполн Ион аммония Нитрит-ион Нитрат-ион Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион			ОКЬ, ГКЬ, колифаги	
Патогенные микроорганизмы кишечной группы Жизнеспособные яйца гельминтов и цисты кишечных патогенных простейших р.Кама ниже сброса сточных вод (контрольный створ) 1 раз в месяц Плавающие примеси рН Взвешенные вещества Растворенный кислород ХПК БПКполн Ион аммония Нитрит-ион Нитрат-ион Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион		1-22	СПАВ неионогенные	
р.Кама ниже сброса сточных вод (контрольный створ) Тамиранные вещества растворенный кислород ХПК БПКлолн Ион аммония Нитрит-ион Нитрат-ион Сухой остаток Хлорид-ион Фосфат-ион Фосфат-ион		1 раз в квартал	il and the second secon	«Башкоммунводоканал
р.Кама р.Кама простейших Окраска, запахи Температура Паборатория БОС Плавающие примеси рН Взвешенные вещества Растворенный кислород ХПК БПКполн Ион аммония Нитрит-ион Нитрат-ион Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион			Патогенные микроорганизмы	ALVO TIE-D. DE
и цисты кишечных патогенных простейших Окраска, запахи Температура Плавающие примеси рН Взвешенные вещества Створ) Температура Плавающие примеси рН Взвешенные вещества Температура Плавающие примеси рН Взвешенные вещества Температура Плаборатория БОС Плавающие примеси рН Взвешенные вещества Температура Плавающие примеси		40	Жизнеспособиле айна гентминтов	Ф1 У3 «Ц иЭ» в Рь
р.Кама р.Кама ниже сброса сточных вод (контрольный створ) Температура Паборатория БОС Плавающие примеси рН Взвешенные вещества Растворенный кислород ХПК БПКполн Ион аммония Нитрит-ион Нитрат-ион Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион			и писты кишечных патогенных	
р.Кама ниже сброса сточных вод (контрольный створ) Праз в месяц Температура Паборатория БОС Плавающие примеси рН Взвешенные вещества Растворенный кислород ХПК БПКполн Ион аммония Нитрит-ион Нитрат-ион Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион		4	простейших	
р.Кама ниже сброса сточных вод (контрольный створ) 1 раз в месяц Плавающие примеси рН Взвешенные вещества Растворенный кислород ХПК БПКполн Ион аммония Нитрит-ион Нитрат-ион Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион		b		
ниже сброса сточных вод (контрольный створ) Взвешенные вещества Растворенный кислород ХПК БПКполн Ион аммония Нитрит-ион Нитрат-ион Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион		1 раз в месяц		Лаборатория БОС
(контрольный створ) Взвешенные вещества Растворенный кислород XПК БПКполн Ион аммония Нитрит-ион Нитрат-ион Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион		, ,	Плавающие примеси	
Растворенный кислород ХПК БПКполн Ион аммония Нитрит-ион Нитрат-ион Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион		l,		
XПК БПКполн Ион аммония Нитрит-ион Нитрат-ион Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион		\ \		
БПКполн Ион аммония Нитрит-ион Нитрат-ион Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион	створ)	1		
Ион аммония Нитрит-ион Нитрат-ион Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион		T. C. C.		191
Нитрит-ион Нитрат-ион Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион		[1. ± v		
Нитрат-ион Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион				
Сухой остаток Хлорид-ион Сульфат-ион Фосфат-ион				
Хлорид-ион Сульфат-ион Фосфат-ион				
Сульфат-ион Фосфат-ион		7		1 4 1
Фосфат-ион				
			Сульфат-ион	4
Фенолы				
			Фенолы	_3
	-			0 16 1 "

1	2	3	4
		Нефтепродукты	-
		Жиры	Аналитический Центр
		АПАВ	
		Железо общее	
8		Хром (VI)	A manuscration = II
		Xром (III)	Аналитический Центр
		Кадмий	-
		Кобальт	
-		Никель	_
		Алюминий	
		Марганец	•
		Цинк (
		Свинец	<u> </u>
		Медь	
		ОКБ,ТКБ,колифаги	Лаборатория БОС
~	1	СПАВ неионогенные	РАЦ ККВ ГУП
	1 раз в квартал		«Башкоммунводоканал»
	£	Патогенные микроорганизмы кишечной группы Жизнеспособные яйца гельминтов и цисты кишечных патогенных простейших	ФГУЗ «ЦГиЭ» в РБ
		Токсичность хроническая	РАЦ ККВ ГУП «Башкоммунводоканал»
Had	блюдения за морф	ометрическими характеристиками	модиного обт отто
		T	водного ооъекта
В месте водопользования	2 раза в год	Согласно приказу МПР РФ от 06.02.2008 г. №30	МУП «Нефтекамскводоканал»
	Наблюд	ения за состоянием водоохраной зо	ОНЫ
В месте	34		11
водопользования	оннкотоп	Согласно приказу МПР РФ от 06.02.2008 г. №30	МУП «Нефтеакмскводоканал»

Главный инженер МУП «НВК»

Главный технолог

Начальник аналитического Центра

Начальник цеха водоотведения

Трусов В.Ю.

Голушко А.Н.

_____ Шаяхметова С.Г.

Пушкарев С.Н.

Взам. Инв. №	
Подп. и дата	
з. № подл.	

Изм.	Кол.уч	Лист	№док	Подп.	Дата

ВЕДОМОСТЬ ДОКУМЕНТОВ ГРАФИЧЕСКОЙ ЧАСТИ						
Обозначение		Наименование		Примечание		
04/2022-151-П-01000-ОВОС- ГЧ	Вед	домость документов графической час	сти			
04/2022-151-П-01000-ОВОС- Ч1	Оба	зорный план				
]						
-						
 						
Изм. Кол.уч. Лист №док. Подп.	Дата	04/2022-151-Π-0100	0-OBOC-	ГЧ		
Разраб. Матвеева <i>Малис</i>	дата 20.12.23			ист Листов		
		Ведомость документов	П	1 1		
Н.контр. Рябикова ГИП Каюмова	20.12.23 20.12.23	графической части	W H	ВАДРИТ		

Согласовано

Взам. инв. №

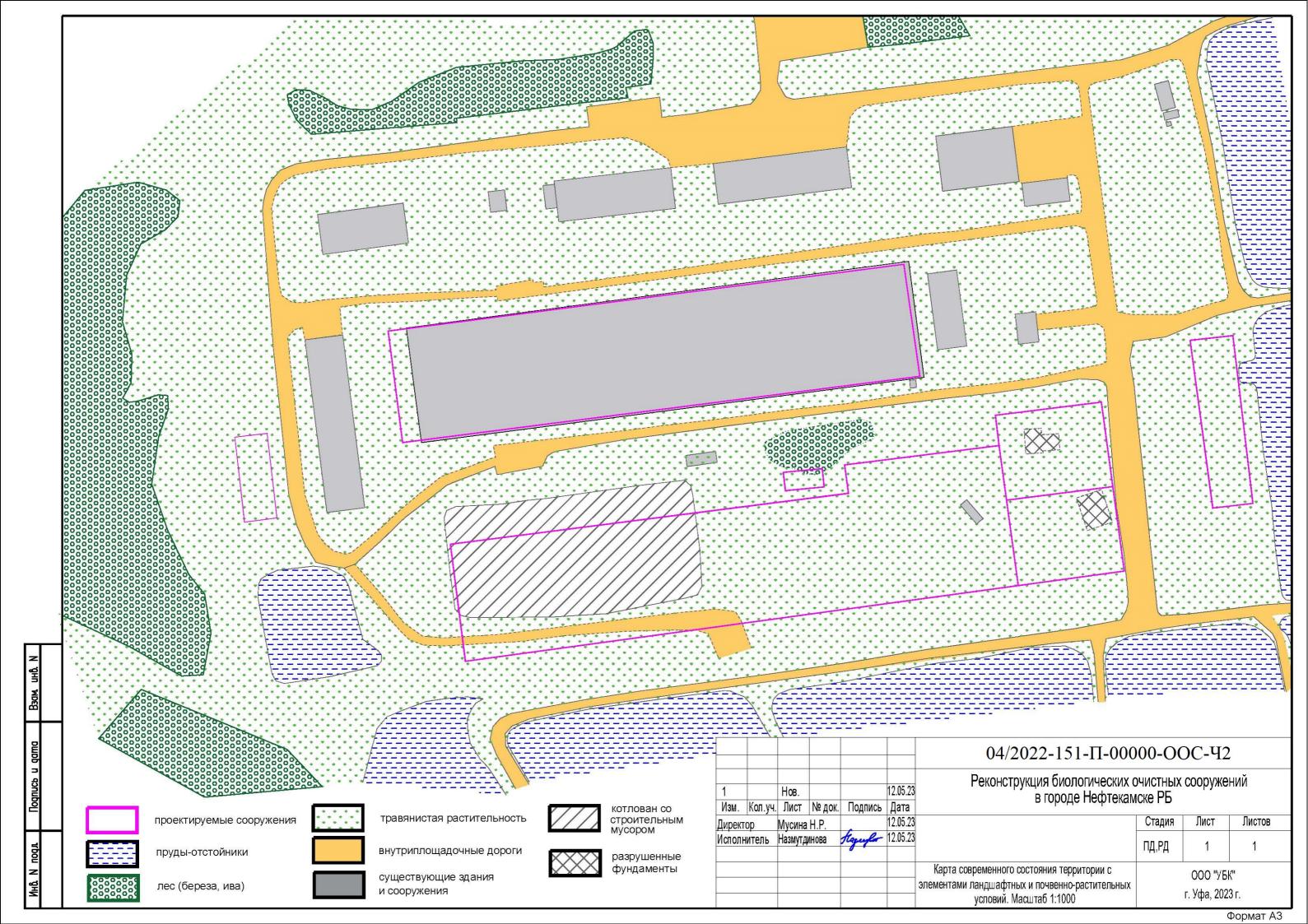
Подп. и дата

Инв. № подл.

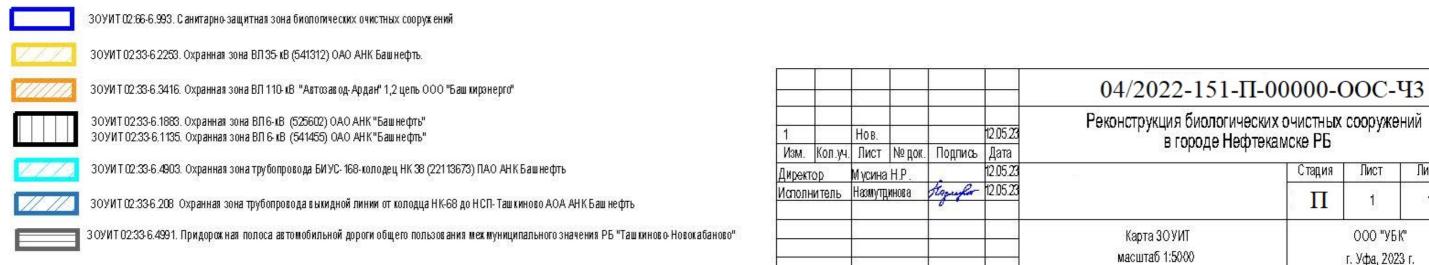
Взам. инв.

ognuce u game

b. N nogл.


Условные обозначения

участок работ водоохранная зона

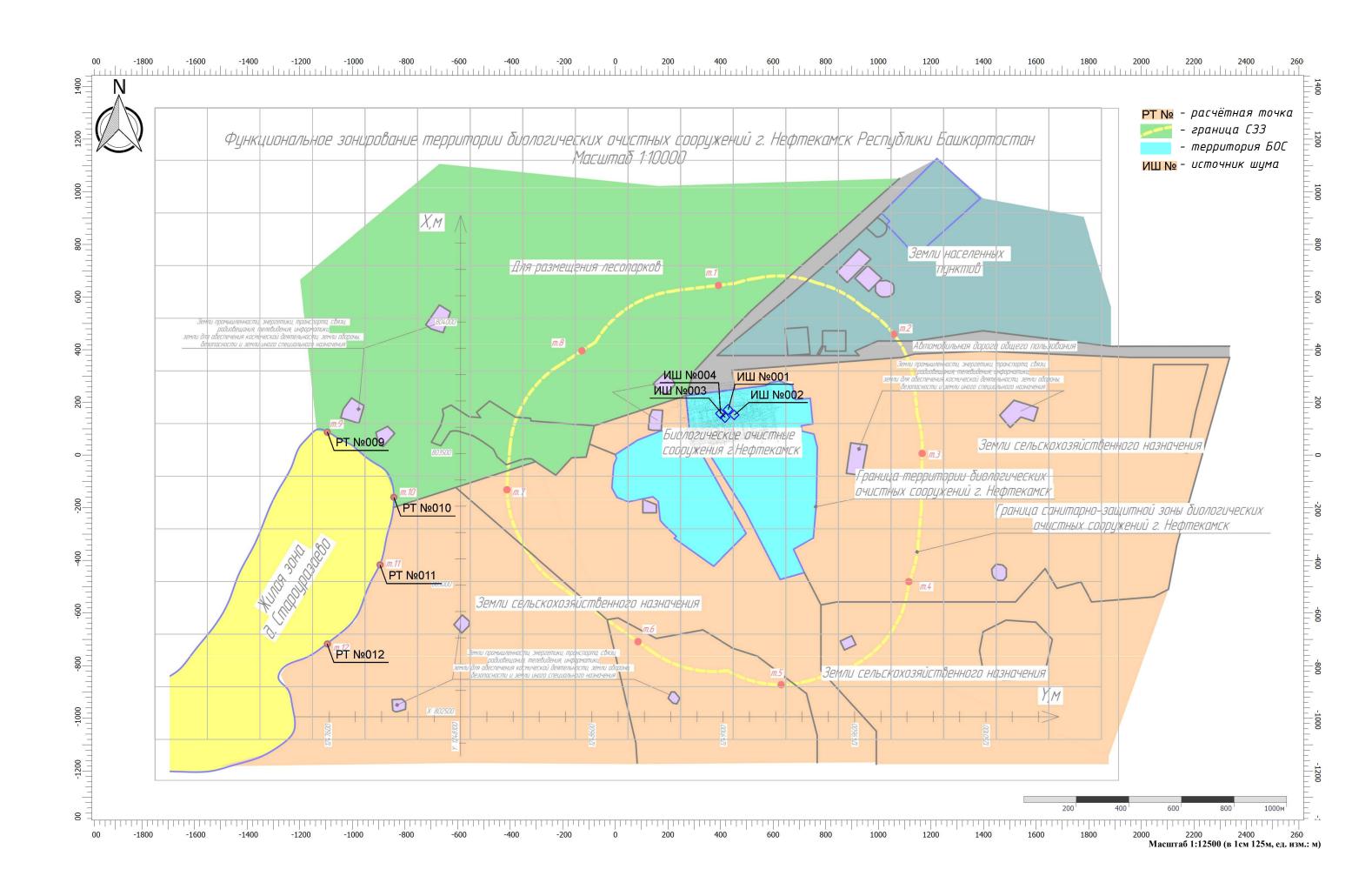

оточка мониторинга атмосферного воздуха (период реконструкции)

точка мониторинга почвенного покрова (период реконструкции)

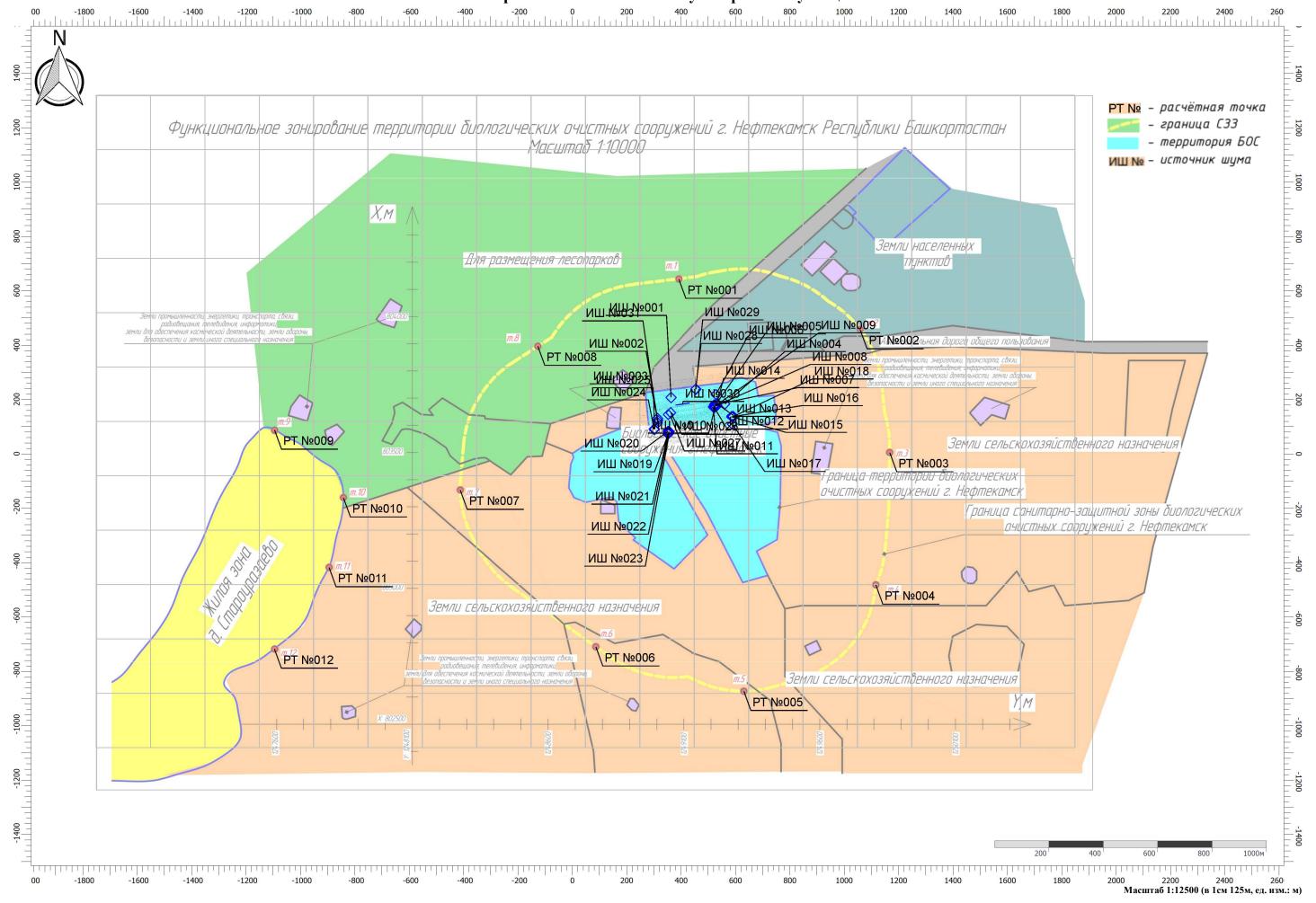
						04/2022-151-П-01000-ОВОС-Ч1				
Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата	Реконструкция биологических в городе Нефтекаг	еских очистных сооружений фтекамске РБ			
Директо	p	Мусина					Стадия	Лист	Листов	
Исполн		Назмутд	инова	Hazeefor			П	1	1	
						Обзорная карта масштаб 1:10000			,	

Листов

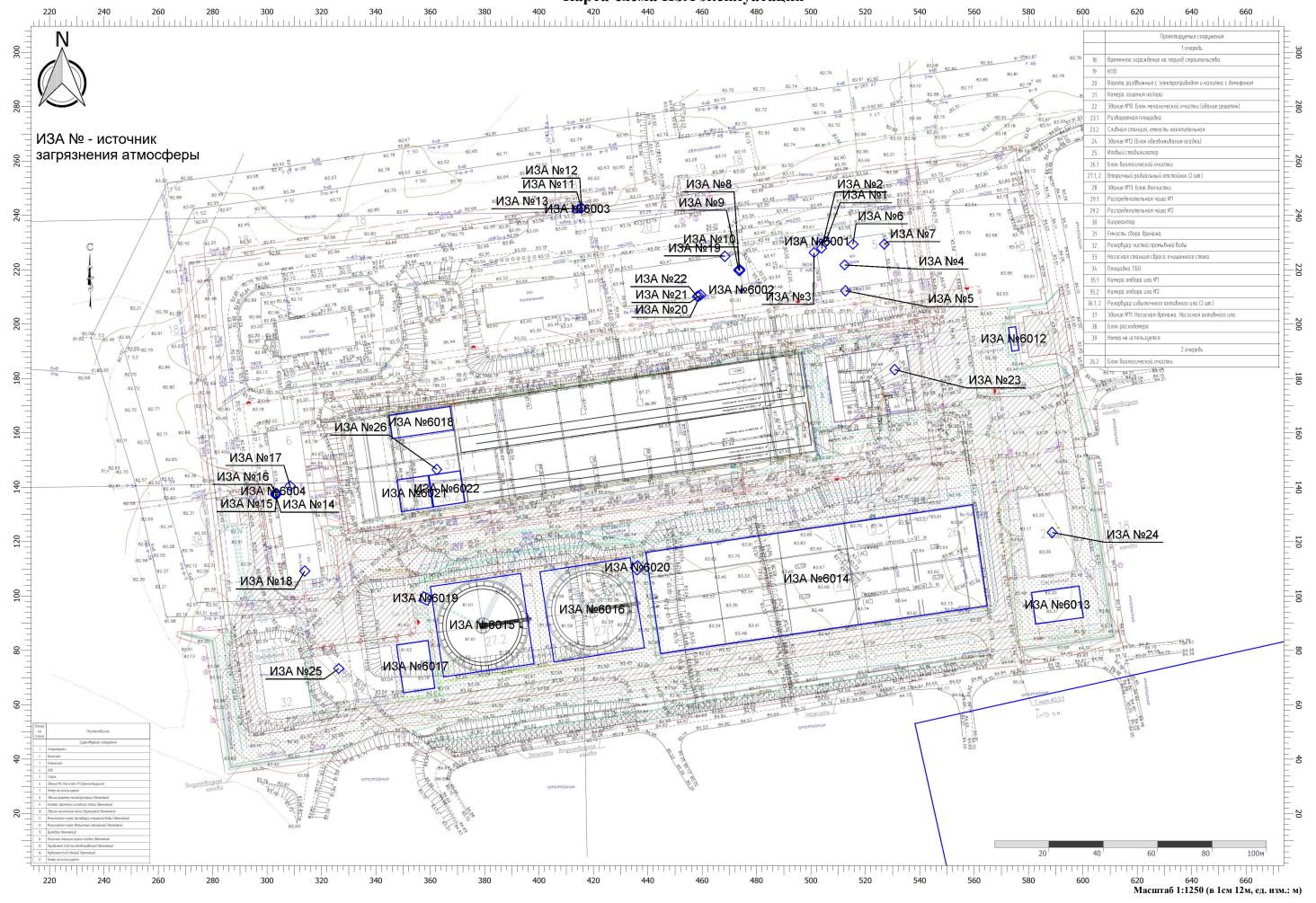
Стадия

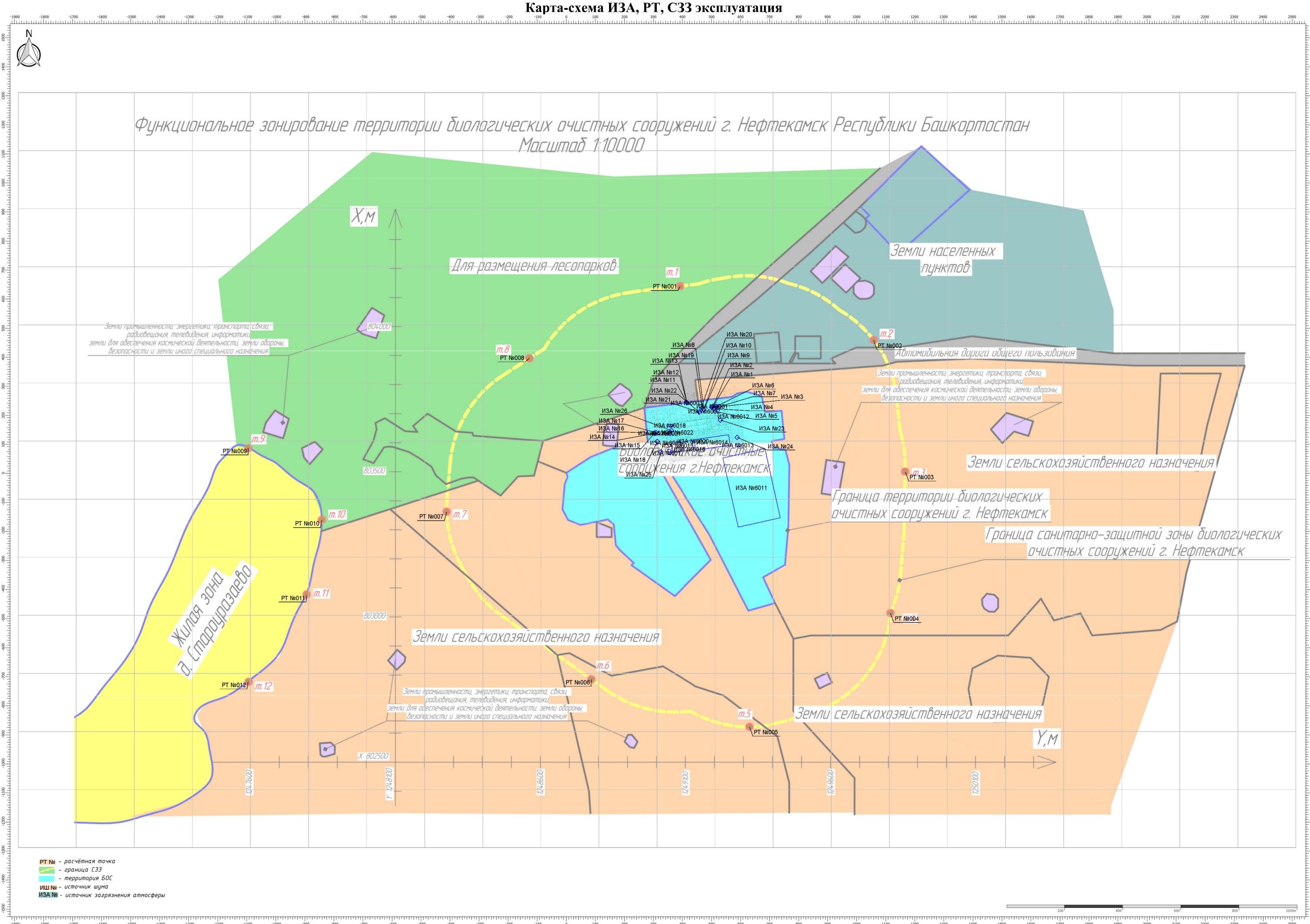

П

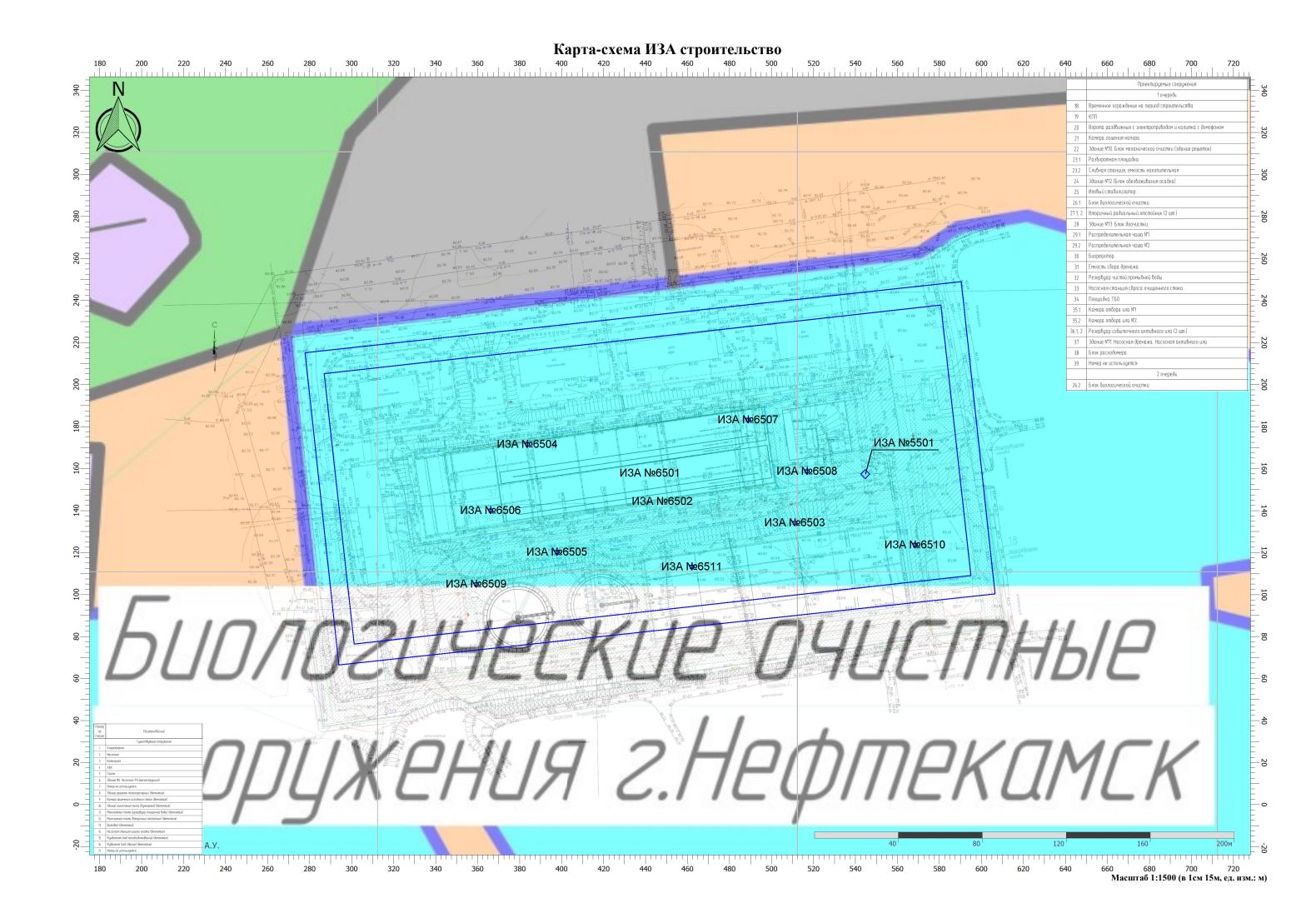
Лист

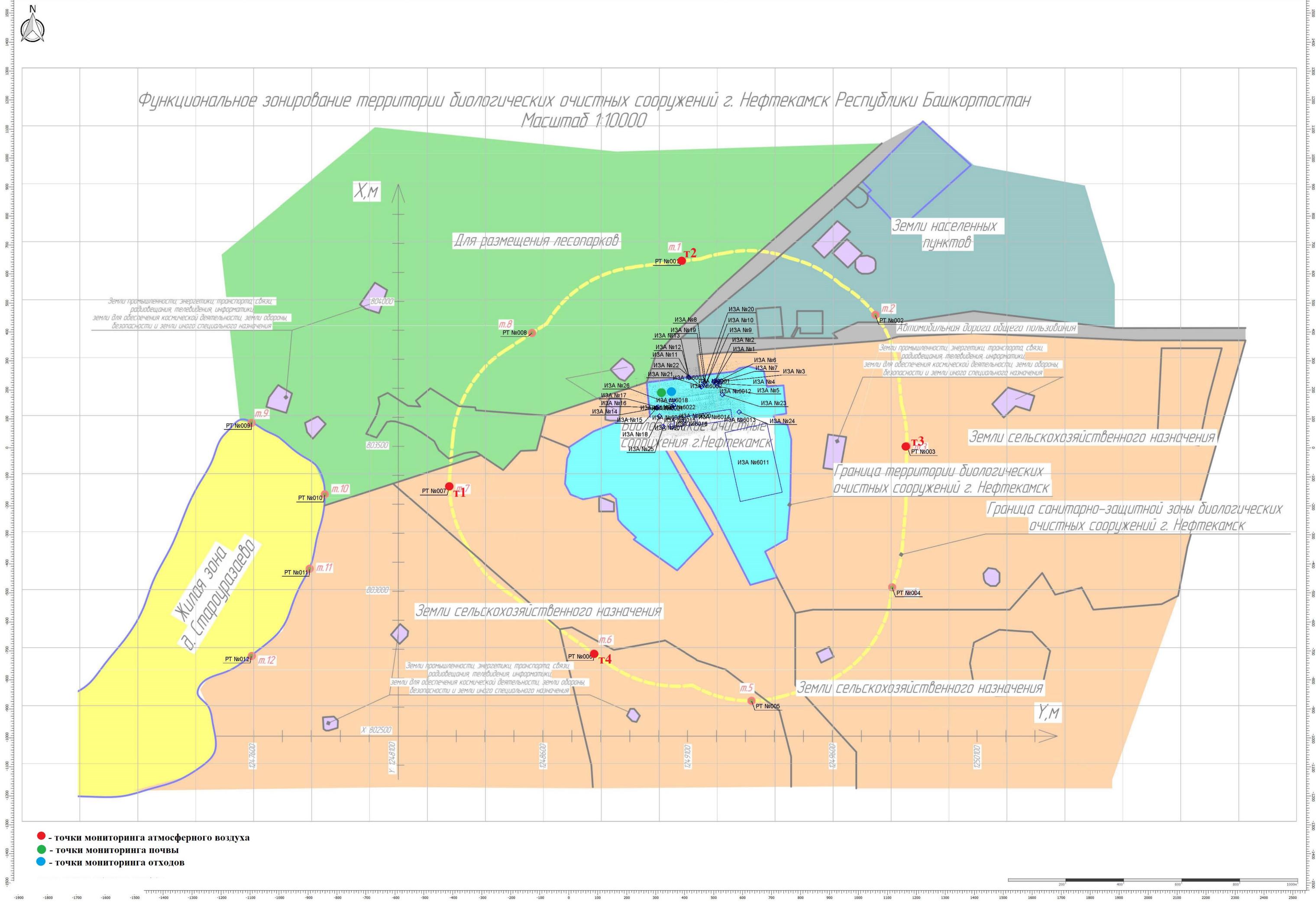

000 "УБК"

г. Уфа, 2023 г.


Карта-схема источников шума при строительстве




Карта-схема источников шума при эксплуатации



Карта-схема ИЗА эксплуатация

